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ABSTRACT

This paper proposes deception as a mechanism for out-of-distribution (OOD)
generalization: by learning data representations that make training data appear
independent and identically distributed (iid) to an observer, we can identify stable
features that eliminate spurious correlations and generalize to unseen domains.
We refer to this principle as deceptive risk minimization (DRM) and instantiate
it with a practical differentiable objective that simultaneously learns features that
eliminate distribution shifts from the perspective of a detector based on conformal
martingales while minimizing a task-specific loss. In contrast to domain adaptation
or prior invariant representation learning methods, DRM does not require access to
test data or a partitioning of training data into a finite number of data-generating
domains. We demonstrate the efficacy of DRM on numerical experiments with
concept shift and a simulated imitation learning setting with covariate shift in
environments that a robot is deployed in.

1 INTRODUCTION

Is there an unbridgeable gap between in-distribution (ID) and out-of-distribution (OOD) generalization
in machine learning? Or can the distinction be erased by a change in perspective? Traditional wisdom
holds that there is a vast chasm between the two settings. Applications where training environments
are representative of test environments (e.g., via careful curation of large-scale datasets) have seen
remarkable empirical progress and real-world impact. This success is backed by a deep theoretical
understanding of ID generalization from decades of progress in statistical learning theory (Shalev-
Shwartz & Ben-David, [2014). However, in settings where it is challenging to cover all relevant
dimensions of variation exhaustively in the training data — a common occurrence in real-world
applications such as robotics, healthcare, and cybersecurity — high-capacity models can absorb
spurious correlations and fail catastrophically in test settings where these correlations are altered or
even reversed (Liu et al.; 2021} Sinha et al., 2022} Li et al., 2025 |Arjovsky et al.|[2019).

In this paper, we take an observer-centric viewpoint on the gap between ID and OOD generalization.
Our starting point is the following basic observation: from the perspective of an external observer
who cannot discern distribution shifts in a sequence of data, OOD generalization is equivalent to ID
generalization. As an example, consider an observer responsible for overseeing the performance of
a robot operating in a warehouse. The robot is presented with a sequence of objects to place into a
receptacle, while the observer records the corresponding sequence of bits denoting success (1) or
failure (0) of the robot. During this process, the robot encounters changes to its lighting conditions,
appearances of objects, and its visual backdrop. However, the robot is able to maintain reliable
performance throughout these changes, with only a small-but-consistent failure probability. As a
result, the observer is completely oblivious to the distribution shifts faced by the robot: the data
recorded by the observer has shed its spurious, domain-specific cues and appears independent and
identically distributed (iid). In a sense, the robot has hidden the distribution shifts from the observer.

The core idea of this work is to translate this observer-centric perspective on generalization into
a prescriptive mechanism for OOD generalization. Suppose that a learner is presented with a
sequence of training data that exhibits (potentially mild) distribution shifts. Then, by learning data
representations that eliminate these distribution shifts from the perspective of an observer, we can
identify stable features that do not rely on spurious correlations and generalize to unseen domains.
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Figure 1: Deceptive risk minimization (DRM): by learning data representations that make training data appear
iid to an observer (left), we can identify stable features that eliminate spurious correlations and generalize to
unseen domains (right). In the figure, the robot’s training environments undergo small-but-structured changes
in the colors of the table and objects; DRM learns a representation that is insensitive to these changes, which
results in generalization to environments with significantly different appearances.

For example, if the robot encounters periodic changes in lighting conditions or visual backdrops
(Fig.[I), an encoding of observations that hides these changes from a distribution shift detector will
eliminate sensitivity to the changes and result in robust performance when spurious correlations in
training data are significantly exaggerated or reversed.

Concretely, we formulate this learning mechanism as an adversarial game (Fig. [T)) which we refer
to as deceptive risk minimization (DRM). An encoder network learns to generate representations
that support minimization of a task-specific loss while simultaneously eliminating distribution shifts
from the perspective of a detector presented with a sequence of learned representations. We assume
that this sequence is presented in the order in which training data were curated, and thus preserves
the structure of natural distribution shifts in the original data. For example, in robotics, training
data are often collected in environments that vary over time either discretely (e.g., a change in the
color of the table) or continuously (e.g., a continuous change in ambient outdoor lighting over a
day). We are interested in settings where the training data sequence exhibits some distribution shifts,
which are exaggerated or reversed at deployment time. Importantly, unlike prior work in domain
adaptation (Ben-David et al, 2010} [Ganin et all, Zhang et al., 2015} [Long et al.l 2018) or
invariant representation learning (Arjovsky et al.l[2019; Peters et al., 2016;Ahuja et al., [2020; Krueger]
2021)), we do not assume access to any data from test environments or that training data are
partitioned into different domains corresponding to data-generating distributions; we simply assume
that the order of data is preserved. Associating data points with a finite set of domains — either
manually or via unsupervised clustering (Le et al., 2025}, Murata et al.} 2025]) — is often impractical
or unachievable in settings where there is a continuous change in conditions.

We present a practical instantiation of DRM that utilizes conformal martingales (CMs)
[2022; 2003} [Vovkl, [202T) for distribution shift detection. CMs offer a general and flexible approach to
distribution shift detection, which is often highly effective in practical scenarios
Ch. 8). Concretely, the CM approach computes a quantity that remains small when data are iid
(or exchangeable), but that can grow quickly in the presence of distribution shifts. We derive an
end-to-end differentiable loss that penalizes the conformal martingale computed on encoded inputs;
this loss serves to train the encoder to learn representations that eliminate distribution shifts from the
perspective of the CM-based detector.

Summary of contributions. We introduce deceptive risk minimization (DRM): a novel learning
principle that estimates representations that eliminate spurious correlations by deceiving distribution
shift detectors. We develop a practical instantiation of DRM via a differentiable loss that penalizes
conformal martingales, and demonstrate the efficacy of this representation learning objective in
different empirical settings involving covariate and concept shift. Conceptually, DRM creates a
bridge between distribution shift detection and OOD generalization, which we hope future work can
build on to unlock practical methods for OOD generalization in real-world applications.

2 PRELUDE: RANDOMNESS AND STRUCTURE IN THE EYE OF THE BEHOLDER

We provide an illustrative example below in order to explain the key intuitions behind our approach.
Consider an imitation learning setting where a human has provided a sequence of examples to a
robot demonstrating how to perform a given task (Fig. [T). These demonstrations are provided in
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environments that exhibit a small amount of distribution shift. Specifically, the color of the table is
varied slightly in a structured way: a third of the demonstrations are provided with one table-bowl
color combination, the next third with a slightly different color combination, and the final third with
another. The standard approach to learning a policy in such a setting is empirical risk minimization
(ERM): assume that data are iid and learn a mapping from the robot’s observations to actions by
minimizing a behavior cloning loss on training data. Such a policy performs well when deployed with
table colors similar to ones seen during training, but fails with colors that are significantly different
(see Sec. for numerical results).

The starting point for our approach is the obser-

vation that the non-iid nature of data in this set- -] ] H] K] -] ]
ting can be inferred from the sequence of train- AR AR 2 A A
ing environments. Fig.[2]shows the output from
a distribution shift detector based on conformal
martingales (described formally in Sec. |4) com-
puted on observations from the training environ-

ments. This detector spikes strongly once the 0 50 100 150 200 250 300
table color is changed. Crucially, the detector Envirenment #

also spikes when provided Wlth the séquence Figure 2: Conformal martingales rapidly detect the
of latent features from the policy computed via gigtribution shift with raw images or features computed
ERM, indicating that the policy’s latent repre- via ERM; in contrast, features from DRM appear iid.
sentation encodes color information.

=
o
S

Raw images
ERM features
== DRM features (ours)

Martingale
B~ O 0
o O O

N
o

o

Now consider a policy that eliminates the distribution shift from the perspective of an observer who
is only presented with latent policy representations. Intuitively, the data can be made to “appear iid”
by eliminating sensitivity to the table color, which leads to OOD generalization to different colors.

3  PROBLEM FORMULATION

Training data. A learner is presented with a sequence of training data ((z¢,y;))2_, € (X x V)T
consisting of input-label pairs sampled from a sequence of random variables ((Xy, Y;))7_,, which
may be dependent and non-identically distributed. This sequential collection of data is a core
assumption of our work and departs from the standard practice of shuffling data. If some of the data
collection is parallelized (e.g., by multiple human operators collecting data on different robots on the
same day), we assume that this data is serialized by committing to a particular ordering.

Hypothesis, loss, and OOD generalization. Given the training data, the learner produces a hy-
pothesis h : X — ), which maps inputs to predicted labels. The hypothesis is evaluated according
to a loss function I : ) x YV — R, which compares predicted labels with ground-truth labels.
The learned hypothesis h is deployed on a sequence of test data drawn from random variables

(X, YT))fiﬂl The overall quality of the hypothesis is measured by its expected loss on test data
= Zfigjrl E {l(h(XT)7 YT)}. When the random variables (X;,Y;)? 7" are iid, this reduces to

the standard statistical learning setting. Of interest to us is the case where training data reflect some
(possibly mild) distribution shifts, which are significantly exaggerated or reversed for test data.

Covariate and concept shifts. We consider two types of distribution shifts: (i) covariate shift, where
the distribution of inputs changes over time (e.g., changes in the color of the robot’s table in the
example from Sec. , and (ii) (anti-causal) concept shift, where the conditional distribution of X |Y°
changes over time (e.g., an image classification setting where the appearances of images for a given
label change over time). We discuss potential extensions (e.g., causal concept shift) in Sec.

4  ALGORITHMIC IMPLEMENTATION: DECEPTIVE RISK MINIMIZATION

Our goal is to find features that eliminate the distribution shift between training and test settings.
Since the learner is only provided with the training sequence, we utilize distribution shifts observed
in this data as a proxy. Specifically, we learn features that are stable along the training data sequence
— in the sense that they appear iid to an observer — while also minimizing a task-specific loss. We
formalize this objective by defining an observer in the form of a distribution shift detector.

Defining the observer. Let (X7, Xo,...) be a sequence of input random variables, and let ¢ be
a mapping from an input x to an encoding ¢(x) € R™. We define an observer A who takes as
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input a realization (¢(z1), ¢(z2), . .. ) from the random variables (¢(X1), #(X2),...) and outputs a
boolean ¢ € {True, False} indicating if a deviation from the iid hypothesis has been detected.

Definition 1 (Practically iid). A sequence (¢(z1), p(x2),...) is A-practically iid if a distri-
bution shift detector A does not triggen’'| when provided with this sequence as input, i.e.,

A((¢(x1), p(2),...)) = False.

False alarm rate (FAR). For a detector A to be useful, it should not trigger too often when presented
with data drawn from a sequence of iid random variables. This is captured by the false alarm rate
(FAR), which is the worst-case probability of detection when data are drawn from an iid sequence of
random variables (Vovk et al.| 2022} Ch. 8).

Formalizing the DRM objective. Next, we formulate the objective of deceptive risk minimization
(DRM) as a constrained optimization problem. We consider hypotheses i : © — ¢(z) — f(o(x)) €
Y, which encode inputs using ¢ and map these to labels via f. We use (¢(x¢)|y)_; to denote the
subsequence of (¢(z;))L_; with labels equal to y. The following optimization problem minimizes the
task-specific loss [ while searching for a representation that makes the training data A-practically iid.
We consider two types of constraints aimed at tackling covariate shift and concept shift respectively.

Deceptive risk minimization (DRM)

mf —Zl (¢, f

t. (¢ ( ))t 1 is A-practically iid [covariate shift] (1)
(é(x4)|y)E, is A-practically iid,Vy € Y [concept shift]. ()

Instantiation with conformal martingales. We now describe a particular distribution shift detector
A based on conformal martingales (CMs). This will allow us to flexibly handle both covariate and
concept shifts. In addition, this detector will allow us to formulate a differentiable surrogate for
the constraints equation [I] and equation 2] in the DRM optimization problem. Intuitively, the CM
approach constructs a quantity that grows quickly when random variables are not iid, and remains
small otherwise. In order to detect covariate shift, we first assess how well every encoded data point
¢(x;) (with i < t) conforms to the sequence of data points (¢(z;))5_; observed up to time ¢ using a
conformity score:
covariate ,__

Qy . je{lmutl} iski d(¢(xl)7¢(xj))7 (3)
where d : R™ x R™ — R captures how different two encoded data points ¢(z;) and ¢(x;) are. In
our numerical experiments, we will use the cosine distance or its sharpened form (Ahmad & Mazzaral
2024). In cases where we are interested in detecting concept shift rather than covariate shift, we will
alternately use a label-conditioned conformity score:

concept
o; = min d(d(z;), d(x5)). @)
’ GE{L,.th iy =y ((b( Z) o( ]))
The conformity scores are used to compute conformal p-values for each ¢ < T":
i1 <i<t,a; <} + &Il <i<t,op = ay)
t )
cuncepl . |{l‘1 <3< f o < O, Y; = yt}l +5t|{2‘1 <3< t o = QY = yt}l
¢ Hill <i<t,yi =y}

where &; € [0, 1] is sampled independently from the uniform distribution on [0, 1].

covariate ,__

&)

(6)

As shown by Vovk et al.[ (2022, Ch. 2), the p-values p{®"*® and p;°*™ are independent and
uniformly distributed in [0, 1] in the absence of covariate and concept shift respectively. Thus, the CM
approach constructs a quantity that measures how far away from being uniformly and independently
distributed the p-values are. This is achieved using a betting martingale (Vovk et al., [2022| Ch. 8),
whose computation is shown in Algorithm [I]

ITo keep this definition simple, we restrict attention to deterministic detectors (e.g., constructed by taking a
detector that has randomness and fixing the seed).
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Intuitively, the betting martingale represents the capital of a bettor who gambles against the hy-
pothesis that random variables are iid. Large values of the betting martingale S; thus serve as an
indicator of distribution shift. Conversely, in the absence of distribution shift, S; is guaranteed to
remain small with high probability. In particular, a detector A®™ which is triggered if the betting
martingale ever exceeds a threshold 1/« has a false alarm rate bounded by « [Vovk et al.[ (2022).

Conformal martingales suggest a practical
method to instantiate the DRM optimization
problem: replace the hard constraints in Eq.[TI| 5. pefine £ — {~1,-0.5,0,0.5, 1}, u = 0.005
and Eq. 2] with soft constraints that penalize 3. Initialize C « 1, C. « 1/|E|

large values of the betting martingale. The 4: fort = 1to T do
5
6
7
8

Algorithm 1: Betting martingale
Inputs: p1,...,pr; Outputs: Si,...,Sr

only remaining hurdle is to make the martin- foreache € Edo: C. + (1—p)Ce+(p/|EC
gale computation differentiable. The steps end for

in Algorithm [T]are differentiable, and hence for each e € E do: Ce < Ce[1 +e(pr — 0.5)]
the only sources of non-differentiability are end for

in the computation of the conformity scores 9 CYeenCe St C

«; (Eq.[3or Eq.[) and the p-values p; (Eq.[3] 10:_end for

or Eq. E]) We follow a procedure similar to |Stutz et al.| (2021), which differentiates through the
calibration procedure of conformal prediction. We replace the minimization operation in Eq. 3]
or Eq. 4| by the standard soft-min operation. The computation of {i|]l < i < ¢,a; < oy} (or
{i]ll <1 < t,a; < ay,y; = yi}) is equivalent to the computation of a quantile. This can be
approximated by smoothed sorting methods (Blondel et al.,[2020; |Cuturi et al.,[2019), which have a
“dispersion” hyperparameter ¢ such that smooth sorting approaches hard sorting as ¢ — 0.

We thus formulate the practical instantiation of DRM as follows by optimizing a weighted combination
of the task-specific supervised learning loss (e.g., cross-entropy) and the soft martingale values. We
discuss additional algorithmic implementation details in Appendix [A]

Deceptive risk minimization: differentiable objective

1 & 1 -
inf % U, F(@(2) + A D Sul@(1), -, d(an)), (7)

f.e
t=1
where S;(¢(x1), ..., ¢(x,)) is the soft martingale (see Algorithmfor details). (3)

5 EXPERIMENTS

We evaluate DRM in three sets of experiments, which seek to investigate the following questions:
(1) How effective is DRM in enabling OOD generalization with concept shift or covariate shift and
spurious correlations in the training data? (2) Can DRM match the performance of invariant risk
minimization (IRM) (Arjovsky et al.,2019), which assumes an oracle partitioning of training data into
a finite number of “environments” corresponding to different data distributions? (3) How effective
is the conformal martingale approach for distribution shift detection, which forms the bedrock of
DRM’s algorithmic implementation? Hyperparameters for experiments are listed in Appendix

5.1 CONCEPT SHIFT: TOY 2D EXAMPLE

We begin with a binary classification task with 2D inputs, where one input dimension correlates
strongly but spuriously with the label. Empirical risk minimization (ERM) latches on to this correla-
tion and relies heavily on the spuriously correlated input dimension. However, when the correlation
is reversed at test time, the performance of the ERM classifier collapses. This is a 2D version of
Colored-MNIST (Arjovsky et al.l 2019), which allows for easy visualization.

Training and test distributions. The learner is presented with a sequence of training data (x4, y;)Z_,

where x; 1= [xgl] , xE]] is two-dimensional and y; € {0, 1}. The first input dimension x,[fll is drawn

from a normal distribution A/(0, 2%), and a preliminary label 7j; is assigned purely as a function of

xl[kl]: y; = 1 if and only if xE] > 0. The final label y; is assigned by flipping 3; with probability

0.25. The second dimension x?] of the input is constructed so that it strongly correlates with the
label. Specifically, we first construct 712 = 5" + u - 1€, where y5'¢" = 2y, — 1 and u is sampled
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Figure 3: Training and test success rates for the three examples. ERM latches on to spurious correlations
or distractors in each case, resulting in severe performance degradation at test time. In contrast, DRM learns
stable features that lead to strong generalization. For Colored-MNIST, DRM also matches the performance of
IRM, which assumes oracle knowledge of the time at which a distribution shift occurs. For the 2D example and
Colored-MNIST, the maximal achievable test success for any robust classifier is 0.75 (“Oracle Bound (Test)”).
from the uniform distribution on [0, 1]. The learner observes x?], which flips the sign of :E?] with a
probability that varies smoothly from p; to pr over time: p; = p1 + (pr — p1)(t — 1)/(T — 1), for
t € {1,...,T}, with py = 0 and pr = 0.3. This time-varying probability is the source of concept
shift in the training data, where the distribution of the input conditioned on the label varies slightly

over time. At test time, the correlation between x,[?] and the label y; is reversed by choosing a flipping

probability pes = 0.9. We highlight that IRM (Arjovsky et al.,[2019) and its variants
2022} [Krueger et al.| 2021} [Ahuja et al},[2020; [Lu et al., 2021) — which assume that data are separated
according to finitely many data-generating distributions — are not directly applicable here since the
distribution changes continuously for the training data.

Results. We train a multi-layer perceptron using both ERM and DRM, and utilize the last hidden
representation (unit-normalized) as our feature ¢(z;) for computing the conformal test martingale in
DRM. Fig. [3| (left) compares the performance of ERM with DRM on training and test data (across 10
seeds). The reversal of the spurious correlation results in a dramatic drop in performance on test data
for ERM. In contrast, the performance of the classifier learned by DRM is almost entirely unimpacted.
This performance also nearly matches an oracle that relies exclusively on x,[fl] for classification, which
has a 0.75 classification accuracy on test data.

Visualizing classifiers. Fig. ] visualizes the classifiers learned by ERM and DRM. ERM learns a
(2]

classifier that heavily exploits the spuriously correlated input dimension x; - in order to maximize
training performance, which leads to a collapse in performance on the test distribution. In contrast,

. . . . . . 1
DRM learns a classifier that relies almost exclusively on the robust input dimension $£ !
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3 1 3 1 3 L] 3 L]
2 : 2 : 2 : 2 :
L N 4 e 1 ']
1 = 1 : 1 2 i 1 -
~ ' ' S ! woy !
=0 1 0 1 =0 1 0 1
1 1 L] L
1 g 1 : 1 i -1 3
r ¥ 1 L]
-2 [} -2 1 -2 ] -2 )
EEra— ll) 2 4 R E— (l) 2 4 IEra— :1 2 4 R — (I) 2 4
[1] [1] [1] t
\_ Xt Xt \_ Xt X )
C Class0 @ Class1 = = =Ground truth boundary )

Figure 4: Classifiers learned by ERM and DRM (2D problem). ERM separates data according to the spurious

input dimension x?], which leads to poor performance at test time. DRM disregards :v,[f] almost entirely and

learns a classifier that is close to the ground truth (ac,[;l] > 0), leading to strong generalization.
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Figure 5: The t-SNE embeddings for features learned by ERM and DRM for Colored-MNIST. ERM embeddings
are clustered distinctly by color (R/G). In contrast, DRM embeddings are clustered based on the label, suggesting
that DRM has learned to ignore the spurious color information.

5.2 CONCEPT SHIFT: COLORED-MNIST

Next, we consider the Colored-MNIST task introduced in (Arjovsky et al.l 2019). The goal is
to classify MNIST (LeCun et al.,|1995) images, where the digits have been colored either red or
green. Similar to the toy 2D example, the color is assigned in a way that has a strong (but spurious)
correlation with the label. As a result, ERM-based methods that only rely on minimizing training
loss exploit the color information to make predictions; when the correlation between color and the
label is reversed at test time, performance collapses.

Training and test distributions. Each image is first assigned a preliminary label § = 0 for digits
0—4and g =1 for 5 — 9. The final label y flips § with probability 0.25. A colorid ¢ € {0, 1} is
obtained by flipping y with probability p;, and the image is colored red if ¢ = 1 and green if ¢ = 0.
The training data sequence consists of examples drawn from two distributions, with the change-point
occurring halfway through the data. Specifically, p; = 0.1 for the first half of the data (t < [T/2])
and p; = 0.4 for the second half (¢ > [T'/2]). At test time, the probability is chosen to be piesy = 0.9.

Results. We train a convolutional network with four layers, and use the (unit-normalized) output of
the second layer as our feature ¢(x;) for computing the DRM martingale penalty. Fig. 3| (middle)
compares ERM and DRM on the training and test distributions. We also present the performance
of IRM, which assumes oracle knowledge of the specific point in the training data at which the
distribution shift occurs. The reversal of the correlation between the label and the color leads to a
significant degradation of performance for ERM. In contrast, DRM achieves a performance that is
very similar to IRM, without requiring the training data to be separated into different domains.

Visualizing features. In order to obtain more insight into the representations learned by ERM and
DRM, Fig. |5| visualizes the features ¢ERM () and #PRM(z;) using their t-SNE embeddings (Maaten
& Hinton, 2008). The embeddings are labeled according to the ground-truth labels (blue: 0, orange:
1) for the corresponding input images, along with the color (red: R or green: G) that was applied to
the image. The ERM embeddings form two distinct clusters corresponding to the color of the image,
confirming that ERM learns to rely almost exclusively on the color rather than the shape of the digit.
In contrast, the DRM embeddings are separated based on the label rather than the color. The figure
shows a grayscale image colored red or green; these images are mapped to an almost identical t-SNE
embedding by DRM, suggesting that DRM has learned to ignore the spurious color information.

5.3 COVARIATE SHIFT: IMITATION LEARNING

Training and test distributions. For our final example, we consider the imitation learning setting
from Fig. [T} which involves covariate shift across environments that the robot is trained and deployed
in. The task is to pick up and place a red block into a bowl using observations from an RGB
camera. The training data consists of 300 expert demonstrations of pick-and-place locations, which
are provided in different environments. A third of the demonstrations are provided with one table-
and-bowl color combination, the next third with a slightly different combination, and the final third
with another combination; these are visualized in Fig. E} At test time, the bowl and table background
color are changed to a novel combination that significantly exaggerates the variation in green and
blue channels seen during training (Fig.[I]right); see Appendix [D|for RGB values.
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Policy training. We utilize the transporter network approach (Zeng et al.| 2021)), which uses two
separate neural networks for picking and placing objects. For simplicity, we adopt the same network
architecture for both picking and placing the red block (instead of the key-query placing model in
(Zeng et al.} 2021))). Each model takes RGB image observations as input. We use residual networks
(ResNets) (He et al., |2016) with 36 total layers (convolutional and residual) that form an hourglass
encoder-decoder structure. The models are trained to output an image that predicts per-pixel values
corresponding to a likelihood that the robot should move to that location for picking / placing. The
pick and place models are both trained via a supervised objective in the form of the cross-entropy loss
between predicted and demonstrated pick / place locations. We find that the picking network is not
impacted by the distribution shifts in table and bowl colors (since it is trained to locate the red block,
whose color does not change). As a result, we only apply the DRM objective to the placing network.

Efficacy of detector. Fig. [2] visualizes the martingale values on the training data sequence computed
using raw image observations, the features learned via ERM, and the features learned via DRM.
As the figure illustrates, the conformal martingale is highly sensitive even to the mild distribution
shift that occurs between the first 100 and seconds 100 environments. The martingale value spikes
rapidly after the distribution shift for both the raw images and the ERM features. In contrast, the
DRM features successfully eliminate the distribution shift from the perspective of the CM.

Results. As shown in Fig. [3] (right), DRM learns a policy that is robust to the distribution shift
observed between training and testing. In contrast, the near-perfect training performance of a pure
behavior cloning objective (ERM) degrades significantly for test environments.

6 RELATED WORK

Distribution shift detection. Traditional methods for distribution shift detection use batch-based
statistical hypothesis testing in order to conclude if a distribution shift has occurred between training
and test data (Gretton et al.,[2012; Rabanser et al.,[2019; | Kulinski et al., [2020; |[Farid et al., 2024). In
contrast, DRM relies on online methods for distribution shift detection, which have been developed
relatively recently. These methods are provided with a stream of data, with no demarcation of where a
distribution shift may have occurred. In addition to conformal martingales, methods include universal
inference (Ramdas et al.| 2022)), e-processes (Shin et al.| 2022), and recency prediction (Luo et al.,
2024; Saha & Ramdas| |[2024). Theoretical work has characterized the efficiency with which various
methods detect distribution shifts (Shin et al.||2022; Ramdas et al.,[2022). Our work creates a bridge
between the problem of detecting distribution shifts and that of generalizing to distribution shifts.

Domain generalization, invariance, and causality. Our work is closely related to invariant risk
minimization (IRM) (Arjovsky et al.,|2019)), and the significant amount of subsequent work that it
inspired (see, e.g., (Wang et al., 2022} Krueger et al.,|2021; Ahuja et al., [2020; |Lu et al.,[2021)). IRM
and its variants seek to find representations that underlie causal mechanisms (Scholkopf et al., 2021
Peters et al.| [2016;|2017) that generate data. This objective is typically approximated via different
regularization schemes (Arjovsky et al.,[2019), distributionally robust optimization (Krueger et al.,
2021), or via game-theoretic training methods (Ahuja et al.| [2020). Practically, the key distinction
between IRM and DRM is that we do not assume that data points are associated — either manually
or via unsupervised clustering (Le et al.| 2025} [Murata et al., [2025) — with a finite number of
data-generating distributions. This assumption is often impractical or not faithful to reality, e.g., in
robotics settings where distribution shifts occur continuously as data is being collected (Sinha et al.}
2022)). Our numerical experiments in Section [5.2| show that DRM can achieve similar performance to
IRM without oracular knowledge of distribution shift times. Conceptually, DRM provides a different
mechanism for OOD generalization built on the idea of deceiving distribution shift detectors.

Domain adaptation and online adaptation. The objective of aligning training and test distributions
also underlies domain adaptation methods, e.g., techniques that align features for training and test
distributions (Ben-David et al.,|2010; |Ganin et al., 2016} |Ganin & Lempitsky, 2015 Zhang et al.,
2015; |Long et al., 2018}, |Gong et al., 2016; |L1 et al., [2018; |Courty et al.,|2016), or ones that re-weight
training data points to match the test distribution (Shimodairal 2000; Huang et al., |2006; Lipton et al.
2018). Domain adaptation methods typically assume that labeled “source” data points are separately
identified from unlabeled or sparsely labeled “target” data points that come from the test distribution.
In contrast, DRM does not assume that data are separated into different sources. Similar to domain
generalization methods (e.g., IRM or its variants), we also do not assume access to data from the
particular test distribution of interest.
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7  DISCUSSION AND FUTURE WORK

We have introduced deceptive risk minimization (DRM): a novel learning objective aimed at identify-
ing stable features that eliminate spurious correlations by hiding distribution shifts from an observer.
Our practical instantiation augments a standard ERM loss with a differentiable objective based on
conformal martingales. We have provided empirical evidence that DRM can lead to strong generaliza-
tion to covariate and concept shifts in the presence of spurious correlations in training data. We end
with a Q&A discussion on limitations of DRM, potential ways to address them, and other exciting
directions for future work. See Appendix [E|for additional discussion.

Q: When does the DRM objective fail to lead to OOD generalization? Broadly, there are three
possible failure modes of DRM. First, it may be possible to find representations that make fraining
data appear practically iid, but that do not lead to making the combination of training and test data
practically iid. This can occur if the axes of variation seen in training data do not span differences
between training and test data (e.g., in the imitation learning example from Sec.[5.3] the table and bowl
colors were only varied along the blue and green channels, and thus will not lead to generalization
when the red channel is altered). Care should be taken to curate training data that span as many
relevant axes of variations as possible, even if the magnitude of variations is not representative of
test data. The second failure mode is when the distribution shift detector we are deceiving is not
sufficiently powerful. We expect that continued progress in distribution shift detection will lead to
improvements in DRM. Another particularly promising direction is to simultaneously train both
the data representation and the detector as an adversarial game. Third, there may be cases where
it is not feasible to find representations that eliminate distribution shift in training data, but where
one can find invariant predictors as advocated by IRM (Arjovsky et al.,|2019, Appendix C). In such
cases, DRM is not the right tool. We also note that Rosenfeld et al.|(2020) construct data-generating
distributions that cause IRM to fail. SinceRosenfeld et al.[(2020) consider IRM and related objectives
that find invariances across a finite number of data-generating distributions, the results are not directly
applicable to DRM. An interesting theoretical direction is to characterize the precise conditions under
which a DRM-style objective can lead to OOD generalization. We provide a preliminary sketch of
theoretical underpinnings of DRM in Appendix [F]by connecting deception to generalization.

Q: What are the computational challenges related to implementing DRM? The primary compu-
tational bottleneck is in Eq.[3]and Eq.[] which compute the conformity scores for each example. For
each example in the sequence of data points used for distribution shift detection, we compute the
minimum distance in embedding space to other examples in the sequence (quadratic complexity).
Currently, we address this by sampling subsequences of data from the training sequence, and using
these to compute martingale values which are then averaged (Appendix [A). Finding strategies to
improve this computational bottleneck — perhaps with inspiration from efficient implementations of
the quadratic-complexity attention mechanism (Zhuang et al.l 2023)) — is an important avenue for
making DRM scalable.

Q: How sensitive is DRM to different hyperparameters? The primary hyperparameters in DRM
are: the dispersion parameter o for smooth sorting (Sec. [)), the length of the sequences used for
distribution shift detection (Sec. [A), and the relative weighting A between the ERM objective and the
DRM regularization (Eq. [7). Hyperparameters chosen for the numerical experiments are reported in
Appendix [B] and we present results from a hyperparameter sweep for the 2D example in Appendix [C}
We find that DRM is sensitive to the dispersion parameter ¢ and relatively insensitive to the weighting
A and the length of the detection sequences.

Q: Are there other kinds of distribution shift that could be handled by a DRM-style objective?
The two kinds of distribution shift we have considered in this paper are covariate shift and (anti-causal)
concept shift. Chapter 8.2 of |[Vovk et al.|(2022) presents a conformal martingale for detecting label
shift, i.e., a shift in the marginal distribution of class labels. Causal concept shift— a change in the
conditional distribution Y| X — is highly relevant in causal inference. In the absence of label shift
and covariate shift, anti-causal and causal concept shift are equivalent (via Bayes’ rule), as in our
examples from Sec.[5.1]and[5.2] Extending DRM to tackle causal concept shift in general settings is
an important avenue for future work.

Overall, we are excited by the prospect that the bridge between distribution shift detection and
generalization provided by DRM will lead to new techniques that address the problem of OOD
generalization, which remains prevalent despite the scale of modern machine learning.
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REPRODUCIBILITY STATEMENT

The paper provides all algorithmic details (Sec. [)), implementation details (Appendix [A)), and
hyperparameters (Appendix [B)) for reproducing results from experiments. In addition, code for all
experiments is provided as part of the submission. Results can be reproduced with a single RTX 4090
GPU.
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A ALGORITHMIC IMPLEMENTATION DETAILS

Algorithm[2] presents the steps for computing the soft martingale regularization for the DRM problem.

Algorithm 2 Computing the DRM regularizer

1: Input: sequence of features (¢(x;))L_;; choose shift type s € {covariate, concept}
2: Output: sequence of soft martingale values (S;)%_,

3: fort < 17 do

4: fori < 1tdo

5: if s = covariate then
6: @ < soft (af"v"‘“a‘e) > replace min with soft-min in equation
7: else
8: &; « soft (™M) > replace min with soft-min in equation@
9: end if
10: end for
11: if s = covariate then
12: piovaaie ¢ soft (pgovanate) > use equation with soft-quantile
13: else
14: PP < soft (py*"e™) > use equation@with soft-quantile
15: end if
16: end for

17: Compute (S;)L_; using Algorithmwith inputs (psovai@) T or (pyo" P,

We additionally discuss a few implementation details for DRM.

Multiple detection sequences. In settings where the training data sequence is large, we subsample
multiple sequences, compute (soft) martingales for each, and average these to form the regularization
term in Eq. This results in improved computational efficiency and robustness compared to
computing a single martingale value from the entire training data sequence.

Feature normalization. As described in Sec. |4} we utilize cosine distances to define conformity
scores. Since the resulting conformity scores are only sensitive to directional differences between
features, we normalize encodings to have unit norm, i.e., ||¢(x)]2 = 1.

Warm-starting with ERM. For the Colored-MNIST example (Sec.[5.2)), we found that warm-starting
DRM with a small number of epochs of ERM helped improve performance. This is consistent with
the implementation of invariant risk minimization (IRM) from Arjovsky et al.|(2019).

B HYPERPARAMETERS FOR NUMERICAL EXPERIMENTS

Parameter Toy 2D Example Colored-MNIST Imitation Learning
# training examples (T) 2000 2000 300

ERM loss batch size 64 64 64

Size of detection sequence 1000 1000 200

# of detection sequences 1 3 3
Regularization weight (\) 5e5 5e6 led
Dispersion for soft-ranking (o) 0.001 0.1 0.001
Learning rate 0.005 0.005 0.001

# ERM epochs 0 2 0

# total training epochs 2 3 25
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C HYPERPARAMETER SWEEP FOR 2D EXAMPLE

The following table shows success rates for different values of the regularization weight (\), averaged
across 5 training seeds.

A = led A =1e5 A =5e5 A =1eb
Success (Train || Test) | 0.67[]0.72 | 0.74]/0.57 | 0.70 ] 0.63 | 0.69 || 0.56

The following table shows success rates for different values of the detection sequence length, averaged
across 5 training seeds.

200 400 600 800 1000
Success (Train || Test) | 0.69 ] 0.53 | 0.69[[0.68 | 0.71[0.63 | 0.71 [ 0.56 | 0.70] 0.63

The following table shows success rates for different values of the soft-rank dispersion parameter (o),
averaged across 5 training seeds.

o =0.001 o =0.01 o =0.1
Success (Train || Test) | 0.70 []0.63 | 0.65]0.56 | 0.71 || 0.51

D IMITATION LEARNING EXAMPLE DETAILS

The task is to pick up and place a red block into a bowl using observations from an RGB camera. The
training data consists of 300 expert demonstrations of pick-and-place locations, which are provided
in different environments. A third of the demonstrations are provided with one table-and-bowl color
combination (Table RGB: [0, 0.2, 0.7], Bowl RGB: [0, 0, 0.5]), , the next third with a slightly different
combination (Table RGB: [0, 0.4, 0.9], Bowl RGB: [0, 0.2, 0.7]), and the final third with another
combination (Table RGB: [0, 0.3, 0.6], Bowl RGB: [0, 0.6, 0.3]); these are visualized in Fig. 1| At
test time, the bowl and table background color are changed to a novel combination (Table RGB:
[0, 0.9, 0.4], Bowl RGB: [0, 0.7, 0.2]) that significantly exaggerates the variation in green and blue
channels seen during training (Fig.|l|right).

E ADDITIONAL DISCUSSION

Q: Can other methods be used for distribution shift detection in place of conformal test
martingales? In this work, we instantiated DRM using conformal martingales (CMs). This choice
was motivated by (i) prior work that demonstrates the ability of CMs to detect distribution shifts
rapidly (Vovk et al.,[2022), (ii) the ability of CMs to detect different kinds of distribution shifts (e.g.,
covariate and concept shifts), and (iii) the fact that we can construct a differentiable surrogate for
CMs. There is exciting future work in contrasting the theoretical and empirical benefits of utilizing
other approaches to distribution shift detection (Sec. [6). An approach based on a different detector
may make DRM more computationally efficient.

Q: Could DRM be used for covariate shifts due to compounding errors in imitation learning?
A: One idea is to implement the iterative data collection process in DAGGER (dataset aggrega-
tion) (Ross et al., 2011}, and use DRM to find features that remain robust to the covariate shift
between the states visited in successive iterations. Such a strategy may lead to more robust policies
compared to DAGGER, which re-trains the policy by aggregating data across iterations of data
collection. Working out the details of such an approach could make for interesting future work.

Q: Could DRM be used for reinforcement learning?

A: One immediate application of DRM in reinforcement learning (RL) is in the setting where one
has access to a sequence of Markov decision processes (MDPs) for training (similar to the imitation
learning setup considered in Sec.[5.3). In this case, the distribution shift detector can take as input
observations from different environments, and the DRM objective would then attempt to learn a
policy whose features appear iid across environments.
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F DECEIVE TO GENERALIZE: THEORETICAL INTUITIONS

In this section, we draw theoretical connections between the objective of deceiving a distribution shift
detector and that of achieving OOD generalization. The connection is made in three parts. First, we
demonstrate that if a particular distribution shift detector A* can be deceived into concluding that the
random variables corresponding to training and test losses are iid, then the expected test loss is very
close to the expected training loss. Second, we allow for detectors that take encoded representations
¢(x) as input instead of loss values. Third, we define the A-span of a representation learned from
training random variables as containing test distributions such that training and test random variables
are practically iid. Any test distribution in the span thus has expected test loss close to the expected
training loss.

F.1 EFFICIENCY OF DISTRIBUTION SHIFT DETECTION

In Sec.[d we defined observers A in the form of distribution shift detectors that control the false
alarm rate (FAR). A detector should also ideally detect distribution shifts as quickly as possible. The
notion of efficiency can be formalized by the worse average delay (WAD) of a detector.

Worst average delay (WAD). Suppose that the marginal distributions of the sequence of random
variables (¢(X1), $(Xz2),...) change at an unknown time v, referred to as a changepoint. The worst
average delay (WAD) in detecting the change is (Shin et al.| 2022):

sup E[N* — v|N* > v, )
v>0

where N* is the time at which a distribution shift is declared (N* = oo if a change is never declared).

The following definition formalizes the idea of random variables with a changepoint appearing iid to
a given observer. Intuitively, the sequence of random variables is practically iid if the worst average
delay in detecting a changepoint is large.

Definition 2 (Practically iid w/ changepoint). A sequence of random variables
((X1)y.. .y 0(Xy), 0(Xps1),...) with changepoint v is (A,,¢€)-practically iid if the de-
tector A, with FAR bounded by « has a large WAD in detecting the changepoint: WAD

> (1/€)log(1/c).
F.2 CONNECTING DETECTION TO GENERALIZATION

Consider the sequence of input random variables (X1, ..., X7, X741 ...) as in Sec. [3] where the
changepoint 7" separates training and test distributions. We will demonstrate that there is an encoding
¢ of inputs and a detector A%, such that if (¢(X1),...,d(X7), ¢(X141),...) is (AL, €)-practically
iid, then the expected test loss is close to the expected training loss.

Proposition 1. Letr h be a hypothesis that maps inputs to labels, and consider a binary-valued loss
function, i.e., l(z,h(z)) € {0,1},Vz. Suppose that the expected loss under the training random
variables is bounded as follows:

E[Z(Xtah(Xt))LFt—l)] S ltraina Vt S Ta (10)

where F;_1 denotes the natural filtration of the data. Consider the sequence of random variables
(X1,...,X71,...), where the test random variables (X141, X142,...) are iid. Then the expected
test loss is:

liest == E[l( X741, M( X741)) | F1)]- (11)

There exists a detector A}, an encoding function ¢, and a constant ¢ such that the following result

holds in the limit as o — 0. If (¢(X1), ..., d(X1), p(X141),...) are (AL, €)-practically iid, then:
kl(ltest”ltrain) S Ce, (12)

where kI(-||-) is the KL-divergence between two Bernoulli random variables with parameters l,,5; and

train-

Proof. Define ¢ : x — [(x,h(z)). The random variables (¢(X1),...,¢(X741),...) then
correspond to Bernoulli random variables with dependent, time-varying means. In the limit
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o — 0, the detector presented by [Shin et al.|(2022) has FAR bounded by « and achieves a WAD
< clog(1/a) /Kl (lest||lirain)). Now, suppose for contradiction that kl(leg||lirain) > ce. Then, we
have WAD < (1/¢€)log(1/c), which contradicts the statement that (¢(X1),...,¢(Xr),...) are
(Ar, €)-practcially iid. O

The practical utility of the detector A, above is limited since it takes losses as input; because we
ultimately rely only on making training data practically iid, A% can be deceived into not detecting a
distribution shift on training data simply by overfitting and driving the loss on all training examples
to 0. To address this challenge, we allow for detectors (e.g., based on conformal martingales) that
take latent representations ¢(z) € R? as input. The following corollary follows immediately from
Proposition [T}

Corollary 1. Let hy be a hypothesis with latent encoding ¢. Consider a detector A, that observes
inputs encoded by ¢, and that is at least as efficient as the detector A}, that relies on loss values, i.e.,
the WAD of A, for any pre- and post-change distributions is less than or equal to the WAD of the
detector A},. Then, there exists a constant ¢ such that the following result holds in the limit as o — 0.
If (0(X1),...,0(X7), ¢(X741),...) are (A, €)-practically iid, then kl(1ros||lirain) < ce.

The results above rely on having access to test data. Instead, consider a representation ¢ such
that the training data sequence (¢(z1),. .., ¢(z7)) is A-practically iid, and define the A-span of
this representation as containing test distributions such that (¢(X1),...,o(Xr), d(Xr41),...) are
(A, €)-practically iid. Then, in the limit as o — 0, it follows from the results above that for any test
distribution in the A-span, Kl(Zest||lain) < ce.
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