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Fig. 1. MovingColor tackles the problem of natural fusion of fine-grained video color adjustments.

Video color editing aims to enhance the visual quality of videos
through targeted regional color adjustments. However, applying
edits dynamically across frames often causes flickering artifacts due
to mask instability. Furthermore, coarse masks struggle to blend
colors naturally across object boundaries. This paper presents
MovingColor to address these challenges and enable seamless fine-
grained video color editing. We propose a self-supervised training
strategy that synthesizes color transformations and object masks
on videos to teach a network to fuse edits. A key innovation is
formulating color blending as a fills generation task, rather than
binary completion, better retaining details. Explicit global and
local processing branches allow multi-scale representation. Further,
a temporal transformer propagates relevant features across frames
for coherence. Quantitative and subjective evaluations demonstrate
MovingColor’s capabilities in versatile video color manipulations
with state-of-the-art spatial and temporal consistency. The system
significantly advances controllable, professional-grade video color
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grading. We expect the technology to empower more creative
editorial possibilities for video content creation.
CCS Concepts: • Computing methodologies æ Image processing;
Computational photography.
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1 INTRODUCTION
Video color enhancement aims to improve the visual quality
of videos through targeted color adjustments. This capability
enables more engaging and vibrant video content for vari-
ous applications such as post-production, social media, and
entertainment. While photo enhancement techniques have
advanced rapidly, video color enhancement remains an open
challenge, requiring both spatial and temporal constraints.

A key di�culty lies in performing selective, region-specific
color modifications while maintaining coherence across frames.
Prior arts have explored global color transforms, which fail to
enable localized edits [1]. Segmentation masks from models
like Mask2Former [2] can indicate regions, but often lack
stability for consistent video modifications [3]. Alternatively,
manual user inputs for tracking provide accuracy yet limit
scalability and e�ciency.
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Fig. 1. MovingColor tackles the problem of natural fusion of fine-grained video color adjustments.

Video color editing aims to enhance the visual quality of videos
through targeted regional color adjustments. However, applying
edits dynamically across frames often causes flickering artifacts due
to mask instability. Furthermore, coarse masks struggle to blend
colors naturally across object boundaries. This paper presents
MovingColor to address these challenges and enable seamless fine-
grained video color editing. We propose a self-supervised training
strategy that synthesizes color transformations and object masks
on videos to teach a network to fuse edits. A key innovation is
formulating color blending as a fills generation task, rather than
binary completion, better retaining details. Explicit global and
local processing branches allow multi-scale representation. Further,
a temporal transformer propagates relevant features across frames
for coherence. Quantitative and subjective evaluations demonstrate
MovingColor’s capabilities in versatile video color manipulations
with state-of-the-art spatial and temporal consistency. The system
significantly advances controllable, professional-grade video color
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Video color enhancement aims to improve the visual quality
of videos through targeted color adjustments. This capability
enables more engaging and vibrant video content for vari-
ous applications such as post-production, social media, and
entertainment. While photo enhancement techniques have
advanced rapidly, video color enhancement remains an open
challenge, requiring both spatial and temporal constraints.

A key di�culty lies in performing selective, region-specific
color modifications while maintaining coherence across frames.
Prior arts have explored global color transforms, which fail to
enable localized edits [1]. Segmentation masks from models
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Fig. 1. MovingColor tackles the problem of natural fusion of fine-grained video color adjustments.

Video color editing aims to enhance the visual quality of videos
through targeted regional color adjustments. However, applying
edits dynamically across frames often causes flickering artifacts due
to mask instability. Furthermore, coarse masks struggle to blend
colors naturally across object boundaries. This paper presents
MovingColor to address these challenges and enable seamless fine-
grained video color editing. We propose a self-supervised training
strategy that synthesizes color transformations and object masks
on videos to teach a network to fuse edits. A key innovation is
formulating color blending as a fills generation task, rather than
binary completion, better retaining details. Explicit global and
local processing branches allow multi-scale representation. Further,
a temporal transformer propagates relevant features across frames
for coherence. Quantitative and subjective evaluations demonstrate
MovingColor’s capabilities in versatile video color manipulations
with state-of-the-art spatial and temporal consistency. The system
significantly advances controllable, professional-grade video color
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1 INTRODUCTION
Video color enhancement aims to improve the visual quality
of videos through targeted color adjustments. This capability
enables more engaging and vibrant video content for vari-
ous applications such as post-production, social media, and
entertainment. While photo enhancement techniques have
advanced rapidly, video color enhancement remains an open
challenge, requiring both spatial and temporal constraints.

A key di�culty lies in performing selective, region-specific
color modifications while maintaining coherence across frames.
Prior arts have explored global color transforms, which fail to
enable localized edits [1]. Segmentation masks from models
like Mask2Former [2] can indicate regions, but often lack
stability for consistent video modifications [3]. Alternatively,
manual user inputs for tracking provide accuracy yet limit
scalability and e�ciency.
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Figure 1: MovingColor tackles the problem of natural fusion of fine-grained video color adjustments. It can achieve refined
fusion of regional color adjustments and fuse the edit seamlessly into the input video and keep the temporal consistency in
the meantime. (Best viewed in high-resolution color screen and please refer to supplementary video website (https://mm24-
anonymous-id-279.github.io/) for full video and more examples to gain more accurate comparison.)

ABSTRACT
Fine-grained video color enhancement delivers superior visual re-
sults by making precise adjustments to specific areas of the frame,
maintaining more natural color relationships compared to global
enhancement techniques. However, dynamically applying these
specific enhancements can lead to flickering artifacts and unsatisfac-
tory color blending at object boundaries, issues caused by the coarse
and unstable masks produced by current video segmentation algo-
rithms. To overcome these challenges, we introduce MovingColor,
featuring a novel self-supervised training approach that leverages
large-scale video datasets. This approach redefines color fusion as a
generation process using original full-frame textures and color edit-
ing information from non-edge areas. We address spatio-temporal
inconsistencies with a spectral-spatial hybrid encoder that captures
multi-scale spatial and frequency features, thus enhancing color ad-
justments in complex scenes. Additionally, our global-local feature
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propagation module, incorporating Transformer blocks, consoli-
dates spatio-temporal contexts to ensure consistency among frames.
Both quantitative and subjective evaluations validate the effective-
ness of MovingColor in delivering state-of-the-art spatio-temporal
consistency for video color enhancements, adhering closely to the
intended color editing operations. These results demonstrate that
MovingColor can effectively enhance fine-grained video color grad-
ing, making it more efficient and accessible to a wider range of
users. We will release the code to support further research and
practical applications.

CCS CONCEPTS
• Computing methodologies→ Image processing; Computa-
tional photography.

KEYWORDS
Color Fusion, Video Color Enhancement, Video Editing

1 INTRODUCTION
Fine-grained video color enhancement enables visually appealing
results by tailoring adjustments to specific regions to preserve accu-
rate color relationships [31]. It has significant value in video editing,
post-production, and creative applications. However, current fine-
grained video color enhancement methods suffer from spatial and
temporal inconsistencies due to limitations in video segmentation

2024-04-13 19:53. Page 1 of 1–10.
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and tracking techniques, resulting in imprecise and flickeringmasks
that lead to spatial and temporal inconsistencies (Figure 1 and 2).

Existing approaches for video color enhancement, such as Har-
monizer [14] and DeepLPF [24], attempt to address these challenges
by adapting image-based techniques or employing localized filters.
However, these methods struggle to maintain consistency across
video frames and often fail to preserve the intended color edits.
Additionally, video matting techniques like MODNet [15] are spe-
cialized for specific tasks and do not provide generalizable solutions
for color fusion.

To address these issues, we propose MovingColor, a novel self-
supervised learning method for video color fusion that effectively
ensures both spatial and temporal consistency. MovingColor for-
mulates color fusion as generating natural fusion results given the
original full texture information, color editing information in the
non-edge area, and the mask edge, leveraging vast amounts of un-
labeled video data. MovingColor employs a spectral-spatial hybrid
encoder, combining convolutional and Fast Fourier Convolutional
networks to capture multi-scale spatial features and frequency
information. A global-local feature propagation module with Trans-
former blocks aggregates spatio-temporal contexts across frames
for consistency. MovingColor captures meaningful spatial and tem-
poral features from the video data, encoding both global and local
information across frames to enable consistent color fusion.

To comprehensively evaluate color fusion performance, we in-
troduce the D5 dataset, synthesized using 3D software. It features
diverse 4K video clips from various scenes, with ground truth mat-
tings for all objects. Extensive experiments demonstrate that Mov-
ingColor achieves state-of-the-art results, outperforming existing
color manipulation, harmonization, and video consistency meth-
ods on the D5, DAVIS [26], and YouTube-VOS [35] datasets. Fur-
thermore, MovingColor exhibits robustness to varying edge ratios,
resolutions, and color adjustments, highlighting its adaptability to
diverse real-world scenarios.

The main contributions are: 1) A novel self-supervised learning
approach for spatially and temporally consistent video color fusion;
2) The design of MovingColor with the spectral-spatial hybrid en-
coder and the global-local feature propagation module for capturing
multi-scale features and aggregating spatio-temporal contexts; 3)
The D5 dataset for comprehensive evaluation of color fusion perfor-
mance; and 4) State-of-the-art results on 3 datasets, outperforming
existing methods in quantitative metrics and user studies.

2 RELATEDWORKS
2.1 Fine-grained Video Color Enhancement
Video color enhancement aims to improve the aesthetic appeal of
videos by adjusting colors. Techniques such as Harmonizer [14]
and PSENet [33], initially developed for image enhancement, are
adapted for video by ensuring color consistency within shots. Simi-
larly, methods using global 3D-LUTs, like 3DLUT [39] andAdaInt [38],
also maintain consistent LUT settings across clips. However, they
lack the ability to make detailed, region-specific color adjustments.

Traditional tools such as Adobe After Effects and DaVinci Re-
solve, which allow detailed regional color modifications, inspire spa-
tial mask-based techniques like DeepLPF [24], DCCF [36], and LED-
Net [42]. These methods employ localized filters for precise color

grading but struggle with maintaining consistency across video
frames. RSFNet [25] attempts to address this by using segmentation-
based masks (e.g., Mask2Former [5], SegFormer [1], SAM [17]) for
color enhancement. Nonetheless, these masks often fail to ensure
smooth color transitions, particularly during substantial edits, lead-
ing to performance issues.

Our approach, MovingColor, targets these challenges by improv-
ing both spatial and temporal color consistency, especially focusing
on issues related to the instability of segmentation masks.

2.2 Spatial Inconsistency
Spatial inconsistency in video color editing involves refining masks
for precise segmentation and employing post-processing techniques
like harmonization and color matching to preserve original edits
and ensure uniformity.

Mask refinementmethods likeHQ-SAM [13] and Seg-Refiner [32]
improve the accuracy of masks for finely detailed objects but of-
ten struggle with creating natural transitions at complex edges.
In image harmonization, approaches such as Harmonizer [14],
S2CRNet [21], and DCCF [37] effectively merge foreground and
background but may alter intended color edits and are less effective
in video due to mask inconsistencies.

Style transfer and inpainting techniques, although they adjust an
image’s style or fill in missing areas, frequently alter colors and tex-
tures inappropriately for video tasks. Techniques like ReCoRo [34]
focus on localized lightness adjustments but are limited by their
exclusive focus on this aspect and reliance on specific datasets.

Our proposed solution effectively manages these challenges,
even with the coarse and unstable masks from other tracking tech-
niques, ensuring smooth color transitions and consistency.

2.3 Temporal Inconsistency
Temporal inconsistencies arise when image processing algorithms
are directly applied to videos frame-by-frame. Existing methods like
Blind Video Temporal Consistency [2] and Learning Blind Video
Temporal Consistency [18] aim to reduce these discrepancies.While
they enhance temporal stability, they often degrade the video’s
quality and diminish the efficacy of the original processing methods.

Video style transfer methods attempt to maintain visual con-
sistency over time by aligning frames with a reference style, as
seen in Stylizing Video [12] and Interactive Video Stylization [30].
However, they generally fall short in maintaining user edits and
have limited applicability to real-world photography.

MovingColor, our proposed method, effectively minimizes tem-
poral inconsistencies while preserving the desired color qualities
of the edited areas, suitable for various contexts including artistic
and photographic enhancement.

3 COLOR FUSION AND SELF-SUPERVISED
LEARNING SCHEME

3.1 Color Fusion and Challenges
As demonstrated in Figure 2a, fine-grained video color enhance-
ment yields visually superior results by tailoring adjustments to
specific frame regions, thus preserving natural color relationships

2024-04-13 19:53. Page 2 of 1–10.
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Fig. 1. MovingColor tackles the problem of natural fusion of fine-grained video color adjustments.

Video color editing aims to enhance the visual quality of videos
through targeted regional color adjustments. However, applying
edits dynamically across frames often causes flickering artifacts due
to mask instability. Furthermore, coarse masks struggle to blend
colors naturally across object boundaries. This paper presents
MovingColor to address these challenges and enable seamless fine-
grained video color editing. We propose a self-supervised training
strategy that synthesizes color transformations and object masks
on videos to teach a network to fuse edits. A key innovation is
formulating color blending as a fills generation task, rather than
binary completion, better retaining details. Explicit global and
local processing branches allow multi-scale representation. Further,
a temporal transformer propagates relevant features across frames
for coherence. Quantitative and subjective evaluations demonstrate
MovingColor’s capabilities in versatile video color manipulations
with state-of-the-art spatial and temporal consistency. The system
significantly advances controllable, professional-grade video color
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1 INTRODUCTION
Video color enhancement aims to improve the visual quality
of videos through targeted color adjustments. This capability
enables more engaging and vibrant video content for vari-
ous applications such as post-production, social media, and
entertainment. While photo enhancement techniques have
advanced rapidly, video color enhancement remains an open
challenge, requiring both spatial and temporal constraints.

A key di�culty lies in performing selective, region-specific
color modifications while maintaining coherence across frames.
Prior arts have explored global color transforms, which fail to
enable localized edits [1]. Segmentation masks from models
like Mask2Former [2] can indicate regions, but often lack
stability for consistent video modifications [3]. Alternatively,
manual user inputs for tracking provide accuracy yet limit
scalability and e�ciency.
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Figure 2: Fine-grained color enhancement is crucial for main-
taining accurate color relationships, but it often introduces
inconsistencies. MovingColor effectively resolves these is-
sues in natural fusion of fine-grained color edits.

better than global enhancement methods, which can introduce un-
natural hues such as blue in fields or pink in skies. However, as
Figure 2b highlights, this approach introduces challenges related
to mask precision. Current video matting technologies do not yet
provide accurate tracking, leading to spatial inconsistencies from
imprecise masks—evident from stark texture variations where high-
frequency image components are improperly altered—and temporal
inconsistencies from flickering masks, as shown by the non-smooth
temporal profiles created by stacking horizontal pixel rows from
consecutive frames. Our method, MovingColor, addresses these
issues effectively, ensuring both spatial and temporal consistency
as evidenced in the figures.

3.2 Gaps in Video Matting and Edge Refinement
For a given input frame 𝑰 𝑡 , color transformation 𝑇 , and binary
mask 𝑨𝑡 , our objective is to achieve realistic color fusion. Typically,
existing methods compute a blending matte 𝑩𝑡 as follows:

𝑶𝑡 = 𝑨𝑡 ⊙ 𝑇 (𝑰 𝑡 ) + (1 −𝑨𝑡 ) ⊙ 𝑩𝑡 (1)

However, obtaining accurate 𝑩𝑡 for video sequences is challeng-
ing, as video matting datasets primarily include only foreground
elements without the corresponding (𝑰 𝑡 ,𝑩𝑡 ) pairs. Consequently,
methods are often trained on synthetic datasets, which may not per-
form well in practical applications. Current video matting solutions
are typically specialized, such as portrait video matting [15], and
do not provide generalizable solutions. Consequently, colorists fre-
quently resort to semi-automatic tools like RotoBrush V3 in Adobe
After Effects, which require extensive manual adjustments and are
both labor-intensive and time-consuming.

3.3 Self-Supervised Problem Formulation
3.3.1 Problem Formulation. MovingColor introduces a novel self-
supervised learning approach for video color fusion that leverages
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Fig. 1. MovingColor tackles the problem of natural fusion of fine-grained video color adjustments.

Video color editing aims to enhance the visual quality of videos
through targeted regional color adjustments. However, applying
edits dynamically across frames often causes flickering artifacts due
to mask instability. Furthermore, coarse masks struggle to blend
colors naturally across object boundaries. This paper presents
MovingColor to address these challenges and enable seamless fine-
grained video color editing. We propose a self-supervised training
strategy that synthesizes color transformations and object masks
on videos to teach a network to fuse edits. A key innovation is
formulating color blending as a fills generation task, rather than
binary completion, better retaining details. Explicit global and
local processing branches allow multi-scale representation. Further,
a temporal transformer propagates relevant features across frames
for coherence. Quantitative and subjective evaluations demonstrate
MovingColor’s capabilities in versatile video color manipulations
with state-of-the-art spatial and temporal consistency. The system
significantly advances controllable, professional-grade video color
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Video color enhancement aims to improve the visual quality
of videos through targeted color adjustments. This capability
enables more engaging and vibrant video content for vari-
ous applications such as post-production, social media, and
entertainment. While photo enhancement techniques have
advanced rapidly, video color enhancement remains an open
challenge, requiring both spatial and temporal constraints.

A key di�culty lies in performing selective, region-specific
color modifications while maintaining coherence across frames.
Prior arts have explored global color transforms, which fail to
enable localized edits [1]. Segmentation masks from models
like Mask2Former [2] can indicate regions, but often lack
stability for consistent video modifications [3]. Alternatively,
manual user inputs for tracking provide accuracy yet limit
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Fig. 1. MovingColor tackles the problem of natural fusion of fine-grained video color adjustments.

Video color editing aims to enhance the visual quality of videos
through targeted regional color adjustments. However, applying
edits dynamically across frames often causes flickering artifacts due
to mask instability. Furthermore, coarse masks struggle to blend
colors naturally across object boundaries. This paper presents
MovingColor to address these challenges and enable seamless fine-
grained video color editing. We propose a self-supervised training
strategy that synthesizes color transformations and object masks
on videos to teach a network to fuse edits. A key innovation is
formulating color blending as a fills generation task, rather than
binary completion, better retaining details. Explicit global and
local processing branches allow multi-scale representation. Further,
a temporal transformer propagates relevant features across frames
for coherence. Quantitative and subjective evaluations demonstrate
MovingColor’s capabilities in versatile video color manipulations
with state-of-the-art spatial and temporal consistency. The system
significantly advances controllable, professional-grade video color
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Video color enhancement aims to improve the visual quality
of videos through targeted color adjustments. This capability
enables more engaging and vibrant video content for vari-
ous applications such as post-production, social media, and
entertainment. While photo enhancement techniques have
advanced rapidly, video color enhancement remains an open
challenge, requiring both spatial and temporal constraints.

A key di�culty lies in performing selective, region-specific
color modifications while maintaining coherence across frames.
Prior arts have explored global color transforms, which fail to
enable localized edits [1]. Segmentation masks from models
like Mask2Former [2] can indicate regions, but often lack
stability for consistent video modifications [3]. Alternatively,
manual user inputs for tracking provide accuracy yet limit
scalability and e�ciency.
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Figure 3: A novel self-supervised training methodology for
color fusion in video data. (For easy of visualization, we show
the input and output of the network for a single frame. The
network is trained on a sequence of frames as detailed in the
following sections.)

vast amounts of readily available unlabeled video data. Unlike super-
vised learning methods that rely on labeled data, MovingColor for-
mulates color fusion as a pretext task of drawing conditional pixel
samples from a learned distribution 𝑝𝜃 (Ĩ𝑡 |I𝑡 ,𝑇 (I𝑡 ) ⊙ (1 −M𝑡 ),M𝑡 )
parameterized by 𝜃 . This task encourages the model to learn useful
representations for fusing color edits based on full texture infor-
mation in original video frame I𝑡 , color editing information in
non-edge area 𝑰 𝑡 ⊙ (1 − 𝑴𝑡 ), and the mask edge M𝑡 . By solving
this pretext task, MovingColor learns to capture meaningful spatial
and temporal features and representations from the video data,
encoding both global and local information across frames to en-
able spatially and temporally consistent color fusion. The learned
representations capture the inherent structure and patterns within
the video frames, allowing the model to perform seamless color
blending without requiring human labeling.

3.3.2 Training Data Preparation. To enhance the robustness of the
pretext task learning, we introduce randomness in color adjustment
and mask generation, leveraging the diverse content and color
distributions in the large-scale dataset. A random parametric Look-
Up Table (LUT) generator, parameterized by𝒑, modifies video frame
batches to create color-enhanced versions 𝑰 𝑡 . Randomly generated
masks 𝑴𝑡 , incorporating both static and dynamic elements, are
obtained using approaches similar to [16]. The training input 𝑿𝑡 =

Concate[𝑰 𝑡 , 𝑰 𝑡 ⊙ 𝑴𝑡 ,𝑴𝑡 ] is formed in R𝐻×𝑊 ×7, with 𝑰 𝑡 serving
as the ground truth.

3.3.3 Inference Phase. During the inference stage for video color
enhancement, the system processes input frames, masks, and color-
adjusted frames, addressing spatio-temporal inconsistency at mask
edges, such as where the sky meets the field, as shown in the
figure 3. Inference is performed in a sliding window fashion over

2024-04-13 19:53. Page 3 of 1–10.
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Figure 4: Architecture of MovingColor, showcasing a hy-
brid encoder combining convolutional and Fast Fourier net-
works for multi-scale feature extraction, complemented by
a Transformer-based global-local propagation module to en-
hance spatio-temporal consistency.

batches of frames. Local neighboring frames defined by the window
size and global frames spaced by a stride are selected. The model
performs feature propagation and transformer-based video color
fusion, outputting the predicted frames. Results from overlapping
windows are averaged for the final output.

4 METHOD
4.1 Architecture Overview
As shown in Figure 4, the proposedMovingColor employs a spectral-
spatial hybrid encoder with convolutional and Fast Fourier Con-
volutional networks to capture multi-scale spatial features and
frequency information, followed by a global-local feature propaga-
tion module with Transformer blocks to aggregate spatio-temporal
contexts across frames for spatial and temporal consistency. Due to
space constraints, we briefly introduce the key components here,
with more comprehensive details available in the supplementary
materials. Additionally, we will make our code available for repro-
duction and application purposes.

4.2 Spectral-Spatial Hybrid Encoder
Seeking to combine the benefits of both convolutional and Fourier
techniques [6], we propose chaining a convolutional encoder with
a Fast Fourier Convolutional encoder into one hybrid architecture.
This spectral-spatial design allows efficient learning of multi-scale
spatial features while also capturing frequency information, pro-
viding a rich yet compact input representation for color fusion.

4.2.1 Convolutional Encoder. We use a lightweight encoder that
is the same as that in FuseFormer [23], which is adapted from
STTN [40] with deeper layers, more channel growth in the same
time, using the group convolutions in the later layers to limit model
complexity. Features from earlier layers are concatenated to later
ones using grouped convolutions to aggregate multi-scale repre-
sentations. The encoder outputs a compact yet rich representation
of the input for further processing.

4.2.2 Fast Fourier Convolution Encoder. The Fast Fourier Convo-
lution (FFC) Encoder consists of 8 chained FFC blocks that learn
hierarchical features. Each FFC Block contains two FFC layers with

split local and global streams. Specifically, both local and global
streams are allocated half of the intermediate channels. The FFC
convolutions use a kernel size of 3, ReLU activation, and batch
normalization applied separately to both streams after convolu-
tion. Local-to-local and global-to-global components use spectral
Fourier transforms while cross-stream transforms are spatial convo-
lutions. Each block takes the output of the previous block as input,
combining it with the FFC convolution outputs using residual con-
nections. In summary, stacking 8 FFC blocks forms a flexible FFC
encoder that jointly learns hierarchical spectral-spatio, local and
global representations.

4.3 Global-Local Feature Propagation
The module for global-local frame feature propagation is designed
to improve temporal consistency. It is architecturally composed of
𝑁 temporal Transformer blocks.

4.3.1 Temporal Transformer Block. Each temporal transformer
block undergoes a series of transformations, beginning with layer
normalization applied to input token features. This step stabilizes
the learning process and normalizes feature distributions. The nor-
malized features are then processed through the Self-Attention
module for aggregating spatio-temporal contextual information.
Following the attention mechanism, we integrate a residual connec-
tion, allowing the addition of the attention outputs to the original
input token features. This approach ensures the retention of critical
information through the network layers. Another layer normaliza-
tion is then applied to these combined features, setting the stage
for the subsequent Fusion Feed-Forward Network [23]. This net-
work, with its series of linear transformations and GELU activations,
further refines the representations, endowing the model with the
capacity to capture complex, high-level abstractions from the data.

4.3.2 Global-Local Frame Feature Propagation. Reflecting insights
from prior studies [8, 20], the exclusive reliance on local temporal
neighbors is acknowledged to be informationally constraining. In-
corporating global-level information can enhance the synthesis of
naturalistic color and textures. To this end, non-local frames are
integrated to introduce a broader context. The process involves a
soft split operation for embedding overlapping patches from both
local and non-local temporal features. At the end of the feature
propagation module, we use a soft composite operator to composite
the embedded tokens to features.

This architecture, encompassing temporal Transformer blocks
along with global-local frame features, is adept at forging a detailed
and layered representation of spatio-temporal dynamics. It aggre-
gates features across spatial and temporal scales effectively. The
resulting token features offer a holistic view of the input video data,
capturing the nuanced interplay of spatial and temporal elements.

4.4 Training and Loss function
In each iteration, the model processes input frames, masked out
frames, and masks. The generator, which encompasses feature en-
coding, propagation and decoding is responsible for predicting the
output frames. The model utilizes a combination of loss functions
to optimize video frame generation.
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Reconstruction Loss: To measure the discrepancy between the
output video sequence 𝑌 and the ground-truth sequence 𝑌 , an L1
loss is employed, defined as Lrec =

𝑰 𝑡 − 𝑰 𝑡

1.

Adversarial Loss: Furthermore, we introduce an adversarial train-
ing procedure with a T-PatchGAN based discriminator 𝐷 [3] to
enhance the quality and coherence of generated videos.The discrim-
inator’s loss function, L𝐷 , optimizes it to differentiate between
real and generated frames and is defined as L𝐷 = E𝑰 𝑡

[log𝐷 (𝑰 𝑡 )] +
E𝑰 𝑡

[1 − log𝐷 (𝑰 𝑡 )]. For the generator, the adversarial loss is calcu-
lated as L𝐺 = −E𝑰 𝑡 [log𝐷 (𝑰 𝑡 )].
Perceptual Loss:The perceptual loss Lperc , calculated between
the VGG-19 [27] feature maps of the output and ground truth,
facilitates similarity assessments within the semantic feature space.
Total Loss: The total loss is a weighted sum of these components:
Ltotal = Lrec+𝜆1L𝐺+𝜆2Lperc , with theweight 𝜆1 = 0.01, 𝜆2 = 0.5.

5 EXPERIMENTS
5.1 Datasets
5.1.1 DAVIS and YouTube-VOS. DAVIS [26] and YouTube-VOS [35]
are two widely used video object segmentation datasets. DAVIS
contains 50 video sequences with pixel-level annotations. YouTube-
VOS is a large-scale dataset with 3,471 video sequences. We use the
training set of YouTube-VOS to train MovingColor. The reference-
based similarity metrics for the DAVIS and YouTube-VOS datasets
are calculated exclusively in non-edge regions due to the absence
of ground truth for evaluating color fusion on edge areas, as these
datasets provide only coarse, unrefined masks.

5.1.2 D5 Dataset. We propose the D5 dataset to address the limi-
tations of existing video object segmentation datasets, which lack
precise masks for evaluation, and video matting datasets that only
contain foreground object mattings. Synthesizing results by com-
positing foreground mattings with background videos often yields
unnatural outputs that do not accurately reflect lighting and color
interactions. Using D5 Render, a 3D software, we generate 121
diverse 4K video clips from 12 scenes, featuring various camera
movements and moving subjects such as people, animals, and ar-
chitecture. Each video includes material ID maps serving as ground
truth masks for all objects. This dataset is suitable for evaluating
color fusion and related tasks, e.g. matting and composition.

5.2 Experimental Settings
5.2.1 Implementation Details. We use the training set of YouTube-
VOS [35] with 3471 video sequences for training and did not fine-
tuned on other datasets. We use the Adam optimizer with a learning
rate of 0.0001. The batch size is set to 4. The training process takes
about 2 days on 4 NVIDIA V100 GPUs. For more implementation
settings, please refer to the supplementary materials.

5.2.2 Baselines. To the best of our knowledge, we are the first to
introduce a color fusion method, and thus lack direct comparative
methods in this area. Instead, we compare our approachwith related
color manipulation techniques: the color matching method Color
Matcher [11], image harmonization methods (Harmonizer [14],
S2CRNet [22], and PCTNet [9]), and the style transfer method

StyA2K [43] and FSPBT [30]. We also compare with the video con-
sistency method All-In-One-Deflicker [19].

5.2.3 Evaluation Metrics. We employ quantitative metrics to evalu-
ate video color fusion performance, measuring reference-based sim-
ilarity, texture preservation, temporal consistency, and efficiency.
Reference-based Difference: We use PSNR, SSIM, ΔE, and the
perceptually-aligned DreamSim [7] between result and ground
truth frames. Higher PSNR, SSIM, and DreamSim values and lower
ΔE indicate better similarity and color accuracy. For the D5 dataset,
we apply these metrics to full frames, while for DAVIS and YouTube-
VOS, we compare only non-edge areas due to the lack of ground
truth for edge regions.
Texture Preservation: We introduce the texture difference (TD)
metric to assess the preservation of texture details, inspired by
digital art practices [4] and image processing workflows [16]. TD
measures the difference in high-frequency texture components
between result and input frames, with lower values indicating better
preservation without unwanted textures.
Temporal Consistency:We employ flowwarping error (𝐸Warp) [18],
Patch Consistency (PC) [10], and Perceptual Video Clip Similarity
(PVCS) [29] to assess visual steadiness across frames. Lower PVCS
and 𝐸Warp values and higher PC scores indicate better temporal
coherence. For brevity, we report 𝐸Warp × 103, denoted as 𝐸∗Warp.
Efficiency: We measure FLOPs and inference time per frame.

5.3 Quantitative Evaluation
As shown in Table 1, MovingColor achieves the best performance
on the D5-Material dataset in terms of reference-based similarity,
with the highest PSNR (26.88), SSIM (0.88), and DreamSim (0.10)
scores, and the lowest ΔE (4.35). For texture preservation, Moving-
Color and Color Matcher both achieve the lowest TD (1.03), demon-
strating their effectiveness in maintaining texture details without
introducing artifacts. In terms of temporal consistency, Moving-
Color performs competitively, with the highest PCSSIM (0.97) and
the second-lowest PVCS (0.54) and 𝐸∗Warp (0.29) scores.

MovingColor maintains a good balance between performance
and efficiency, with a runtime of 0.08s per frame, which is compara-
ble to the fastest methods (Harmonizer and S2CRNet) while achiev-
ing significantly better results. Although MovingColor has higher
FLOPs (26.51G) compared to some baselines, it is still more efficient
than FSPBT and the combination of StyA2K and Deflicker. These
results demonstrate that MovingColor achieves state-of-the-art per-
formance in video color fusion, successfully balancing reference-
based similarity, texture preservation, temporal consistency, and
efficiency across multiple datasets and evaluation metrics. Addi-
tional results on DAVIS and YouTube datasets are provided in the
supplementary materials.

5.3.1 Comparison with Adapted InpaintingMethods. Figure 5 shows
that simply adapting existing inpainting methods to the color fu-
sion setting yields unsatisfactory results. We compare MovingColor
to LAMA [28] and Propainter [41], both adapted to take the same
input as our method. Since LAMA is an image inpainting method
that performs poorly in terms of temporal consistency, we add
the same temporal module as MovingColor for a fair comparison.
Despite this modification, MovingColor significantly outperforms

2024-04-13 19:53. Page 5 of 1–10.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM ’24, Oct 28 – Nov 01, 2024, Melbourne, Australia Anonymous author et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Color fusion performance comparisons between Color Matcher, Harmonizer, S2CRNet, StyA2K, PCTNet, Deflicker,
StyA2K+Deflicker and our method on D5-Material dataset. Additional results on the DAVIS and YouTube datasets, exhibiting
similar trends, are provided in the supplementary materials.

Category Method Reference-based Difference Texture Temporal Consistency Efficiency

PSNR↑ SSIM↑ DreamSim↓ ΔE↓ TD↓ PCPSNR ↑ PCSSIM ↑ PVCS ↓ 𝐸∗
Warp ↓ FLOPs↓ RunTime↓

Space

Color Matcher 21.74 0.81 0.11 11.11 1.03 38.63 0.96 0.62 0.31 - 0.03
Harmonizer 20.19 0.72 0.12 12.54 1.20 35.76 0.95 0.58 0.64 3.60M 0.01
S2CRNet 21.32 0.80 0.13 10.41 1.75 33.99 0.94 0.75 0.92 0.10G 0.02
PCTNet 23.42 0.75 0.12 8.91 1.47 35.35 0.95 0.50 0.67 1.30G 0.02
StyA2K 20.58 0.78 0.14 9.83 1.17 35.85 0.96 0.82 0.68 10.21G 0.04

Time Deflicker 16.57 0.41 0.12 12.92 2.18 38.45 0.96 1.61 0.44 998.03G 4.72
Space +
Time

FSPBT 23.55 0.85 0.14 5.56 1.24 39.86 0.97 0.71 0.25 122.45G 1.55
StyA2K+Deflicker 15.07 0.38 0.15 17.39 1.93 38.25 0.97 1.68 0.45 1008.24G 5.11

Ours MovingColor 26.88 0.88 0.10 4.35 1.03 38.61 0.97 0.54 0.29 26.51G 0.08

0.0 0.2 0.4 0.6

E*warp↓

MovingColorPropainteradpLAMAadp

0 2 4 6 8

ΔE↓

0.0 0.5 1.0 1.5

TD↓

Figure 5: Comparison with adapted inpainting methods on
D5 dataset. Simple adaptation of existing efforts cannot
achieve both spatial and temporal consistency and harmony.

both LAMA and Propainter on all datasets. Due to space constraints,
we present results on the D5 dataset; however, similar trends are
observed on other datasets. These comparisons, along with the ab-
lation studies, further validate the effectiveness of MovingColor’s
design choices for color fusion tasks.

5.4 Ablation Studies
We conduct ablation studies to investigate the effectiveness of key
components in MovingColor, including the Fast Fourier Convolu-
tion (FFC) encoder and the global-local feature propagation. As
shown in Table 2, the most substantial improvement is observed
when integrating the FFC encoder along with both local and global
features, achieving the lowest ΔE, TD, and 𝐸∗Warp scores across all
datasets (D5, DAVIS, and YouTube-VOS). Comparing the variants
with and without the FFC encoder, we observe a significant reduc-
tion in ΔE when FFC is included, highlighting the importance of
capturing spectral information for accurate color fusion. Similarly,
the inclusion of global features consistently improves performance
across all metrics and datasets, underscoring the benefits of incor-
porating non-local temporal information. These ablation results
conclusively demonstrate the efficacy of the FFC encoder and the
synergistic effect of global-local feature propagation in enhancing
MovingColor’s performance. In addition, the effectiveness of the
loss functions has been validated, with detailed loss ablation studies
provided in the supplementary material.

5.5 Robustness Evaluation
To evaluate MovingColor’s adaptability and consistency, we per-
form an extensive robustness test, considering various edge ratios,

Table 2: Comparative results of structural variants. F stands
for FFC, L stands for local frames, and G for global frames.

Var D5 DAVIS YouTube-VOS
F L G ΔE ↓ TD↓ 𝐸∗

Warp ↓ ΔE ↓ TD↓ 𝐸∗
Warp ↓ ΔE ↓ TD↓ 𝐸∗

Warp ↓
✓ ✓ 7.65 1.47 0.50 6.88 2.11 1.33 8.28 1.25 0.76

✓ ✓ 3.39 1.04 0.30 2.93 2.04 1.08 3.14 1.13 0.52
✓ ✓ 3.39 1.06 0.33 2.94 2.09 1.12 3.14 1.17 0.55
✓ ✓ ✓ 3.39 1.03 0.29 2.93 2.02 1.06 3.14 1.10 0.51

input resolutions, and color adjustments. Figure 6 showcases the
results, demonstrating the model’s capability to deliver high-quality
output across diverse and demanding conditions.

5.5.1 Robustness to Varying Edge Ratios. Figure 6a evaluates Mov-
ingColor’s robustness to edge ratios ranging from 5% to 25% on
the D5, DAVIS, and YouTube datasets, covering typical real-world
scenarios. Across all datasets, ΔE increases with larger edge ratios
due to less available color information for fusion, while texture
difference (TD) improves as larger fusion areas allow for smoother
transitions and more natural textures.

On D5 and YouTube, MovingColor maintains stable performance,
with slight increases in mean ΔE (3.09 to 3.55) and consistent mean
TD (around 1.1). DAVIS, containing fast-moving objects and more
occlusions, presents amore challenging scenario. Still, MovingColor
outperforms all baselines and maintains stable performance, with
mean ΔE rising from 2.8 to 3.48 and mean TD improving from 2.06
to 1.81 as edge ratio increases, demonstrating its effectiveness in
preserving original color adjustments and textures for better spatial
consistency and harmony.

5.5.2 Robustness to Varying Resolutions. Figure 6b evaluates Mov-
ingColor’s performance across different resolutions on the DAVIS
and YouTube datasets. As resolution increases, both ΔE and TD
exhibit consistent improvements, indicating better color accuracy
and spatial consistency at higher resolutions.

5.5.3 Robustness to Different Color Adjustments. Figure 6c demon-
strates MovingColor’s robustness to various color adjustments on
the D5 dataset, with results for other datasets provided in the sup-
plementary material. We evaluate the impact of increasing (+) and

2024-04-13 19:53. Page 6 of 1–10.
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Figure 6: Robustness evaluation on varying edge ratio, resolution and color adjustments.

decreasing (-) color adjustment parameters such as brightness, con-
trast, exposure, gamma, hue, saturation, vibrance, and warmth on
the ΔE and TD metrics. Across different color adjustments, ΔE re-
mains stable, with most values ranging from 3.2 to 3.5. The highest
ΔE occurs when increasing hue (3.71), while the lowest is observed
when decreasing saturation (3.21), indicating consistent color ac-
curacy regardless of the specific adjustment. Similarly, TD values
remain close to 1.0 for all adjustments, highlighting stable color
blending performance. These results showcase MovingColor’s ro-
bustness to color adjustments, delivering consistent color fusion
performance across diverse scenarios.

5.6 User Study
Evaluation metrics based solely on reference-based similarities
have limitations, as there can be multiple reasonable results for
color fusion tasks. Therefore, we conducted a user study with 68
participants. The supplementary material contains comprehensive
information on the user study settings and an interview with a
professional colorist. The baselines we selected cover key capabil-
ities needed for video color fusion: handling spatial inconsisten-
cies (Color Matcher, StyA2K), temporal inconsistencies (Deflicker),
and combinations thereof (Deflicker+StyA2K). For the study, we
cropped areas with noticeable artifacts from 3 videos to better
showcase details.

As shown in Figure 7, the user study results demonstrate Mov-
ingColor’s superior performance over the baselines across three as-
pects: spatial consistency, temporal consistency, and color accuracy.
Specifically, MovingColor substantially outperforms the baselines
in enhancing spatial consistency, with Color Matcher being a rea-
sonably strong baseline by maintaining color harmony. Although
StyA2K can perform good style transfers, it still suffers from unreal-
istic color transitions and inconsistencies. Deflicker alone does little
to improve spatial consistency. The Deflicker+StyA2K combination,
while combining the strengths of both methods, still falls short
of MovingColor. Regarding temporal consistency, MovingColor
performs comparably to the strong ColorMatcher baseline and bet-
ter than StyA2K and Deflicker. This shows MovingColor’s ability
to maintain consistent colors over time. Finally, MovingColor has
the lowest mean ΔE score, indicating it most accurately preserves
target colors with minimal deviation. Together, these user study
findings demonstrate MovingColor’s state-of-the-art performance
in video color fusion across key criteria.

0 10 20 30 40 50 60

MovingColor (Ours)
Deflicker+StyA2K

StyleA2K
Deflicker

Color Matcher

50.00
4.41

1.47
2.94

41.18

0 10 20 30 40 50 60

MovingColor (Ours)
Deflicker+StyA2K

StyleA2K
Deflicker

Color Matcher

38.24
2.94
1.47

10.29
47.06

0 5 10 15 20 25 30

MovingColor (Ours)
Deflicker+StyA2K

StyleA2K
Deflicker

Color Matcher

3.292
19.960

10.563
15.430

5.740

(b) Temporal Consistency (%) ↑

(a) Spatial Consistency (%) ↑

(c) Color Deviation (ΔE) ↓

Figure 7: User study results for (a) spatial consistency, (b)
temporal consistency, and (c) color deviation (ΔE). Moving-
Color achieves the best spatial consistency and comparable
temporal consistency to the statistical method ColorMatcher,
while maintaining the lowest color deviation.

5.7 Visual Results
Figure 8 demonstrates MovingColor’s superior color fusion perfor-
mance compared to state-of-the-art methods. It effectively main-
tains spatio-temporal consistency while preserving intended colors
in non-edge regions, outperforming baselines. Visit https://mm24-
anonymous-id-279.github.io/ for more video results.

6 LIMITATIONS AND FUTUREWORK
MovingColor struggles to accurately process long, thin objects, such
as sticks, and transparent objects. This limitation stems from the
difficulty in segmenting long, thin objects and transparent objects,
which remains a challenging problem in computer vision. Address-
ing this issue and improving the method’s ability to handle these
complex objects will be a focus of our future work. Despite their
limitations in generating high-resolution, long videos, Diffusion-
based models show promise for enhanced color fusion, which we
aim to explore in the future.
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Fig. 1. MovingColor tackles the problem of natural fusion of fine-grained video color adjustments.

Video color editing aims to enhance the visual quality of videos
through targeted regional color adjustments. However, applying
edits dynamically across frames often causes flickering artifacts due
to mask instability. Furthermore, coarse masks struggle to blend
colors naturally across object boundaries. This paper presents
MovingColor to address these challenges and enable seamless fine-
grained video color editing. We propose a self-supervised training
strategy that synthesizes color transformations and object masks
on videos to teach a network to fuse edits. A key innovation is
formulating color blending as a fills generation task, rather than
binary completion, better retaining details. Explicit global and
local processing branches allow multi-scale representation. Further,
a temporal transformer propagates relevant features across frames
for coherence. Quantitative and subjective evaluations demonstrate
MovingColor’s capabilities in versatile video color manipulations
with state-of-the-art spatial and temporal consistency. The system
significantly advances controllable, professional-grade video color
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grading. We expect the technology to empower more creative
editorial possibilities for video content creation.
CCS Concepts: • Computing methodologies æ Image processing;
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1 INTRODUCTION
Video color enhancement aims to improve the visual quality
of videos through targeted color adjustments. This capability
enables more engaging and vibrant video content for vari-
ous applications such as post-production, social media, and
entertainment. While photo enhancement techniques have
advanced rapidly, video color enhancement remains an open
challenge, requiring both spatial and temporal constraints.

A key di�culty lies in performing selective, region-specific
color modifications while maintaining coherence across frames.
Prior arts have explored global color transforms, which fail to
enable localized edits [1]. Segmentation masks from models
like Mask2Former [2] can indicate regions, but often lack
stability for consistent video modifications [3]. Alternatively,
manual user inputs for tracking provide accuracy yet limit
scalability and e�ciency.
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Figure 8: Example visual results. The results show that MovingColor is the only method that can achieve both spatial temporal
consistency while with minimal color deviation in the non-edge area. Please refer to the supplementary website (https://mm24-
anonymous-id-279.github.io/) for more video results.

7 CONCLUSION
We introduce MovingColor, a novel self-supervised learning ap-
proach designed for seamless fusion of fine-grained video color
enhancement, ensuring both spatial and temporal consistency. By
employing a hybrid encoder and feature propagation mechanisms,
MovingColor effectively addresses the challenges of color incon-
sistencies across frames. Extensive experiments demonstrate that

MovingColor outperforms state-of-the-art methods, achieving su-
perior color accuracy and consistency while exhibiting robustness
to diverse scenarios. This work paves the way for efficient, high-
quality fine-grained video color enhancement, with potential impli-
cations for both academic research and industrial applications. The
code will be made publicly available to facilitate future research
and real-world applications.
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