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Abstract

The Gromov-Wasserstein (GW) distance is frequently used in machine learning to compare
distributions across distinct metric spaces. Despite its utility, it remains computationally
intensive, especially for large-scale problems. Recently, a novel Wasserstein distance specif-
ically tailored for Gaussian mixture models (written GMMs in the paper for the sake of
brevity) and known as MW2 (mixture Wasserstein) has been introduced by several authors.
In scenarios where data exhibit clustering, this approach simplifies to a small-scale discrete
optimal transport problem, which complexity depends solely on the number of Gaussian
components in the GMMs. This paper aims to incorporate invariance properties into MW2.
This is done by introducing new Gromov-type distances, designed to be isometry-invariant
in Euclidean spaces and applicable for comparing GMMs across different dimensional spaces.
Our first contribution is the Mixture Gromov Wasserstein distance (MGW2), which can be
viewed as a ’Gromovized’ version of MW2. This new distance has a straightforward discrete
formulation, making it highly efficient for estimating distances between GMMs in practical
applications. To facilitate the derivation of a transport plan between GMMs, we present a
second distance, the Embedded Wasserstein distance (EW2). This distance turns out to be
closely related to several recent alternatives to Gromov-Wasserstein. We show that EW2
can be adapted to derive a distance as well as optimal transportation plans between GMMs.
We demonstrate the efficiency of these newly proposed distances on medium to large-scale
problems, including shape matching and hyperspectral image color transfer.

1 Introduction

The goal of optimal transport (OT) theory is to design meaningful ways to compare probability distributions.
It provides very useful mathematical tools for diverse imaging sciences and machine learning tasks including
generative modeling (Arjovsky et al., 2017; Genevay et al., 2018; Tolstikhin et al., 2018), domain adaptation
(Courty et al., 2016), image processing (Rabin et al., 2012; 2014), and embedding learning (Courty et al.,
2018; Xu et al., 2018). For two probability distributions µ and ν, respectively on two Polish (i.e complete,
separable, metrizable) spaces X and Y, and given a lower semi-continuous function c : X × Y → R+ called
cost, optimal transport in its most classic form aims at solving the following optimization problem,

inf
π∈Π(µ,ν)

∫
X ×Y

c(x, y)dπ(x, y) , (1)
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where Π(µ, ν) is the set of probability measures on X ×Y with marginals µ and ν. When Y is equal to X , the
choice of cost cp(x, y) = dX (x, y)p, with p ≥ 1 and dX the metric of the space X , induces a distance between
probability distributions with finite p-th moments, called the Wasserstein distance Wp. In the discrete setting,
Problem (1) becomes

inf
ω∈Π(a,b)

∑
k,l

Ck,lωk,l ,

where a = (a1, . . . , am)T and b = (b1, . . . , bn)T are respectively in the Rm and Rn simplexes ∆m and ∆n,1
Π(a, b) = {ω ∈ ∆m×n : ω1n = a and ωT1m = b} and C is a non-negative matrix of size m× n, called cost
matrix.

Optimal transport is known to be computationally challenging. Between discrete distributions, its computation
involves solving a linear program that rapidly becomes costly as soon as the number of points is moderately
large. Between two sets of n points, its computation complexity is O(n3log(n)) (Seguy et al., 2017), which
compromises its usability for settings with more than a few tens of thousand of points. To lighten OT
computational cost, a large number of works have developped efficient computational tools. In particular,
Cuturi (2013) proposes to solve an entropic regularized OT problem using the Sinkhorn-Knopp algorithm
(Sinkhorn and Knopp, 1967), reducing the cost of the problem to O(n2). Over the last past years, a large body
of works have focused on speeding up the Sinkhorn-Knopp algorithm, building mostly on diverse low-rank
approximations (Solomon et al., 2015; Altschuler et al., 2018; 2019; Forrow et al., 2019; Scetbon and Cuturi,
2020; Scetbon et al., 2021). These approaches have helped to reduce the computational cost of the problem
from cubic (for the non-regularized problem) to linear complexity. Another type of commonly used solvers are
building on sliced mechanisms (Rabin et al., 2012; Kolouri et al., 2019). These solvers average Wasserstein
distances between several one dimensional projections of the high-dimensional distributions, leveraging the fact
that the OT problem between one-dimentional distributions can be solved using a simple sorting algorithm.
Alternatively, Delon and Desolneux (2020) have proposed an OT distance between Gaussian mixture models
(GMM), called Mixture Wasserstein (MW), where the admissible couplings π are themselves constrained to
be GMMs. They demonstrated that this specific continuous OT problem could be equivalently reformulated
into a discrete version (which had been also proposed independently by Chen et al. (2018)): for two GMM
with respectively K0 and K1 components, solving this formulation boils down to solve a small scale K0 ×K1
discrete OT problem. This distance can be applied to real data by first fitting GMMs on each distribution,
making it particularly suited for scenarios where a clustering structure already exists in the data. The main
advantage of this approach is that its computational cost arises almost exclusively from fitting the GMMs to
the data, since the complexity of the composite OT problem depends neither on the dimension nor on the
number of points, but solely on the number of components in the GMMs. This approach offers a scalable and
computationally efficient OT distance, which has been used for instance for texture synthesis (Leclaire et al.,
2023), evaluating generative models (Luzi et al., 2023), Gaussian Mixture reduction (Zhang and Chen, 2020)
or approximate Bayesian computation (Forbes et al., 2021).

One weakness of the classical optimal transport approach lies in the fact that it implicitly assumes that the
spaces X and Y are comparable, i.e. that there exists a relevant cost function c : X ×Y → R+ to compare them.
Yet, this assumption is not always verified. For instance, if X = Rd and Y = Rd′ with d ̸= d′, the definition
of a meaningful cost function c : Rd × Rd′ → R+ is not straightforward. Furthermore, some applications
such as shape matching require having an OT distance that is invariant to a given family of transformations,
such as translations or rotations, or more generally to isometries2. Even if the two distributions involved
in these applications do live in the same ground space, it is not straightforward to design a cost function
such that the resulting OT distance will be invariant to these families of transformations. To overcome those
limitations, several non-convex variants of Problem (1) have been proposed (Cohen and Guibasm, 1999; Pele
and Taskar, 2013; Alvarez-Melis et al., 2019; Cai and Lim, 2022). Among these, the Gromov-Wasserstein
(GW) (Mémoli, 2011) distance is perhaps the most frequently utilized, recently gaining significant attention
for the versatility it provides. Indeed, it only requires modeling topological aspects of the distributions within
each domain to compare them without having to specify first a subset of invariances nor to design a relevant
cost function between the spaces the distributions lie on. The GW problem between two measures µ and ν

1The simplex ∆m is the subset of Rm of x = (x1, . . . , xm)T such that for all 1 ≤ k ≤ m, xk ≥ 0, and
∑m

k=1 xk = 1.
2We say that ϕ : X → Y is an isometry if for all (x, x′) ∈ X 2, dY (ϕ(x), ϕ(x′)) = dX (x, x′).
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living respectively on X and Y aims at solving

inf
π∈Π(µ,ν)

∫
X ×Y

∫
X ×Y

|cX (x, x′)− cY(y, y′)|pdπ(x, y)dπ(x′, y′),

where cX : X × X � R and cY : Y × Y � R are two cost functions. Since this optimization problem only
requires to define cost functions in each respective space, it remains very versatile and can be defined with
very little assumptions on the spaces X and Y . This approach has been applied to shape matching (Mémoli,
2009), or more generally to correspondence problems (Solomon et al., 2016), word embedding (Alvarez-Melis
and Jaakkola, 2018), graph classification (Vayer et al., 2019a), graph prediction (Brogat-Motte et al., 2022),
and generative modeling (Bunne et al., 2019).

Computationally speaking, the Gromov-Wasserstein problem is known to be much more costly to solve than
the classic linear OT problem. Indeed, the problem is non convex, quadratic with respect to π and known
to be NP-hard. One possible approach to solve GW consists in linearizing the cost and to solve iteratively
several classic OT problems. Entropic regularization of GW has also been proposed in (Peyré et al., 2016;
Solomon et al., 2016) and results in a still non convex problem which can be solved by a projected gradient
algorithm, where each projection is itself an entropic linear optimal transport problem. In recent years,
several practical approximations of GW have been proposed in the literature to reduce its computational
complexity and solve it efficiently, either through quantization of input measures (Chowdhury et al., 2021),
recursive clustering approches (Xu et al., 2019; Blumberg et al., 2020), or using a minibatch scheme (Fatras
et al., 2021). Specifically to the Euclidean setting, Vayer et al. (2019b) has introduced a solver buiding on a
sliced mechanism, and leveraging the observation that the GW problem seems most of the time easy to solve
between one-dimensional distributions. More recently, Scetbon et al. (2022) have shown that the low-rank
approximations used to speed-up the Sinkhorn-Knopp algorithm were particularly suited for the regularized
GW problem, resulting in a much more computationally efficient solver. In this work, we propose to build
on the ideas of Delon and Desolneux (2020) in order to construct OT distances between GMMs that are
invariant to isometries and that stay relevant between GMMs of different dimensions. These distances share
similarities with the one defined in (Chowdhury et al., 2021), since they rely on a form of quantization of the
original data through the GMM representation. One of these distances is a “Gromovization” of the Mixture
Wasserstein distance, that we call MGW. We will see that the structured representation of MGW makes it
very robust in practice, and permits to design an efficient and scalable solver using a fixed small number
of Gaussian components, while keeping competitive precision and running times (when compared to the
state-of-the-art methods described above) when the number of points of the underlying data increases.

Contributions of the paper. In this paper, we introduce two Gromov-Wasserstein type OT distances
between GMMs that are designed to be invariant (at least) to isometries. More precisely, we introduce in
Section 3 a natural Gromov version of the distance introduced by Chen et al. (2018) and Delon and Desolneux
(2020), that we call MGW for Mixture Gromov Wasserstein. This distance can be used for applications
which only require to evaluate how far the distributions are from each other, without having to identify
correspondences between points. However, this formulation does not directly allow to derive an optimal
transportation plan between the points. To design a way to define such a transportation plan, we define in
Section 4 another distance that we call EW for Embedded Wasserstein. This latter turns out to be closely
related to the Gromov-Wasserstein distance and coincides with the OT distance introduced by Alvarez-Melis
et al. (2019). We show that EW can be adapted to derive a distance and optimal transportation plans
between GMMs and we then define a heuristic transportation plan for MGW by analogy with EW. Finally,
in Section 5, we illustrate the pratical use of our distances on medium-to-large scale problems such as shape
matching and hyperspectral image color transfer and we compare the performance of our methods with
other recent GW based approaches, both on assessing distances between clouds on points and drawing
correspondences between points. All the proofs are postponed to the appendix.

Notation

We define in the following some of the notation that will be used in the paper.
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• ⟨x, x′⟩d stands for the Euclidean inner-product in Rd between x and x′. We will use the notation
⟨x, x′⟩ when the dimension is clear and unambiguous.

• ∥x∥Rd stands for the Euclidean norm of x ∈ Rd. We will use the notation ∥x∥ when the dimension is
clear and unambiguous.

• tr(M) denotes the trace of a matrix M .
• ∥M∥F stands for the Frobenius norm of a matrix M , i.e. ∥M∥F =

√
tr(MTM).

• ∥M∥∗ stands for the nuclear norm of a matrix M , i.e. ∥M∥∗ = tr((MTM) 1
2 ).

• The notation σ(M) denotes the vector of singular values of the matrix M .
• Idd is the identity matrix of size d× d.
• For any x ∈ Rd, diag(x) denotes the matrix of size d× d with diagonal vector x.
• Ĩd stands for any matrix of size d× d of the form diag((±1)1≤i≤d)
• Suppose d ≥ d′. For any matrix M of size d× d, we denote by M (d′) the submatrix of size d′ × d′

containing the d′ first rows and the d′ first columns of A.
• Let r ≤ d and s ≤ d′. For any matrix M of size r × s, we denote by M [d,d′] the matrix of size d× d′

of the form
(
M 0
0 0

)
. When d = d′, we will write M [d].

• We use the notation Sd for the set of symmetric matrices of size d × d, Sd+ the set of symmetric
positive semi-definite matrices, and Sd++ the set of symmetric positive definite matrices.

• 1d′,d = (1)1≤i≤d′

1≤j≤d
denotes the matrix of ones with d′ rows and d columns.

• The notation X ∼ µ means that X is a random variable with probability distribution µ.
• If µ is a positive measure on X and ϕ : X → Y is a mapping, ϕ#µ stands for the push-forward measure

of µ by ϕ, i.e. the measure on Y such that for any measurable set A of Y, ϕ#µ(A) = µ(ϕ−1(A)).
• If µ is a positive measure on X , supp(µ) denotes its support, i.e. the subset of X defined as

supp(µ) = {x ∈ X | for all open set Nx such that x ∈ Nx, µ(Nx) > 0}.
• If X and Y are random vectors on Rd and Rd′ , we use the notation Cov(X,Y ) for the matrix of size
d× d′ of the form E

[
(X − E[X])(Y − E[Y ])T

]
.

• For any positive measure µ, we denote by µ̄ its associated centered measure, i.e. the measure such
that if X ∼ µ, we have X − EX∼µ[X] ∼ µ̄.

• For any m ∈ Rd and any Σ ∈ Sd+, we denote by N(m,Σ) the Gaussian measure of mean m and
covariance matrix Σ.

• For x ∈ X , δx denotes the Dirac distribution at x.

2 Background : Mixture-Wasserstein and Gromov-Wasserstein-type distances

We recall in this section the definitions and some important properties of the different OT distances used
throughout the paper. For any Polish space X , we write P(X ) the set probability measures on X . For d ≥ 1
and p ≥ 1, the Wasserstein space Wp(Rd) is defined as the set of probability measures µ on Rd with finite
moment of order p, i.e. such that ∫

Rm

∥x∥pdµ(x) < +∞ ,

with ∥.∥ being the Euclidean norm on Rd.

2.1 Mixture-Wasserstein distance between GMMs

We present here the distance introduced in Delon and Desolneux (2020), as well as some results that will be
useful in the rest of the paper. We denote GMMK(Rd) the set of Gaussian mixtures on Rd with less than K
components, i.e. the set of measures in P(Rd) which can be written

µ =
K′∑
k=1

akµk ,

where K ′ ≤ K, a = (a1, . . . , aK′)T is in ∆K′ , and {µk}k is a family of pairwise distinct Gaussian distributions,
each of mean mk ∈ Rd and covariance matrix Σk ∈ Sd+. Again, to avoid degeneracy issues where locations
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with no mass are accounted for, we will assume that the elements of a are all positive. The set of all finite
Gaussian mixture distributions on Rd is then written

GMM∞(Rd) =
⋃
K≥0

GMMK(Rd) .

Note that the condition that the Gaussian components are pairwise distinct ensures the identifiability of
the elements of GMM∞(Rd) (Yakowitz and Spragins, 1968), in the sense that two GMMs µ =

∑K
k akµk

and ν =
∑L
l blνl are equal if and only if K = L, and we can reorder the indices such that for all k, ak = bk

and µk = νk. It can been shown that GMM∞(Rd) is dense in Wp(Rd) for the metric Wp, meaning that any
measure in Wp(Rd) can be approximated with any precision for the distance Wp by a finite Gaussian mixture
distribution. Let µ ∈ GMMK(Rd) and ν ∈ GMML(Rd). The Mixture-Wasserstein distance of order 2 is
defined as

MW2(µ, ν) =
(

inf
π∈Π(µ,ν)∩GMM∞(R2d)

∫
Rd×Rd

∥x− y∥2dπ(x, y)
) 1

2

. (MW2)

As for W2 with W2(Rd), MW2 defines a metric on GMM∞(Rd) (Delon and Desolneux, 2020). In general,
the transportation plan solution of the W2 problem is not a Gaussian mixture, thus by restricting the set of
admissible couplings, we most of the time have MW2(µ, ν) > W2(µ, ν). It can be shown that the difference
between MW2(µ, ν) and W2(µ, ν) is upper-bounded by a term that only depends on the weights and the
covariances matrices of the components of the two mixtures. An important property of MW2 is that it can
be written in an equivalent form, which had already been introduced in Chen et al. (2018): if µ =

∑K
k akµk

and ν =
∑L
l blνl, then

MW 2
2 (µ, ν) = inf

ω∈Π(a,b)

∑
k,l

ωk,lW
2
2 (µk, νl) , (2)

where a = (a1, . . . , aK)T , b = (b1, . . . , bL)T . From a computational point of view, this latter formulation
reduces the problem to a simple small-scale discrete optimal transport problem since the W2 distance between
Gaussian distributions has a closed form: indeed, recall that if µk = N(mk,Σk) and νl = N(ml,Σl), then

W 2
2 (µk, νl) = ∥mk −ml∥2 + tr

(
Σk + Σl − 2

(
Σ

1
2
l ΣkΣ

1
2
l

) 1
2
)
. (3)

Finally, the respective solutions π∗ and ω∗ of Problems (MW2) and (2) are linked by the following relationship,
for all (x, y) ∈ Rd × Rd,

π∗(x, y) =
∑
k,l

ω∗
k,lpµk

(x)δy=Tk,l
W2

(x) , (4)

where T k,lW2
is the optimal W2 transport map between µk and νl and pµk

is the probability density function of
µk.

2.2 Gromov-Wasserstein distance

The Gromov-Wasserstein problem (Mémoli, 2011) can be defined as the following: given two network measure
spaces, i.e. triplets of the form (X , cX , µ) where X is a Polish space, cX : X ×X � R is a measurable function
and µ ∈ P(X ), it aims at finding

GWp((X , cX , µ), (Y, cY , ν)) =
(

inf
π∈Π(µ,ν)

∫
X ×Y

∫
X ×Y

|cX (x, x′)− cY(y, y′)|pdπ(x, y)dπ(x′, y′)
) 1

p

, (5)

with p ≥ 1. The fundamental metric properties of GWp have been studied in depth in (Mémoli, 2011; Sturm,
2012; Chowdhury and Mémoli, 2019). When cX and cY are powers of the metrics dX and dY of the base
spaces X and Y, GWp induces a metric over the space of metric measure spaces (i.e. the triplets (X , dX , µ))
quotiented by the strong isomorphisms (Sturm, 2012), where one says that two metric measure spaces
(X , dX , µ) and (Y, dY , µ) are strongly isomorphic if there exists an isometric bijection ϕ : supp(µ)→ supp(ν)
that transports µ into ν. When cX and cY are not powers of the metrics of the base spaces, GWp still defines
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a metric, but this time over the space of network measure spaces quotiented by the weak isomorphisms
(Chowdhury and Mémoli, 2019), which are spaces isomorphic for the costs cX and cY relatively to a third
space, see (Chowdhury and Mémoli, 2019) for details. Note that in both cases, the metric property of GWp

stricly holds only when it takes finite values, and so it is natural to restrict it to the following space

Mp = {(X , cX , µ) :
∫

X ×X cpX (x, x′)dµ(x)dµ(x′) < +∞} .

Note that when X and Y are fixed as well as cX and cY , it is natural to see GWp as a distance between
the two measures µ and ν rather than a distance between the two network measure spaces (X , cX , µ) and
(Y, cY , ν). Therefore, we will denote in that case - with a slight abuse of notations - GWp(µ, ν) instead of
GWp((X , cX , µ), (Y, cY , ν)). Finally, in the discrete setting, given a = (a1, . . . , am)T and b = (b1, . . . , bn)T
being respectively in ∆m and ∆n, and given two non-negative cost matrices Cx and Cy of respective size
m×m and n× n, the Gromov-Wasserstein distance can be written as

GWp(a, b) = inf
ω∈Π(a,b)

∑
i,j,k,l

|Cxi,k − C
y
j,l|

pωi,jωk,l .

2.3 Other invariant distances

Sturm (2006) has introduced another distance between metric measures spaces which takes the following form

Dp((X , dX , µ), (Y, dY , ν)) = inf
Z,ψ,ϕ

Wp(ψ#µ, ϕ#ν) , (6)

where (X , dX , µ) and (Y, dY , ν) are two metric measure spaces as defined in Section 2.2, Z is a third Polish
space, and where ψ : X → Z and ϕ : Y → Z are two isometric mappings. More recently, Alvarez-Melis et al.
(2019) have introduced another family of invariant OT distances in the Euclidean setting which can also be
used to compare distributions on spaces of different dimensions. Initially, Alvarez-Melis et al. (2019) have
introduced this OT distance in the setting where µ and ν are both living in the same Euclidean space Rd.
Yet, it generalizes well to settings where µ and ν are living in spaces of different dimensions. Between two
measures µ and ν on Rd and Rd′ , this reads as

IW2,H(µ, ν) =
(

inf
π∈Π(µ,ν)

inf
h∈H

∫
Rd×Rd′

∥x− h(y)∥2dπ(x, y)
) 1

2

, (IW2)

where H is a class of mappings from Rd′ to Rd encoding the invariance. This is a non-convex optimization
problem in π and h that becomes convex in π if h is fixed and becomes also convex in h if π is fixed and
H is a convex set. When d is equal to d′ and both measures are centered, Alvarez-Melis et al. (2019) have
notably shown that when ν is such that EY∼ν [Y Y T ] = Idd and when H = H1 := {P ∈ Rd×d : ∥P∥F ≤

√
d},

Problem (IW2) is equivalent to the Gromov-Wasserstein problem (5) of order 2 with inner-product costs.
Indeed, it can be shown that both problems are equivalent in that case to

sup
π∈Π(µ,ν)

∥∥∥∥∫
Rd×Rd

xyTdπ(x, y)
∥∥∥∥

F
, (F-COV)

where for any matrix A of size d× d, ∥A∥F denotes the Frobenius norm, i.e.
√

tr(ATA). Another interesting
case is when H = H2 := O(Rd) := {P ∈ Rd×d : PTP = Idd} is the set of orthogonal matrices of size d× d.
In that case, Problem (IW2) is equivalent to

sup
π∈Π(µ,ν)

∥∥∥∥∫
Rd×Rd

xyTdπ(x, y)
∥∥∥∥

∗
, (∗-COV)

where for any matrix A of size d × d, ∥A∥∗ is the nuclear norm of A, i.e. ∥A∥∗ = tr((ATA) 1
2 ). Note that

both Problems (F-COV) and (∗-COV) are non-convex. These results have been shown by Alvarez-Melis et al.
(2019) in the case where µ and ν are discrete but can easily be extended to continuous distributions. Observe
that problem (∗-COV) consists in maximizing the sum of the singular values of the cross-covariance matrix∫
xyTdπ(x, y), whereas the Problem (F-COV) consists in maximizing the sum of the squared singular values

of the cross-covariance matrix. In general, these two problems are not equivalent despite being structurally
similar, as the example of Figure 1 illustrates it.

6



Published in Transactions on Machine Learning Research (09/2024)

0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Figure 1: Transport plans between two discrete centered distributions on R2 composed of three points. Left:
optimal coupling given by the maximization of Problem (F-COV). Right: optimal coupling given by the
maximization of Problem (∗-COV).

3 Gromov-Wasserstein distance between mixture of Gaussians

In this section, we define a Gromov-Wasserstein type distance between Gaussian mixture distributions. This
distance is a natural "Gromovization" of Problem (2). Indeed, as it has already been observed in the literature
(Chen et al., 2018; Lambert et al., 2022), any Gaussian mixture in dimension d can be identified with a
probability distribution on Rd × Sd+, i.e. the product space of means and covariance matrices. Equivalently, a
finite Gaussian mixture can be seen as a discrete probability distribution on the space of Gaussian distributions
N (Rd)3, which has been proven to be a complete metric space when endowed with W2 (Takatsu, 2010) and is
furthermore separable since it is a subspace of W2(Rd) which is itself a separable metric space when endowed
with W2 (Bolley, 2008). Since the theory of optimal transport still applies on measures over non-Euclidean
spaces (Villani, 2008), it follows that Problem (2) can formally be thought as a simple OT problem between
two discrete measures in P(N (Rd)). Thus, one can define directly its Gromov version.

Definition 1. Let µ =
∑
k akµk and ν =

∑
l blνl be two Gaussian mixtures respectively on Rd and Rd′ , we

define

MGW 2
2 (µ, ν) = inf

ω∈Π(a,b)

∑
i,j,k,l

|W 2
2 (µi, µk)−W 2

2 (νj , νl)|2ωi,jωk,l . (MGW2)

Unlike MW2, there is no straightforward equivalent continuous formulation of this latter problem. In
particular, it is not clear whether Problem (MGW2) is equivalent or not to the continuous GW problem
between µ and ν - seen as continuous measures on Rd and Rd′ - where the set of admissible couplings is
restricted to Gaussian mixture distributions. Thanks to the identifiability property of the set of finite Gaussian
mixtures, we have that each µ ∈ GMM∞(Rd) is associated with a unique discrete distribution µ̃ ∈ P(N (Rd))
and MGW2 between µ and ν coincides with GW2 with squared W2 costs between their associated discrete
measures µ̃ and ν̃ in P(N (Rd)). Finally, note that we have defined MGW2 only between GMMs with finite
number of components because there is in general no identifiability property for infinite Gaussian mixtures. As
an outcome, for a given infinite GMM µ on Rd, there might be more than one associated continuous measure
µ̃ on N (Rd). For instance, the standard Normal distribution N(0, 1) can naturally be identified in P(N (R))
with the Dirac distribution at N(0, 1), but also with the Normal distribution N(0, 1/2) over the parametrized
line {N(θ, 1/2) ∈ N (R) : θ ∈ R}, or with N(0, 1) over the parametrized line {δθ ∈ N (R) : θ ∈ R}.

3N (Rd) includes the degenerate Gaussian distributions, as for instance the Dirac distributions.
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3.1 Metric properties

Here we study the metric property of MGW2 that mainly arises from the Gromov-Wasserstein structure of
Problem (MGW2). Indeed, the following result is a direct consequence of the theory developed by Sturm
(2012).
Proposition 2. In the following, µ =

∑
k akµk and ν =

∑
l blνl are two GMMs respectively in GMMK(Rd)

and GMML(Rd′).

(i) MGW2 is non-negative and symmetric.

(ii) MGW2 satisfies the triangle inequality, i.e. for any ξ ∈ GMMS(Rd′′),

MGW2(µ, ν) ≤MGW2(µ, ξ) +MGW2(ξ, ν) .

(iii) MGW2(µ, ν) = 0 if and only if there exists a bijection ϕ : {µk}k → {νl}l such that ν =
∑
k akϕ(µk)

and ϕ is an isometry for W2, i.e. for all k and i smaller than K, W2(ϕ(µk), ϕ(µi)) = W2(µk, µi).

Sketch of proof. The proof of these results mainly consists in applying the theory of Sturm (2012), using the
facts that N (Rd) is complete (Takatsu, 2010), separable (Bolley, 2008), and metrizable with the Wasserstein
distance. See Appendix B.1 for the full proof.

MGW2 defines thus a pseudometric on the set of all finite Gaussian mixtures of arbitrary dimensions, i.e.
the set,

GMM∞ =
⊔
d≥1

GMM∞(Rd) ,

that is invariant to the mappings ϕ that transform a finite Gaussian mixture
∑
k=1 akµk into another finite

Gaussian mixture of the form
∑K
k=1 akνk such that for all k and i smaller than K, W2(νk, νi) = W2(µk, µi).

A question that arises is: are all these mappings ϕ between GMM∞(Rd′) and P(Rd) always associated with
mappings T : Rd′ → Rd that are isometries for the Euclidean norm and such that T#µ coincides with ϕ(µ)
for every µ ∈ GMM∞(Rd′)? We can already state the following converse result.
Proposition 3. Let d ≥ d′, and let T : Rd′ → Rd be a mapping that is an isometry for the Euclidean norm.
Then the mapping ϕT : GMM∞(Rd′) → P(Rd) defined as ϕT (µ) = T#µ for all µ ∈ GMM∞(Rd′), is such
that for any µ of the form ΣKk=1akµk, ϕT (µ) is in GMM∞(Rd′) and is of the form ΣKk=1akνk, with {νk}Kk=1
being such that, for all k and i smaller than K, W2(νk, νi) = W2(µk, µi), and so MGW2(µ, T#µ) = 0.

Sketch of proof. The proof of this result mainly consists in showing that for any µ ∈ GMM∞(Rd′), ϕT (µ) is
in GMM∞(Rd) because T is necessarily affine, as a direct consequence of the Mazur-Ulam theorem (Mazur
and Ulam, 1932) which implies that any isometry from Rd′ to Rd (endowed with the Euclidean norm) is
necessarily affine. See Appendix B.2 for the full proof.

Hence, if T : Rd′ → Rd is an isometry for the Euclidean norm, then MGW2 is invariant to the mapping
ϕT : GMM∞(Rd′)→ GMM∞(Rd) given for all µ ∈ GMM∞(Rd′), by ϕT (µ) = T#µ. Yet, in general, there
exist mappings ϕ :W2(Rd′)→W2(Rd) that are isometries for W2 and that are not induced by any mapping
T : Rd′ → Rd that is an isometry for the Euclidean norm. This has been proven by Kloeckner (2010) in
the general case when considering isometries defined all over W2(Rd), but remains true when restricting to
isometries defined over subspaces of N (Rd) as the following example suggests.
Example 4. let N++(R) be the set of one-dimensional Gaussian distributions with strictly positive mean.
Let ϕ : N++(R)→ N++(R) be the mapping that swaps the mean and the standard deviation, i.e. such that
for any γ = N(mγ , σ

2
γ) with mγ > 0 and σγ > 0, ϕ(γ) = N(σγ ,m2

γ). Then ϕ is an isometry for W2. Observe
indeed that for γ and ζ in N++(R), we have

W2(ϕ(γ), ϕ(ζ)) = (σγ − σζ)2 + (mγ −mζ)2 = W2(γ, ζ) .

8
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Thus ϕ is an isometry for W2, yet ϕ is not induced by any isometry of R. Hence there exist mappings from
GMM∞(Rd′) to GMM∞(Rd) that satisfy the conditions above but which are not induced by isometries for
the Euclidean norm from Rd′ to Rd.

3.2 MGW2 in practice

Using MGW2 on discrete data distributions. Most applications of optimal transport involve discrete
data that can be thought as samples drawn from underlying distributions, which are not GMMs in general. In
those applications, we aim to evaluate an OT distance between two distributions of the form µ̂ = (1/M)

∑
i δxi

and ν̂ = (1/N)
∑
j δyj

where {xi}i and {yj}j are families of respectively M and N vectors of Rd and Rd′ .
Though µ̂ and ν̂ can be thought as mixtures of degenerate Gaussian distributions, evaluating directly
MGW2(µ̂, ν̂) is not particularly interesting since we have in that case MGW2(µ̂, ν̂) = GW2(∥.∥2, ∥.∥2, µ̂, ν̂).
However, we can design a pseudometric MGWK,2 between µ̂ and ν̂ by fitting two GMMs µ and ν with K
components on µ̂ and ν̂ and then setting MGWK,2(µ̂, ν̂) = MGW2(µ, ν). The approximation of µ̂ and ν̂
by µ and ν can be done by maximizing the log-likelihood of the GMMs with the EM algorithm (Dempster
et al., 1977). Note that if K is chosen too small, the approximations of µ̂ and ν̂ will be of bad quality and
we are likely to observe undesirable behaviors, as for instance having MGWK,2(µ̂, ν̂) = 0 despite µ̂ and
ν̂ not being equal up to an isometry. Thus, the choice of K must be a compromise between the quality
of the approximation given by the GMM and the computational cost. To illustrate the pratical use of
MGW2 on a simple toy example, we draw 150 samples from the spiral dataset provided in the scikit-learn
toolbox4 (Pedregosa et al., 2011) and we apply rotations with various angles on this dataset. We then fit
independently GMMs with 20 components on the initial and the target rotated datasets and we compute
MGW2 between the two obtained GMMs. We also compute GW2 with inner-product as cost functions, MW2
using also 20 Gaussian components and W2. The results can be found in Figure 2. As expected, MGW2 is
rotation-invariant as GW2 which is not the case of MW2 and W2.

Spiral datasets Evolution of OT distances

0 /4 /2 3 /4
0

5

10

15

20

25

MGW2

GW2
MW2

W2

Figure 2: Left first column: spiral datasets (in blue and red) composed of 150 points of R2. The red dataset
corresponds to points sampled from the distribution of the blue dataset rotated from π. Left second column:
The two corresponding learned GMMs with 20 components via EM algorithm (each color corresponds to a
Gaussian component of the GMMs). Right: evolution of MGW2, GW2, MW2, and W2 between the initial
distribution (in blue) and the rotated ones in function of the angle of rotation. Experiments are averaged
over 10 runs and the colored bands correspond to +/− the standard deviation. This experiment is inspired
from Vayer et al. (2019b).

4The package is accessible here: https://scikit-learn.org/stable/.
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Difficulty of designing a transportation plan. The MGW2 problem can be used on discrete data to
provide an optimal coupling ω∗ between the Gaussian components of the two Gaussian mixtures µ and ν
that approximate the discrete data distributions µ̂ and ν̂. However, some applications require an coupling π
between the points that compose µ̂ and ν̂. It is not straightforward to derive such a transportation plan π
from the plan ω∗ that minimizes the MGW2 problem. A naive heuristic approach would be to define π in
a similar way to (4), transporting the Gaussian components using restricted-GW2 transport maps (Delon
et al., 2022a) instead of W2 transport maps. Yet this approach introduces too many degrees of freedom as
it consists in transporting the Gaussian components independently, without taking into account the global
structure of the mixture, see Figure 3 for an illustrative example. Since selecting the solution that preserves
the global structure of the mixture among all the candidates seems to be a difficult combinatorial problem, a
better solution to design such plan would be to derive explicitely the isometric transformation that has been
implicitely applied to one of the two measures when solving the MGW2 problem. This is the idea behind the
embedded Wasserstein distance that we introduce in the following section.

Figure 3: Left: two discrete distributions µ̂ (in gradient of colors) and ν̂ (in blue) that have been drawn from
two GMMs. The colors have been added to µ̂ in order to visualize the couplings between µ̂ and ν̂. Middle and
right: two possible solutions of transport of µ̂ obtained by plugging the discrete plan that minimizes MGW2
in (4), using restricted-GW2 transport maps (Delon et al., 2022a) to transport the Gaussian components.
Observe that the middle solution preserves the global structure of the mixture, in the sense that points that
are close to each other but associated with different Gaussian components remain close when tranported.
This is not the case for the right solution.

4 Embedded Wasserstein distance

In this section, we define an alternative distance to Gromov-Wasserstein also invariant to isometries which
specifies the isometric transformation applied to one of the measure when computing the distance.
Definition 5. Let µ ∈ P(Rd) and ν ∈ P(Rd′). For r ≥ 1 and s ≥ 1, let us denote Isoms(Rr) the set of all
isometries - for the Euclidean norm - from Rs to Rr. We define

EW2(µ, ν) = inf
{

inf
ϕ∈Isomd′ (Rd)

W2(µ, ϕ#ν), inf
ψ∈Isomd(Rd′ )

W2(ψ#µ, ν)
}
, (EW2)

with the convention that the infinimum over an empty set is equal to +∞.

Observe that if d > d′, the set Isomd(Rd
′) is empty and so EW2(µ, ν) = infϕ∈Isomd′ (Rd) W2(µ, ϕ#ν). In

contrast, if d < d′, Isomd′(Rd) is empty and so EW2(µ, ν) = infψ∈Isomd(Rd′ ) W2(ψ#µ, ν). When d = d′, the
two infinimums are equivalent. In all what follows, we will suppose without loss of generality that
d ≥ d′.

4.1 Properties of EW2

We present here three properties of EW2 which motivate its use between Gaussian mixture models. First, we
start by showing that EW2 defines a pseudometric that is invariant to isometries.

10
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Proposition 6. EW2 defines a pseudometric on
⊔
k≥1W2(Rk) such that for any µ ∈ W2(Rd) and ν ∈

W2(Rd′), EW2(µ, ν) = 0 if and only if there exists an isometry ϕ : Rd′ → Rd such that ν = ϕ#µ.

Sketch of proof. Non-negativity and symmetry are straightforward. The triangular inequality can be proved
observing first that the infinimum in ϕ is always achieved, then remarking that EW2 remains unchanged
when one of the two measures is immersed in a third Euclidean space of greater dimension than d and d′.
This makes EW2 closely related to the distance between metric measure spaces introduced by Sturm (2006)
presented in Section 2.3. See Appendix B.4 for the full proof.

Now we show that EW2 is equivalent to the OT distance introduced by Alvarez-Melis et al. (2019) described
in Section 2.3 for a particular choice of transformation space H. In all what follows, we denote Vd′(Rd)
the Stiefel manifold (James, 1976), i.e. the set of rectangular othogonal matrices of size d × d′ such that
PTP = Idd′ . More precisely, we show the following result.
Proposition 7. Let µ ∈ W2(Rd) and ν ∈ W2(Rd′) and let suppose without loss of generality d ≥ d′. Then,

EW 2
2 (µ, ν) = inf

π∈Π(µ,ν)
inf

P∈Vd′ (Rd), b∈Rd

∫
Rd×Rd′

∥x− Py − b∥2dπ(x, y) . (7)

Moreover this latter problem is equivalent to

sup
π∈Π(µ̄,ν̄)

∥∥∥∥∫
Rd×Rd′

xyTdπ(x, y)
∥∥∥∥

∗
. (∗-COV)

Sketch of proof. Equation (7) is a consequence of (Delon et al., 2022b, Lemma 3.3) and of the Mazur-
Ulam theorem (Mazur and Ulam, 1932), which implies that any isometry from Rd′ to Rd (endowed with the
Euclidean norm) is necessarily affine. The equivalence with Problem (∗-COV) is then roughly a consequence of
(Alvarez-Melis et al., 2019, Lemma 4.2) which implies that Problem (7) is achieved in P at P ∗ = Uπ Id[d,d′]

d′ V Tπ
where Uπ ∈ O(Rd) and Vπ ∈ O(Rd′) are the left and right orthogonal matrices associated with the Singular
Value Decomposition (SVD) of

∫
xyTdπ(x, y). See Appendix B.3 for the full proof.

Since Problem (∗-COV) is in general not equivalent to Problem (F-COV), the EW2 problem is in general not
equivalent to the GW2 problem with inner-product costs. However, the following result shows that between
Gaussian distributions, the two problems share some common solutions.
Proposition 8. Suppose without loss of generality that d ≥ d′. Let µ = N(0,Σ0) and ν = N(0,Σ1) be two
centered Gaussian measures on Rd and Rd′ . Let P0, D0 and P1, D1 be the respective diagonalizations of
Σ0 (= P0D0P

T
0 ) and Σ1 (= P1D1P

T
1 ) that sort the eigenvalues in non-increasing order. We suppose that µ

is not degenerate, i.e. Σ0 is non-singular. Then the problem

EW2(µ, ν) = inf
P∈Vd′ (Rd)

W2(µ, P#ν) ,

admits solutions of the form (π∗, P ∗) with P ∗ of the form P ∗ = P0Ĩ
[d,d′]
d′ PT1 and π∗ = (Idd, T )#µ with T

being any affine map such that for all x ∈ Rd,

T (x) = P1

(
Ĩd′D

1
2
1 D

(d′)
0

− 1
2
)[d′,d]

PT0 x .

In other terms, the solutions of Problem (5) with inner-product costs exhibited in Delon et al. (2022a) are
also solutions of Problem (EW2). Furthermore,

EW 2
2 (µ, ν) = tr(D0) + tr(D1)− 2tr(D(d′)

0

1
2
D

1
2
1 ) .

Sketch of proof. The proof of this result is inspired from the proof of Equation (3) given by Givens et al.
(1984) that is based on Lagrangian analysis. The main difference with the proof of Equation (3) lies in
the introduction of an additional variable P with constraint P ∈ Vd′(Rd). See Appendix B.5 for the full
proof.
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Note that it is not clear if the two problems are strictly equivalent or only share some common solutions
because it is not clear, to the best of our knowledge, that the solutions exhibited above are the only solutions
of the GW2 problem with inner-products costs, see Delon et al. (2022a) for more details. To complete this
section, we emphasize that EW2 is different from the distance proposed in Cai and Lim (2022), that we call
here PW2 for Projection Wasserstein discrepancy. Details about this difference can be found in Appendix C.

4.2 Embedded Wasserstein distance between GMMs

Similarly to Delon and Desolneux (2020), one can define an OT distance derived from EW2 when µ and ν
are GMMs by restricting the set of admissible couplings to be themselves GMMs.
Definition 9. Let µ ∈ GMMK(Rd) and ν ∈ GMML(Rd′) and suppose that d ≥ d′. We define

MEW2(µ, ν) = inf
{

inf
ϕ∈Isomd′ (Rd)

MW2(µ, ϕ#ν), inf
ψ∈Isomd(Rd′ )

MW2(ψ#µ, ν)
}
. (8)

As before, one can reformulate this latter problem by observing that the isomorphic mappings for the
Euclidean norm are necessarily of the form Px+ b with P ∈ Vd′(Rd) and b ∈ Rd. Similarly to EW2, one can
show that the infinimum in ϕ is always achieved and that MEW2 satisfies all the properties of a pseudometric
on GMM∞ by simply replacing W2 by MW2 in the proof of Proposition 6. Supposing without loss of
generality that d ≥ d′ and using the equivalent discrete formulation (2) of the MW2 problem, we get that for
µ =

∑
k akµk and ν =

∑
l blνl, the problem is equivalent to

inf
P∈Vd′ (Rd)

inf
ω∈Π(a,b)

∑
k,l

ωk,lW
2
2 (µ′

k, P#ν
′
l) , (MEW2)

where for any k ≤ K and l ≤ L, µ′
k and ν′

l are the Gaussian components respectively associated to the
centered GMMs µ̄ and ν̄. Note that µ′

k and ν′
l are not necessarily themselves centered.

4.2.1 Numerical solver

This time, it is not possible to derive analytically the closed form of the optimal P ∗ for Problem (MEW2).
However, one can still solve the problem numerically using an alternate minimization scheme. Indeed, Problem
(MEW2) is not convex in P and ω, but is convex in ω if P is fixed and is furthermore a simple small-scale
discrete OT problem in that case, which motivates the use of an alternating optimization scheme for solving
this problem. However, Problem (MEW2) is not convex in P for a fixed ω because the feasible set, i.e. the
Stiefel manifold Vd′(Rd), is not convex. For a fixed ω, the minimization in P can be done by projected
gradient descent (Calamai and Moré, 1987), i.e. for a given iterate P {i} and a given ω, the next iterate
P {i+1} is given by

P {i+1} = κVd′ (Rd)

(
P {i} − η ∂Jω(P {i})

∂P

)
,

where κVd′ (Rd) is the projection mapping on the Stiefel manifold, where η > 0 and where for all matrices P of
size d′ × d, Jω(P ) =

∑
k,l ωk,lW2(µ′

k, P#ν
′
l). Observe that we have, as a byproduct of Proposition 7, that for

all P of size d′ × d, the projection κVd′ (Rd) is written

κVd′ (Rd)(P ) = UP Id[d,d′]
d′ V TP ,

where UP ∈ O(Rd) and VP ∈ O(Rd′) are respectively the left and right orthogonal matrices associated with
the SVD of P . Indeed, this projection can be written

κVd′ (Rd)(P ) = arg min
P̃∈Vd′ (Rd)

∥P − P̃∥2
F = arg min

P̃∈Vd′ (Rd)

[
∥P∥2

F + ∥P̃∥2
F − 2tr(P̃TP )

]
.

Since for all P̃ ∈ Vd′(Rd), ∥P̃∥2
F = d′, we get that the problem is equivalent to supP̃∈Vd′ (Rd) tr(P̃TP ) which

is maximized when P̃ = UP Id[d,d′]
d′ V TP , see the sketch of proof of Proposition 7. Finally, this yields to

12



Published in Transactions on Machine Learning Research (09/2024)

Algorithm 1 Mixture Embedded Wasserstein solver

Require: µ =
∑K
k akµk, ν =

∑L
l blνl, P {0} ∈ Vd′(Rd), η > 0.

1: while not converged do
2: [C]k,l ←W 2

2 (µk, νl) for k = 1, . . . ,K; l = 1, . . . , L
3: ω{i} ← Solve-OT(a, b, C) ▷ Solve a classic OT problem.
4: while not converged do ▷ Do projected gradient descent on P .
5: A← P {i−1} − η∂Jω{i}(P {i−1})/∂P
6: U,Σ, V T ← SVD(A)
7: P {i} ← U Id[d,d′]

d′ V T

8: end while
9: end while

10: return ω, P

Algorithm 1. Note that more involved optimization procedures using the specific structure of the Stiefel
manifold could probably be used here (Boumal, 2023).

When µ and ν are only composed of non-degenerate Gaussian components, one can compute ∂Jω(P )/∂P
either by using automatic differentiation (Baydin et al., 2018) or by using the following technical result,
whose proof is postponed to Appendix B.
Lemma 10. Let for any 1 ≤ k ≤ K, µk = N(m0k,Σ0k) with m0k ∈ Rd and Σ0k ∈ Sd++ and for any 1 ≤ l ≤ L,
νl = N(m1l,Σ1l) with m1l ∈ Rd′ and Σ1l ∈ Sd′

++. For any ω in the K × L simplex, let Jω : Rd×d′ → R be the
functional defined, for all matrix P of size d× d′, by

Jω(P ) =
∑
k,l

ωk,lW
2
2 (µk, P#νl) .

Then for any full-rank matrix P of size d× d′, we have

∂Jω(P )
∂P

= 2
∑
k,l

ωk,l

[
Pm1lm

T
1l −m0km

T
1l − Σ0kPΣ

1
2
1l(Σ

1
2
1lP

TΣ0kPΣ
1
2
1l)

− 1
2 Σ

1
2
1l

]
.

Initialization procedure. Since the problem is non-convex, the solution to which Algorithm 1 converges
strongly depends on the initialization of P . It is therefore crucial to design a good initialization procedure.
To do so, we propose to use the annealing scheme introduced by Alvarez-Melis et al. (2019). More precisely,
we propose to set the initial P as the solution of the following iterative procedure. First we solve an
entropic-regularized W2 problem between the two discrete measures µ◦ =

∑
k akδm0k

and ν◦ =
∑
k blδm1l

with a large value of regularization ε0 in order to obtain a coupling ω{1}. Then we set

P {1} = κVd′ (Rd)

(∑
k,l ω

{1}
k,l m0km

T
1l

)
.

We then solve another entropic-regularized W2 problem, this time between µ◦ and P
{1}
# ν◦, using a smaller

value of regularization ε1 = α × ε0 with α ∈ (0, 1). We obtain thus a new coupling ω{2} and we can then
derive P {2} as previously. We repeat this procedure Nit times until the regularization term εNit

becomes
small enough. This boils down to Algorithm 2.

In practice, we set in all our experiments α = 0.95 and ε0 = 1 as in Alvarez-Melis et al. (2019). Furthermore
we observed that in most cases, setting Nit = 10 was sufficient to obtain a good initialization of P for
Algorithm 1.

4.2.2 Transportation plans and transportation maps

Since (MEW2) has a continous equivalent formulation (8), one can derive from any optimal solution (ω∗, P ∗)
of the former, an optimal solution (π∗, ϕ∗) of the latter. More precisely, we have on the one hand for all
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Algorithm 2 Annealed initialization procedure for mixture embedded Wasserstein

Require: a, b, {m0k}Kk , {m1l}Ll , ε0 > 0, α ∈ (0, 1), P {0} = Id[d,d′]
d′

1: for i = 1, . . . , Nit do
2: [C]k,l ← ∥m0k − P {i−1}m1l∥2

3: ω{i} ← ε-OT(a, b, C, εi−1) ▷ Solve a regularized OT problem.
4: A←

∑
k,l ω

{i}
k,lm0km

T
1l

5: U,Σ, V T ← SVD(A)
6: P {i} = U Id[d,d′]

d′ V T

7: εi ← αεi−1 ▷ Annealing scheme.
8: end for
9: return P

y ∈ Rd′ , ϕ∗(y) = P ∗y+b∗, where b∗ = EX∼µ[X]−P ∗EY∼ν [Y ], and on the other hand for all (x, y) ∈ Rd×Rd′ ,

π∗(x, y) =
∑
k,l

ω∗
k,lpµk

(x)δy=ψ∗◦Tk,l
W2

(x) , (9)

where T k,lW2
is the optimal W2 transport map between µ′

k and P ∗
#ν

′
l (where we recall that µ′

k and ν′
l are

the Gaussian components of the centered GMMs) and ψ∗ : Rd → Rd′ is defined for all x ∈ Rd as ψ∗(x) =
P ∗T (x− b∗). As in Delon and Desolneux (2020), it is possible to define a unique assignment of each x by
setting for all x ∈ Rd,

Tmean(x) = E(X,Y )∼π∗ [Y |X = x] =
∑

k,l
ω∗

k,lpµk
(x)ψ∗◦Tk,l

W2
(x)∑

k
akpµk

(x)pµk
(x)

.

Note that Tmean is not a Monge map since π∗ is not of the form (Idd, T )#µ. In particular, Tmean#µ is
not equal to ν and Tmean is not necessarily the gradient of a convex function. When using MEW2 to
obtain an assignment between two sets {xi}Mi and {yj}Nj of respectively M and N vectors of Rd and Rd′ ,
one can compute Tmean(xi) for each xi, and then determine which yj is the closest of Tmean(xi) using a
nearest-neighbor algorithm (Fix and Hodges, 1951).

4.2.3 Improving the MGW2 method

Inspired by the MEW2 method presented above, we propose in this section to improve the MGW2 method
by: (i) proposing an annealed scheme similarly to Algorithm 2 in order to reduce the chances of converging
to sub-optimal local minima, (ii) designing a transportation plan for MGW2 similarly to (9).

Annealing scheme. Since Problem (MGW2) is non-convex, we are only guaranteed to converge towards a
local minimum when solving it with a classic non-regularized GW solver (Peyré et al., 2016). Furthermore,
the convergence towards a particular minimum depends strongly on the initialization of the coupling ω. Since
the discrete GW problem in MGW2 is of very small scale and so not costly in itself, we propose, by anology
with MEW2, to use a similar annealing scheme as in Algorithm 2 to reduce the chance of converging to a
sub-optimal local minimum. More precisely, this gives the following algorithm.

As previously, we set in our experiments α = 0.95 and ε0 = 1 as in Alvarez-Melis et al. (2019) and we observed
that, in toy cases where we know what the global minimum is, that Nit = 10 seemed to be a sufficient number
of iterations to prevent the algorithm from converging towards a sub-optimal minimum.

Designing a transportation plan. Still by analogy with MEW2, one can design a transportation plan
for MGW2 by defining a matrix PMGW2 ∈ Vd′(Rd) and a vector bMGW2 ∈ Rd, and then replacing ψ∗ ◦ TW2

in (9) by ψMGW2 ◦ TW2 , where for all x ∈ Rd, ψMGW2(x) = PTMGW2
(x− bMGW2). More precisely, this can be

done the following way. Given two GMMs µ =
∑
k akµk and ν =

∑
l blνl respectively in GMMK(Rd) and

GMML(Rd′) and given the optimal discrete plan ω∗ solution of Problem (MGW2), one can define the matrix
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Algorithm 3 Annealed mixture Gromov-Wasserstein solver

Require: µ =
∑K
k akµk, ν =

∑L
l blνl, α ∈ (0, 1), ε0, ω{0} = abT

1: [Cx]k,i ←W 2
2 (µk, µi) for k = 1, . . . ,K, i = 1, . . . ,K

2: [Cy]l,j ←W 2
2 (νl, νj) for l = 1, . . . , L, j = 1, . . . , L

3: for n = 1, . . . , Nit do
4: ω{n} ← ε-GW(a, b, Cx, Cy, εn−1, ω

{n−1}) ▷ Solve a regularized GW problem.
5: εn ← αεn−1 ▷ Annealing scheme.
6: end for
7: return Solve-GW(a, b, Cx, Cy, ω{Nit}) ▷ Solve the non-regularized GW problem.

PMGW2 as the solution of the following problem

inf
P∈Vd′ (Rd)

∑
k,l

ω∗
k,lW

2
2 (µ′

k, P#ν
′
l) , (10)

where µ′
k and ν′

l are the Gaussian component of the centered GMMs µ̄ and ν̄, then we can set bMGW2 =
EX∼µ[X]− PMGW2EY∼µ[Y ]. As above, this problem can be solved numerically by performing a projected
gradient descent on P , using either automatic differentiation or Lemma 10. This is also a non-convex
optimization problem since Vd′(Rd) is non-convex and so the solution given by the projected gradient descent
depends on the initialization. We propose thus to initialize with the projection on the Stiefel manifold of the
discrete cross-covariance matrix between the means of the Gaussian components, i.e.

P
{0}
MGW2

= κVd′ (Rd)

(∑
k,l ω

∗
k,lm0km

T
1l

)
.

Finally, using PMGW2 one can define a continous plan πMGW2 associated with the discrete optimal plan ω∗

solution of the MGW2 problem similarly to (9). We can therefore use MGW2 to transport distributions,
using as previously Tmean. We can also, as for MEW2, use MGW2 to obtain an assignment between two sets
of points.

5 Experiments

In what follows, we use MGW2 and MEW2 to solve Gromov-Wasserstein related tasks on various datasets.
More precisely, we apply first the two methods on simple toy low-dimensional GMMs. Then, we show that
both methods can be used to solve relatively efficiently GW related tasks on real datasets in moderate to
large scale settings involving sometimes several tens of thousands of points, both for evaluating distances
between clouds of points and drawing correspondences between points. In all our experiments, we use the
numerical solvers provided by the Python Optimal Transport (POT) package5 (Flamary et al., 2021) that
implements solvers for the non-regularized and regularized classic OT and GW problems. Code is available
here6.

5.1 Low dimensional GMMs

In Figure 4, we use again the example of Figure 3 and we derive an optimal transport plan for the MGW2
problem as described in Section 4.2.3. We also show the plan obtained by solving the EW2 problem. One
can see that with both solutions, the global structure of the distribution is preserved in the sense that points
that are closed to each other but in two different Gaussian components have been sent to points that are also
close to each other but in different Gaussian components.

5.2 Distances between clouds of points

In this section, we illustrate the usability of our methods to assess distances between clouds of points. First,
we reproduce an experiment originally conducted in Rustamov et al. (2013) and presented in Solomon et al.

5The package is accessible here: https://pythonot.github.io/.
6https://github.com/AntoineSalmona/MixtureGromovWasserstein
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data MGW2 MEW2

Figure 4: Left: two discrete distributions µ̂ (in gradient of colors) and ν̂ (in blue) that have been drawn from
two GMMs. The colors have been added to µ̂ in order to visualize the couplings between µ̂ and ν̂. Middle:
transport of µ̂ obtained by solving the MGW2 problem, then deriving PMGW2 ∈ V2(R2) by solving Problem
(10). Right: transport of µ̂ obtained by solving the MEW2 problem.

(2016) with the use of entropic-regularized GW, that aims to recover the cyclical nature of a horse’s gallop.
Then, we perform a comparison between runtimes of MGW2 and other methods existing in the literature
that provide a GW-type distance between point clouds.

Galloping horse sequence. Here we repoduce the experiment of the galloping horse, that has been
originally conducted in Rustamov et al. (2013) and presented in Solomon et al. (2016) with the use of
entropic-regularized GW. In this experiment, we compute a matrix of pairwise distances (either for MGW2
or MEW2) between 45 meshes representing a galloping horse. Then, we conduct a Multi-Dimensional Scaling
(MDS) (Borg and Groenen, 2005) - which roughly can be thought as a generalization of PCA - of the 45× 45
matrix of pairwise distances between meshes, in order to plot each mesh as a 2-dimensional point. Figure 5
shows these 2-dimensional embeddings of the sequence. As observed in Solomon et al. (2016), the interesting
part here is that these points are positioned in a cyclical fashion, which means that the original set of pairwise
distances seem to respect the periodic aspect of the sequence (both for MGW2 and MEW2). Each mesh is
composed of approximately 9000 vertices and the average time to compute one distance when using the POT
implementation of the entropic-regularized GW solver is around 30 minutes which makes the computation of
the full pairwise distance matrix impractical, as mentioned in Solomon et al. (2016). In constrast, when using
our methods with GMMs with K = 20 components, it took us only approximately 10 minutes to compute
the full distance matrix using MGW2, and around one hour using MEW2, these times including the fitting
with EM of all the GMMs.

MGW2 MEW2 Data

0 10 20 30 40
Mesh id

0 10 20 30 40
Mesh id

Figure 5: MDS on the galloping horse animation using the MGW2 distance (left), and the MEW2 distance
(middle). Each point corresponds to a given mesh and the meshes are colored in function of their number in
the sequence. Right: 4 examples among the 45 meshes that composes the sequence. The computations of
both distances have been done by first fitting GMMs with 20 components on each mesh independently.
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Local minima. To highlight the importance of using an annealing scheme when deriving MGW2 or MEW2,
we have reconducted the previous experiment but this time without the annealing schemes described in
Algorithm 3 and Algorithm 2. In Figure 6, we plot the evolutions of the values of MGW 2

2 and MEW 2
2

between one given fixed mesh and all the others. In both cases, the annealing scheme seems to be useful
to prevent the solver to converge towards sub-optimal mininima. However, if the MGW2 solver seems to
often converge to the same optimum regardless the use of the annealing scheme, this is not the case of
MEW2 which, without the annealing initialization procedure (Algorithm 2), converges most of the time to a
sub-optimal minimum, so much that the periodical aspect doesn’t even appear in that case. This experiment
also emphasizes the fact that when solving a GW problem with classic non-regularized or entropic solvers from
Peyré et al. (2016), we are not at all guaranteed to converge towards a global minimum and, more critically,
we have in general no ways to know if the solution we converged to is actually optimal or sub-optimal.

MGW2 MEW2

0 10 20 30 40
Mesh id

0.00

0.01

0.02

0.03

0.04
without annealing
with annealing

0 10 20 30 40
Mesh id

0.00

0.01

0.02

0.03

0.04

0.05
without annealing
with annealing

Figure 6: Left: Evolution of MGW 2
2 between the second mesh and all the others, using an annealing scheme

(Algorithm 3) in blue, and without the annealing scheme in orange. Right: Evolution of MEW 2
2 between the

first mesh and all the others, with the annealing initialization procedure (Algorithm 2) in blue, and without
in orange. The computation of both distances has been done by first fitting GMMs with 20 components on
each mesh independently.

Runtimes comparison. We perform a comparison between runtimes of MGW2, sliced GW (SGW) (Vayer
et al., 2019b), low-rank GW (lrGW)(Scetbon et al., 2022), minibatch GW (mbGW) (Fatras et al., 2021),
entropic-regularized GW (erGW) (Peyré et al., 2016) and quantized GW (qGW) (Chowdhury et al., 2021)
between two 2D random discrete distributions with varying number of points from n = 103 to n = 106.
We use the codes provided by the authors on their dedicated Github repositories. Note that MEW2 is
not included in this comparison as we observed in the previous experiment that this latter method was
significantly slower than MGW2. For MGW2, we use GMMs with respectively K = {10, 20, 50} components.
For SGW, we use the implementation on CPU with L = {50, 200} projections. lrGW has a parameter r
corresponding to the rank of the coupling matrix. We choose here respectively r = n/100 (this choice is
advised by the authors of (Scetbon et al., 2022) for lrGW to be a good approximation of erGW) and r = 100
(which yields a linear computational time). For mbGW, we use batches of size m = 50 with k = n/10
batches (these values are advised by the authors of (Fatras et al., 2021)). For erGW, we use two different
implementations of the method, the first one from POT and the second from Scetbon et al. (2022)7, both with
regularization parameter ε = 0.1. Finally, for qGW, we use a proportion p = 0.1 of the points as partition
block representatives and then we take a Voronoi partition with respect to these representatives. Note that
this latter method only provides a coupling but we reinject it in the GW objective. Results can be found in
Figure 7. We can observe that MGW2 has similar runtimes as SGW (CPU version) and seems even a bit
faster in large scale settings. Several algorithms fail to converge when the number of points is too large. The
limits we observed are: 104 for both implementations of erGW, 2× 104 for lrGW with r = n/100, and 4× 104

for lrGW with r = 100. In the same way, considering our computational ressources, using qGW to compute a
distance between the two point clouds with more than 3× 104 points was impossible because the two full
pair-to-pair distance matrices are becoming too heavy in terms of memory. Note that it is still possible to

7https://github.com/meyerscetbon/LinearGromov/blob/main/FastGromovWass.py
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compute a coupling using qGW afterwards, see (Chowdhury et al., 2021) for details, but it is no more possible
to evaluate the GW objective, which necessarily requires to access the full pair-to-pair distance matrices.

103 104 105 106

10 1

100

101

102

103

MGW2 (K=10)
MGW2 (K=20)
MGW2 (K=50)
SGW (L=50)

SGW (L=200)
lrGW (r = n/100) 
lrGW (r = 100)
mbGW

erGW (pot)
erGW (Scetbon et al., 2022)
qGW

Figure 7: Runtimes comparison between MGW2, SGW (Vayer et al., 2019b) (CPU), lrGW (Scetbon et al.,
2022), mbGW (Fatras et al., 2021), erGW (Peyré et al., 2016) and qGW (Chowdhury et al., 2021) between
two 2D random discrete distributions with varying number of points from 103 to 106 in log-log scale. The
time includes the computation of the pair-to-pair distance matrices and the fitting of the GMMs for MGW2
(using scikit-learn).

5.3 Drawing correspondences between points

In this section, we illustrate the usability of our methods to establish correspondences between clouds of
points on two shape matching applications.

Source Target (MGW2) Target (MEW2)

Figure 8: Shape matching between shapes and their distorted versions. We plot the output of the Tmean
transport map applied to the source shape on the left for respectively MGW2 (middle) and MEW2 (right).
GMMs with 20 components have been fitted independently on the source shape and on its noisy version.
Colors have been added to visualize where the points have been transported.

Quality of the transport map. We reproduce here an experiment from Chowdhury et al. (2021). The
goal is to match 3D meshes from the CAPOD dataset (Papadakis, 2014) with copies of themselves whose
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vertices are permuted and perturbed randomly. To do so, we fit a GMM on each mesh as well as on its noisy
version, then we derive a discrete coupling ω between the Gaussian components using MGW2 or MEW2.
Finally, we transport the points using Tmean (see Section 4.2.2). Two examples of matching using GMMs
with 20 components can be found in Figure 8. Observe that both methods MGW2 and MEW2 seem to
be able to recover relatively well the correct matching of the points on these examples. To complete this
experiment with quantitative results, we compute, as in Chowdhury et al. (2021), the distortion at each
point x as the distance from its ground truth copy x and its matched point y with a given coupling π. The
distortion score of the coupling π is then the mean squared distortion. We report class average distortion
scores for MGW2 and MEW2 with GMMs with K = {10, 20, 50} components as well as computation times
in Table 1. Since the points at the output of Tmean are not exactly corresponding to the points in the noisy
version of the shapes, we introduce an additional nearest neighbors step in order to reproject the points onto
the noisy shape. We also report in Table 1 class average distortion scores and computation times for qGW
using a proportion p = {0.01, 0.1, 0.2, 0.5} of the points as partition block representatives and using a Voronoi
partition with respect to these representatives. In terms of distortions scores, we observe that MGW2 yields
similar results that qGW for most classes. We remark that the results we obtained on qGW are consistent
with the ones reported in (Chowdhury et al., 2021, Table 1). Note that Chowdhury et al. (2021) have shown
that qGW significantly outperforms MREC (Blumberg et al., 2020) and mbGW (Fatras et al., 2021) on
this task (which is why we don’t include them in the comparison). In terms of running time, note that the
situation is a little bit different from Figure 7 since the MGW2 method includes here an additional step of
deriving a coupling between the points given the coupling between the Gaussian components whereas the
qGW method doesn’t require to assess the GW objective after computing the coupling anymore. We observe
that both methods MGW2 and MEW2 are significantly slower than qGW in that setting. Yet the gap of
running time between qGW and our methods seems to reduce as the number of points increases. Indeed,
using MGW2 or MEW2 seems to largely decorrelate computation time from the number of points (since
the number of Gaussian component stays fixed), without observable deterioration in terms of registration
accuracy. These methods therefore make a lot of sense as the number of points increases.

Method Param Humans Planes Spiders Cars Dogs Trees Vases
1926 2144 2664 5220 8937 10433 15828

MGW2 10 0.04 (17.5) 0.40 (17.6) 0.03 (17.7) 0.12 (17.8) 0.13 (18.8) 0.10 (18.8) 0.34 (19.1)
20 0.15 (69.4) 0.36 (69.5) 0.04 (69.9) 0.17 (70.8) 0.20 (71.9) 0.10 (71.9) 0.28 (73.1)
50 0.18 (431) 0.10 (428) 0.007 (431) 0.12 (435) 0.20 (437) 0.04 (438) 0.20 (441)

MEW2 10 0.09 (17.1) 0.37 (22.9) 0.02 (16.3) 0.23 (17.6) 0.20 (24.5) 0.11 (18.3) 0.29 (23.2)
20 0.21 (77.2) 0.39 (66.6) 0.02 (64.1) 0.25 (78.0) 0.20 (85.6) 0.13 (67.1) 0.30 (76.8)
50 0.16 (555) 0.17 (421) 0.009 (397) 0.20 (423) 0.21 (462) 0.08 (465) 0.19 (486)

qGW 0.01 0.25 (0.59) 0.46 (0.78) 0.05 (1.08) 0.24 (3.88) 0.28 (11.3) 0.13 (17.4) 0.28 (32.4)
0.1 0.16 (1.04) 0.10 (1.33) 0.02 (1.84) 0.21 (5.80) 0.02 (16.5) 0.05 (26.8) 0.18 (54.9)
0.2 0.11 (1.65) 0.08 (2.12) 0.01 (2.86) 0.15 (9.25) 0.008 (28.2) 0.04 (53.6) 0.21 (123)
0.5 0.10 (4.39) 0.07 (5.77) 0.007 (7.73) 0.16 (34.9) 0.007 (104) 0.15 (165) 0.22 (418)

Table 1: Distortion scores (lower is better) and runtimes (in parentheses) for MGW2, MEW2, and qGW.
The average number of points in each shape class is provided under the shape class name. Results are listed
for several parameter choices of each method. Results have been averaged on 10 runs of the experiment.

Matching human shaped meshes. To demonstrate the usability of our methods in larger scale settings,
we use the SHREC’19 dataset (Melzi et al., 2019) that contains human shaped meshes that can sometimes
be composed of more than 300000 vertices. Our goal is to draw correspondences between the shapes using
only the information of the vertices (the dataset also includes edges). To do so, we first fit independently
GMMs with 20 components on each mesh and we derive directly couplings at the scale of the Gaussian
components that represent the different parts of the bodies. In such large scale settings, the main bottleneck
of the methods in terms of computational time is clearly the fitting of the GMMs that can take at worst 2
minutes for the meshes composed of the highest number of vertices. The results are displayed on Figure 9.
Observe that in most cases, both methods seem to be able to match correctly the colored parts. Yet in the
last row, MEW2 matches a leg at the left in red to an arm at the right. This probably implies that the
method has been trapped in a local minimum despite the annealing initialization procedure. Finally, note
that we presented here cases where the methods performed relatively well, but there are cases where MGW2
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or MEW2 fail to find correct correspondences and exhibit behaviors similar to MEW2 in the last row, which
suggests that the methods converge sometimes to sub-optimal minima despite the annealing schemes.

Source Target (MGW2) Target (MEW2)

Figure 9: Shape matching between human-shaped meshes using MGW2 (middle) and MEW2 (right). Each
shape on the left column is matched with the shapes on the same row. GMMs with 20 components have
been fitted independently on each shape and the points colored in green and purple correspond to Gaussian
components that are matched together when solving MGW2 or MEW2. From left to right and top to bottom,
the meshes are composed respectively of 84912, 30300, 75000, 273624, 360678, and 360357 vertices.

5.4 Application to hyperspectral image color transfer

The goal here is to reproduce the experiment of color transfer conducted in Delon and Desolneux (2020),
but this time using a hyperspectral image, i.e an image with more than 3 color channels. More precisely, we
aim to create an RGB image from an hyperspectral image u using the colors of another RGB image v. To
do so, we consider images as empirical distributions in the color spaces and we solve a Gromov-Wasserstein
problem between the distributions µ̂ = 1

M

∑M
k δuk

and ν̂ = 1
N

∑N
l δvl

, where M and N are the number
of pixels in respectively the hyperspectral image and the RGB image we use as color palette, and {uk}Mk
and {vl}Nl are the values at each pixel, i.e for here all l, vl ∈ R3 and for all k, uk ∈ Rd with d > 3. We
thus fit two GMMs µ and ν on respectively µ̂ and ν̂ and we use MGW2 or MEW2 to derive a mapping
Tmean : Rd → R3, as described in Section 4.2.2. We apply this process to a hyperspectral image of 512× 512
pixels with 15 channels that are displayed in Figure 10 top left. We use as color palettes two paintings by
Gauguin and Renoir, displayed in Figure 10 top right, that are respectively Manhana no atua (top) and
Le déjeuner des canotiers (bottom). These two images are composed of 1024 × 768 pixels. The resulting
images Tmean(u) are displayed in Figure 10 bottom (Gauguin at the left and Renoir at the right). For this
experiment, we observed that setting the number of Gaussian components to K = 15 was a good compromise
between capturing the complexity of the color distributions and obtaining a relatively regular mapping Tmean.
This experiment shows that MGW2 and MEW2 can be used in large scale settings: observe indeed that the
color distributions µ̂ and ν̂ are composed respectively of approximatively 300000 and 800000 points, which
makes the problem intractable with entropic-GW solvers such as Peyré et al. (2016) or Solomon et al. (2016).
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In term of computation time, the fitting of the two GMMs for the hyperspectral image takes aproximatively
one minute against 20 seconds for the GMM for the RGB image. The projected gradient descent becomes
rather slow in that setting, which makes it preferable to few updates of P at each step of Algorithm 1 for the
computation of MEW2. Finally, for both methods, it takes around 2 minutes to compute the whole RGB
image Tmean(u).

MGW2 MEW2

Figure 10: Color transfers between a hyperspectral image with 15 channels (top left) and two paintings by
Gauguin and Renoir (top right, middle right). Bottom line: the obtained RGB images using MGW2 and
MEW2. For this experiment, we used GMMs with 15 components. Image taken by Francesca Ramacciotti
(Alma Mater Studiorum - University of Bologna) and Laure Cazals (supported by the European Commission
in the framework of the GoGreen project (GA no. 101060768)).

6 Conclusion and perspectives

In this paper, we have introduced two new OT distances on the set of Gaussian mixture models, MGW2 and
MEW2, and we have shown that they both can be used to solve relatively efficiently Gromov-Wasserstein
related problems on Euclidean spaces, especially in moderate-to-large scale settings involving several tens of
thousands of points. These OT distances are also by design particularly suited to settings where there already
exists a kind of clustering structure in the data. This being said, if MEW2 remains an efficient alternative to
the entropic GW solvers proposed by Peyré et al. (2016) and Solomon et al. (2016), we observed that the
method was actually slower and perhaps harder to tune than MGW2 for a slighty lower quality of results,
and so we believe that MGW2 is a better choice in practice. This latter distance is part of the family of
Gromov-Wasserstein type OT distances that reduce the size of the GW problem, which also includes notably
qGW (Chowdhury et al., 2021), MREC (Blumberg et al., 2020) and scalable GW (Xu et al., 2019). To the
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best of our knowledge, no such method specifically based on Gaussian mixture clustering had already been
proposed in the literature. Furthermore, our method differs from these three other approaches in the fact
that we only need here to solve numerically one single GW problem at the scale of the clusters, using not
only the centroid position information but also order 2 statistics. Note in particular that our method has
strong similarities with qGW, which uses Voronoi quantizations of the spaces instead of GMMs However, an
important difference lies in the fact that the MGW2 method primarily provides a distance between clouds of
points before providing a heuristic coupling between them, while the qGW method directly derives a heuristic
coupling which can then be reinjected into the objective function to derive a distance. For both methods, the
optional additional step of computing a coupling for MGW2 and computing a distance for qGW increases
the computation time. Consequently, MGW2 seems to be a more appropriate choice than qGW for tasks
that require only a distance between clouds of points, see the computation times of Figure 7, while qGW
seems to be a more appropriate choice for tasks that require only a coupling between points. Still, we have
shown in our experiments that MGW2 can also provide couplings, with equivalent performance to qGW in
terms of accuracy, although it is significantly slower in the small-to-medium scale setting of Table 1. However,
we believe that one advantage of MGW2 over qGW for deriving couplings is that MGW2 appears to better
decorrelate the number of clusters needed to achieve good accuracy from the number of points, which may
become an important feature in larger scale settings.

Perspectives for future work MGW2 could be easily extended to other type of mixtures as soon as we
have an identifiability property between the mixtures and the probability distributions on the space of the
distributions that compose the mixtures. If in the Euclidean setting GMMs seem to be versatile enough to
represent large classes of concrete and applied problems, an interesting extension of our work could be to
consider mixture of distributions on non-Euclidean spaces.

Computationally speaking, the main bottleneck of the method probably comes from the fitting of the GMMs
with the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) which can become relatively
costly in large scale settings or as soon as the dimension increases. If the EM algorithm remains invariably the
classical algorithm for learning GMMs, some recent approaches (Hosseini and Sra, 2020; Sembach et al., 2022;
Pasande et al., 2022) have proposed alternative algorithms that seem to outperform it. These approaches are
based on Riemannian stochastic optimization, leveraging the rich Riemannian structure of the set of positive
definite matrices. Another interesting alternative that has been shown to outperform the EM algorithm has
been proposed by (Kolouri et al., 2018) and is based on the minimization of the sliced-Wasserstein distance.
Integrating this in our method could result thus in an approach fully-based on optimal transport.

Another possible limitation of our work lies in the fact that the MGW2 solver converges sometimes to
sub-optimal local minima. If the annealed procedure introduced in Section 4.2.3 seems to reduce this issue,
we generally have no guarantee that the solution we have converged to is optimal. This is not specific to
our method and comes from the gradient descent structure of the classic GW solvers. Still, when solving
the GW problem between GMMs rather than solving it directly between the points, it is likely that we
increase the probability of converging towards a sub-optimal local minimum because we inevitably introduce
symmetries by simplifying the problem and so we probably increase in the mean time the number of local
minima in the GW objective. In the Euclidean setting, the recent work of Ryner et al. (2023) proposes an
algorithm for solving the GW problem that is guaranteed to converge toward a global minimum, leveraging
the low-rank structure of the cost matrices when the cost functions are the squared Euclidean distances.
A future perspective of work could be therefore to study if a similar idea could be applied for solving the
MGW2 problem.
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Organization of the supplementary

The supplementary is organized as follows. First, in Appendix A, we show six technical results that will be
used throughout the proofs of the paper. In Appendix B, we give the full proofs of the technical results of
the paper. Finally, in Appendix C, we give more details on the difference between EW2 and the OT distance
introduced by Cai and Lim (2022).

A Technical lemmas

Before turning to the proofs of the theoretical results, we state here six technical lemmas that will be used
throughout the proofs of the results of the paper.

A.1 A property of couplings between measures living in different dimensions

First we start by recalling the following result (Delon et al., 2022b, Lemma 3.3).
Lemma A1 (Delon et al., 2022b). Let µ ∈ W2(Rd) and ν ∈ W2(Rd′) with d not necessarily greater than
d′, and let T : Rd′ → Rd be a measurable map. Then π′ ∈ Π(µ, T#ν) if and only if there is some π ∈ Π(µ, ν)
such that π′ = (Idd, T )#π. In particular, if there exist a, b ≥ 0 such that ∥T (y)∥ ≤ a+ b∥y∥ for all y ∈ Rd′ ,
then

inf
π∈Π(µ,ν)

∫
Rd×Rd′

∥x− T (y)∥2dπ(x, y) = inf
π∈Π(µ,T#ν)

∫
Rd×Rd

∥x− z∥2dπ(x, z) .

A.2 Isometries in Euclidean spaces

We show the following result, that states that any isometry T : Rd′ → Rd for the Euclidean norm is affine
and of the form, for all y ∈ Rd′ , T (y) = Py + b, where b ∈ Rd and P is in the Stiefel manifold Vd′(Rd).
Lemma A2. Suppose d ≥ d′. Then ϕ : Rd′ → Rd is an isometry for the Euclidean norm if and only if there
exist P ∈ Vd′(Rd) and b ∈ Rd such that for all y ∈ Rd′ , ϕ is of the form

ϕ(y) = Py + b .

Proof. First observe that for P ∈ Vd′(Rd) and b ∈ Rd, y 7→ Py + b is an isometry since we have, for any y
and y′ in Rd′

∥Py + b− Py′ − b∥2 = ∥P (y − y′)∥2 = (y − y′)TPTP (y − y′) = (y − y′)T (y − y′) = ∥y − y′∥2 .

The converse is a consequence of the Mazur–Ulam theorem (Mazur and Ulam, 1932) that states - in the
version of Baker (1971) - that an isometry from a real normed space to a strictly convex normed space, i.e. a
normed space where the unit ball is a stricly convex set, is necessarily affine. Since it is easy to show that the
unit ball {x ∈ Rd : ∥x∥ ≤ 1} is a strictly convex set, we get that for all x ∈ Rd′ , ϕ is of the form y 7→ Py + b
with P being a matrix of size d× d′, and b ∈ Rd. Moreover we have for all y, y′ ∈ Rd′

∥ϕ(y)− ϕ(y′)∥2 = ∥Py − Py′∥2 = ∥P (y − y′)∥2 = (y − y′)TPTP (y − y′) .

Since ϕ is an isometry, it follows that ∥y− y′∥2 = (y− y′)TPTP (y− y′) and so PTP = Idd′ , which concludes
the proof.

A.3 Centering of measures

Lemma A3. Let µ ∈ W2(Rd) and ν ∈ W2(Rd′) with d not necessarily greater than d′. Let µ̄ and ν̄ denote
the centered measures associated to µ and ν and let P be any subset of matrices of size d× d′. Then,

inf
π∈Π(µ,ν)

inf
P∈P, b∈Rd

∫
Rd×Rd′

∥x− Py − b∥2dπ(x, y) = inf
π∈Π(µ̄,ν̄)

inf
P∈P

∫
Rd×Rd′

∥x− Py∥2dπ(x, y) .
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Proof. Denoting m0 = EX∼µ[X], m1 = EY∼ν [Y ], x̃ = x−m0, and ỹ = y −m1, we have for any π ∈ Π(µ, ν),∫
Rd×Rd′

∥x− Py − b∥2dπ(x, y) =
∫
Rd×Rd′

∥x̃− P ỹ − b+m0 − Pm1∥2dπ(x, y)

= ∥m0 − b− Pm1∥2 +
∫
Rd×Rd′

∥x̃− P ỹ∥2dπ(x, y) ,

since
∫
⟨x̃− P ỹ,m0 − b− Pm1⟩dπ(x, y) = 0. Thus it follows,

inf
π∈Π(µ,ν)

inf
P∈P, b∈Rd

∫
Rd×Rd′

∥x− Py − b∥2dπ(x, y)

= inf
P∈P

(
inf
b∈Rd
∥m0 − Pm1 − b∥2 + inf

π∈Π(µ̄,ν̄)

∫
Rd×Rd′

∥x− Py∥2dπ(x, y)
)
.

Observe now that for any P ∈ P, ∥m0 − Pm1 − b∥2 = 0 if b = m0 − Pm1, which concludes the proof.

A.4 A matrix linear program

Lemma A4. Let K be a matrix of size d× d′ with Singular Value Decomposition (SVD) K = UKΣKV
T
K

and let P be any compact set of matrices of size d× d′. Then,

sup
P∈P

tr(PTK) = max
P∈P

tr(ΣTPΣK) ,

where ΣP = diag[d,d′](σ(P )) with σ(P ) ∈ Rd′

+ denoting the vector of singular values of P. Furthermore the
supremum is achieved at P of the form,

P = UKΣPV TK .

Proof. Note that this lemma can be proven with a proof similar to the one of Alvarez-Melis et al. (2019,
Lemma 4.2), using the min-max theorem for singular values. Here we offer an alternative proof based on
Lagragian analysis. First observe that the supremum is achieved as a direct consequence of the Weierstrass
theorem because P is compact and the mapping P 7→ tr(PTK) is continuous. For a given P ∈ P, let
UPΣPV TP be the SVD of P . The problem can be rewritten as

max
P∈P

tr(VPΣTPUTP UKΣKV TK ) .

Now, let us denote U = UTP UK and V = V TP VK . Observe that U is in O(Rd) and V is in O(Rd′). Using the
cyclical permutation of the trace operator, the problem becomes

max
P∈P

tr(ΣTPUΣKV T ) .

Now, for a given fixed ΣP , we determine which U and V maximize tr(ΣTPUΣKV T ). This problem reads as

max
U∈O(Rd), V ∈O(Rd′ )

tr(ΣTPUΣKV T ) .

The Lagrangian of this problem reads as

L(U, V,C0, C1) = −tr(ΣTPUΣKV T ) + tr(C0(UTU − Idd)) + tr(C1(V TV − Idd′)) ,

where C0 ∈ Sd and C1 ∈ Sd′ are the Lagrange multipliers respectively associated with the constraints
U ∈ O(Rd) and V ∈ O(Rd′). The first order condition gives{

ΣPV ΣTK = 2UC0
ΣTPUΣK = 2V C1 ,
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or equivalently {
UTΣPV ΣTK = 2C0
ΣTPUΣKV T = 2V C1V

T .

Since C0 and C1 are symmetric matrices (because they are associated with symmetric constraints), we get
that both left-hand terms are symmetric. This gives the following conditions{

UTΣPV ΣTK = ΣKV TΣTPU
ΣTPUΣKV T = V ΣTKUTΣP .

Now, observe that when multiplying the first condition at right by UTΣP and multiplying the second condition
at left by ΣKV T , we get by combining the two conditions{

UΣKV TΣTPΣP = ΣPΣTPUΣKV T
UTΣPV ΣTKΣK = ΣKΣTKUTΣPV T ,

or equivalently, {
UΣKV TDP = D

[d]
P UΣKV T

UTΣPV DK = D
[d]
K UTΣPV T ,

where DP = diag(σ(P )) and DK = diag(σ(K)). Multiplying the first condition at left by V ΣTKUT and the
second condition at right by V ΣTPU , this yields to{

V DKV
TDP = V ΣUTD[d]

P UΣKV T
D

[d]
K UTD

[d]
P U = UTΣPV DKV ΣTPU .

It follows that V DKV
TDP and D

[d]
K UTD

[d]
P U are symmetric matrices and so V DKV

T commutes with DP

and UTD
[d]
P U commutes with D

[d]
K . Thus we can deduce that U and V are permutation matrices. Since the

singular values are ordered in non-increasing order, we deduce that the problem is maximized when U = Idd
and V = Idd′ . This implies that UP = UK and VP = VK , which concludes the proof.

Note that Lemma A4 is especially useful when the constraint of belonging to the set P can be expressed as a
constraint on the singular values. Observe that this is the case of Vd′(Rd) since for all P ∈ Vd′(Rd), we have
PTP = Idd′ and so an equivalent condition of belonging in Vd′(Rd) is that σ(P ) = 1d′ .

A.5 Some properties of symmetric matrices

Here we state two technical results on symmetric matrices that will be useful in the proofs of the results on
Gaussian distributions.
Lemma A5. Let A ∈ Sd. We denote λ1 and λd its largest and smallest eigenvalues. For all x ∈ Rd such
that ∥x∥ = 1, we have

(i) x is an eigenvector of A associated to λ1 if and only if xTAx = λ1.

(ii) x is an eigenvector of A associated to λd if and only if xTAx = λd.

Proof. Let x ∈ Rd such ∥x∥ = 1. Since A is symmetric, there exists O ∈ O(Rd) and Λ = diag((λk)1≤k≤d)
such that xTAx = xTOΛOTx. Denoting z the vector OTx, we get thus

xTAx = zTΛz =
d∑
k=1

λkz
2
k .

Hence it follows that
λd∥z∥2 ≤ xTAx ≤ λ1∥z∥2 ,

with equality if and only if z is an eigenvector associated with λ1 or λd.
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Lemma A6. Suppose that d ≥ d′. Let Σ be a positive semi-definite (PSD) matrix of size d+ d′ of the form

Σ =
(

Σ0 K
KT Σ1

)
,

with Σ0 ∈ Sd++, Σ1 ∈ Sd′

+ and K being a rectangular matrix of size d × d′. Let S = Σ1 −KTΣ−1
0 K be the

Schur complement of Σ. Then there exists r ≤ d′ and Br ∈ Vr(Rd) such that

K = Σ
1
2
0 BrΛrUTr ,

where Ur ∈ Vr(Rd
′) and Λr is a diagonal positive matrix of size r such that

Σ1 − S = UrΛ2
rU

T
r .

Proof. For a given Schur complement S = Σ1 −KTΣ−1
0 K, we have KTΣ−1

0 K = Σ1 − S. Since Σ0 ∈ Sd++,
we can deduce that KTΣ−1

0 K ∈ Sd′

+ and so that Σ1 − S ∈ Sd′

+ . We note r the rank of KTΣ−1
0 K. One can

observe that
r ≤ d′ ≤ d ,

where the left-hand side inequality follows from the fact that rk(AB) ≤ min{rk(A), rk(B)}. Then, Σ1 − S
can be diagonalized

Σ1 − S = KTΣ−1
0 K = UΛ2UT = UrΛ2

rU
T
r , (11)

with Λ2 = diag(λ2
1, ..., λ

2
r)[d′], Λ2

r = diag(λ2
1, ..., λ

2
r), and Ur ∈ Vr(Rd

′) such that U =
(
Ur Ud′−r

)
. From

(11), we can deduce that
(Σ− 1

2
0 KUrΛ−1

r )TΣ− 1
2

0 KUrΛ−1
r = Idr ,

where Λr is the unique PSD square-root of Λ2
r. Let us set Br = Σ− 1

2
0 KUrΛ−1

r such that Br ∈ Vr(Rd). It
follows that

KUr = Σ
1
2
0 BrΛr .

Moreover, since UTd−rK
TΣ−1

0 KUd−r = 0 and Σ0 ∈ S++
d (R), it follows that KUd′−r = 0 and so

K = KUUT = KUrU
T
r = Σ

1
2
0 BrΛrUTr ,

which concludes the proof.

B Proofs of the theoretical results

B.1 Proof of Proposition 2

Proof of Proposition 2. Takatsu (2010) has shown that the space of Gaussian distributions N (Rd) is a
complete metric space when endowed with W2. Moreover, N (Rd) is separable since it is a subspace ofW2(Rd)
which is itself a separable metric space when endowed with W2 (Bolley, 2008). Thus, N (Rd) is Polish and
we can directly apply the Gromov-Wasserstein theory developped in Sturm (2012). Let (N (Rd),W2, µ̃) and
(N (Rd′),W2, ν̃) be two metric measure spaces respectively in M4. Let us define

D(µ̃, ν̃) = inf
π∈Π(µ̃,ν̃)

∫
N (Rd)×N (Rd′ )

∫
N (Rd)×N (Rd′ )

|W 2
2 (γ, γ′)−W 2

2 (ζ, ζ ′)|2dπ(γ, ζ)dπ(γ′, ζ ′) .

Applying Sturm (2012, Corollary 9.3), we get that D defines a metric over the space of metric measure
spaces of the form (N (Rd),W2, µ̃) quotiented by the strong isomorphisms, and thus we get directly that D is
symmetric, non-negative, satisfies the triangle inequality and D(µ̃, ν̃) = 0 if and only if there exists a bijection
ϕ : supp(µ̃)→ supp(ν̃) such that ν̃ = ϕ#µ̃, where for any γ and γ′ in supp(µ̃), W2(ϕ(γ), ϕ(γ′)) = W2(γ, γ′).
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Now observe that if µ =
∑
k akµk and ν =

∑
l blνl are respectively in GMMK(Rd) and GMML(Rd′) and

µ̃ =
∑
k akδµk

and ν̃ =
∑
l blδνl

are respectively in P(N (Rd)) and P(N (Rd′)), we have∫
N (Rd)×N (Rd)

W 4
2 (γ, γ′)dµ̃(γ)dµ̃(γ′) =

∑
k,i

akaiW
4
2 (µk, µi) < +∞ ,

and ∫
N (Rd′ )×N (Rd′ )

W 4
2 (ζ, ζ ′)dν̃(ζ)dν̃(ζ ′) =

∑
l,j

blbjW
4
2 (νl, νj) < +∞ ,

so (N (Rd),W2, µ̃) and (N (Rd′),W2, ν̃) are both in M4. Furthermore, we have MGW2(µ, ν) = D(µ̃, ν̃). Hence
MGW2 inherits the metric properties of D, which concludes the proof.

B.2 Proof of Proposition 3

Proof of Proposition 3. First recall that the push-foward measure T#µ with µ on Rd′ and T : Rd′ → Rd is
defined as the measure on Rd such that for every Borel set A of Rd, T#µ(A) = µ(T−1(A)). Equivalently, for
any measurable map h : Rd → R, we have∫

Rd

h(x)d(T#µ)(x) =
∫
Rd′

(h ◦ T )(y)dµ(y) .

Now observe that for any finite GMM µ on Rd′ of the form µ =
∑K
k akµk, we have∫

Rd′ (h ◦ T )(y)dµ(y) =
∫
Rd′ (h ◦ T )(y)d

(∑K
k akµk(y)

)
=
∑K
k ak

∫
Rd′ (h ◦ T )(y)dµk(y)

=
∑K
k ak

∫
Rd h(x)d(T#µk)(x)

=
∫
Rd h(x)d

(∑K
k ak(T#µk)(x)

)
,

and so T#µ is of the form
∑K
k ak(T#µk) with T#µk Gaussian since T is necessarily affine as a consequence

of Lemma A2. Thus, T#µ is in GMM∞(Rd). This proves that ϕT takes its values only in GMM∞(Rd) and
that ϕT (

∑K
k=1 akµk) is of the form

∑
k=1 akνk. Now observe that, for every k and i smaller than K,

W 2
2 (ϕT (µk), ϕT (µi)) = inf

π∈Π(T#µk,T#µi)

∫
Rd×Rd

∥x− y∥2dπ(x, y) .

Using two times successively Lemma A1 using the fact that T is an isometry an so for any y ∈ Rd′ ,
∥T (y)∥ = ∥y∥, it follows

inf
π∈Π(T#µk,T#µi)

∫
Rd×Rd

∥x− x′∥2dπ(x, x′) = inf
π∈Π(µk,µi)

∫
Rd′ ×Rd′

∥y − y′∥2dπ(y, y′) = W2(µk, µi) .

Thus, MGW2(µ, T#µ) = 0 as a direct consequence of Proposition 2, which concludes the proof.

B.3 Proof of Proposition 7

We prove Proposition 7 before proving Proposition 6 because we will use the former in the proof of the latter.

Proof of Proposition 7. Since we suppose d ≥ d′, we have

EW 2
2 (µ, ν) = inf

ϕ∈Isomd′ (Rd)
W 2

2 (µ, ϕ#ν) .
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Let ϕ ∈ Isomd′(Rd) for the Euclidean norm. Using Lemma A2, we get that there exists P ∈ Vd′(Rd) and
b ∈ Rd such that for all y ∈ Rd′ , ϕ(y) = Py + b. Moreover, we have, using Lemma A1,

EW 2
2 (µ, ν) = inf

ϕ∈Isomd′ (Rd)
inf

π∈Π(µ,ϕ#ν)

∫
Rd×Rd

∥x− y∥2dπ(x, y)

= inf
ϕ∈Isomd′ (Rd)

inf
π∈Π(µ,ν)

∫
Rd′ ×Rd

∥x− ϕ(y)∥2dπ(x, y)

= inf
π∈Π(µ,ν)

inf
P∈Vd′ (Rd), b∈Rd

∫
Rd′ ×Rd

∥x− Py − b∥2dπ(x, y) ,

which proves Equation (7). Now we show the equivalence with Problem (∗-COV). Using Lemma A3, Problem
(7) can be rewritten

EW 2
2 (µ, ν) = inf

P∈Vd′ (Rd)
inf

π∈Π(µ̄,ν̄)

∫
Rd×Rd′

∥x− Py∥2dπ(x, y)

= inf
P∈Vd′ (Rd)

inf
π∈Π(µ̄,ν̄)

∫
Rd×Rd′

(
∥x∥2 + ∥Py∥2 − 2⟨x, Py⟩

)
dπ(x, y) .

Since for all P ∈ Vd′(Rd), ∥Py∥ doesn’t depend on P , we get that the problem is equivalent to

sup
P∈Vd′ (Rd)

sup
π∈Π(µ̄,ν̄)

∫
Rd×Rd′

⟨x, Py⟩dπ(x, y) .

Now observe that for all π ∈ Π(µ̄, ν̄),∫
Rd×Rd′

⟨x, Py⟩dπ(x, y) =
∫
Rd×Rd′

tr(xyTPT )dπ(x, y) =
∫
Rd×Rd′

tr(PTxyT )dπ(x, y) ,

where we used the cyclical permutation property of the trace operator. Finally using the linearity of the
trace, we get that the problem is equivalent to

sup
P∈Vd′ (Rd)

sup
π∈Π(µ̄,ν̄)

tr
(
PT
∫
Rd×Rd′

xyTdπ(x, y)
)
,

or equivalently,
sup

P∈Vd′ (Rd)
sup

π∈Π(µ̄,ν̄)

〈
P,

∫
Rd×Rd′

xyTdπ(x, y)
〉
.

Now, using Lemma A4 and using the fact that if P ∈ Vd′(Rd), σ(P ) = 1d′ , we get that the problem reduces
to

sup
π∈Π(µ̄,ν̄)

∥∥∥∥∫
Rd×Rd′

xyTdπ(x, y)
∥∥∥∥

∗
,

and this is achieved for P ∗ = Uπ Id[d,d′]
d′ V Tπ , where Uπ ∈ O(Rd) and Vπ ∈ O(Rd′) are respectively the left and

right orthogonal matrices of the SVD of
∫
Rd×Rd′ xyTdπ(x, y), which concludes the proof.

B.4 Proof of Proposition 6

Before turning to the proof of Proposition 6, we will prove two useful results. First, we show that the EW2
problem is always achieved at an optimal couple (π∗, ϕ∗).
Lemma B1. Let µ ∈ W2(Rd) and ν ∈ W2(Rd′) and let suppose d ≥ d′. Then there exists an optimal
isometry ϕ∗ : Rd′ → Rd such that EW2(µ, ν) = W2(µ, ϕ∗

#ν).

Proof. Using Lemma A3 and Lemma A1, we have that

EW 2
2 (µ, ν) = inf

P∈Vd′ (Rd)
inf

π∈Π(µ̄,ν̄)

∫
Rd×Rd′

∥x− Py∥2dπ(x, y)
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= inf
P∈Vd′ (Rd)

W 2
2 (µ̄, P#ν̄) ,

where µ̄ and ν̄ are the centered measures associated with µ and ν. Let us denote J : P 7→W2(µ̄, P#ν̄) and
let us show that J is continuous. For any P0 and P1 in Vd′(Rd), we have,

|J(P0)− J(P1)| = |W2(µ̄, P0#ν̄)−W2(µ̄, P1#ν̄)| ≤W2(P0#ν̄, P1#ν̄) ,

where we used the triangular inequality property of W2. Furthermore,

W 2
2 (P0#ν̄, P1#ν̄) = inf

π∈Π(P0#ν̄,P1#ν̄)

∫
Rd×Rd

∥x− y∥2dπ(x, y)

= inf
π∈Π(ν̄,ν̄)

∫
Rd′ ×Rd′

∥P0x− P1y∥2dπ(x, y) ,

where we used Lemma A1 twice. Now observe that the coupling (Idd′ , Idd′)#ν̄ is in Π(ν̄, ν̄), so it follows

inf
π∈Π(ν̄,ν̄)

∫
Rd′ ×Rd′

∥P0x− P1y∥2dπ(x, y) ≤
∫
Rd′
∥P0x− P1x∥2dν̄(x) .

Finally, for any x ∈ Rd′ , we have

∥P0x− P1x∥2 ≤ ∥x∥2 sup
∥z∥=1

∥(P0 − P1)z∥2 ≤ ∥P0 − P1∥2
F∥x∥2 ,

and so it follows that
|J(P0)− J(P1)|2 ≤ ∥P0 − P1∥2

F

∫
Rn

∥x∥2dν̄ .

Since ν is in W2(Rd′), ν̄ is in W2(Rd′) and so
∫
Rd′ ∥x∥2dν̄ < +∞. It follows that |J(P0)− J(P1)| −→ 0 when

∥P0−P1∥2
F −→ 0 and so J is continuous. Moreover, since Vd′(Rd) is compact (James, 1976), J has a minimum

on Vd′(Rd) as a result of the classic Weierstrass theorem that states that any real-valued continous function
defined on a compact set achieves its infinimum. Thus, there exists P ∗ such that EW2(µ, ν) = W2(µ̄, P ∗

#ν̄)
and setting b∗ = EX∼µ[X] − P ∗EY∼ν [Y ] and ϕ∗(x) = P ∗x + b∗ for all x ∈ Rd, we get that there exists
ϕ∗ ∈ Isomd′(Rd) such that EW2(µ, ν) = W2(µ, ϕ∗

#ν), which concludes the proof.

Now we show the following results, which imply that EW2 remains unchanged when one of the two measures
is immersed in a third Euclidean space of greater dimension than d and d′.
Lemma B2. Let µ ∈ W2(Rd) and ν ∈ W2(Rd′) with d not necessarily greater than d′. Let r ≥ max{d, d′}
and let ψ ∈ Isomd(Rr). Then, EW2(µ, ν) = EW2(ψ#µ, ν).

Proof. First, using Lemma A2, we get that there exists P1 ∈ Vd(Rr) and b1 ∈ Rr such that for all x ∈ Rd,
ψ(x) = P1x+ b1. Since r ≥ d′, we have, denoting µ̄, ψ#µ and ν̄ the centered measures respectively associated
with µ, ψ#µ, and ν, and using successively Lemma A3 and Lemma A1,

EW 2
2 (ψ#µ, ν) = inf

π∈Π(ψ#µ,ν)
inf

P∈Vd′ (Rr), b∈Rr

∫
Rr×Rd′

∥z − Py − b∥2dπ(z, y)

= inf
π∈Π(ψ#µ,ν̄)

inf
P∈Vd′ (Rr)

∫
Rr×Rd′

∥z − Py∥2dπ(z, y)

= inf
π∈Π(µ̄,ν̄)

inf
P∈Vd′ (Rr)

∫
Rd×Rd′

∥P1x− Py∥2dπ(x, y)

=
∫
Rd

∥P1x∥2dµ̄(x) +
∫
Rd′
∥Py∥2dν̄(y)− 2 sup

π∈Π(µ̄,ν̄)
sup

P∈Vd′ (Rr)
tr(PTP1Kπ)

=
∫
Rd

∥x∥2dµ̄(x) +
∫
Rd′
∥y∥2dν̄(y)− 2 sup

π∈Π(µ̄,ν̄)
sup

P∈Vd′ (Rr)
tr(PTP1Kπ) ,
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where Kπ =
∫
Rd×Rd′ xyTdπ(x, y). Using the equivalence with Problem (∗-COV), we get

sup
π∈Π(µ̄,ν̄)

sup
P∈Vd′ (Rr)

tr(PTP1Kπ) = sup
π∈Π(µ̄,ν̄)

∥P1Kπ∥∗ .

Now observe that P1Kπ has the same singular values as Kπ since KT
π P

T
1 P1Kπ = KT

πKπ. Thus ∥P1Kπ∥∗ =
∥Kπ∥∗ and so EW2(ψ#µ, ν) = EW2(µ, ν), which concludes the proof.

Observe that Lemma B2 highlights that EW2 shares close connections with the distance between metric
measure spaces introduced in Sturm (2006) and defined in Equation (6). However it is not clear whether
the two distances are strictly equivalent or not because the infinimum in Z in Equation (6) also includes
non-Euclidean spaces. However, if we restrict the problem only to Euclidean spaces Z, then Lemma B2
directly implies that the two distances are equivalent. Now we are ready to prove Proposition 6.

Proof of Proposition 6. First observe that non-negativity is straightforward. Furthermore, observe also that if
d ̸= d′, symmetry is also straightfoward. Now suppose d = d′ and observe that that the set Vd′(Rd) coincides
with the set of orthogonal matrices O(Rd). Thus we have

inf
ϕ∈Isomd(Rd)

W2(µ, ϕ#ν) = inf
π∈Π(µ,ν)

inf
P∈O(Rd), b∈Rd

∫
Rd×Rd

∥x− Py − b∥2dπ(x, y)

= inf
π∈Π(µ,ν)

inf
P∈O(Rd), b∈Rd

∫
Rd×Rd

∥PTx− y − PT b∥2dπ(x, y)

= inf
ψ∈Isomd(Rd)

W2(ψ#µ, ν) ,

and so EW2 is also symmetric in that case. Before turning to the proof of the two other points, we recall
that the infinimum in ϕ is always achieved, see Lemma B1.

(i) Now we prove the triangle inequality. Let r ≥ max{d, d′, d′′}, ϕ0 ∈ Isomd(Rr) and for ξ ∈ W2(Rd′′),
let ϕ1 ∈ arg minϕ∈Isomd′′ (Rr) W2(ϕ0#µ, ϕ#ξ). We have, using first Lemma B2, then using the triangle
inequality property of W2,

EW2(µ, ν) = EW2(ϕ0#µ, ν) = inf
ϕ∈Isomd′ (Rr)

W2(ϕ0#µ, ϕ#ν)

≤ inf
ϕ∈Isomd′ (Rr)

[W2(ϕ0#µ, ϕ1#ξ) +W2(ϕ1#ξ, ϕ#ν)]

≤W2(ϕ0#µ, ϕ1#ξ) + inf
ϕ∈Isomd′ (Rr)

W2(ϕ1#ξ, ϕ#ν)

≤ EW2(ϕ0#µ, ξ) + EW2(ϕ1#ξ, ν) .

We conclude then by applying Lemma B2 on both terms.

(ii) Suppose without any loss of generality that d ≥ d′ and suppose EW2(µ, ν) = 0. Since the infinimum
in ϕ is achieved, there exists ϕ ∈ Isomd′(Rd) such that W2(µ, ϕ#ν) = 0 and so µ = ϕ#ν. The reverse
implication is obvious.

Finally, observe that if µ and ν have finite order 2 moments, then EW2 necessarily takes finite values, and so
EW2 defines a pseudometric on

⊔
k≥1W2(Rk).

B.5 Proof of Proposition 8

Proof of Proposition 8. As seen above, Problem (EW2) is equivalent to

sup
π∈Π(µ,ν)

sup
P∈Vd′ (Rd)

⟨P,Kπ⟩F ,
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where Kπ =
∫
xyTdπ(x, y). As in Delon et al. (2022a), we use the necessary condition for π to be in Π(µ, ν)

that is that the covariance matrix Σπ of the law π is a PSD matrix, or equivalently that the Schur complement
of Σπ, i.e. Σ1 −KT

π Σ−1
0 Kπ is also a PSD matrix. This gives the following inequality:

sup
π∈Π(µ,ν)

sup
P∈Vd′ (Rd)

⟨P,Kπ⟩F ≤ max
K : Σ1−KT Σ−1

0 K∈Sd′
+

max
P∈Vd′ (Rd)

⟨P,K⟩F .

The rest of the proof is inspired from the proof of the closed-form of the W2 between two Gaussians provided
by Givens et al. (1984). We want to solve the following constrained optimization problem

min
Σ1−KT Σ−1

0 K∈Sd′
+

P∈Vd′ (Rd)

−2tr(PTK) .

Using Lemma A6, we can write tr(PTK) as a function of Br. This gives the following equivalent constrained
optimization problem

min
BT

r Br=Idr,PTP=Idd′
−2tr(PTΣ

1
2
0 BrΛrUTr ) .

The Lagrangian of this latter problem reads as

L(Br, P, C0, C1) = −2tr(PTΣ
1
2
0 BrΛrUTr ) + tr(C0(BTr Br − Idr)) + tr(C1(PTP − Idd′)) ,

where C0 ∈ Sr and C1 ∈ Sd′ are the Lagrange multipliers respectively associated with the constraints
BTr Br = Idr and PTP = Idd′ . The first order condition gives{

Σ
1
2
0 PUrΛr = BrC0

Σ
1
2
0 BrΛrUTr = PC1 .

Since Σ0, P , Ur, and Λr are full rank, Σ
1
2
0 PUrΛr is of rank r and so C0 is also of rank r. Thus we get that

Br = Σ
1
2
0 PUrΛrC−1

0 ,

and so
BTr Br = Idr = C−1

0 ΛrUTr PTΣ0PUrΛrC−1
0 .

Thus,
C0 = (ΛrUTr PTΣ0PUrΛr)

1
2 .

On the other hand, by reinjecting the expression of Br in the other first order condition we get

PTΣ0PUrΛr(ΛrUTr PTΣ0PUrΛr)− 1
2 ΛrUTr = C1 .

By multiplying this equation by itself we get

PTΣ0PUrΛ2
rU

T
r = C2

1 .

Since C2
1 is symmetric we get that PTΣ0P commutes with UrΛ2

rU
T
r and so Σ1 − S. Moreover, as before we

have

tr(PTK) = tr(((Σ1 − S) 1
2PTΣ0P (Σ1 − S) 1

2 ) 1
2 )

= tr((Σ1 − S) 1
2 (PTΣ0P ) 1

2 ) .

Using the Courant-Fischer min-max theorem (Courant, 1920; Fischer, 1905) to characterize the eigenvalues
of Σ1 − S, see (Givens et al., 1984, Proposition 7) for details, we get that tr(PTK) is maximized when S = 0
and so the problem is equivalent to the following problem

max
P∈Vd′ (Rd)

PT Σ0PΣ1=Σ1P
T Σ0P

tr(D̂
1
2
1 D

1
2
0,P ) ,
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where (P̂1, D̂1) is any diagonalization of Σ1 and D0,P = P̂T1 P
TΣ0PP̂1. For all y ∈ Rd′ we have

αd∥y∥2 ≤ yTPTΣ0Py ≤ α1∥y∥2 ,

where α1, . . . , αd are the eigenvalues of Σ0 ordered in non-increasing order. Thus, denoting λ1, . . . , λd′ the
eigenvalues of PTΣ0P , we get that for all k ≤ d′,

αd ≤ λk ≤ α1 .

Since we want to maximize tr(D̂
1
2
1 D

1
2
0,P ), we set the largest eigenvalue λ1 of PTΣ0P to α1. We denote

y1 ∈ Rd′ the eigenvector associated. We have y1P
TΣ0Py1 = α1 and ∥Py1∥ = ∥y1∥ = 1 so using Lemma A5,

we get that ∥Py1∥ is an eigenvector of Σ0 associated with α1. Let λk and yk be any other eigenvalue and
its associated eigenvector in the orthonormal basis in which PTΣ0P is diagonal. We have yTk y1 = 0 and so
yTk P

TPy1 = 0. Thus Pyk is orthogonal to Py1. Since ∥Pyk∥ = 1, we get that Pyk is also an eigenvector of
Σ0 and so it exists i ≤ d− 1 such that λk = yTk P

TΣ0Pyk = αi. Thus, we conclude that the eigenvalues of
the optimal PTΣ0P are the d′ largest eigenvalues of Σ0. Moreover, tr(D̂

1
2
1 D

1
2
0,P ) is clearly maximized when

D0,P and D̂1 have their eigenvalues sorted in the same order. We conclude then that setting D0,P = D
(d′)
0

and D̂1 = D1, where D0 and D1 are the diagonal matrices associated with the diagonalizations that sort the
eigenvalues in non-increasing, maximizes the problem and so it follows that

max
Σ1−KT Σ−1

0 K∈Sd′
+

P∈Vd′ (Rd)

2tr(PTK) = 2tr(D(d′)
0

1
2
D

1
2
1 ) .

Finally, observe that when setting K∗ of the form

K∗ = P0(Ĩd′D
(d′)
0

1
2
D

1
2
1 )[d,d′]PT1 ,

we have
∥K∥∗ = tr((K∗TK∗) 1

2 ) = tr((D(d′)
0 D1) 1

2 ) = tr(D(d′)
0

1
2
D

1
2
1 ) .

Moreover, observe that this is the solution of Equation (F-COV) exhibited in (Delon et al., 2022a, Lemma
3.2). Thus K∗ is cleary in the feasible set and so is optimal. By reinjecting the optimal value in the expression
of EW2(µ, ν), we get

EW 2
2 (µ, ν) = tr(D0) + tr(D1)− 2tr(D(d′)

0

1
2
D

1
2
1 ) .

Furthermore, using the results of Delon et al. (2022a), we get directly that the optimal plans π∗ are of the
form (Idd, T )#µ with T linear of the form

T = P1

(
Ĩd′D

1
2
1 D

d′

0
− 1

2

)[d′,d]
PT0

Finally, observe that K∗ admits as SVD P0(D(d′)
0

1
2
D

1
2
1 )[d,d′]Ĩd′PT1 . For a given fixed Ĩd′ , we get using

Lemma A4, that the optimal P ∗ associated with K∗ is P ∗ = P0Ĩ
[d,d′]
d′ PT1 , which concludes the proof.

B.6 Proof of Lemma 10

Proof of Lemma 10. First note that in this proof, we denote Rd×d′ the set of matrices of size d× d′ that we
distinguish from the set Rdd′ of vector with d× d′ coordinates. We set g : P ∈ Rd×d′ 7→ Σ

1
2
1 P

TΣ0PΣ
1
2
1 and

h : Q ∈ Sd′

+ 7→ Q
1
2 such that for all matrix P of size d× d′, we have

f(P ) = tr(h(g(P ))) .
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For any matrix A ∈ Rd×d′ , we denote vec(A) ∈ Rdd′ the vector obtained by stacking the columns of A.
Observe that, see (Magnus and Neudecker, 2019) for details, for any function ϕ : Rd×d′ → Rr×s, the Jacobian
matrix J [ϕ] of ϕ can be defined as, for all P ∈ Rd×d′ ,

J [ϕ](P ) = ∂vec(f(P ))
∂vec(P ) .

Moreover, observe that since f : Rd×d′ → R, J [f ][P ] ∈ Rdd′ and

∂f(P )
∂P

= vec−1(JT [f ](P )) ,

where vec−1 is the inverse vector operator, i.e. such that for any A ∈ Rd×d′ , vec−1(vec(A)) = A . Applying
the chain rule to derive f , we have

J [f ](P ) = J [tr]((h ◦ g)(P ))J [h](g(P ))J [g](P ) .

• First, we compute J [g](P ). It follows, using formula provided by Petersen et al. (2008) and Magnus
and Neudecker (2019),

∂(Σ
1
2
1 P

TΣ0PΣ
1
2
1 ) = Σ

1
2
1 ∂P

TΣ0PΣ
1
2
1 + Σ

1
2
1 P

TΣ0∂PΣ
1
2
1 ,

and so

∂vec(Σ
1
2
1 P

TΣ0PΣ
1
2
1 ) = (Σ

1
2
1 P

TΣ0 ⊗K Σ
1
2
1 )∂vec(PT ) + (Σ

1
2
1 ⊗K Σ

1
2
1 P

TΣ0)∂vec(P )

= (Σ
1
2
1 P

TΣ0 ⊗K Σ
1
2
1 )Kdd′∂vec(P ) + (Σ

1
2
1 ⊗K Σ

1
2
1 P

TΣ0)∂vec(P )

= (Id′2 +Kd′2)(Σ
1
2
1 ⊗K Σ

1
2
1 P

TΣ0)∂vec(P ) ,

where ⊗K denotes the Kronecker product and for any r, Kr is the commutation matrix of size r × r,
see (Magnus and Neudecker, 2019) for details. Thus,

J [g](P ) = (Id′2 +Kd′2)(Σ
1
2
1 ⊗K Σ

1
2
1 P

TΣ0) .

• Now we compute J [h](Q). Observe that we have for any Q ∈ Sd′

+ ,

Q
1
2Q

1
2 = Q .

Thus it follows, denoting s : Q 7→ Q
1
2 ,

∂s(Q)Q 1
2 +Q

1
2 ∂s(Q) = ∂Q .

This latter equation is a Sylvester equation with variable ∂s(Q), which is equivalent to the following
linear system:

(Q 1
2 ⊕K QT

1
2 )∂vec(s(Q)) = ∂vec(Q) ,

where ⊕K stands for the Kronecker sum. If Q is non-degenerate, Q 1
2 ⊕K QT

1
2 is also non-degenerate

and so in that case
J [h](Q) = (Q 1

2 ⊕K QT
1
2 )−1 .

• Finally, it is easy to see that for R ∈ Rd′×d′ we have

J [tr](R) = vecT (Idd′).
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Thus, denoting A = Σ
1
2
1 P

TΣ0PΣ
1
2
1 and observing that A is symmetric and full-rank when P is full-rank (since

we supposed that Σ0 and Σ1 are full rank), it follows that for all full-rank matrix P of size d× d′,

JT [f ](P ) = (Σ
1
2
1 ⊗K Σ0PΣ

1
2
1 )(Id′2 +Kd′2)(A 1

2 ⊕K A
1
2 )−1vec(Idd′) ,

where we used that Kd′2 and (A⊕KA)−1 were symmetric. Observe now that (A 1
2⊕KA

1
2 )−1vec(Idd′) = vec(X),

where X ∈ Rd′×d′ is the unique solution of the following Sylvester equation

A
1
2X +XA

1
2 = Idd′ .

Since A is symmetric, one can set A = QDQT where Q ∈ O(Rd′) and D is a diagonal matrix of size d′. The
Sylvester equation can be rewritten

D
1
2Y + Y D

1
2 = Idd′ ,

where Y = QTXQ. Since A is full-rank, D is invertible and it is easy to see that the unique solution of this
latter equation is Y = (1/2)D− 1

2 and so X = (1/2)A− 1
2 and thus

(A 1
2 ⊕K A

1
2 )−1vec(Idd′) = 1

2vec(A− 1
2 ) .

Moreover, since A is symmetric, we have Kd′2vec(A− 1
2 ) = vec(A− 1

2 ) and so it follows that

JT [f ](P ) = (Σ
1
2
1 ⊗K Σ0PΣ

1
2
1 )vec(A− 1

2 )

= vec(Σ0PΣ
1
2
1 A

− 1
2 Σ

1
2
1 ) ,

which concludes the proof.

C More details on Projection Wasserstein discrepancy

In this section, we give more details on the difference between EW2 and the OT distance introduced in Cai
and Lim (2022) that we call here projection Wasserstein discrepancy. We recall that for µ ∈ W2(Rd) and
ν ∈ W2(Rd′) with d ≥ d′, this OT distance is defined as

PW2(µ, ν) = inf
ϕ∈Γd(Rd′ )

W2(ϕ#µ, ν) , (PW2)

where Γd(Rd
′) is the set of all affine mapping from Rd to Rd′ of the form φ(x) = PT (x− b) with P ∈ Vd′(Rd)

and b ∈ Rd. One key results of Cai and Lim (2022) is to show that PW2 has the following equivalent
formulation

PW2(µ, ν) = inf
ξ∈Wν

2 (Rd)
W2(µ, ξ) ,

where Wν
2 (Rd) is the subset of W2(Rd) defined as

Wν
2 (Rd) = {ξ ∈ W2(Rd) : there exists ϕ(x) = PT (x− b) with P ∈ Vd′(Rd) and b ∈ Rd′ such that ϕ#ξ = ν} .

Observe that this latter formulation is structurally different of EW2 since for any isometry ϕ : Rd′ → Rd, the
distribution ϕ#ν is necessarily degenerate, whereas this is not the case for the distribution ξ. The difference
between EW2 and PW2 is illustrated in Figure C1.

To highlight even more the difference between EW2 and PW2, we derive an equivalent problem of Problem
(PW2). Observe that in that case, the mapping ϕ in (PW2) is not an isometry since it is not injective. As a
result, the term that previously depended only on the marginal µ in the developpement of the square of the
Euclidean distance will now depend on P . More precisely, this gives the following result.
Proposition C1. Let µ ∈ W2(Rd) and ν ∈ W2(Rd′) and let suppose d ≥ d′. Problem (PW2) is equivalent to

inf
π∈Π(µ̄,ν̄)

inf
P∈Vd′ (Rd)

(
tr(PTΣxP )− 2tr(PTKπ)

)
, (12)

where Σx =
∫
Rd×Rd xx

Tdµ̄(x), Kπ =
∫
Rd×Rd′ xyTdπ(x, y), and where µ̄ and ν̄ are the centered measures

associated with µ and ν.
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Figure C1: Link between PW2 and EW2 for two distributions µ and ν respectively on R2 and R. In PW2, µ
is projected into R by a mapping of the form x 7→ PT (x− b). In EW2, ν is transformed into a degenerate
measure (lying on the purple line) on R2 with an isometric mapping of the form y 7→ Py + b.

Proof of Proposition C1. First observe that using Lemma A3, we can consider without any loss generality
that µ and ν are centered and omit b. Using Lemma A1, it follows

PW 2
2 (µ, ν) = inf

P∈Vd′ (Rd)
inf

π′∈Π(PT
#µ,ν)

∫
Rd′ ×Rd′

∥z − y∥2dπ′(z, y)

= inf
P∈Vd′ (Rd)

inf
π∈Π(µ,ν)

∫
Rd×Rd′

∥PTx− y∥2dπ(x, y)

= inf
P∈Vd′ (Rd)

(∫
Rd

∥PTx∥2dµ(x) +
∫
Rd′
∥y∥2dν(y)− 2 sup

π∈Π(µ,ν)

∫
Rd×Rd′

(PTx)T ydπ(x, y)
)
,

and so the problem is equivalent to

inf
P∈Vd′ (Rd)

(∫
Rd

∥PTx∥2dµ(x)− 2 sup
π∈Π(µ,ν)

∫
Rd′ ×Rd′

(PTx)T ydπ(x, y)
)
,

which is itself equivalent to (12), which concludes the proof.

Observe that Problem (12) can be interpreted as a regularization in P of the EW2 problem since we have
seen above that this latter was equivalent to the following problem

sup
π∈Π(µ̄,ν̄)

sup
P∈Vd′ (Rd)

tr(PTKπ) .

It can also be interpreted as a W2 problem between ν and a measure µ′ which has a different second-order
moment than µ.
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