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Abstract

We propose PROSE-FD, a zero-shot multimodal PDE foundational model for si-
multaneous prediction of heterogeneous two-dimensional physical systems related
to distinct fluid dynamics settings. These systems include shallow water equations
and the Navier-Stokes equations with incompressible and compressible flow, regu-
lar and complex geometries, and different buoyancy settings. This work presents
a new transformer-based multi-operator learning approach that fuses symbolic
information to perform operator-based data prediction, i.e. non-autoregressive. By
incorporating multiple modalities in the inputs, the PDE foundation model builds
in a pathway for including mathematical descriptions of the physical behavior. We
pre-train our foundation model on 6 parametric families of equations collected
from 13 datasets, including over 60K trajectories. Our model outperforms popu-
lar operator learning, computer vision, and multi-physics models, in benchmark
forward prediction tasks. We test our architecture choices with ablation studies.

1 Introduction

Fluid dynamics and related physical models are essential for describing a wide range of scientific
phenomena and are employed in various applications, including aerodynamics and aircraft design,
weather forecasting, petroleum flow, space plasma dynamics and safety, combustion, and more.
Simulating and predicting fluid dynamics is often complex and computationally expensive due to
the system’s highly nonlinear and multiscale behavior, such as the chaotic effects seen in turbulent
flows. This challenge is amplified in real-world applications where measurements of state variables
are scarce and noisy, some physical variables are unobserved, and boundary effects are unknown.
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Consequently, a key task in scientific machine learning is to develop models capable of learning
general solution operators for fluid dynamics that can handle these issues.

Operator learning methods are a popular approach to train neural networks as surrogate models for
solutions of partial differential equations (PDEs). These methods aim to train deep neural networks
(DNNs) to approximate the map from input functions, such as boundary data and initial states, to the
solution of the physical system. One advantage of neural operators is their potential for improved
cost efficiency during inference [29, 40]. Recent advancements in operator learning include the Deep
Operator Network (DeepONet) [24, 25, 20] and the Fourier Neural Operator (FNO) [18], which have
demonstrated promise in scientific applications such as fluid dynamics [17] and weather prediction
[29].

A key challenge with operator learning methods is that they are designed to train a single-operator
network for one physical system at a time. Since training a deep neural network requires a large
amount of data, this process often necessitates costly simulations or experiments. Moreover, because
the operator network is trained on a single physical system, the resulting models do not exhibit
emergent generalizations of physical properties [39]. PDE foundation models have emerged as a
potential solution to address this by incorporating multiple physical systems into one model.

Foundation models in natural language processing and computer vision are deep learning models
trained for multiple tasks using large datasets sampled from heterogeneous sources [3]. Approaches
such as BERT [6], GPT [30, 31, 4], DALL-E [33, 32], Stable Diffusion [34], and LLAMA [44, 45], as
well as Claude, have demonstrated success in data processing and generative tasks, showing evidence
of generalization to new downstream tasks. However, these models have not been directly applicable
to scientific computing problems, such as solving forward and inverse problems in PDEs, which
require a higher degree of accuracy.

PDE foundation models aim to approximate solution operators for large classes of PDEs within
a single DNN. The goal is to learn a general operator that can represent and infer the forward
dynamics of distinct physical systems within one model. Thus, the fundamental task is to develop
and train a DNN to accurately generalize to unseen physical dynamics that may share features with
the trained dynamics. Current PDE foundation models include Predicting Operators and Symbolic
Expressions (PROSE) [21, 39, 40], In-Context Operator Network (ICON) [50, 51, 52], Multiple
Physics Pretraining (MPP) [27], Poseidon [11], Fourier Forecasting Network (FourCastNet) [29],
and Aurora [2].

PROSE is a multimodal PDE foundation model that simultaneously learns to predict the values
of state variables and derives a symbolic formulation of the governing equations describing the
physical system [36, 37, 41]. PROSE has been applied to ordinary differential equations with chaotic
behavior [21] and one-dimensional time-dependent nonlinear PDEs [39], and can incorporate robust
fine-tuning and meta-learning strategies [40]. In [39, 40], it was shown that PROSE can generalize
physical features to unseen conservation laws, though its capabilities in higher-dimensional PDE
systems remain open. ICON employs in-context learning to guide the model in predicting state
variables based on examples, which has been shown to generalize predictions for one-dimensional
conservation laws. MPP pre-trains an autoregressive vision transformer [7, 8] to map observations
to future states, although the formulation can be unstable for long prediction windows. For weather
prediction, FourCastNet uses the Adaptive Fourier Neural Operator model [9], while Aurora utilizes
the 3D Swin Transformer [22] to generate higher-resolution predictions. However, both models
specialize in atmospheric forecasting, may lose some high-frequency information, and are tailored to
specific problems. Another Swin-Transformer-based model is Poseidon [11], where the model needs
to be fine-tuned for downstream tasks.

Main Contributions: We present PROSE-FD, a pre-trained PDE foundational model that uses a
new transformer-based deep neural network that leverages state-variable observations and symbolic
information to perform operator-based data prediction for fluid dynamics (FD). The model’s formula-
tion allows for the inclusion of various sources of information, including mathematical equations that
describe the governing physics, in the inputs and/or outputs. Our contributions are listed below.

• We develop a multimodal fluids foundation model for predicting solution operators for shal-
low water equations and the Navier-Stokes equations with incompressible and compressible
flow, regular and complex geometries, and different buoyancy settings.
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• We show that the PROSE-FD model is capable of accurate predictions for fluid dynamics
with a range of physical behavior.

• Using 13 datasets, we demonstrate that PROSE-FD is able to outperform single-operator
learning approaches, computer vision models, and other multi-physics models, in the
prediction and forecasting tasks with gains ranging from 1.3x to 7.9x.

• Our code and parameters are open-sourced for future experimentation and comparisons.

2 Methods

The main components of PROSE-FD include patch-based data encoding and decoding, symbolic
equation encoding, and multimodal information fusion. We provide the problem description and the
key components of PROSE-FD. We begin by summarizing related multimodal works.

2.1 Multimodal Machine Learning (MMML)

One key aspect of foundation models is that they are capable of multimodal machine learning
(MMML) [23, 38, 43, 16, 49, 19], which focuses on building neural networks with the ability to
comprehend, reason, and learn from diverse data sources and structures. As an example, for reasoning
in image captioning generation, a multimodal model learns both visual features from the image
and additional information from the corresponding textual data [47, 28]. While the success of
foundation models in text-based tasks is well-established, their ability to reason and accurately
represent quantities in scientific computing (SC) is limited. This is primarily due to the nature of
the data, i.e. scientific data has lower information density than text, and due to the high precision
requirements in SC problems. Specifically, there is a demand for a level of accuracy in scientific
predictions that general-purpose foundation models are currently not designed to handle effectively.
Some key challenges in MMML include (1) representation learning and (2) reasoning and generation.
For representation learning, distinct but cooperative information from different modalities must be
integrated into a uniform representation. PROSE-FD addresses this by utilizing a fusion layer with
self-attention [46, 1, 48] sub-layers to enable information exchange between the two modalities for
a holistic representation. For reasoning and generation, a model must provide a comprehensive
understanding of the information gathered from different stages, such as representations from the
fusion process and query locations. Cross-attention layers in the decoders facilitate this exchange and
strengthen inter-modality relationships.

2.2 Problem Setting

Consider parametric families of two dimensional time-dependent nonlinear PDEs, whose state-
variables of interest are represented by u(x, t) ∈ Rd (for some d up to 4 in our tests) with x ∈ Ω ⊆
R2. Given data up to T0 timestamps, i.e. the sequence:

{u(·, ti) | 0 ≤ i < T0},

the goal of the forward problem is to predict the subsequent T timestamps

{u(·, ti) | T0 ≤ i < T0 + T}.

More generally, for operator learning, the goal is to learn the solution as a map (x, t) 7→ u(x, t) for
(x, t) ∈ Ω× [T0∆t, (T0 + T )∆t] where ∆t = ti+1 − ti is the timestep. In our experiments, we set
T0 = T = 10, that is, 10 timestamps are given as inputs and we predict, as operator evaluations, 10
future timestamps.

2.3 Model Overview

We use transformer layers as the backbone of the PROSE-FD model, similar to PROSE models
introduced in [21, 39]. In Figure 1, we provide an illustration of our model, where the structure and
the components in the gray box are similar to that of PROSE. The input data {u(·, ti) | 0 ≤ i < T0}
is first converted into patches before being mapped into a sequence of tokens, which is then processed
with the Data Encoder consisting of transformer layers. The input equation symbols are tokenized
into a sequence of word embeddings, which are then processed by the Symbol Encoder and fused
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Figure 1: PROSE-FD model overview. The inputs to the model are the trajectories and governing
equations (in symbolic form) sampled from the datasets. The input data is patchified before being
converted into a sequence of features, which are then processed with encoders and fused with
processed symbolic information. The data decoder takes in fused features and generates predictions
at given query locations.

with data input in Fusion. The Data Decoder takes queries (based on t and the patch) along with the
fused features to generate the solution at the specified locations. Notably, the model’s computational
complexity is linear with respect to the number of query locations, as each query is evaluated
independently.

2.4 Patch-based Data Encoder

Processing the input data using transformers requires first converting the input into a sequence of
tokens. For ODE systems or 1D PDE, directly projecting each timestamp into a token is an effective
approach [21, 39]. However, for 2D PDE, a similar approach will lead to information loss due to
the curse-of-dimensionality: for space resolution 128 × 128 and 3 channels (e.g. velocities and
pressure), each token needs to encode information of dimension 1282 · 3 ≈ 50K, which is much
larger than the hidden dimension. Patch-based encoding strategies were used in ViT [7] to balance the
sequence length and token dimension. More precisely, each image (i.e. each timestamp u(·, t)) is first
converted into p2 patches each of resolution (128/p)× (128/p). These patches are then transformed
and flattened into a sequence of p2 tokens. We use p = 8, thus each token encodes spatial information
of dimension 162 · 3 = 768, which is smaller than 1024, the hidden dimension of the linear and
attention layers. Consequently, spatially dependent information is retained at the cost of a longer
sequence.

We choose p = 8 for our inputs, thus the data input is first converted into a sequence of 64 ·T0 tokens.
After adding learnable timestamps and patch positional encodings, the sequence is further processed
using self-attention layers. Compared to other video transformer models such as Axial attention [12],
this approach makes it easier to fuse information from different modalities later.
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2.5 Equation Encoding and Fusion

An important aspect of the simultaneous learning of multi-operator solution operators is to encode
the equations so that commonalities and differences can be automatically detected and processed. We
encode the equations as symbolic trees [21, 39] (operations and functions as nodes, variables and
constants as leaves), which are then converted to a sequence in Polish notation. The sequence is then
processed similarly to sentences: they are converted to trainable tokens and then further processed
using self-attention. The tokens retain meaning, i.e. mathematical functions such as “tan” and “add”
are not further tokenized. Compared to LATEX encoding of the equation, this approach has a shorter
sequence length and easier syntax. For more details, we refer to [14, 5, 15].

To fuse information obtained from two input modalities, the processed data and symbol sequence
are concatenated into a single sequence and further processed through self-attention in the Feature
Fusion block. By attending to the symbols, the data sequence obtains information from the symbolic
input (e.g., aspects of the equation underlying the data).

2.6 Patch-based Operator Decoder

For operator learning, the usual approach is to construct the solution as the map (x, t) 7→ u(x, t).
The PROSE-FD model constructs the solution via cross-attention, where the points (x, t) serve as
queries, and the encoded features serve as keys and values. As a result of the curse-of-dimensionality
issue, constructing the solution for all (x, t) with cross-attention is computationally expensive due
to the increase in sequence length, i.e. the number of spatial points became the number of elements
in the sequence. To ensure the independence of the query evaluation while maintaining reasonable
computational complexity, instead of constructing a function evaluated for each input spacial location
x, the Data Decoder block learns a function that maps patches P . That is, given a patch P representing
a set of spatial coordinates P = {xk}k∈K (where K is an index set with cardinality of 64 in our
applications), the Data Decoder learn the solution (P, t) 7→ {u(xk, ti) | xk ∈ P}. Additionally,
due to the linear complexity of the Data Decoder, the output sequence length can be larger than the
encoder’s sequence length. Consequently, we use p = 16 output patches in each dimension.

3 Experiments

In this section, we first explain the experiment setup. We then present the main results and compare
our PROSE-FD model with other baseline models. Finally, we validate our key architecture choices
with ablation studies. More experiment details can be found in Appendix B.

3.1 Experiment Setup

Dataset. The dataset we use contains 6 parametric families of PDEs modeling fluid dynamics in
different regimes collected from 3 heterogeneous sources: PDEBench [42], PDEArena [10], and
CFDBench [26]. The dataset includes shallow water equations and the Navier-Stokes system with
incompressible and compressible flow, regular and complex geometries, and different buoyancy
settings. For datasets that do not provide a train/val/test splitting, we use the standard 80%/10%/10%
splitting. For more details, we refer to Appendix A.

Evaluation Metric. The relative L2 norm is used as the evaluation metric. More precisely, given
the model’s prediction ũ and the ground truth u, we compute the (time-averaged) relative L2 error:

1

T

T0+T−1∑
i=T0

∥u(·, ti)− ũ(·, ti)∥2
∥u(·, ti)∥2 + ε

, (1)

where T0 = 10 is the number of input steps, T = 10 is the number of output steps, and ε = 10−7.
Note that for the Navier-Stokes dataset from PDEArena, the temporal grid resolution is only 14, thus
we set T = 4 for this dataset only. The average used in the last column of Table 1 is the average of
the relative L2 errors over the 6 families, i.e. the average over each row of the table.
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Table 1: Main Results and Comparisons with Baselines. The numbers reported are relative L2

errors (%). The averages are taken with respect to the 6 distinct families listed in the columns of the
table. For each family of equations, we bold the best results. *Note that the PDEBench CNS contains
8 subsets of parameter configurations.

Model Param PDEBench PDEArena CFDBench AverageSWE CNS* INS NS NS-cond -

FNO 0.6M 3.71 6.31 36.83 38.68 55.63 8.53 24.95
DeepONet 3.5M 3.55 7.41 64.61 35.33 51.85 12.50 29.21

UNet 5.6M 0.33 3.19 3.43 12.56 16.82 0.76 6.18
ViT 154M 0.30 2.70 3.14 10.19 15.71 0.70 5.34

MPP-B 116M 1.02 1.90 7.52 5.71 12.56 1.23 4.99
PROSE-FD 165M 0.28 1.41 2.75 5.27 9.61 0.61 3.32

3.2 Baselines and Comparisons

We compare our PROSE-FD model with the following baselines. DeepONet [24] and FNO [18]
are popular single-operator learning methods that efficiently approximate PDE solution operators.
UNet [35] is a classical convolution-based image processing model, utilizing symmetric hierarchical
structures to capture both context and fine details for pixel-wise predictions. ViT [7] is a popular
transformer-based image processing model that captures global image dependencies and demonstrates
scalability for model sizes in image and video processing tasks. MPP [27] is an Axial-ViT-based
multi-physics pretraining approach, which autoregressively predicts PDE solutions. More details
about the baselines are included in Appendix B.3.

3.3 Main Results

The main experiment results are included in Table 1, where we report the relative L2 error (%) for
each family of equations and the average. For all the models, we use the same training setting: a
single model is trained to predict all families of equations, without any fine-tuning. Our PROSE-FD
model exhibits remarkable performance, outperforming all baselines in all families of equations. We
include example visualizations of the PROSE-FD model output in Figure 2 and Appendix B.4.

3.4 Ablation Studies

In this section, we present the results of our ablation studies to validate some key architecture choices.
We compare the zero-shot testing performance (relative L2 error) averaged over the 6 datasets. The
results are shown in Table 2.

Rollout vs. Operator Formulation. Our baseline PROSE-FD model learns the map from T0

input timestamps to T output steps in a non-autoregressive way, i.e., it can output multiple future
timestamps in a single forward pass. The Data Decoder is an operator in time and no explicit rollout
is needed. An alternative strategy is to have the model learn the map from T0 input timestamps to 1
output step, then rollout, i.e. recursively apply, the model during the inference stage [8]. To obtain
T output steps, the model needs to be called T times to generate the full solution. As shown in
Table 2, our baseline model outperforms the rollout model, demonstrating that the operator learning
approaches can avoid error accumulation.

Influence of Symbolic Information. To show the importance of symbolic equation information,
we compare our baseline PROSE-FD model with a model that only uses the Data Encoder and the
Data Decoder. We increase the number of layers for each component so the final parameter count is
close to the baseline model. The comparison in Table 2 demonstrates that the symbolic encoding
structure of the PROSE-FD model enhances the predictions.

4 Conclusion

PROSE-FD is a pre-trained PDE foundational model that utilizes transformers to encode and process
data and symbolic information for predicting solutions for fluid systems. The multimodal aspect of

6



(a) 5 consecutive output steps for PDEBench Compressible Navier-Stokes dataset. The channel plotted is the
density field in equation (7). Each column represents a different timestamp. For this trajectory, the relative L2

error is 0.34%.

(b) 4 consecutive output steps for PDEArena Navier-Stokes dataset. The channel plotted is the x-velocity in
equation (10), i.e. ux. Each column represents a different timestamp. For this trajectory, the relative L2 error is
5.13%. This example shows that even when the relative error is higher, the structures of the flow can still be
predicted correctly.

Figure 2: Two example outputs for the PROSE-FD model.

7



Table 2: Results for PROSE-FD Ablation Studies. We compare the baseline (operator) approach
to a rollout (recursive) prediction variant and a data-only (no symbolic information) variant. The
numbers reported are relative L2 errors (%). The averages are taken with respect to the 6 distinct
families listed in the columns of the table.

Model Param PDEBench PDEArena CFDBench AverageSWE CNS INS NS NS-cond -

Baseline 165M 0.28 1.41 2.75 5.27 9.61 0.61 3.32
Rollout in time 165M 0.23 1.16 4.56 4.48 8.86 1.08 3.39

Data-only 164M 0.29 1.54 2.49 6.43 10.39 0.54 3.61

the approach allows for further experimentation and enhancement by including additional modality
information that describes the physical systems of interest. Our model is able to encode information
from the two-dimensional shallow water equations and the two-dimensional Navier-Stokes equations
with incompressible and compressible flow, regular and complex geometries, and different buoyancy
settings into one model. Through extensive testing, we demonstrated that the model’s predictions
accurately capture the behavior presented in the datasets used – outperforming other single-operator
learning and transformer models. Thus, the approach presents a general-purpose surrogate model
for two-dimensional fluid systems. Further work will examine the scalability of the model and the
encoding of boundary effects.
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A Dataset Details

The data was obtained from the PDEBench [42], PDEArena [10], and CFDBench [26] datasets.
Unless otherwise specified, the space resolution is 128× 128.

A.1 PDEBench [42]

Shallow Water Equation. The quantity of interest is the water depth h(x, t) on domain
[−2.5, 2.5]2 × [0, 1] with Neumann boundary condition. The temporal resolution is 101. The
equations are:

∂th+∇hu = 0, (2)

∂thu+∇
(
hu · u+

1

2
grh

2

)
= −grh∇b. (3)

Incompressible Navier-Stokes Equation. The quantities of interest are the velocities u(x, t) and
particle density c(x, t) on domain [0, 1]2 × [0, 5] with Dirichlet boundary condition. The temporal
resolution is 1000. The equations are:

ρ(∂tu+ u · ∇u) = −∇p+ µ∆u+ F, (4)
∇ · u = 0, (5)

∂tc+∇ · (cu) = 0. (6)

The forcing term F is randomly sampled.

Compressible Navier-Stokes Equation. The quantities of interest are the velocities u(x, t), pres-
sure p(x, t), and density ρ(x, t) on domain [0, 1]2 × [0, 1] with periodic boundary conditions. The
temporal resolution is 21. For equations with low viscosities, the dataset is provided on a finer
512× 512 space grid, which is downsampled to 128× 128 for consistency (through average pooling).
The equations are:

∂tρ+∇ · (ρu) = 0, (7)
ρ(∂tu+ u · ∇u) = −∇p+ η∆u+ (ζ + η/3)∇(∇ · u), (8)

∂t

(
ε+

ρu2

2

)
= −∇ ·

((
ε+ p+

ρu2

2

)
u− u · σ′

)
. (9)

A.2 PDEArena [10]

Incompressible Navier-Stokes Equation. The quantities of interest are the velocities u(x, t) and
particle density c(x, t) on domain [0, 32]2× [18, 102] with Dirichlet boundary conditions for velocity
and Neumann boundary condition for particle field. The temporal resolution is 14. The equations are:

ρ(∂tu+ u · ∇u) = −∇p+ µ∆u+ F, (10)
∇ · u = 0, (11)

∂tc+∇ · (cu) = 0. (12)

The forcing term F takes the form F = (0, f) with f = 0.5.

Incompressible Navier-Stokes Equation (Conditioned). The quantities of interest are the ve-
locities u(x, t) and particle density c(x, t) on domain [0, 32]2 × [18, 102] with Dirichlet boundary
conditions for velocity and Neumann boundary condition for particle field. The temporal resolution
is 56. The equations are:

ρ(∂tu+ u · ∇u) = −∇p+ µ∆u+ F, (13)
∇ · u = 0, (14)

∂tc+∇ · (cu) = 0. (15)

The forcing term F takes the form F = (0, f) where f is uniformly sampled in [0.2, 0.5].
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Table 3: Model hyperparameters. FFN means feedforward network.
Hidden dimension - attention 1024 Hidden dimension - FFN 2048
Number of attention heads 8 Fusion attention layers 8
Data encoder attention layers 2 Data decoder attention layers 8
Symbol encoder attention layers 4 Dropout 0
Input patch number 8 Output patch number 16
PreNorm RMS Norm

A.3 CFDBench [26]

Incompressible Navier-Stokes Equation. The quantities of interest are the velocities u(x, t) and
pressure p(x, t). This dataset contains irregular geometries with Dirichlet boundary conditions. The
raw space resolution is 64× 64 which is upsampled to 128× 128 via interpolation. The equations
are:

ρ(∂tu+ u · ∇u) = −∇p+ µ∆u, (16)
∇ · u = 0. (17)

B Experiment Details

We provide more details about the training process, architecture, and baselines.

B.1 Training

We perform data normalization during the training process. Given the input sequence of data
{u(·, ti) | 0 ≤ i < T0}, we compute the mean and standard deviation of each input trajectory, which
are used to normalize both the input and ground truth sequence. The loss function is the standard
mean squared error in the normalized space. The models are trained using the AdamW optimizer with
a global batch size of 160 for 40 epochs where each epoch is 4,000 steps. The warmup-stable-decay
learning rate scheduler [13] is used with 10% warmup and 20% decay. We use learning rate 10−4

and weight decay 10−4. On two NVIDIA H100 GPUs, the training takes about 52 hours.

B.2 Model Hyperparameters

The model hyperparameters are summarized in Table 3.

B.3 Baselines

In this section, we include more details about the compared models.

DeepONet [24]. We employ the unstacked DeepONet architecture, consisting of a single trunk
network and a single branch network. Initially, the input data is divided into 8× 8 patches, with each
patch being embedded into a 128-dimensional vector. These vectors are then passed through the
branch network, producing an output with a basis dimension of p = 50. Simultaneously, the query
point is processed through the trunk network, which also outputs a vector with the same dimension, p.
The output solution at the query point is obtained by taking the inner product of the outputs from the
two networks.

FNO [18]. We use 4 layers of standard 3d FNO to process the input data. The number of modes
to keep in each dimension is set to 8, and the number of hidden channels is set to 16. The 3d FNO
model directly maps 10 input steps to 10 output steps.

UNet [35]. We use 8 layers of 3d UNet with GeLU activation and 32 hidden dimensions. The 3d
UNet model directly maps 10 input steps to 10 output steps (Padding is added to the input to make it
a power of 2, which is needed for the shrinkage in dimension).
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ViT [7]. For ViT, we use 10 layers of transformer encoder. The input patch number is set to be
8, the hidden dimension for attention is 1024, the hidden dimension for the feedforward network is
2048, and the number of heads is 8. The ViT model directly maps 10 input steps to 10 output steps.

MPP [27]. In [27], MPP is trained on a different training dataset and different metrics are used. For
a fair comparison, we retrained MPP-B using our training dataset using the same model configurations
and optimizer hyperparameters. We evaluate MPP-B using the same testing setup and metric, where
rollout is used to obtain all 10 output steps.

B.4 More Visualizations

See Figure 3 for additional PROSE-FD model output visualizations.
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(a) The channel plotted is the x-velocity.

(b) The channel plotted is the y-velocity.

(c) The channel plotted is the particle density.

Figure 3: Example outputs for the PROSE-FD model. 5 consecutive output steps for PDEArena
NS-cond dataset (all three channels in equation (13)). Each column represents a different timestep.
For this trajectory, the relative L2 error is 8.74%.
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