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ABSTRACT

The generalized smooth condition, (Lg, L1)-smoothness, has triggered people’s
interest since it is more realistic in many optimization problems shown by both
empirical and theoretical evidence. To solve the generalized smooth optimization,
gradient clipping methods are often employed, and have theoretically been shown to
be as effective as the traditional gradient-based methods(Chen et al., 2023; Xie et al.,
2024). However, whether these methods can be safely extended to zeroth-order
case is still unstudied. To answer this important question, we propose a zeroth-order
normalized gradient method(ZONSPIDER) for both finite sum and general expec-
tation case, and we prove that we can find e- stationary point of f () with optimal
decency on d and e, specifically, the complexes are O(de~2y/nmax{Lo, L1})
in the finite sum case and O(de =3 max{o?, 03} max{Lg, L1 }) in the general ex-
pectation case. To the best of our knowledge, this is the first time that sample
complexity bounds are established for a zeroth-order method under generalized
smoothness.

1 INTRODUCTION

In the paper, we consider solving the following stochastic finite-sum optimization problems. f :
R? — R
mimize f(a) = 23" fi@) (ini ) 1)
minimize )= — i ( nite sum case
TERC n P
where f(x) and each f;(z) are both differentiable and possibly nonconvex functions, which captures
the standard empirical risk minimization problems in machine learning. Additionally, when dealing

with a substantial or potentially infinite number of data samples, such as in online or streaming
scenarios, we consider the following general expectation optimization problem:

mini%lize f(z) = E[f(z;€)] (general expectation case) )
z€ERd

where £ is a random variable following an unknown distribution.In recent years, significant progress
has been made in addressing this problem under the L-smooth assumption, with numerous studies
contributing to this area.Notable examples include stochastic gradient descent (SGD) (Ghadimi and
Lan, 2013), and variance reduction methods (Johnson and Zhang, 2013; Fang et al., 2018; Cutkosky
and Orabona, 2019) under stochastic smoothness, which have demonstrated faster convergence.
Several works have explored the fastest achievable rates in stochastic optimization. (Han et al.,
2024; Zhou and Gu, 2019) established a lower bound of O(¢~2/n + n) for the finite-sum case,
while (Arjevani et al., 2022) set a lower bound of O(e~30 + e 20?) for the general expectation
case. Despite these strong theoretical results, they all rely on the L-smooth assumption, which may
not hold in critical applications such as LSTM (Zhang et al., 2019). A key observation is that the
smoothness parameter L scales with the gradient norm, leading to the introduction of the generalized
(Lo, L1)-smooth assumption:

IV f(z) = V(@) < (Lo + Ll VS (@)]) [l — 2] ©)

Since the traditional L-smooth assumption is a special case where L; = 0, solving problems under
the more general (Lo, L1 )-smooth condition is harder. To address this, (Zhang et al., 2019) introduced
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a gradient clipping method that finds an e-stationary point in O(e~*) iterations, demonstrating that
it can be arbitrarily faster than gradient descent (GD) when the problem has poor initialization.
In the traditional L-smooth case, variance reduction methods achieve an O(e~?) rate, motivating
exploration of similar techniques under the (Lg, L1)-smooth condition. Recent works (Chen et al.,
2023; Reisizadeh et al., 2023) achieved this O(e~?) rate by incorporating SPIDER (Fang et al., 2018).
Thus, the (Lo, L1)-smooth case can be as effective as the traditional L-smooth assumption with
first-order oracle.

On the other hand, these methods require access to the gradient of the objective function, however
in some important applications the explicit expressions of gradients of the objective function are
expensive or infeasible to obtain, and only function evaluations are accessible. Such as class of
applications include black-box adversarial attacks on deep neural networks (DNNs) (Papernot et al.,
2017; Chen et al., 2017) and reinforcement learning (Malik et al., 2018; Kumar et al., 2020). Zeroth-
order optimization is a fundamental research topic serving as a prototype module for above numerous
tasks. However, all of zeroth-order optimization only studied under traditional L-smooth assumption.
This motivates us to explore zeroth-order optimization methods under (Lg, L )-smooth case, as
mentioned in the previous discussion, SGD can’t be directly applied to (L, L) case, leading to the
natural question:

Can zeroth-order methods solve generalized (L, L1)-smooth nonconvex problems as effi-
ciently as solving traditional smooth nonconvex problems? In particular, what convergence
rates can be achieved?

This paper answers this question by proposing a zeroth-order normalized gradient method,
which can find a stationary point of f(x) with O(dy/ne~? max{Li, Lo}) in finite sum case and
O(de=3 max{Ly, Lo} max{cy,00}) in expectation case, both enjoy the optimal dependency on €
and d, to the best of our knowledge, this is the first time that sample complexity bounds are established
for a zeroth-order method under generalized smoothness.

1.1 RELATED WORKS

Among the related works, the most relevant to ours are (Reisizadeh et al., 2023; Chen et al., 2023;
Ji et al., 2019a). Compared to (Reisizadeh et al., 2023), while we both analyze SPIDER under
the (Lo, L1)-smooth setting, we also explore the zeroth-order case. Their complexity includes
an O(1/Ly) term, which makes their analysis inapplicable to the traditional Ly-smooth case, as
1/L; — oo. In contrast to (Chen et al., 2023), though both analyze SPIDER under (Lo, L1)-
smoothness, we further address the zeroth-order and finite-sum cases. Similarly, compared to (Ji et al.,
2019a), while we both use a minibatch version of the rand gradient estimator, we extend the analysis
to (Lo, L1)-smoothness and have additional analysis of expectation settings. Our contributions can
be summarized as follows:

1. Through the combination of normalized SPIDER and two zeroth-order estimator (called
coord and rand gradient estimators), we first give analysis of zeroth-order method under
(Lo, L1)-smooth and (og, o7 )-variance settings, the takeaway of our paper is that zeroth-
order method (L, L1) can as effective as in L-smooth case. Especially, our method requires
weaker assumptions to find an e-stationary point of the black-box optimization problems 1
and 2, as shown in Table 1.

2. We give converge analysis of coord and rand gradient estimators in both finite
sum and general expectation cases. Moreover, the proposed methods achieve op-
timal dependence on e and d, O(de~2y/nmax{Lg,L,}) in finite sum case and
O(de=® max{L1, Lo} max{03,0?}) in expectation case, which means we can use zeroth-
order method to solve (Lg, L1)-smooth problem safely, as shown in Table 2.

3. We conduct experiments to give advice on parameters choice in practice and verify the
effectiveness of our method.
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Table 1: Assumptions comparison of the representative non-convex methods for finding an e- station-
ary point of f(z). Bounded Gradient denotes ||V f(z)|| < C for some constant C. Bounded Estima-

tor Variance denotes the bounded variance of rand estimator, i.e, [E {H \V4 flx) — flx H ] < g2

which is a stronger assumption than bounded gradient variance since its Variance scale with the
dimension d.

Method Order | Smoothness Finite Sum | Expectation case | Bounded Gradient | Bounded Estimator Variance
(Kornowski and Shamir, 2024) | 0™ L-Lipschitz X v no need no need

(Reisizadeh et al., 2023) 1 (Lo, Ly)-smooth | v v no need no need

(Chen et al., 2023) 1% (Lo, Ly)-smooth | X v no need no need

(Jietal., 2019b) om L- smooth v X no need no need

(Huang et al., 2022) om L- smooth X v no need need

(Xu et al., 2023) o™ L- smooth X v no need need

(Liu et al., 2020) om L- smooth X v need no need

ZONSPIDER (this paper) o (Lo, Ly)-smooth | v/ v no need no need

Table 2: Query complexity comparison of the representative non-convex zeroth-order methods to find
an e-stationary point of the black-box mini-optimization problems (1) and (2). One estimator denotes
represent the number of function evaluations required to estimate a single gradient. One iteration
denotes the number of gradient estimator required to update variable x. Iteration complexity denotes
the total number of iterations required to find an e-stationary point.

Problem Method one estimator | one iteration | Iteration complexity | Total function query Cost
(Huang et al., 2020) O(d) O(y/n) O(e72) O(dy/ne=?)
Finite-Sum ZONSPIDER-coord(this work) | O(d) O(y/n) O(e7?) O(dv/ne?)
ZONSPIDER-rand(this work) | O(d) O(y/n) O(e72) O(dv/ne=2)
(Kornowski and Shamir, 2024) | O(1) (1) O(de3) O(de™?)
Xu et al., 2023 o1 O(e™ O(de~? O(de®
General Expectation (Xueta ) O ) (de™) )
ZONSPIDER-coord(this work) | O(d) O(e™) O(e7?) O(de™®)
ZONSPIDER-rand(this work) | O(d) O(e™h) O(e?) O(de™?)
2 PRELIMINARIES
Throughout the paper, || - || denotes the Euclidean norm for vectors, and operator norm for matrices,

We use the symbol |z |to denote the integer part of .

Assumption 1 ((Lg, L1)-smooth). A differentiable function f is said to be (Lg, L1)-smooth if there
exist constants Ly > 0, Ly > 0 such that if ||x1 — x2|| < 1/L, then

V(1) = V@)l < (Lo + LalIV f(z1) D ll21 — 22|

This also implies

(Lo + L1 ||V f(z1)]])
2

Assumption 2 (Stochastic case). In stochastic case, we need the following assumptions

2
"

f(x2) = f(21) = (Vf(z1), 22 —21) <

|21 — 22

* (i):In general expectation case, the stochastic oracle f(x; &) is unbiased, i.e, : E[f(xz;€)] =

f(x), and B[V f(x:€)] = V f(x).
* (ii):We suppose variance of stochastic gradient is (0g,01)-variance-bounded:
E(|V f(x;€) = Vf(@)|*) < 0f + 0 |V f(2)]”

o (iii):For ||x1 — 22| < i, we suppose (Lg, L1 )-condition holds in stochastic case, in
general expectation case, we suppose:

IVf(@158) = V(23 < (Lo + L1 [V f (@) []) lz1 — 22l

in finite sum case:

IV fi(z1) = V filz2) || < (Lo + L1 [V f(z1)]) lzr — @2



Under review as a conference paper at ICLR 2025

Remark 1. Instead of assuming traditional bounded variance assumption , we make a weaker
assumption, called (0, 01)- variance. Traditional bounded variance assumption is a special case
that o1 = 0 (Xie et al., 2024, Chen et al., 2023), we emphasize that this assumption is only needed in
general expectation case, we don’t need this assumption in finite sum case.

Assumption 3. We suppose f(x) has bounded minimum value A := f (x¢) — f (z*) < oc.

Definition 1 (e-stationary point). We say x is an e-stationary point of f(z) if |V f(z)|| < € or
fl@)—f*<e

3 PROPOSED METHOD

In this section, we will introduce our method for solving both the finite-sum and expectation mini-
mization problems. Firstly, we introduce the coord and rand zeroth-order gradient estimators and
analyze the properties of these gradient operators under generalized-smooth conditions.

3.1 ZEROTH-ORDER GRADIENT ESTIMATOR

3.1.1 RAND ESTIMATOR ANALYSIS UNDER GENERALIZED SMOOTHNESS

We first introduce smoothing function as follows:

fu(@) = Egunuy [f (2 + pw)],
where Uy, is a uniform distribution over the unit Euclidean ball, following (Gao et al., 2017), its gradi-

ent can be expressed as V f,,(z) := E {v~Us, } L f(z + po)v } Here Ug, is a uniform distribution

over the unit Euclidean sphere, and v € R?is a random vector sampled from Ug,,.

We define zeroth-order rand estimator V f(z) as follows, which is an unbiased estimator of V f,, (z):

_ d
Vi) = —[f(z + w) — f(x)]v, (rand estimator)
I
we also define the minibatch version of rand estimator using .S smoothing vector v;:
_ 1 Nd
Vsf(z) = gj;;[f(l”rﬁwj) — f(@)]vy, )

in stochastic case that we can’t access to f(z), we define the stochastic version of rand estimator in
general expecation case and finite sum case:

Vs f(a;€): SZ f@ 4 pvj;€) — f(2;6)]vy, Vs fiz) : SZ [fi(z + po;) — fi(@)]v;.

Rand estimator is an unbiased estimate of the gradient of the smoothlng function(Gao et al., 2017),
ie, E[Vgf(z)] =E[Vf(z)] = Vf.(z).
For rand estimator we have the following property: smoothing function f, () is a good approximation
of the original function f(z), the error can be bounded by the following lemma.
Lemma 1. Under assumption 1, we can bound the error between gradient of smoothing function
fu(z) and the gradient of the original function f as follows:
2

prd*(Lg + L3 ||V f(@)[)

2 )

IV fulx) = V f(2)])?
The detailed proof is given in lemma D.1 of Appendix.

Furthermore, the second-order moment of rand estimator can be bounded by the following lemma.

Lemma 2. Under assumption 1, we can bound the second-order moment of the rand estimator
V f(x) as follows:

prd (L3 + L ||V £ ()]*)
2 b

Efuns,) (IV/@]°] < 241 V5 @) +
The detailed proof is given in lemma D.2 of Appendix.
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The following lemma demonstrates the Lipschitz continuity(with a slight abuse of terminology) of the
minibatch version of the rand estimator. To put it a bit less rigorously, we can say that the Lipschitz

constant of the minibatch rand estimator scales as O ( g) .

Lemma 3. Under assumption 1, the Lipschitz property of the batch estimator Vg f (x; €) is given as
follows:

_ d
E[||Vsf(x1;€) — Vs f(wa;€)||*] <6p2d2L3 + 9p>d> L3 ||V f (1) || + 3L2(4 + )||:E17:c2||

3 3dL3

+(12L3+§+ DIV @)l o — 2ol

The detailed proof is given in lemma D.5 of Appendix.

Technical Novelty: Compared with the original analysis of zeroth order method under standard
smooth, we need to rebuilt new approximate errors under (Lo, L1)- smooth in Lemmas 1-3.

3.1.2 COORD ESTIMATOR ANALYSIS UNDER GENERALIZED SMOOTHNESS

Definition 2 (Coord estimator). We define zeroth-order coord gradient estimator v f(x) as follows:
[f (z + per) — f ()] e (coord estimator)

where e, is a standard basis vector with 1 at its I'™ coordinate, and Os elsewhere. In stochastic case
that we can’t access to f(x), we define the stochastic version of coord estimator in general expecation
case and finite sum case:

[fi (x + per) — fi(z)] e,

Q)
in finitesum case , we define it is easy to verify that E[V f(x;€)] = V f(x) and E[V f;(x)] = V f ().

d 1 d 1
)i= Y = [f (x+ pei ) - f(@:8)] e, VSilw) = —
H f:l'u

=1

The following lemma provides an upper bound on the error of estimating V f () using V f () under
generalized-smooth conditions.

Lemma 4. Under assumption 1, the following statement holds
. Lo+ L, ||V
va(x)_vf(x)u < Lot 12|| f(ff)ll\/gu’

The detailed proof is given in lemma C.1 of Appendix.

The following lemma will show the generalized lipschitzness property of zeroth-order coord estimator.
Lemma 5. Under assumptions 1 and 2, for ||x1 — z3]| < L% , we have

E [HW@@) - Wm;ouz} <6(1+ L32d) (L3 + L [V £ (00)|) ller = ol + BL3y%d?

9
ST |V f )|

The detailed proof is given in lemma C.3 of Appendix.

3.2 ALGORITHM DESIGN

Equiped with zeroth-order gradient estimator, our method introduce SPIDER(Fang et al., 2018) and
normalized step size into the zeroth-order gradient estimator and proposed zeroth-order normalized
gradient method for solving both finite sum and general expectation optimizations. SPIDER is a
variance reduction-typed method with optimal complexity guarantee, which uses large batch and
small batch alternately to estimate stochastic gradients in a recursive way as follows

F=Vfp (xF) = Vfp (x* ') +vF!, (SPIDER)
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Table 3: The different step-size design strategies, where ¢, ¢, and ¢y denote some constants.

Method stepsize description

SPIDER(Fang et al., 2018)  n, = min{ey, ﬁ} clipped stepsize

(Huang et al., 2022) N = W diminishing stepsize
(Xu et al., 2023) ne = o(%) constant stepsize
ZONSPIDER N = H;ﬁ” normalized stepsize

with clipped step size 7, = min{cy, m} , where ¢, co are some constants, and V fp(z) =
|T£\ >¢ep V/f(2;&).Our method is a combination of SPIDER with normalized step size and zeroth-
order gradient estimator, we call it ZONSPIDER, the main idea is to use coord or rand estimator
to estimate the gradient of the original function, and use normalized stepsize to update the point
x, the pseudo code is shown in algorithm 1. We compute the gradient estimator vy by sampling B
zeroth-order gradient estimator when mod (k, ¢) = 0, and use small batch b to compute the gradient
estimator v, when mod (k, g) # 0, and later update x using normalized stepsize zx11 = g — Nk V.
The main difference between our algorithm and SPIDER is that SPIDER use clipped step-size, while
we use a simpler normalized step-size 1, = m as shown in Table 3.2. To address the additional

challenges posed by the (Lo, L1)-smooth condition, we adopt a different analytical approach from
SPIDER, which is based on an inexact normalized descent lemma to obtain the decrease in function
value (in expectation).

Algorithm 1 ZO-normalized-SPIDER(ZONSPIDER)
Initialization: choose initialize point ¢, and B, b, q as follows:
B {(’)(62 max{oZ,o?}) general expectation case
n finite sum case

e ! general expectation case
b= .
\/n finite sum case
q=">
compute vy = % Zf;l V f(zo;€)
fork=0,1,--- , K —1do
__ Ca€
Tk = o]
Tl = Tk — NkVk
if mod (k,¢) = 0 then
Option I(coord): vi11 = % Zil @f(xk.ﬂ; &;)(large batch) > @f(xkﬂ; £)(defied in (5))
Option II(rand): vj41 = & Zf;l Vs f(zra1;&)(large batch) > Vg f (25,413 &) (defied in (4))
else
Option I(coord):vi11 = vg + % Z?:1(_Vf($k+1? &) — V_f(mk, &;))(small batch)
Option I(rand):vg 41 = v + + S0 (Vs f(zri15 &) — Vi f (21 €))(small batch)
end if
end for
return (for theoretical) 2 chosen uniformly random from {z; }%_,.
return (for practical) xx 1.

3.3 CONVERGENCE ANALYSIS

In this part, we give the convergence analysis of our method, we first introduce the inexact descent
lemma, which is the key for our analysis. There are four theoretical results that need to be provided in
this paper, we will give the analysis of coord estimator in finite sum (i.e. Theorem1) as an example.



Under review as a conference paper at ICLR 2025

Lemma 6 (inexact descent lemma). Under assumption 1 with n, = ch;H,
—Nk VK, We have:

co <1, and xpy1 — ) =

L 2 2 I
1Ge )|IVf(zk)||+202€ lon — VF ()| + 002 ©

[ @g1) < f(2r) — (026 -
The detailed proof is given in lemma E.1 of Appendix.

Next, to obtain the convergence rate, we need to estimate the term ||vy, — V f ()], we use the trian-
gle inequality |jvx, — V f (z)]] < Hvk —-Vf (xk)H + H@f (xg) —Vf (xk)H, in lemma C.1 we have

obtain the upperbound of H?f (zx) — V[ (z1) H, next we study the remaining term, ||vx, — V f (z)]]

classical analysis of Sipder(Fang et al., 2018) often use the variance decomposition technique to
obtain

E [Hvkﬂ - ﬁf(xk-i-l)Hz] <E [Hvk - @f(xk)HQ] + %E [H@fi(xkﬂ) - @fi(xk)Hz} ;

thus summing up the above inequality from k = ktok = q — 1, we have
?|

in traditional L-smooth case, choosing parameters to let ||z51+1 — zx|| < O(€), and let ¢ = b, we can
easily get upper bound

Uk —@f(i?k)’ﬂ << Z |:vaz zi1) = V filan H } +]E{ @f(I;;)HQ}
1=k

=0(finite sum case)

B o - 9@ ] < 0@ + & | - Vs ] < 06, ™

=0(finite sum case)

but in (Lo, L1)-smooth zeroth-order optimization, this equation contains addtional gradient norm
terms as shown in the following lemma.

Lemma 7 (Variance of finite sum case). Under assumptions I and 2, for Algorithm I with 11 < 71—
we have

E [Hvk _ @f(a:k)m < 6Locae + 2Lodu + ll)i: 6L1coc + 3L1dp) [V F(z)l|, (8
1=k

The detailed proof is given in lemma E.2 of Appendix.

From the above lemma, the variance term can’t be bounded by a constans like equation(7), our stategy
is taking (8) into lemma 6, and sum it from k& = k to k = k + g(one epoch) to obtain

L16262 q+ic71
BIF (5y45) — 1 o)) < = (2 = 225 - Licaeu) 3 197 )]

k=k

k+q1k

> 2(4L1CQ6+3LM 1) IV £ (@)l + O(e),

2026

a key observation is that in double sum term, every V f(x;) appears at most ¢ times, this leads to

Zkﬂ Zz p(c2eLy +2dpuLy) |V f(x)| < ¢ Z ;. IV f (z1)]], and this terms be absorbed by the
ﬁrst term by the choice of parameters, thus we obtaln the function value descent in ¢ itration:

Elf (2,4) = f (2)] < =55,
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. . 2 . . . .
this means we dereacse the function value by an average of “%— per iteration(in expectation), thus we

need at most K = O(Ae~2) to find the stationary point, and the total number of oracle calls is

# funtion = O(d)K (b + ?) = O(de ?/n).

The following theorem is a formal statement of the above analysis.

Theorem 1 (Finite sum case(coord estimator)). For Algorithm 1 with coord estimator in fi-

. . : 1 1 __  _C2€
nite sum case, under assumptions 1 and 2, let co < min{ TR }, choose ny, = vk’
< min - L =b=+/n,B =n, we have
H= {40\/3L0’ 56niL1\/E}’ q f’ ’
gco€?

1S (241) ~ 7 (@) < =5

We state that, in expectation, the function value of f decreases by an average of << in, since f(x)
per iteration.Since f can deacrease at most A, we need at most
K = O(A¢ ?max{L;, Lo}),

in expectation to find the stationary point, and the total numbers of the function query is
B
# function query = dT'(b+ —) = O(de *\/nmax{Ly, Lo} + dn).
q

The detailed proof is given in lemma E.I of Appendix.

We then give the results of other three cases as follows .

Theorem 2 (Expectation case(coord estimator)). For Algorithm 1 with coord estimator in ex-
pecation case, under assumptions 1 and 2, let cg < min{nl—Ll,ﬁ}, choose n, = m,
1

p < min{ggir, co—m s} B > max{O(¢20?),0(¢7202)}, ¢ = b = €', in expectation, we
- :

can find the stationary point in K = O(Ae 2 max{Ly, Lo}), and the total number of oracle calls
# funtion = O(de~® max{Ly, Lo} max{03, 0%} +dne=203).The detailed proof is given in lemma
E.2 of Appendix.

Theorem 3 (Finite sum case(rand estimator)). For Algorithm 1 with rand estimator in finite

sum case, under assumptions 1 and 2, let co < min{m, ﬁ} choose 1, = m

p < min{ 557, m},q =b=/n, B =n, we need at most K = O(Ae 2 max{Ly, Lo})in ex-
pectation to find the stationary point, and the total number of e function query is # function query =
dT(b+ %) = O(de=2/nmax{Ly, Lo} +dn). The detailed proof is given in lemma E.3 of Appendix.

Theorem 4 (Expectation case(rand estimator)). For Algorithm I with rand estimator in expecation

case, under assumptions 1 and 2, let co < min{m, ﬁ}, choose 1, = “ci—:u, u <
min{4O;Lo7m}, qg=0b=c¢t B >max{O(e2(3 + 01)?),0(¢ 202)}, we need at most

K = O(Ae2max{Ly, Lo}) in expectation to find the stationary point, and the total number
of e function query is # funtion = O(d)K(b + g) = O(de3*max{o?, 03} max{Ly, Lo} +

€2 max{o?,02}).The detailed proof is given in lemma E.4 of Appendix.

4 EXPERIMENTS

We conduct two experiments to verify the effectiveness of our method: the first experiment focuses on
Phase Retrieval, while the second examines Distributionally Robust Optimization (DRO), as detailed
in (Chen et al., 2023). In Phase Retrieval, we first analyze the effects of different parameters of
the rand and coord estimators, presented in Figures 1(a) and 1(b). Subsequently, we compare the
effectiveness of poposed ZONSPIDER method against other first-order algorithms in both Phase
Retrieval and DRO, shown in Figures 1(c) and 1(d). Notably, we use sample complexity to measure
the cost; for zeroth-order algorithms, sample complexity refers to the number of zeroth-order gradient
estimators utilized.
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4.1 APPLICATION TO NONCONVEX PHASE RETRIEVAL

Phase retrieval is a well-known nonconvex problem in machine learning and signal processing(Miao
etal., 1999). Let z € R? represent the true underlying object, and assume we collect m intensity
measurements, given by y, = |a, z|? forr = 1,2,...,m, where a,, € R?. The challenge in phase
retrieval lies in recovering the signal by solving the associated nonconvex optimization problem:

min f(2) := LZ (r — la)2I%). (10)

The above nonconvex objective function is a high-order polynomial in the high-dimensional space.
Therefore, it does not belong to the L-smooth function class L.

We evaluate the performance of our algorithms by applying them to the non-convex phase retrieval
problem described in (10).We adopt the same setup as in (Chen et al., 2023), and we refer readers to
appendix A for more details about hyper-parameters.

First, to provide insight into the parameters used in the zeroth-order estimator, we compare the
effects of different values of S in the rand estimator, as shown in Figure 1(a). We observe that
choosing S = d negatively impacts the performance of the rand estimator, while S = 10d and
S = 50d yield similar results. Thus, we believe the ideal range is d < S < 10d. Next, we examine
the effects of different smoothing parameters on both the rand and coord estimators, with results
presented in Figure 1(b). The smoothing parameter proves to be quite robust, as selecting 1 < 1073
suffices to achieve good performance for both estimators. Finally, we compare the performance
of different algorithms in Phase Retrieval, with results displayed in Figure 1(c). We note that (i)
ZONSPIDER-coord and SPIDER demonstrate the best performance, and (ii) the coord estimator
exhibits more stable performance compared to the rand estimator.

4.2  APPLICATION TO DISTRIBUTIONAL ROBUST OPTIMIZATION

Distributional Robust Optimization (DRO) is a widely used framework for training robust models,
Under mild conditions, it aims to solve the following problem:

min  L(z,n) := A\E§ ~ Py* (W) +n 9)

rzeX ,neR

where ¥* is the convex conjugate of ¢, and we refer readerser to appendix A for more details
about hyperparameters. We solve the non-convex DRO problem (9) using life expectancy data,
which includes 2,413 samples of life expectancy and influencing factors. After preprocessing (e.g.,
filling missing values, standardizing variables), we use 2,000 samples for training, with features
z; € R3* and target y; € R, we set A = 0.01 and use the x? divergence for ¢* (t) = (¢t +2)* — 1.

The regularized mean square loss function is: e (w) = 3(ye — 2 w)? + 0.1 2?4:1 In (1 + [w®]),
initialize 19 = 0.1 and wy € R3* randomly using a Gaussian distribution.

We compare the performance of several algorithms. The results in Figure 1(d) lead to similar
conclusions as those from the Phase Retrieval experiment, namely: (i) ZONSPIDER-coord and

its first-order variant perform the best, and (ii) the coordinate estimator outperforms the random
estimator.



Under review as a conference paper at ICLR 2025

—— ZONSPIDER-rand_S=d*1 —— ZONSPIDER-coord_u=0.01
81 —r— ZONSPIDER-rand_S=d*10 8.1 —v— ZONSPIDER-coord_u=0.001
—=— ZONSPIDER-rand_S=d*50 —s=— ZONSPIDER-coord_u=0.0001
8.0 8.0 —+— ZONSPIDER-rand_u=0.01
ZONSPIDER-rand_u=0.001
~79 ~79 —— ZONSPIDER-rand_u=0.0001
N N
7.8 7.8
77 7.7
76 w:wmmw 7.6
00 05 1.0 15 20 25 3.0 00 05 10 15 20 25 3.0
Sample Complexity le5 Sample Complexity le5

(a) Compare the effect of different S (in ~ (b) Compare the effect of different
4) on rand estimator smoothing parameters on rand and coord
estimator

6.0
—— SGD —+— SGD

—+— Z0-SGD_coord 55 SPIDER

8.1

—=— Z0-SGD_rand —— Z0-SGD_coord
80 —+— SPIDER Z0-SGD_rand
ZONSPIDER-coord 5.0 ZONSPIDER-coord

ZONSPIDER-rand ZONSPIDER-rand

W(xe)

4.5

0 ‘\“‘FM.\

S G Sven el i
e 1 3.5 A
0.0 05 1.0 15 20 25 0.0 0.5 1.0 1.5 2.0 25
Sample Complexity ted Sample Complexity 1le5

(c) Compare different algorithms on  (d) Compare different algorithms on DRO
Phase Retrieval

Figure 1: Experiments results

5 CONCLUSION

In this paper, we address the question of whether zeroth-order methods can be safely applied to
problems that exhibit (Lo, L1 )-smoothness. We propose a variance-reduced zeroth-order method
called ZONSPIDER, a variant of SPIDER (Fang et al., 2018), which utilizes normalized stepsizes
and zeroth-order gradient estimators. We provide an analysis of both coordand rand estimators under
the finite sum and general expectation cases, showing that the total number of function value queries
required to obtain an e-stationary point is upper bounded by O(de~2) and O(de~?), respectively. To
the best of our knowledge, this is the first application of zeroth-order methods to (Lg, L1 )-smooth
problems. A further direction for research is to explore whether zeroth-order methods can be safely
applied to additional problems under the (L, L1 )-smooth condition, such as P L-conditions, strongly
convex conditions, and general convex conditions.

10
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Table 4: Meaning of symbols

Symbol  Description

Vf(z)  coord estimator

Vf(z;€) coord estimator using sample function f(z; €)

Vf.(x)  gradient of smoothing function

Vf.(z)  rand gradient estimator

x) average rand estimator of .S times

x) average rand estimator of S times using sample function f(x; &)

d dimension of problem

Lo, Ly generalized Lipschitz constant

I smoothing parameter
v smoothing vector
n total number of data points(finite sum case)

00,01 E[|Vf(z;€) — Vf(2)|])] <o02+02|Vf(z)||® (zeneral expectation case)
the [-th basis vector of R"

batch size when mod(k, q) # 0

batch size when mod(k, q) = 0

k= |k/alg

a parameter that control the frequence of use large batchsize B

< | Iy |8

A  HYPERPARAMETERS DETAILS

A.1 PHASE RETRIEVAL

We choose the problem dimension to be d = 100 and the sample size to be m = 3000. The
measurement vectors a,, € R? and the true parameter z € R are generated element-wise from
a Gaussian distribution A/(0,0.5). For the initialization, 2y € R? is drawn element-wise from
N (5,0.5). The measurements are then constructed as y; = |a z|? + n; fori = 1,...,m, where the
noise term n; is sampled from N(0, 42), representing additive Gaussian noise.

We set the parameters for the basic SGD with v = 2 x 10™4, normalized SGD with v = 2 x 1073,
and normalized SGD with momentum, where v = 3 x 10~3 and the momentum coefficient is 1074,
For clipped SGD, we set v = 0.3 and use a normalization term max(||V f(2;)||, 10%). For SPIDER,
the learning rate is v = 0.01, the epoch size is ¢ = 5, and the batch sizes are B = 3000 and B’ = 50.
For the proposed ZONSPIDER method, we choose 1 = 10~ for both the coord and rand estimators,
S = 10d for the rand estimator, and the remaining parameters are the same as those in SPIDER.

A.2 DRO

We set the standard SGD with v = 2 x 10™%, normalized SGD with v = 8 x 1073, and normalized
SGD with momentum, where ¥ = 8 x 10~ and the momentum coefficient is 10~%. For clipped
SGD, v = 0.05 with a normalization term max(|V L(x¢,7:)|, 100), and for SPIDER, the learning
rate is v = 4 X 1073, the epoch size is ¢ = 20, and the batch sizes are B = 2000 and B’ = 50.
The initialization is obtained by running normalized GD with v = 0.2 for 30 iterations starting
from wy, 19. For the proposed ZONSPIDER method, we choose 1 = 10~ for the coord estimator,
© = 0.005, and S = 13d for the randestimator. The other parameters are the same as those in
SPIDER.

14
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B AUXILARY LEMMA

Lemma B.1 (Jensen’s inequality). For convex function f(x) we have

f(Elz]) < E[f ()], (10)

two extended versions of Jensen'’s inequality are

B[] < Ef|zl], for z € R?

i 2
>
i=1

Lemma B.2 (Young’s inequality). For any vectors a,b, € R, and ¢ > 0, the following inequality
holds:

k
<k llaill?, fora; € R*.

=1

la* < (1 +Q)lla = bl* + (1 +¢71) [[o]1%,
an extended version of Young’s inequality is

Lemma B.3 (Variance decomposition). For random vector x € R? and any y € RY, the variance of
x can be decomposed as

E[l|lz — Elz]|*] = E [|l« — y|*] — E [|IE[z] - y|*],
which implies
E[lo - El2]|?] <E [J2I].
Lemma B.4. For random variable X,Y, if X, Y are independent, and E[X| or E[Y] = 0, we have
E[IX — Y% = E[|X|*] + E[| Y]], (11)

Proof.
E[|X - Y|*] = E[IX|* + [Y]* + 2E(X, V)] = E[|X "] + E[|Y]]*].

O
Lemma B.5. Fori.id. xy,29,x3 - Xy, if they satifisies E|x;] = x, we have
b 2 2
E Hbzlmx <=E (12)
Proof.
2
s
p 2T
=1
1 & ’
= 2B || (@i =)
i=1
L2
2
= S Ele ol
i=1
1 2 _ Efflai’)
= [ — 2] < S0P,
where the second inequality holds due to [|a + b]|* = ||a]|* +||b]|*+2(a, b), and E[(z; —x, z; — )] =
0(j # 1) for iid random variable x;. O

15
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Lemma B.6 ((Gao et al., 2017)). Let a(n) be the volume of the unit ball in R™, and $(n) be the
surface area of the unit sphere in R". We also denote B, and Sy, to be the unit ball and unit sphere
respectively. Let I be the identity matrix in R™*"™, then

/ vl dv = @I.
S n

p

C COORD ESTIMATOR ANALYSIS UNDER GENERALIZED SMOOTHNESS

The following lemma upper bound the error between gradient estimator V f(z) and V f(z).
Lemma C.1 (Restatement of lemma 4). Under assumption 1, we have

. Lo+ Ly ||V
[V (@) - V)| < VIO g,
Proof.
2
- 3fu _0f(@)
va(x) HZ 83:@ 8%‘@ e
d 2
Z fulx) 0f(@)|” _ (Lo+ILn ||Vf(95)H)2d 2
1 aa;‘g 8$g 4
where the second inequality holds due to H 8f“(‘”) agx) = H f(”“ef)*f(m3*<vf($)’”ef> ‘ <
(Lo+L12IIVf(:v)H).
Note that we also assume V f(x; ) is (Lo, L1 )-smooth, so we also have
- 2 (Lo+ L1 ||V f()])?
[V (z6) - Ve[ < Lot IVADI 2
O

The following lemma will upper bound the error between stochastic zeroth-order estimator and true
estimator.

Lemma C.2. Under assumptions 1 and 2 , we have

E([Vi@ o) - Vi@ | <83+ L Ivi@IPwtd 303 + 303 IV @IF. a3)

Proof.

. -
E|[vieo-vi]

<310 - Viwo| +3|viw - Vi@ +3E IV - Vi@

< B(LG + LT |V £ (@)]|*)dp® + 305 + 307 |V f ()|
where (a) holds due to the conclusion of lemma C.1 , and assumption 2. L]

The following lemma will show the Lipschitzness property of stochastic zeroth-order estimator.
Lemma C.3 (Restatement of lemma 5). Under assumptions 1 and 2, let 11 < ﬁ%, Jor ||z — zo|| <

2
o we have

. . 2 9
E [va;f) V(29| ] <I5(L3 + L3 [V F@0)II*) s — ol + 8 L8 + SduL3 |V f(an) 7,
and for finite sum case, we have the same conclusion:

~ ~ 2 9
B |9 ien) = T e | <1508+ BIT A1 o1 = ol + 30028 + S L3IV )P

16
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Proof.

B[V 16~ Vs

<BE[I97(1:6) = Vs O] +3 |V (@26 — V)| +3|Vs(en) - Viti0)|

A=

1223 + L IV ) )l — wall® + 82 (23 + 5 1R (IV £ Gen) I + 1V ()|

VAN

3
12(L3 + L3 |V £ (@0)|*) lley = w2* + 3dp® L + Sdp® LYB||V f(20)|* +2(|V f(22) = V f(2)])

Ao

9
15(L3 + LY [V £ (x0)[*) lley — al|” + 3dp® LG + Sdu® LT |V £ ()|

where step(a) holds due to the conclusion of lemma C.1, and assumption 2.
step (b) holds due to ||V f(w2)[|* < 2(||V f(z1)[|* + |V f(x1) — Vf(xz)IIQ)-
step(c) holds due to ((Lg, L1 )-smooth)-smooth and we let ;1 <

f L,
note that in finite sum case, we can use the same proof to obtain the same conclusion. O

D RAND ESTIMATOR ANALYSIS UNDER GENERALIZED SMOOTHNESS

Lemma D.1 (Restatement of lemma 1). Under assumption I, we can bound the error between
gradient of smoothing function f,, and the gradient of the original function f as follows:

WP (LR + LIV S @)P)

IV fu(2) = VI@)]* < 5 (14)
Proof.
IV fu(z) =V f(z
H ld flz+ pv)vdo| — Vf(x)
K Js,
lemmaB.6 1 d d
3@ |fi f(z + pv)vdv f/ — f(z)vdv — /sp M(Vf(z),;wﬂ)dv] |
<Gy [, 116+ ) = 1) = (91l
d_(Lo+1In ||Vf DIDw pd(Lo + Ly [V f(@)[l)
O

Lemma D.2 (Restatement of lemma 2). Under assumption 1, we can bound the second-order moment
of the rand estimator V f () as follows:

prd?

Ef,nos, ) [[V/@]] < 201 V5@ + 5

— (Lo + L [V f(@)])*. (15)
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Proof.

d2
Efyr ) [I97@] = ﬁi / EF @+ 1) = @) Pl

fla+pv) = f(2) = (Vf(2), wo) + (Vf (@), pv)]*dv

<3 / o4 ) — f(@) — (VF(@), p))? + 2(Vf(). )] dv
2 2
[ Lo+L1H2Vf( ) |U”2> do 4 2 /S Vf(z)TUUTVf(x)dU]
lemmaB.6 d2 (L0+L1 ||Vf($)|‘)2/l4 2@ T 2
wos | 2 sty + 202 2w o)
20V + (L 4 L 9 1))
O]

Lemma D.3 (variance decompsition). for constant c we have

E [llz - E[2]|*] = E [llz - c[*] ~ | E[z] - ¢]|*. (16)

Lemma D.4. Under assumption 1, we can bound the error between batch estimator and the gradient
of the original function as follows:

E[IVsf(z) = Vf(2)|?] < (d*LT + 2*;) IV £ (@) + p?d* L3 (17)

Proof. from lemma D.1 and D.3 and we have

IV fue) = V@)1 = BV @) - VI @)
~E[|95() - VS (@)I] - BBV ()] - VS @)
o P+ LV @)

2 )
then, combine lemma D.2, we obtain:

E[[Vsf(x) - VH@)|2] <(?4Lot L IV/@]D

)? + E|E[Vsf(2)] = Vfu(x)|?

2
<(Md(Lo+L1HVf(J:)H)) n E[va )| }
= 2
9 279 9 2 72
S>2

2d
< (WPd’Li+ )IIVf(w)II +u2d2L37

where the second inequality holds due to lemma BS,ie.

_ 1 _
B|E[Vs/(@)] - Viu@? < SE[IVf() - Vi@l < <& [I95@)]F].
where the third inequality holds due to lemma D.2. O

Lemma D.5 (Restatement of lemma 3). Under assumption I, we can give the Lipschitzness(with a
little abuse of terminology) of the batch estimator Vs f (x) as follows:

94> Llu

E [va(xl,g Vi 6| ] <3d?L24% + 3dL2 ||x1 — x| + IV f(20))?

3pu2d2 L2
2

+ L+ 3dL3) IV f (@0)|* [l — o),

18
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and for minibatch smoothing estimator, we also have a similar conclusion, but the difference is that
the some coefficient were divided by S:

d
<) o1 — 2o

S
DIV F )l — 2ol

E [\st(xl; €) — Vs f(xa; g)\ﬂ <6p2d2L2 + 9u2d? L2 |V f (1)) + 3L2(4 +

3 3dL2
+ (1202 + 2t

Proof.

E||[Vf(2156) = V(23 9)|]
=d2E[II%[f(x1 + ;€)= fla15€) — (V f(w1:6),0)]o — %[f(ﬂ?z + ) — f(@2) — (V f(23€),0)]

(Y f@3€),v) = (V £ €), 0)0) ]
2 e 4 AUV @O+ 1V @)IP)

T E 319 f(213€), v)v — (V[ (w33 ), o))

2
b 3L212(3 4+ 4L2 |21 — 22| IV £(z)]1?
S (apgye + O AN D INTEOT | g9 fer:€), 0o — (9 (a:€), 0ol
c 3L202(3+ 412 ||z — x 2 V f(x 2
9d2[2 3d2 L2 2
<32 + 3dL3 ||z — o] + 1“ IV £ @) + (= 4 3dL3) [V flan) | o — 2

(18)

where step(a) holds due to la+b+cl> < 3(|al* + ||b]? + le|?) and f (21:€) < f (21;€) +
(Vf(21:€) 22 — 21) + 5 (Lo + L1 |V f (z1:8)]]) [|z2 — 211,

step(b) holds due to ||V f(22)[|* < 2(|V f(a1)[|* + IV f(22) = Vf(@1)|I*) < 2(|V f(ar)]|* +
2(L3 + 2L3 |V £ (21)[*) |21 — 2]*)

and in step(c), denote y = V f(x1;&) — V f(22; &), then ||(V f(21;&),v)v — (Vf(mQ;f),v>v||2 =
7], since v is a vector randomly sampled from the unit sphere, from ((Ji
etal., 2019b) lemma5) we know E[||vv”||] = 414, thus E[|[(V f(z1; &), v)v — (V f(z2;6),0)0]%] <
i IVF(@2:6) = V@)l
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Next, we proceed to prove the second part.

L [st(xl;ﬁ) - ?Sf(g;Q;g)HQ] _

HMOJ
&
=
<|
=
3
N
I
~—

Vif(x1;6) = Vf(22;€) £ V fula1;€) £ V frlwa; €)

Il
&=
Nl

~
Il
-

Vif(x1;6) = Vf(22;€) + Vi u(1;6) = Viu(z;6)|| | +E [vau(ﬂfl;ﬁ) — Vfu(z2:6)|?

Wl

=E

~
Il
-

lemmaB.5 |

SE [19:£@156) = Vis @ O] + E[IVful@1:©) - Vsl )]
S%E [H?jf(xl;f) - ?jf(l?;g)HQ} + 3E[|V f(21:€) — Vfu(a1;6)]%]
+ 3B[|[V f(22;€) = V fu(@2; )] + BE[|V f (w1;€) = V f (w2; &) ||°]
S%E [|ij($1;§) - vjf(ﬂb‘zsf)HQ}

242(12 + 2 |V 2 2d2(12 + [2 |1V 2
+3N ( ot ;H f(zl)” ) +3N ( ot 21” f($2)H ) +6(L8+L% ||Vf(I1)||2)HI1*l’2H2
272(12 2 2
pld?(L§ + 21 (IIVf(wl))II V@) - Vi) : 2
+3 5 +6(Lo + LY [V f(z)[]7) |21 — 22
9,ud L1

IV f (1)
+6L3(u?d* LT + 1) ||t — 22| + 6LG (1 2d2L2+1) IIVf(wl)H lz1 — 2”

a1l _
SSE [[|Vif @1:6) = Vif (2 §)[*] +3u2d*L3 +

3 3dL2
<6M2d2L2 +9d2 L3 |V f (1)) + BLG(4 + ) w1 — @s|® + (1215 + 5 5 T Y IV @)l [l — 2o,
where (a) holds due to (Lo, L1) smoothness,
step(b) holds due to (18) and we let S > 1, pu < dLLl ) O

In the following lemma, we analyze the variance introduced by sampling data points.

Lemma D.6. Under assumptions I and 2, we have

E||Vsf(2:¢) = Vs f @) < 6(:2d*L7 + ? +09) |V £ (@)|I + 64°d> LG + 60
Proof.
E||Vsf(x;:6) = Vsf(x H
<3 [|[Vsf(@:6) = V@ O] +3E [|Vsf(2) = Vi@)|*] + 3B [IV () = V£ 1]

2d
< 6(AdLE + ) V(@) + 65°d* L3 + 6(0F + 0 IIVf(x)IIQ)

2d
= 6(*d° L} + 5 + o) IV f(@)||* + 6p2d*L2 + 603.
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E CONVERGENCE ANALYSIS

Lemma E.1 (Restatement of lemma 6). Let n;, = co < 1, under assumption 1, for x4 —x) =

—Nk VK, we have:

Hvk\l’

L()C%G2
2

[ (@) < f (on) - ( - ) IV£ ()l + 2e2¢ ox — T ()| +

Proof. since , i, = 725, from (Lo, L1) smooth, we have:

el

F@rsn) < f (20) + (VS (20) s apss — ap) + 2L ||2Vf (zk)

= 1) —esc (VS ) k) g o T

2
= £ ) = cac ol + exe (= T (). iy ) g R ]

2 2Lot Ly IV f ()]

D s —

< f(wg) — cae ||Jog|| + cae lvg — Vf (z)]| + ¢ 5
£ J @) = cae [V (@l + 2eae o — V1 ()| + G0 2 VT )
< f(an) — (ch _ Lige ) IV f ()| + 2c2¢ |lug — Vf (zi)]| + C%E;LO
(@) is due to [log || > [V f(@k)[| — low — V f(zi)]- -

E.1 CONVERGENCE ANALYSIS OF COORD ESTIMATOR

. 2
In the following lemma, we disscuss the behavior of variance term Hvk -V f(xg) H in finite sum
case.

Lemma E.2 (Restatement of lemma 7). Under assumptions 1 and 2 , for Algorithm 1, choose

< \/ElLl’ B = n, denote k = |k/q|q, we have
R =
B {|[or = ¥ f()||| < 4Loce +2VduLo + T (4L1cae +3VauLy ) |1V ()
1=k

Proof. note that E[V f(x;¢)] = V f ()

r R 2
E _Hvk+1 - Vf($k+1)H }

2

b
<El|lox + Do fen) = Vo) £V fo) = flone)] )
- 27 b R R R R 2
<E |||vx = V()| | +E % Z(Vfi(a?kﬂ) =V fi(zr)) + Vf(xr) = Vf(2rs1)

=
)

<E vp — V f(xg) - + %E M@fi(mﬂ) - @fi(m)‘ﬂ

[ - 1 9
<E |[ox = V)| |+ (15<L% + LIV F@i)l*) llon = wpsal|® + 3dp* L + 5 L3 IIVf(:vk)||2> ,

b

where step (a) holds due to E[4 Z?Zl(@fi(a:kﬂ) — Vfilzr)) + Vf(xr) — Vf(zpe1)] = 0 and
lemma B 4.
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step(b) holds due to lemma B.5.(E [H i Ti — H } ]E[”“”

. . 2
step(c) holds due to lemma C.3 to upper bound E {HVfi(zkH) -V fi(zg) H } .

Now, note that (1)||xk+1 — 2|l < coe due to the choice of ny, (ii) for Algorithm 1, in finite sum
case, when k = k, we use all n samples to compute the gradient, which means v, = VS (z1), so

{Hvk —Vi( Th H } = {va ) ~V£( Ty, H } = 0, we obtain
e

2(15 (B + 3 IV FGl®) s — ll® + 8au? L3 + S L3 |V £ (e )+E[Hvk Vf(z; M
=k

v — @f(xk)HQ}

@\»—l

=0(finite sum case)
k—1

1 9
% (15L3c3e* + 3LEdp?) + . > (15L10262 + 2L§du2) IV Flz)|)?, (19)
1=k

let ¢ = b, use the fact that /3" ||z]|* < 3 ||| when every z; > 0, and E[||z||] < \/E[||z]]*], we

have
k—1
E [H’Uk — @f(xk)m < \/BL[)CQE + \/@/JLO + % lz:% (\/ﬁLlcQG + \jé\/aMLl) ||Vf(£b'l)H .

To improve readability, we perform some scaling on square root terms and let p < ﬂ%’ this leads
1
to:

E {Hvk - @f(xk)m < 4Lgege + 2VdpLo + % ki:l (4L1626 + 3\/;iuL1> IV f(z)] -
1=k

Furthermore, We disscuss the behavior of variance term ||vy — V f(x)||? in Expectation case.
Lemma E.3. Under assumptions 1 and 2 , for Algorithm 1, choose ¢ = b, u <

dL , denote
k= |k/q|q we have

-1

E [||ox — V£ || <4Zocae +3VauLo + 2% +I§ (;B (4Ercae +3Vduly ) + W\/ﬂg%l) IV @)l

Proof. Similar to the previous theorem of finite sum case, but the difference is that in Expectation
. . 2
case, B| & (V (2 €) = V£ 170

d

2(15 (B + L3IV FGl®) s — ll® + 8au° 3 + S L3 |V £ (e )+E[Hvk Vi M

kafok H}

o'\r—l

% (15L3c3€® + 3L3du?)

@\H

k—

Z (15[4%6%62 + 9L2d/z > IV f(z)|)? (20)
=k

+ g |[Veue - vreo] .
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where the second inequality holds due to that fact that when k = k, v, = % 2?:1 Vf (@ &),
. . 2
and from lemma C.2 we have E D’Vf(x,;; €) — Vf(xk)H ] < 3(L2 4 L2 ||V f(2)||*)ud + 302 +

30% |V f(@)||*. let g = b, ju < 717> We have
~ 2
E |:H’U/C — Vf(l‘k)H :|
1 k—
< (15L3c3e* + 3L +3 > (15L10262 + L2 ) IV £ (2]
1=k

+§ (3(L2+L2||Vf z)|[*)i2d + 303 + 303 |V flwp)]|*)

now, use the fact that 1/ ||z;]|> < 32 ||z|| when every 2; > 0, and E[||z||] < \/E[||z]|*], and
B > 1 we obtain

2Ly pVd + 204
VB

O

E [Hvk — Vf (z m <4Lgcse + 3\[ML0 + ﬁ +I:Z <\[ (4L1026 + 3\/guL1) +

) IV f()ll-

Theorem E.1 (Restatement of Theorem 1 (coord estimator in finite sum case)). For Algo-
rithm 1, under assumptions 1 and 2, let co < min{ﬁ Y, choose n, = u <

=b=+/n, B =mn, we have

1
» 68Lo IIUkH’

min{

: L—1¢
40VdLo’ 56n4 1,v/d’

B[S (2,4) = f (2)] < =22

We state that, in expectation, the function value of f decreases by an average of
per iteration.Since f can deacrease at most A, we need at most

¢ jn, since f(x)

K = O(Ae¢ ?max{Ly, Lo}),

in expectation to find the stationary point, and the total number of e function query is

B
# function query = dT(b+ —) = O(de *v/nmax{Ly, Lo} + dn).
q

. 2
Proof. From the conclusion of lemma E.1, and upper bound of HV flxg) — V fxg) H (lemma C.1),

we have
F o) <F (o)~ (eae - L) V5 (@l + 2exe o — T ()] + S0
<f(ax) — <026 - —L IV f (k)
+ 206 (HVf z) — V f(zn) H i H”’“ 7 H) CQE;LO

<F o) (cae - e ) 197

+2c26<<L0+L12||Vf(w)I|\[#>+Hv . H) c262L07
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o 2 ~
then from upper bound of E [Hvk — Vf(a:k)H ] (lemma E.2), we have E {Hvk — Vf(xk)m <

ALocae +2v/duLo + L 4] (4L1626+3\[ﬂ[/1) IV £(@)]].-

Lic
B (ax0) —  (o0)) < — (e2e = 225 — LicaeVl) 195 )]
2c2 b 17Loc2e?
(4L162€ + 3L1\f,u) HVf(CEl)H + TQ + 5L0026\/Ep,,
1=k

sum it from k = k to q, we obtain

Elf (1) = f (27)]

Lic3e? athl 2¢ ek+q '
< - (CQG 1% Llcgex/au> S IVE @)l + \} 3 Z(4L1026+3L1\[M) IV f(a2)
k=k k=k I=
17Loc2€?
+q (3626 + 5L062€\/g,u>
a 1 athl 17Locoe
< — e l—Llch(§+8\/§)f(1+6\/§)L1\/gu >V @) + qeae 5 +5LoVdp
k=Fk
b epe T qeae?
S- 5 Z IV f (z)ll + 1
k=k
¢ geo€?
< 1)

< 1
step(a) holds due to the observation that Zkﬂ Zl plcaely + 2dpLly) V()| <
a3 IVF (@)

step(b) holds because we let choose ¢ = b = +/n and we suppose € < n[}%, we choose
e < mln{72L, } to let Licae(3 + 8,/q) < 9Licae < gand Tecdo < £y <
}tolet (1+6,/q)LiVdu < Tni Livdu < + and 5duLo < §

68L0
min{

40\f dLo’ 56n% L,vd
step(c) holds due to |V f(x)|| > € otherwise we have find the stationary point.

2
Now, from(21), we know that in the sense of expecation, f(x) descrease at least “4* in g steps, that

. 2 . . . .
1S, 0246 every step in average, since f(x) can deacrease at most A, in the sense of expectation we

need at most

K = O(Ae¢ *max{L;, Lo})
to find the stationary point, and the total number of function query is
B
# funtion = dT(b+ 5) = O(de *v/nmax{Ly, Ly} + dn).
O

Theorem E.2 (Restatement of Theorem 2 (coord estimator in expecation case)). For Algo-
rithm 1, under assumptions 1 and 2, let 02 < min{TlLl, 681LU }, choose n, = T m <

}, B > max{0(e 20%),0(¢ 203)}, ¢ = b= €', we have

B (r02) -/ (o)) < - 225,

in expectation, we can find the stationary point in K = O(Ae~2max{Ly, Lo}, and the total number
of oracle calls

Ivk\l’

mm{ OGdLo 56L1 fe*05

B
# funtion = dT(b+ ?) = O(de 3 max{L;, Lo} max{o3, o1} 4+ dne 20?).
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. 2
Proof. From the conclusion of lemma E.1, and upper bound of HVf(xk) =V f(xg) H (lemma C.1),

we have
F(@rgr) <f (z) — <026 - c%le) IV f (zx)|| + 2c2€ [|ox — Vf ()] + @
< () - (— SCL) IV )
+200e ([ ) = 95 Gew)| + H”k -V} + 255
<1 (@) = (e - © Ll) 197 (a)
+202€<(L0+L12IIVf<x>Hdﬂ>+ s+ 5

then from upper bound of E [

Vg — @f(xk)’ﬂ (lemma E.3), we haveE [

VE — ﬁf(iﬂk)m <
ALocze +3VAuLo + 28 + 45 (& (4Lacae +3vAuLy ) + 220 ) v f(ay)]
Ef (@rt1) — f (k)]

2Ly pv/d 4+ 2 17Loc3e? 2
_ <(4L1026+3\/(3M1) + M) IV £ (zi)]| + LS L T Locse/dp + 222570

VB 2 VB
k—1
2L d—+2
+ 2026 ) <4Lme +3VduLy + “fg") IV F ()l
1=k

sum it from k = k to k + ¢, we obtain:

Elf (w,12) — f (w3)]

Lycie? etk 17Loc3e? 2co¢€0
< - (026 — 122 — L1025\/Eu> Z IVf(zi)|| + g (;2 + 7L0026\/ap—|— \Z/E()>
k+q 1 k
2L d+2
+ 2cg€ Z Z( (4L1026+3\fuL1) ngm) IV f(z)]|
k=k 1=k
" 1 9 q+k—1
< ege (1 — Licze(; +8y/) — Livdu(1+6,/q) - \/—%(QLW\/&+ 201)) Z IVF (z)]
17L0026 20’0
L
+q626< o7 ofu+\/§>
b 5C2€ quk ! g0
<-— Vf(xp) + —|—2
< Z V£ ()] reac T
c QCQE
< — 22
< 1 (22)

step(a) holds due to the observation that Zk+q Zz plc2ely + 2dply) [V f(x)]] <
a3 i IVf (@)l

step(b) holds because we choose ¢ = €', then choose ¢z < min{ 7721Ll , —681120} to let Ly cze(% +
17coeL gcoe(2L1 pd+201) € 1
8,/q) < 9Lycy < % and 72°k0 < £ and me e < s min{ 57—, LA }Ho
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let L1Vdu(1l + 6,/q) < TL1Vdue ™ < L and TduLo < &, choose B > O(o%€e72) to let
ZL@2LipVd +201) < §

step(c)holds due to ||V f(zy)|| > € otherwise we have find the stationary point, and choose B >

2
O(e202) to let 2qese s < 125

2
Now, from(21), we know that in the sense of expecation, f(x) descrease at least % in q steps, that

is , ©2< every step, since f(x) can deacrease at most A, we need at most

K = O(A¢ ?max{Ly, Lo}),

to find the stationary point, and the total number of oracle calls is

B .
# funtion = dT(b+ —) = O(de > max{Ly, Lo} max{o3, 03} + dne 203).
q

E.2 CONVERGENCE ANALYSIS OF RAND ESTIMATOR

. 2
In the following lemma, we disscuss the behavior of variance term Hvk -V f(xg) H in finite sum
case.

Lemma E.4 (Variance of finite sum case). Under assumptions I and 2, for Algorithm 1, let p < ﬁ
we have

k
_ 1 /d
E [H’Uk — st(xk)H] S 6L0€2€ + 3d,uLo + % E <6L1626 + 3d2 2L2 + 5 ) ||Vf($l)||

1=k

Proof. note that E[V f(z1:€)] = Vs f(xk)

E [[lows ~ Vs r@o)|’]
2

b
%Z (Vs fi(zr1) = Vsfilwr)) £ Vsfi(wr) = Vsf(@rr)|| ]

2

» _ - 1
<E _Hvk - sti(xk)Hz_ +E 5

b
D (Vsfilzerr) = Vsfilar)) + Vs flar) = Vs f(zir)
i=1

<E :Hvk - vSfl(ﬂfk)”Q: + %]E {H?Sfi(xk_i_l) _ ?Sft(xk)|‘2:|

<E [[|ox = Vs filaw) ]

3 ?)dL2
<6u2d2L2+9d2qu2 IV 5GP 432304+ ) s — ol + (1223 4 2 4 22

-, ) 19 A0l o - 22,

where step (a) holds due to E[} Z?Zl(@fi(a:kﬂ) — Vfilzr)) + Vf(xr) — Vf(zpe1)] = 0 and
lemma B.4.
step(b) holds due to lemma B.5.(E [H Doy T — ;vH } w).

step(c) holds due to lemma D.5 to upper bound E [H?Sfi(zm_l) — Vs fi(zr) Hﬂ .

denote k = |k/q|q, note that (i)||z,s1 — x%|| < cz¢ due to the choice of 7, (ii) for Algorithm
1, in finite sum case, when k& = k, we use all n samples to compute the gradient, which means
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v = Vs f(zg),soE [Hvk - vsf(xk)Hz} =E {H?Sf(xk) - ?Sf(xk)Hz] = 0, we obtain

[Hvk—st 7]
232712 2172 2 d 2 3 3dL2
bz 6p2d?LE + 9d2 L3 1% |V f (z1)|)* + 3L2(4 + )HJE1—$2H + (1205 + 5 + =5 Y IV @)l ey — 22
1=k

+B ||y - Vs )]

=0(finite sum case)

k

1

(15L5c5e* + 6L3d* 1?) + § < (3L2 + + 12L%)c3e + 9d? 2L2) IV f ()|, (23)
1=k

a
<
- b

4
b
where step (a) holds because we choose S > d and let pp < -

Let ¢ = b, use the fact that /> || ]|> < 3 ||#]| when every ; > 0, and E[||z|] < \/E[||z]|*], we

have
E [||lok — Vsf(x)]]] < \FL062€+\[udLo+ Z ( (V3L1 + \/§+ 2V3Lo)cae + 3d2ﬂ2L%> [V f@)]-

To improve readability, we perform some scaling on square root terms:

k

_ 1

E [|Jvk — Vs f(2)||]] < 4Locze + 3udLo + 7 > ((2Ly + 2+ 4Lg)cze + 3Ly pud) ||V £ ()|
1=k

O

. . . . = 2, .
In the following lemma, we disscuss the behavior of variance term H”k — Vs f(zk) H in Expectation
case,

Lemma E.S (Variance of Expectation case). Under assumptions 1 and 2, for Algorithm 1, let ¢ = b,
w< ﬁ, we have:

_ 30'0
E [||ox — Vs f(@)||]] <6Locze + 4duLo + —=

VB

k
1 334+o0
+ Z (JB ((2L1 + 2 4 4Lg)cae 4 3Ly pd) + 38+ 01)

L ) IV Fa)l,

- ?Sf(x,;)HQ # 0, we start

from (23) and obtain:

E|[lvx - Vss@oll’] (24)
k
1 3 -
% (15L3c5e® + 6L3d* ") + 5 > <(3L2 + 5 +H12L)3e” + 947 2L2) IV f(@)|* +E [Hvk st(xic)m
1=k
(25)
k
<3 (15L3c3* + 6L3d*w?) + %Z <(3L2 2112083 + 0d? 2L2) IVf@)l* @)

Il
=

1 2d
+3 (G(MZdZL% +35 1) IV f () || + 6p2d>L2 + 603) : 27)
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where the second inequality holds due to E|[|Vsf(x;€) — Vsf(z)|> < 6(u2d>L3 + 2 4
02) |V f(z)||*> + 6p2d>L2 + 662 from lemma D.6.

Letq = b, p < 7=, S > d, use the fact that 1/ 2 ]|> < 3 ||| when every z; > 0, and

Eff|=||] < ]E[HJJHZ], we have

E {Hvk - vsf(ffk)Hz}

6LZu%d?> 602
<15L2c%€? + 6L2d% % + —— 4 =0
e3> 4+ 6L3d> 1 + B B
k
1 3 6(3+0?
+)° (b ( 312 +5+ 12L3)c3e +9d2u2L%) - (BU1>> IV £ ()|,
1=k

now, use the fact that 1/ [|zi[|* < 33 \/Zi when every z; > 0, and E||z[]] < E[||2]|*], and
B> 1,5 >1wehave

v 3(70
E |||lvk — Vs f(x <6Lgcoe + 4duLy + —
[H k sf( k)m SbLpcag€ ulo /B
k
1 3(3
+§ <\/8((2L1+2+4L0)CQ6+3Lwd)+(Jrc’l)

. ) IV Fa)l,

O

Theorem E.3 (Restatement of Theorem 3 (rand estimator in finite sum case)). For Algorithm I, under
. . 1 1 __ Cao€ J— i J—
assumptions 1 and f let cy < mln{78(3L1+2+4L0)’ 6o }, choose ny, = Toapd = b=+nB=n,
p < min{ 577-, 5574 we obtain:
3qgca€?
E[f (qurE) - f (ml%)} < - ] .
We state that, in expectation, the function value of f decreases by an average of min{ﬁ, ﬁ} in,
since f(x) per iteration.Since f can deacrease at most A, we need at most
K = O(Ae ?max{Ly, Ly}),

in expectation to find the stationary point, and the total number of e function query is

B
# function query = dT'(b+ E) = O(de *y/nmax{L, Ly} + dn).

Proof. From the conclusion of lemma E.1, we have

2, 2
f(@rg1) <f (zx) — (026 - % ) IVf ()| + 2c2€ |op — Vf (23)]| + 0262L0
2, 2
Sf (-’I;k) - (026 — C2L1) HVf (CU]C)H + 2026 (“st H + Hvk _ vSf H) 026 LO

then from upper bound |Vsf(z) — Vf(z)|* < E[|Vsf(z) —Vf(x)||2] < (uPd?L? +
2) |V f(2)||* + p2d2 LZ(lemma D.4), upper bound [lvk = Vs f(zx)||] < 6Locoe + 3duLo +

b5 (ot +aeuess +5y/4) 195Gl
E[f (Tkt1) — f (z1)]

L 2
<- (sz - 1;26 — 2Ly1coedp — dcgey ) IVF (@)l

9Loc2e> 2co€ k
TQ + 4Locoedp + —b > ((2Ly + 2+ 4Lg)cae + 3Ly pd) ||V f ()],
1=k
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sum it from k = k to q, we obtain

E[f (xq+fc> -f (xk)]
Lyc2e? d atk 1 9Lc2e?
< — (cze — 122 — 2Ly coedp — 4026\/;> Z IVf (zi)|| +q ( 022 + 4L0626du)

k=k
2co€ Frall k
2
+ 725 5T S (2L + 2+ dLo)ene + 3Lapd) |V ()|
e
k=k 1=k
q+k—1
a Ll d
< —ooe | 1= (5 + VAQRL1 +2+4Lo)) = (24 63/q) Lidp — 4 5 SV @)
k=k
L
+ gcoe <9 0€2¢ + 4L0du>
b d (i 9L0626
< -6 | 1= c2(3L0 +2+4Lo) — (2+6v/a) Ladp — 4/ 5 >V @) + qeae 5+ 4Lodp
k=k
c  Bege ikt 0262
< 2 IVf@l+ =
k=k
i_ 3ch¢527
- 8
where step (a) holds due to the observation that Z’Hq Zl plcaely + 2dpuly) ||V f(x)]| <
qz i_i IVf (1) and choose b = g = /n.
step(b)holds because we suppose ¢ < 1 ,andn > 1sothate,/q = ent < 1.
step(c) holds because we choose co < min{m7 ﬁ} to let co(3L1 + 2 + 4Lg) < %
9C2€L0 € ks €
and < § and o < min{z57-, 8(2+67L4)L }to let 8ni Lydp < - s and 4duLy < §, choose

S=0(d tolet4\/g§%.

step(d) holds dut to |V f(x)|| > € otherwise we have find the stationary point.

2
Now, from(21), we know that in the sense of expecation, f(x) descrease at least 3 in ¢ steps, that
is, min{ﬁ, ﬁ} every step in average, since f(x) can deacrease at most A, we need at most

K = O(A¢ ?max{L;, Lo})
in expectation to find the stationary point, and the total number of oracle calls is
B
# funtion = O(d)K (b+ —) = O(de %\/nmax{Ly, Lo} + dn).
q
O

Theorem E.4 (Restatement of Theorem 4 (rand estimator in expecation case)). For Algorithm 1,
under assumptions 1 and 2, let c5 < min{m,ﬁ}, choose n, = ﬁ uw <

min{ 577-, m}, B > max{O0(e72(3 + 01)?), O(¢ 203)}, we have

gco€?

BIS (r,01) =/ ()] < =5

. . . . 1 1 .
We state that, in expectation, the function value of f decreases by an average oﬁmn{m7 m} in,
since f(x) per iteration.Since f can deacrease at most A, we need at most

K = O(Ae¢ *max{L;, Loy})
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in expectation to find the stationary point, and the total number of e function query is

# funtion = O(d) K (b+ E) = O(de ® max{o?, 02y max{Ly, Lo} + ¢ max{o?,03}).
q

Proof. From the conclusion of lemma E.1, we have

c3e? c3e’Ly
Fonnn) <1 () — (exe — Z L0 ) 195 )| + 2eae s — 97 )l + 25
c3e? - 026 LO
<f(wg) — | cac - TLl IVf (@r)]l + 2c2¢ (|[Vsf(z) = V()| + [Jor — Vsf(@)]|) +
then from upper bound E[|Vsf(z)—Vf(z)|?] < (p2d*L3 + %) IVf(@)|® +
p?d*L3(lemma D.4), upper bound E [|lvp — Vsf(azk)|]] < 6Locoe + 4duLy + % +
sk k( ((2L1 + 2 + 4Lo)cae + 3Ly pud) + <3+"1>) IV £(21)]| (lemma E.5) .
E[f (xg+1) — f (z1)]
L16%€2 662600
< _ _ _
< (CQG 5 2L coedp — 4026\/ IV f(zp)] + i
k
13Lgc3e? ( 1 33+ 01))
———=— + b5 Lgcoedp + 2cq€ — ((2L1 4+ 2+ 4Lg)coe + 3L pud) + ——= | ||V f(x) ||,
D) 0C2€al 2% \/B(( 1 0)C2 ) VB IV £ ()]
sum it from k = k to q, we obtain
Ef (2g4) = £ (23)]
Lic3e? d (i 13Lgc3€? 30
< — (cze — 122 — 2L coedp — degen > Z IVf(zp)ll + ¢ (022 + 5Lgcoedp + \/ES>
k:+q 1 k
3(3
+206 Y Y ( ((2Ly + 2 4 4Lg)coe + 3Ly pd) + (\J}B‘”)) IV £ (@)l

k=k 1=k
q+k—1

L d 3+
— cqe <1—026(21+\/§(4L1+4+8L0)) —(2+6\/E1)L1du—4\/; "1 ) Z IV (2)

A

13L06%62 600
+QC26< 5 + 5Locoedp + 5
q+k 1

d
— co€ <1—02(5L1+2+4L0)—(2+660'5)L1du—4\/; 3+01 ) Z IV £ (1)

N

13L 2 2
+ gcoe <30626 + 5 Lgcoedp + 600)

2 VB
c 1026 ling 3qC2€
<- Z IV f (z)] +
i_ QCQE 7
- 8

where step (a) holds due to the observation that Zk+q Zz (caeLy + 2dply) |V f(x)] <
¢ IV ()] and
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step(b) holds because we letb = g = e~ , S = O(d) such that 4,/ ¢ < L,

step(c) holds because we choose ¢y < min{m7 ﬁ} to let co(5L1 + 2 + 4Lg)
and % < § i < min{g55-, 8(2+6€_10_5)L1d}t0 let (2 + 6 %P Lydp) < & and 4duLo

IN A
®l= 00l )=

IN

choose S = O(d) to let 4\/2 < 1. B > max{O(e (3 + 01)?),0(c 203)} to let M\;gl)

6ag ~ €
VB S &

step(d) holds dut to |V f(x)|| > € otherwise we have find the stationary point.

o2
Now, from(21), we know that in the sense of expecation, f(x) descrease at least 2 in ¢ steps, that
is, cff every step in average, since f(z) can deacrease at most A, we need at most

K = O(Ae ?max{Ly, Ly}),

in expectation to find the stationary point, and the total number of oracle calls is
; B -3 2 2 2 2 2
# funtion = O(d)K (b + E) = O(de™° max{o7, 05} max{Li, Ly} + € max{o7,03}).

O
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