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Abstract

Large language models (LLMs) have achieved001
human-level text generation, emphasizing the002
need for effective deepfake text detection to mit-003
igate risks like the spread of fake news and pla-004
giarism. Existing research has been constrained005
by evaluating detection methods on specific do-006
mains or particular language models. In practi-007
cal scenarios, however, the detector faces texts008
from various domains or LLMs without know-009
ing their sources. To this end, we build a com-010
prehensive testbed by gathering texts from di-011
verse human writings and deepfake texts gen-012
erated by different LLMs. Empirical results013
on mainstream detection methods demonstrate014
the difficulties associated with detecting deep-015
fake text in a wide-ranging testbed, particu-016
larly in out-of-distribution scenarios. Such dif-017
ficulties align with the diminishing linguistic018
differences between the two text sources. De-019
spite challenges, the top-performing detector020
can identify 84.12% out-of-domain texts gener-021
ated by a new LLM, indicating the feasibility022
for application scenarios.023

1 Introduction024

With constant advancements in Artificial Intelli-025

gence generated content (AIGC) technology (Rom-026

bach et al., 2022; Zhang and Agrawala, 2023; Shi027

et al., 2023; Brown et al., 2020; OpenAI, 2023b),028

texts generated by large language models (LLMs)029

(Brown et al., 2020; OpenAI, 2023b; Touvron et al.,030

2023; Taori et al., 2023) have reached a level com-031

parable to that of human peers, enabling the genera-032

tion of remarkably fluent and meaningful responses033

to various user queries.034

Advanced LLMs have become prevalent in en-035

hancing human life and productivity. Nevertheless,036

they can also be employed for purposes such as037

manipulating public opinion, spreading fake news,038

and facilitating student plagiarism. To this end, re-039
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Figure 1: Deepfake text detection in the wild: the de-
tector encounters texts from various human writings or
fake texts generated by diverse LLMs.

searchers have recently been putting efforts into dif- 040

ferentiating between texts written by humans and 041

those generated by machines (Pu et al., 2022; Guo 042

et al., 2023; Zhao et al., 2023; Mitchell et al., 2023). 043

However, these findings are limited to testbeds of 044

specific domains (Pu et al., 2022) or deepfake texts 045

from certain models (Guo et al., 2023), or they as- 046

sume the accessibility of the source LLMs (Zhao 047

et al., 2023; Mitchell et al., 2023). Within a spe- 048

cific domain (e.g., BBC News), it can be easy to 049

identify texts generated by a certain model (e.g., 050

ChatGPT) from human writings (Pu et al., 2022; 051

Mitchell et al., 2023). 052

In practice, however, a deepfake text detector 053

may encounter fake news from various LLMs with- 054

out knowing their sources, as depicted in Figure 1. 055

The detector can also face ChatGPT-generated stu- 056

dent assignments across different tasks such as 057

story generation, question answering, and scientific 058

writing. As the detector encounters increasingly di- 059

verse texts from both human-written and machine- 060

generated sources, it has fewer surface patterns 061

or linguistic differences to rely on. In a more de- 062

manding scenario, the detector must identify texts 063

from unfamiliar domains or those generated by new 064

LLMs. In this study, we try to address the follow- 065

ing research questions: (1) Can commonly-used 066

detection methods effectively distinguish texts gen- 067
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erated by diverse LLMs for various writing tasks in068

real-world scenarios? (2) Are there inherent distinc-069

tions between human-written texts and machine-070

generated texts in an open-domain setting, irrespec-071

tive of their topic or content?072

To this end, we build a large-scale testbed, DE-073

Tect, for deepfake text detection, by collecting074

human-written texts from 7 distinct writing tasks075

(e.g., story generation, news writing and scientific076

writing) and generating corresponding deepfake077

texts with 27 LLMs (e.g., ChatGPT, LLaMA, and078

Bloom) under 3 representative prompt types. We079

categorize the data into 8 testbeds, each exhibiting080

progressively higher levels of “wildness” in terms081

of distributional variance and detection complexity.082

Initially, we detect texts generated by a white-box083

LLM within a specific domain. Subsequently, we084

enhance the complexity by incorporating texts gen-085

erated by additional LLMs across various writing086

tasks. The most challenging testbed necessitates087

the detector’s ability to identify out-of-domain texts088

generated by newly developed LLMs and perform089

detection against paraphrasing attacks.090

We evaluate 4 commonly employed detection091

methods, encompassing both supervised and un-092

supervised approaches, on our proposed testbeds.093

Empirical results indicate that all detection meth-094

ods are effective in identifying deepfake texts from095

a single domain or generated by a limited range of096

LLMs. However, as the diversity of domains and097

models increases, except for the PLM-based detec-098

tor, all other methods experience significant perfor-099

mance deterioration. The challenge intensifies with100

out-of-distribution (OOD) testbeds, where even the101

best-performing detector misclassifies 61.95% of102

human-written texts from unseen domains. The103

suboptimal OOD performance can be effectively104

mitigated by leveraging a mere 0.1% of in-domain105

data, resulting in over 80% recall for identifying106

out-of-domain texts generated by previously unen-107

countered LLMs. This demonstrates the feasibility108

of deepfake text detection in real-world scenarios.109

Finally, we investigate potential differences be-110

tween human texts and machine generations that111

can be utilized for detection. Statistical findings112

demonstrate that while significant linguistic differ-113

ences exist within a particular domain, they gradu-114

ally converge as more texts from diverse domains115

and language models are included. Moreover, em-116

pirical results demonstrate that perplexity can serve117

as a fundamental feature for clustering the two118

sources of text. It is applicable to distinguishing be-119

tween human and machine compositions in general, 120

regardless of the text domain or the language model 121

used for generation. We release our resources at 122

https://anonymous.com. 123

2 Related Work 124

A line of work explores the linguistic pat- 125

terns to achieve automatic machine-writing de- 126

tection, which has gone through n-gram frequen- 127

cies (Badaskar et al., 2008), entropy (Lavergne 128

et al., 2008; Gehrmann et al., 2019), perplex- 129

ity (Beresneva, 2016), and negative curvature re- 130

gions of the model’s log probability (Mitchell et al., 131

2023). One limitation of these statistics-based 132

methods is the white-box assumption that we can 133

access the model prediction distributions, hindering 134

wider applications on models behind APIs, such as 135

ChatGPT. Another alternative paradigm is training 136

neural-based detectors (Bakhtin et al., 2019; Fagni 137

et al., 2021; Uchendu et al., 2020; OpenAI, 2023a). 138

Some works (Meral et al., 2009; Krishna et al., 139

2023; Zhao et al., 2023; Kirchenbauer et al., 2023) 140

explore the potential of watermarks in language 141

models, making model-generated texts easier to de- 142

tect. Our work does not assume language models 143

are enhanced with watermarks, instead considering 144

a more common detection setting where we do not 145

know the sources of detected texts. 146

Current deepfake text detection has not achieved 147

resounding success. The successful exploits 148

of paraphrasers reveal the weaknesses in cur- 149

rent detecters (Sadasivan et al., 2023; Krishna 150

et al., 2023), opening up a question on the ro- 151

bustness of current detection methods. Most of 152

the detectors focus on specific domains, such as 153

news (Zellers et al., 2019b; Zhong et al., 2020) 154

and reviews (Chakraborty et al., 2023), or specific 155

models (Pu et al., 2022; Rodriguez et al., 2022; 156

Mitchell et al., 2023). It is still unknown whether 157

the detection capability can be transferred to out- 158

of-distribution, i.e., texts from unseen domains or 159

models, which is the most practical testbed. To 160

investigate this status quo, we consider a practical 161

setting, where texts of various domains generated 162

by various LLMs are mixed. 163

3 Data 164

Datasets. We collect human-written texts from a 165

set of benchmark datasets, which cover diverse 166

writing tasks including: (1) Opinion statement: 167

804 opinion statements from the /r/ChangeMyView 168
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(CMV) Reddit subcommunity (Tan et al., 2016)169

and 1,000 reviews from Yelp dataset (Zhang et al.,170

2015); (2) News article writing: 1,000 news ar-171

ticles from XSum (Narayan et al., 2018) and172

777 news articles from TLDR_news1(TLDR);173

(3) Question answering: 1,000 answers from the174

ELI5 dataset (Fan et al., 2019); (4) Story genera-175

tion: 1,000 prompted stories from the Reddit Writ-176

ingPrompts (WP) dataset (Fan et al., 2018) and177

1,000 stories from ROCStories Corpora (ROC)178

(Mostafazadeh et al., 2016); (5) Commonsense rea-179

soning: 1,000 sentence sets for reasoning from Hel-180

laSwag (Zellers et al., 2019a); (6) Knowledge illus-181

tration: 1,000 Wikipedia paragraphs from SQuAD182

contexts (Rajpurkar et al., 2016); (7) Scientific writ-183

ing: 1,000 abstracts of scientific articles from Sci-184

Gen (Moosavi et al., 2021).185

Model sets. We aim to adopt a wide spec-186

trum of representative large language models187

(LLMs) to construct machine-generated texts.188

In particular, we consider 27 LLMs in this189

work: OpenAI GPT (text-davinci-002/text-190

davinci-003/gpt-turbo-3.5) (Brown et al., 2020),191

LLaMA (6B/13B/30B/65B) (Touvron et al., 2023),192

GLM-130B (Zeng et al., 2022), FLAN-T5193

(small/base/large/xl/xxl) (Chung et al., 2022),194

OPT (125M/350M/1.3B/2.7B/6.7B/13B/30B/iml-195

1.3B/iml-30B) (Zhang et al., 2022a), BigScience196

(T0-3B/T0-11B/BLOOM-7B1) (Sanh et al., 2022;197

BigScience, 2023) and EleutherAI (GPT-J-6B and198

GPT-NeoX-20B) (Wang and Komatsuzaki, 2021;199

Black et al., 2022).200

Prompts. To generate machine-generated text for201

each instance in the collected data, we use three202

types of prompts to feed the LLMs: (1) contin-203

uation prompts: ask LLMs to continue genera-204

tion based on the previous 30 words of the orig-205

inal human-written text; (2) topical prompts: as206

LLMs to generate texts based on a topic (e.g., argu-207

ment, news title, story topic, etc.) and (3) specified208

prompts: topical prompts with specified informa-209

tion about the text sources (e.g., BBC news, Red-210

dit Post, etc.). The topical and specified topical211

prompts are designed for OpenAI models, as they212

can respond to such prompts robustly. We present213

several prompt examples in Appendix A.214

In summary, for each human-written text, we215

generate a set of machine-generated texts using 27216

LLMs with 3 different prompts. Data construction217

1https://huggingface.co/datasets/JulesBelveze/TLDR_news

details and statistics are presented in Appendix B. 218

4 Detection Methods 219

A detection system labels a text as either machine- 220

generated or human-written, or outputs a proba- 221

bility distribution. In this work, we consider a set 222

of commonly used detection methods. To show- 223

case detection difficulty, we first consider naive 224

baselines, i.e., human detection and ask Chat- 225

GPT, by asking human and query ChatGPT to 226

identify the text source. For supervised methods, 227

we choose the PLM-based classifier, which is 228

commonly used in text detection (Rodriguez et al., 229

2022; Pu et al., 2022). We report the performance 230

of Longformer (Beltagy et al., 2020) in the remain- 231

der of the paper, as it outperforms other commonly 232

used PLMs, such as BERT (Devlin et al., 2019), 233

RoBERTa (Liu et al., 2019), and GPT-2 (Radford 234

et al., 2019). Detailed comparisons can be found in 235

Appendix E. GLTR (Gehrmann et al., 2019) is also 236

included to represent methods that leverage model- 237

based features. In addition, we include FastText 238

(Joulin et al., 2017), which uses linguistic statistics 239

as features. For unsupervised detection, we con- 240

sider DetectGPT (Mitchell et al., 2023) to study 241

the robustness of zero-shot detectors, which can 242

also serve as a representative method that requires 243

access to the text-generation LLM. Implementation 244

details are shown in Appendix C. 245

5 Experimental Setup 246

5.1 Testbed Settings 247

We consider each benchmark dataset’s texts as sep- 248

arate domains, such as CMV, XSum, SciGen, etc. 249

We group the LLMs into 7 sets based on their 250

source: OpenAI GPT set, LLaMA set, GLM-130B 251

set, FLAT-T5 set, OPT set, BigScience set, and 252

EleutherAI set. To investigate whether machine- 253

generated text can be distinguished from human- 254

written text, we categorize the collected data into 255

8 settings. These settings are determined by the 256

sources of training and evaluation data and increase 257

in difficulty for detection. The simplest setting in- 258

volves detecting within-domain white-box detec- 259

tion while the most challenging setting involves 260

detecting against paraphrasing attack. We first con- 261

sider in-distribution settings, where the detection 262

method is evaluated on texts from seen domains 263

and model sets, i.e., the training and test data are 264

from the same data source. 265
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Fixed-domain & Model-specific. Human-266

written texts come from a specific domain and267

machine-generated texts are generated by a specific268

LLM (GPT-J-6B). 10 classifiers are trained on each269

domain, and the weighted average performance is270

reported. In this setting, we use only GPT-J-6B to271

generate fake texts instead of the entire model set272

from EleutherAI, aiming to simulate white-box273

detection, i.e., accessibility to the text-generating274

LLM, which is crucial for detection methods such275

as DetectGPT.276

Arbitrary-domains & Model–specific. Human-277

written texts are obtained from all 10 domains,278

while machine-generated texts are produced by a279

single model set, creating 7 independent testbeds280

for each model set. We train 7 classifiers accord-281

ingly and report weighted average performance.282

Fixed-domain & Arbitrary-models. Similarly,283

we include human-written texts from a single do-284

main and obtain machine-generated using all model285

sets. In this way, we create 10 independent testbeds286

for each domain and train 10 classifiers accord-287

ingly.288

Arbitrary-domains & Arbitrary-models.289

Human-written texts are from all domains with290

deepfake texts generated using all model sets,291

which creates an integral testbed covering the292

full range of data. We train a general classifier293

and report its performance. Furthermore, we294

consider two out-of-distribution settings where295

the detection model is tested on texts from unseen296

domains or unseen models.297

Unseen Models. This setting evaluates whether298

the classifier can detect texts from unseen models.299

In this setting, texts generated by a specific model300

set are excluded from the training data. The clas-301

sifier is then trained on the remaining texts and302

tested on the excluded ones. This process creates 7303

testbeds for cross-validation. We train 7 classifiers304

for each testbed and report their weighted average305

performance.306

Unseen Domains. This setting evaluates whether307

the classifier can detect texts from unseen domains.308

In this setting, texts from a specific domain are309

excluded from the training data. The classifier is310

then trained on the remaining texts and tested on311

the excluded one. This process creates 10 testbeds312

for cross-validation. We train 10 classifiers for each313

testbed and report weighted average performance.314

Unseen-Domains & Unseen-Model We go one 315

step “wilder” by constructing an additional test 316

set with texts from unseen domains generated by 317

an unseen model, to test the detection ability in 318

more practical scenarios. We consider four new 319

datasets: CNN/DailyMail (See et al., 2017), Di- 320

alogSum (Chen et al., 2021), PubMedQA (Jin et al., 321

2019) and IMDb (Maas et al., 2011) to test the 322

detection of deepfake news, deepfake dialogues, 323

deepfake scientific answers and deepfake movie re- 324

views. We sample 200 instances from each dataset 325

and use a newly developed LLM, i.e., GPT-4 (Ope- 326

nAI, 2023b), with specially designed prompts (Ap- 327

pendix A) to create deepfake texts. 328

Paraphrasing Attack Sadasivan et al. (2023) 329

show that detection methods are vulnerable to be- 330

ing deceived by paraphrased target texts. Based 331

on the Unseen Domains & Unseen Model test 332

set, we paraphrase each sentence individually for 333

both human-written and machine-generated texts, 334

forming a more challenging test set. We adopt 335

gpt-3.5-turbo as the paraphraser and consider 336

all paraphrased texts as machine-generated. 337

5.2 Evaluation Metrics 338

We report AUROC (the area under the receiver 339

operating characteristic curve), which quantifies 340

the classifier’s potential of distinguishing between 341

the positive and negative classes. An AUROC of 342

1.0 corresponds to a perfect classifier, whereas 0.5 343

represents random guessing. Following Rosenthal 344

et al. (2019), we also consider AvgRec (average 345

recall), which is calculated by averaging the recall 346

scores on human-written texts (HumanRec) and 347

machine-generated texts (MachineRec) 2. These re- 348

call scores help us assess the realistic detection per- 349

formance. For instance, black-box detection meth- 350

ods like human detection and ask ChatGPT cannot 351

be evaluated using AUROC. Furthermore, deter- 352

mining a decision boundary based on a reliable 353

validation set is challenging in an open-domain 354

detection setting. 355

6 Results 356

6.1 Naive Baselines 357

Table 1 shows that both ChatGPT and human an- 358

notators fail to distinguish machine-generated texts 359

2Since our test sets are balanced, the precision score heav-
ily relies on and can be reflected by the recall score. Therefore,
we choose to report only the recall scores for a more intuitive
evaluation.
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Detector HumanRec MachineRec AvgRec

ChatGPT 96.98% 12.03% 54.51%
Human 61.02% 47.98% 54.50%

Table 1: Detection performance of ChatGPT and hu-
mans.

Methods Human/Machine AvgRec AUROC

FastText 94.72%/94.36% 94.54% 0.98
GLTR 90.96%/83.94% 87.45% 0.94
Longformer 97.30%/95.91% 96.60% 0.99
DetectGPT 91.68%/81.06% 86.37% 0.92

Table 2: Tested 1: White-box detection performance.
“Human/Machine” denotes HumanRec and MachineRec,
respectively.

from human-written ones. The AvgRec is only360

slightly better than random guessing, suggesting361

that machine-generated texts have achieved a level362

(e.g., fluency and coherence) comparable to human.363

We then explore whether there exist underlying364

differences that can be captured by automatic de-365

tection methods.366

6.2 In-domain Detection367

The results of in-domain detection are shown in368

Table 2 and the upper part of Table 3.369

White-box Detection. From Table 2, we can ob-370

serve that all detection methods obtain solid perfor-371

mance when the texts are from a specific domain372

and a specific LLM (GPT-J-6B) (i.e., Fixed-domain373

& Model-specific). Typically, DetectGPT performs374

well in identifying machine-generated texts when375

the scoring model matches the one used to generate376

the fake texts, i.e., accessibility to the generation377

LLM in the white-box setting.378

PLM-based Detectors demonstrate robustness379

to texts from various sources. As shown in Ta-380

ble 3, the detection performance (AvgRec and AU-381

ROC) decreases as the detector encounters broader382

data sources, i.e., texts from various domains or var-383

ious LLMs. For example, GLTR’s AUROC drops384

from 0.94 to 0.80 and DetectGPT’s drops from 0.92385

to 0.57 when encountering texts from multiple mod-386

els (Arbitrary-models). The severe performance387

drop of DetectGPT is attributed to its reliance on ac-388

cessibility to the generation LLMs (Mitchell et al.,389

2023). On the other hand, FastText faces significant390

challenges in detecting texts from various domains391

(Arbitrary-domains), despite its robustness on texts392

sourced by different language models. Among all393

detection methods, the Longformer detector con-394

50 60 70 80 90 100
MachineRec(%)

OpenAI(c)
OpenAI(t)
OpenAI(s)

OpenAI
LLaMA

GLM-130B
FLAN-T5

OPT
BigScience
EleutherAI

83.30%
79.94%

66.93%
77.65%

95.36%
98.09%

81.78%
97.18%
97.16%

99.59%

Figure 2: Out-of-distribution detection performance on
machine-generated texts generated by unseen models.
OpenAI(c), OpenAI(t) and OpenAI(s) corresponds to
texts generated by OpenAI models using continuation,
topical and specified prompts, respectively.

sistently outperforms others in terms of AUROC 395

and AvgRec. Despite the minor performance degra- 396

dation, Longformer surpasses other detectors by a 397

considerable margin in the Arbitrary-domains & 398

Arbitrary-models setting, where the detector en- 399

counters diverse texts from various domains and 400

language models. 401

6.3 Out-of-domain Detection 402

We further investigate whether the detection model 403

can identify machine-generated texts in out-of- 404

distribution settings, i.e., detect texts from unseen 405

domains or generated by new LLMs. The results 406

are presented in the lower part of Table 3. Em- 407

pirical results indicate that, except for the Long- 408

former detector, all other detectors perform poorly 409

in identifying texts generated by unseen models. 410

Furthermore, none of the detectors effectively clas- 411

sify texts from novel domains. 412

Unseen Models. Among all methods, the Long- 413

former detector is the only one that performs well 414

(with an AUROC of 0.95 and AvgRec of 86.61%) 415

when detecting texts from unseen LLMs. The per- 416

formance of FastText further degrades, with AU- 417

ROC dropping from 0.83 to 0.74. GLTR faces a 418

significant challenge when it comes to unseen mod- 419

els. Its AUROC of 0.65 suggests that it struggles to 420

differentiate between different text sources. The de- 421

tection performance (Longformer) on each unseen 422

model set is shown in Figure 2. The Lonformer 423

classifier has the most difficulty distinguishing texts 424

generated by the OpenAI and FLAN-T5 models 425

from human-written ones. By comparison, the de- 426

tector can identify most of the deepfake texts from 427

other models, even if it has not encountered any 428

of them during training. On the other hand, the 429

difficulty of detection is influenced by the prompt 430
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Settings Methods Metrics
HumanRec MachineRec AvgRec AUROC

Testbed 2,3,4: In-distribution Detection

FastText (Joulin et al., 2017) 88.96% 77.08% 83.02% 0.89
Arbitrary-domains GLTR (Gehrmann et al., 2019) 75.61% 79.56% 77.58% 0.84
& Model–specific Longformer (Beltagy et al., 2020) 95.25% 96.94% 96.10% 0.99

DetectGPT⋆ (Mitchell et al., 2023) 48.67% 75.95% 62.31% 0.60

FastText (Joulin et al., 2017) 89.43% 73.91% 81.67% 0.89
Fixed-domain GLTR (Gehrmann et al., 2019) 37.25% 88.90% 63.08% 0.80

& Arbitrary-models Longformer (Beltagy et al., 2020) 89.78% 97.24% 93.51% 0.99
DetectGPT⋆ (Mitchell et al., 2023) 86.92% 34.05% 60.48% 0.57

FastText (Joulin et al., 2017) 86.34% 71.26% 78.80% 0.83
Arbitrary-domains GLTR (Gehrmann et al., 2019) 12.42% 98.42% 55.42% 0.74

& Arbitrary-models Longformer (Beltagy et al., 2020) 82.80% 98.27% 90.53% 0.99
DetectGPT⋆ (Mitchell et al., 2023) 86.92% 34.05% 60.48% 0.57

Testbed 5,6: Out-of-distribution Detection

Unseen Models

FastText (Joulin et al., 2017) 83.12% 54.09% 68.61% 0.74
GLTR (Gehrmann et al., 2019) 25.77% 89.21% 57.49% 0.65

Longformer (Beltagy et al., 2020) 83.31% 89.90% 86.61% 0.95
DetectGPT⋆ (Mitchell et al., 2023) 48.67% 75.95% 62.31% 0.60

Unseen Domains

FastText (Joulin et al., 2017) 54.29% 72.79% 63.54% 0.72
GLTR (Gehrmann et al., 2019) 15.84% 97.12% 56.48% 0.72

Longformer (Beltagy et al., 2020) 38.05% 98.75% 68.40% 0.93
DetectGPT⋆ (Mitchell et al., 2023) 86.92% 34.05% 60.48% 0.57

Table 3: Testbed 2-6: Detection performance of different detection methods. The out-of-distribution settings
examine the detection capability on texts from unseen domains or deepfake texts generated by new LLMs. ⋆ denotes
the unsupervised detection method.

50 60 70 80 90
AvgRec(%)

CMV
Yelp

XSum
TLDR
ELI5
WP

ROC
HellaSwag

SQuAD
SciGen

78.28%
65.31%

54.62%
61.66%

83.30%
79.72%

51.53%
62.40%

66.80%
84.41%

Figure 3: Out-of-distribution detection performance
(AvgRec) on texts from unseen domains.

types used for model generation. Texts generated431

from specific prompts (OpenAI(s)) are harder to432

distinguish than the other two types (OpenAI(c)433

and OpenAI(t)). This can be because they follow434

a detailed prompt condition, making them more435

similar to human-written texts.436

Unseen Domains. Detecting texts from unseen437

domains presents a heightened challenge for clas-438

sifiers. Notably, even the top-performing model,439

Longformer, experiences a substantial decline440

in AvgRec, dropping from 90.53% to 68.40%.441

Typically, Longformer tends to classify human-442

written texts from unfamiliar domains as machine-443

generated, which results in a low HumanRec score444

0.0 0.2 0.4 0.6 0.8 1.0
Recall
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0.2

0.4
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0.8

1.0

Pr
ec

isi
on Default Boundary

Refined Boundary

(a) Precision-Recall curve of
the Longformer detector on
the unseen domain (Yelp). A
refined decision boundary ob-
tains a better trade-off be-
tween precision and recall.

0 0.01% 0.1% 1% 10%
Ratio of In-Domain Data

0.5

0.6
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0.8
Av

gR
ec
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ROC
Yelp
CMV

(b) Detection performance in
the "Unseen Domains" setting
(Xsum, ROC, Yelp and CMV)
with decision boundary ad-
justed based on different ra-
tios of in-domain data.

Figure 4: Decision boundary adjustment.

but an almost perfect MachineRec. We present 445

detection performance (Longformer) on each un- 446

seen domain in Figure 3. The top three text do- 447

mains most likely to be misclassified as machine- 448

generated are ROC, XSum, and TLDR datasets. 449

This could be attributed to their low average per- 450

plexity scores which confuse PLM-based detectors 451

(discussed in Section 7.2). 452

Boundary adjustment. Despite the low Av- 453

gRec in the Unseen Domains setting, Longformer 454

achieves a high AUROC score (0.93). This sug- 455

gests that the model can distinguish between the 456
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Metrics Unseen Models Unseen Domains

HumanRec 86.09% 82.88%
MachineRec 89.15% 80.50%

AvgRec 87.62%(+1.01%) 81.78%(+13.38%)

Table 4: Detection performance (Longformer) on out-
of-distribution testbeds with decision threshold adjusted
based on 0.1% of the in-distribution data.

two classes but struggles with selecting an appro-457

priate decision boundary, as shown in Figure 4a.458

To address this issue, we utilize a portion of the459

in-domain data from the training set to adjust the460

decision boundary. We compute an average de-461

cision boundary across 10 classifiers (in the Un-462

seen Domains setting) and apply it universally463

across all domains. As depicted in Figure 4b, re-464

fining the decision boundary with only 0.1% of465

in-domain data significantly enhances detection466

performance. Table 4 demonstrates that adjusting467

the decision boundary (using 0.1% of in-domain468

data) notably improves detection accuracy for both469

out-of-distribution settings.470

Unseen Domains & Unseen Model We vali-471

date the detection ability of Longformer, the best-472

performing detector, on the Unseen Domains &473

Unseen Model testbed. The results are presented474

in Table 5. The Longformer detector trained us-475

ing our dataset achieves a high performance (0.94476

AUROC) in detecting texts generated by GPT-4,477

even when sourced from newly added datasets and478

generated by a new LLM. After refining the bound-479

ary, the detector demonstrates balanced accuracy480

in detecting both text sources, resulting in an Av-481

gRec of 86.54%. This showcases its feasibility for482

deployment in real-world scenarios.483

Paraphrasing Attack However, similar to other484

methods (Krishna et al., 2023), the Longformer485

detector also shows vulnerability to paraphrasing486

attacks, as shown in Table 5. The AUROC drops487

from 0.94 to 0.75 when the detector encounters ad-488

ditional paraphrased texts, which can be attributed489

to the shifted perplexity distribution of paraphrased490

texts (Section 7.2).491

7 Analysis492

7.1 Convergence of Human and Machine493

Compositions494

We explore to find potential differentiability495

through a comparison of linguistic patterns in496

human-written and machine-generated composi-497

HumanRec MachineRec AvgRec AUROC

Testbed 7: Unseen Domains & Unseen Model

52.50% 99.14% 75.82% 0.94
88.78† 84.12%† 86.54%† 0.94

Testbed 8: Paraphrasing Attack

52.16% 81.73% 66.94% 0.75
88.78%† 37.05%† 62.92%† 0.75

Table 5: Testbed 7-8: Detection performance of
Longformer detector on the two challenging test sets.
†denotes the refined decision boundary. Appendix G
includes the performance of other detection methods.

Figure 5: Linguistic difference (Jensen-Shannon dis-
tance) between human-written texts and machine-
generated texts in 4 in-distribution settings (darker col-
ors indicate larger differences).
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Figure 6: Linguistic difference (Named Entity Distribu-
tions) of the Fixed-domain & Model-specific setting.

tions. To accomplish this, we employ Stanza (Qi 498

et al., 2020) to extract the distribution of various 499

linguistic patterns such as named entities, part-of- 500

speech tags, and constituents. Next, we calcu- 501

late the Jensen-Shannon distance to quantify the 502

disparity between the probability distributions ob- 503

tained from both text sources (human-written and 504

machine-generated). 505

Figure 5 demonstrates that including texts from 506

diverse domains and LLMs reduces the linguistic 507

dissimilarity between the two text sources. This 508

makes it more challenging for a detector to dis- 509

tinguish them, which aligns with the increasing 510

difficulty of detection in the four in-distribution 511

settings. Once an adequate amount of texts from 512

various domains and LLMs are collected, there is 513
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no significant statistical distinction between the514

two text sources (see Figure 13 in Appendix H). In515

contrast, when dealing with texts from a specific do-516

main or an LLM (Fixed-domain & Model-Specific),517

noticeable differences exist. For example, entity518

tags like "ORDINAL" and "DATE" can serve as519

detection shortcuts, as shown Figure 6. Comparing520

the sentiment polarity and grammatical formality521

of the two text sources (Appendix H) also demon-522

strates convergence between human-written and523

machine-generated texts.524

7.2 Double-edged Sword of Perplexity Bias525

In this section, we explore to find the general dis-526

tinction which is not influenced by text domain527

or generation LLMs. Prior work on unsupervised528

detection (Mitchell et al., 2023; Bao et al., 2023)529

leverages the property that model generations re-530

side in local minima of perplexity. We discover that531

such property also acts as a fundamental feature532

for PLM-based methods to effectively differentiate533

machine generations.534

Specifically, we use an untuned Longformer to535

obtain perplexity score (Salazar et al., 2020) for536

test set texts in the Unseen Domains setting. Fig-537

ure 7 illustrates how prior knowledge in PLMs,538

as measured by perplexity, aids in clustering two539

text sources into distinct peaks. The average per-540

plexity score of machine-generated texts is notably541

lower than that of human writings, establishing an542

implicit pattern to distinguish them.543

However, perplexity bias can hinder robust detec-544

tion. PLM-based detectors also exhibit overconfi-545

dence in text perplexity, classifying low-perplexity546

texts as machine-generated and high-perplexity547

texts as human-generated. We categorize the texts548

based on prediction correctness. As shown in Fig-549

ure 7, misidentified human-written texts by the550

Longformer detector have significantly lower av-551

erage perplexity compared to correctly predicted552

ones, but are similar to correctly predicted machine-553

generated texts. In contrast, the average perplexity554

of incorrectly predicted machine-generated texts is555

higher than that of correctly predicted ones. Figure556

8 presents a more intuitive visualization: false pre-557

dictions of human-written texts (darker green bars)558

are concentrated in the lower perplexity region,559

while false predictions of machine-generated texts560

(darker khaki bars) are spread across the higher per-561

plexity region. Paraphrasing attacks, illustrated in562

Figure 9, cause the peak of human-written texts to563

be positioned between that of machine-generated564
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Figure 7: Comparison of the average perplexity of texts
which the Longformer detector predicts correctly and
incorrectly.

1 2 3 4 5 6 7 8
Perplexity

0.00
0.01
0.02
0.03
0.04
0.05

Pr
op

or
tio

n

Human-written
Machine-generated

Figure 8: Perplexity distribution: A darker colour indi-
cates a larger proportion of incorrect predictions in the
perplexity bucket.
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Figure 9: Perplexity distribution of human-written texts,
machine-generated texts and their corresponding para-
phrased texts.

texts (machine-generated, machine-generated-para, 565

and human-written-para), leading to significant 566

confusion for the Longformer detector. 567

8 Conclusion 568

We proposed a comprehensive testbed for deep- 569

fake text detection, by gathering texts from various 570

writing tasks and deepfake texts generated by dif- 571

ferent LLMs. Empirical results on commonly used 572

detection methods demonstrated the challenge of 573

deepfake text detection. Out-of-distribution posed 574

a greater challenge for detectors to be employed in 575

application scenarios. With the boundary refined, 576

the best-performing detector on our testbeds (i.e., 577

Longformer detector) achieved 86.54% AvgRec on 578

out-of-domain texts generated by a new LLM, i.e., 579

GPT4. By studying differences between human 580

and machine compositions, we find that perplexity 581

can serve as a fundamental feature for classification 582

regardless of text domain or generation LLM. To 583

the best of our knowledge, this is the first study to 584

investigate the challenges and feasibility of deep- 585

fake text detection in a "wild" testbed. 586
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Limitations587

Although we are the first to propose a comprehen-588

sive testbed for deepfake text detection and val-589

idate the detection effectiveness on frontier test590

sets, there are two major limitations: (1) We strive591

to include a wide variety of LLMs in our dataset.592

However, new LLMs such as Alpaca (Taori et al.,593

2023) and Vicuna (Chiang et al., 2023) continue to594

emerge and may not be currently included. Never-595

theless, our dataset aims to serve as a testbed to se-596

lect the best-performing detectors, which encounter597

sufficiently diverse machine-generated texts and598

can deal with texts from newly-developed LLMs599

in future. (2) We adopt benchmark datasets as text600

sources, which can be used as the training data for601

LLM pretraining. The detection capability may602

vary on new online texts that were not included603

in the LLMs’ pretraining data. In the future, we604

plan to gather new online texts that have not been605

previously seen by LLMs to study such variation.606

Ethics Statement607

We honor the Code of Ethics. No private data or608

non-public information is used in this work. For609

human annotation (Section 6.1), we recruited our610

annotators from the linguistics departments of lo-611

cal universities through public advertisement with612

a specified pay rate. All of our annotators are se-613

nior undergraduate students or graduate students614

in linguistic majors who took this annotation as a615

part-time job. We pay them 60 CNY an hour. The616

local minimum salary in the year 2023 is 25.3 CNY617

per hour for part-time jobs. The annotation does618

not involve any personally sensitive information.619
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A Prompt Design995

Figure 10 present prompt cases in three domains996

(CMV, XSum and ELI5) to showcase different997

prompt types (i.e., continuation prompts, topical998

prompts and specified prompts). The prompts used999

for building GPT-4 test sets are presented in Figure1000

11.1001

B Dataset Construction1002

We show an example of Yelp dataset to give an1003

intuitive illustration of dataset construction: We1004

randomly sample 1,000 human-written texts from1005

the Yelp dataset and use 27 LLMs to generate cor-1006

responding machine-generated texts. After data1007

preprocessing and filtering, we obtained a total of1008

26,235 machine-generated texts and 1,000 human-1009

written texts. To mitigate data imbalance between1010

the text sources (human-written v.s. machine-1011

generated), we additionally collect data from the1012

Yelp dataset and obtain a total of 37,706 human-1013

written texts after filtering. The additional data is1014

used to compensate validation and test sets first for1015

more accurate evaluation. We discuss the effects of1016

data balance for training in Appendx F.1017

By default, machine-generated texts are gen-1018

erated using continuation prompts. For datasets1019

which provide topics or titles, we also consider1020

topical and specified prompts. The latter two1021

prompt types are only used for the OpenAI GPT1022

model set, since we empirically find they perform1023

robust generation to various prompts. For ex-1024

ample, for the 1,000 human-written texts in the1025

Xsum dataset, we have 33,000 (27,000+3*2*1000)1026

machine-generated texts and finally obtain 32,9301027

texts after filtering.1028

We conduct preprocessing to reduce the effects1029

beyond text contents, such as punctuation normal-1030

ization and line-break removal, etc. We also filter1031

out texts that are too long or too short. We divide1032

the texts into three splits, i.e., train/validation/test,1033

with an 80%/10%/10% partition. The data statistics1034

are shown in Table 6. The distribution of machine-1035

generated texts by model is presented in Figure 12.1036

C Method Implementation1037

Human annotation & Ask-ChatGPT. We cre-1038

ate a test subset from the whole testset, by pair-1039

ing one machine-generated text with each human-1040

generated one through random sampling. To create1041

the test set for the naive baselines, we randomly1042

select 10% of the human-written texts from the test1043

set used in the "Arbitrary-domains & Arbitrary- 1044

models" setting. Data statistics of the test set is 1045

shown in Table 7. We also randomly sample an 1046

equal number of machine-generated texts. We hire 1047

3 expert annotators to conduct independent annota- 1048

tion and average their performance. 1049

Longformer. Across all datasets, we used the 1050

Adam optimizer (Kingma and Ba, 2015) with a 1051

learning rate of 0.005 and set the dropout rate at 1052

0.1. All models are finetuned for 5 epochs on 8 1053

V100 GPUs. We select the best-performing model 1054

based on validation classification accuracy. 1055

FastText. We experiment with different combina- 1056

tions of word n-gram features and character n-gram 1057

features. Based on validation results, we choose 1058

only word bi-grams as text features. We train all 1059

models for 100 epochs and leave other settings as 1060

default. 1061

GLTR. GLTR uses a language model to gather 1062

features, i.e., the number of tokens in the Top-10, 1063

Top-100, and Top-1000 ranks, which are fed into a 1064

logistic regression model to classify texts. Follow- 1065

ing Pu et al. (2022), we use GPT-2-XL (Radford 1066

et al., 2019) as the language model and use scikit- 1067

learn (Pedregosa et al., 2011) to train regression 1068

models. We conduct a grid search on optimiza- 1069

tion algorithm (’lbfgs’, “liblinear”, “newton-cg”, 1070

“newton-cholesky”, “sag”, and “saga”), the norm 1071

of the penalty (“l1”, “l2” and “elasticnet”) and reg- 1072

ularization strength (0.001, 0.01, 0.1, 1, 10, and 1073

100) and choose the best-performing model under 1074

cross-validation. 1075

DetectGPT. We follow the best-performing set- 1076

ting (Mitchell et al., 2023), using T5-3B (Raffel 1077

et al., 2020) as the mask infilling model, with the 1078

mask rate set as 15%, the masked span length as 1079

2, and the number of perturbations as 100. We 1080

use GPT-J-6B (Wang and Komatsuzaki, 2021) as 1081

the scoring model. We manually set the decision 1082

boundary based on the validation set. 1083

D Randomness 1084

We conduct experiments to testify the stability of 1085

our testbeds. Specifically, we investigate the ef- 1086

fects of randomness under the Arbitrary-domains 1087

and Arbitrary-models setting by (1) splitting the 1088

testbeds (train, validation and test) with 5 different 1089

seeds and training 5 Longformer detectors on each 1090

split; and (2) training 5 Longformer detectors with 1091
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Domain Continuation Prompt Topical Prompt Specified Prompt

CMV

I spend my summer as a representative 
of the college I attend and interact 
regularly with kids between the ages of 
10 and 18. In these interactions, I have 
noticed

Generate a counter-argument to refute 
the following opinion: HandwritingCursive
is an important skill that should be taught 
throughout a minor's schooling.

Generate a counter-argument to refute 
the following Reddit post: 
HandwritingCursive is an important skill 
that should be taught throughout a 
minor's schooling.

XSum

Apple Music performed a U-turn over 
payment policy a day after the pop star 
threatened to prevent the US firm from 
streaming her album 1989. Swift had 
argued that Apple

Write a news article with the following 
headline: A photographer has accused 
Taylor Swift of "double standards" in her 
row with Apple over music streaming.

Write an article for BBC News with the 
following headline: A photographer has 
accused Taylor Swift of "double 
standards" in her row with Apple over 
music streaming.

ELI5

When you're watching a scene and the 
camera moves, say left to right for 
example; The stuff that's closer to the 
camera will move faster than the stuff 
that's further

How they turn 2D movies into 3D Explain like I am 5 years old: How they 
turn 2D movies into 3D

Figure 10: Examples of three prompt types.

Domain Prompt for GPT-4

CNN/DailyMail
Write a news article given the following highlights: Powers appeared in the final season of 
the long-running sitcom . He played the husband of main character Thelma . Powers died 
April 6 at his home in New Bedford, Massachusetts at the age of 64. His family have not 
revealed the cause of death .

DialogSum
Continue the following daily dialogue: #Person1#: School has added several new courses 
to our grade this semester. I have more homework to do now. #Person2#: What's your 
favorite course, Daniel?

PubMedQA Does prenatal ethanol exposure reduce mGluR5 receptor number and function in the 
dentate gyrus of adult offspring?

IMDb Write a short movie review with the following beginning: I am not a big fan of the 
Spielberg/Cruise version of this film.

Figure 11: Examples of prompts for building the frontier test sets.

Dataset CMV Yelp XSum TLDR ELI5

Train 4,461/21,130 32,321/21,048 4,729/26,372 2,832/20,490 17,529/26,272
Valid 2,549/2,616 2,700/2,630 3,298/3,297 2,540/2,520 3,300/3,283
Test 2,431/2,531 2,685/2,557 3,288/3,261 2,536/2,451 3,193/3,215

WP ROC HellaSwag SQuAD SciGen all
6,768/26,339 3,287/26,289 3,129/25,584 15,905/21,489 4,644/21,541 95,596/236,554
3,296/3,288 3,286/3,288 3,291/3,190 2,536/2,690 2,671/2,670 29,467/29,462
3,243/3,192 3,275/3,207 3,292/3,078 2,509/2,535 2,563/2,338 29,015/28,365

Table 6: Number of instances for each dataset. The number of human-written texts and that of machine-generated
texts are separated by "/".

different running seeds on one of the splits. The1092

results in Table 8 show that our testbeds are robust1093

to randomness, with a small standard deviation.1094

E PLM Backbone Comparison1095

In addition to Longformer, we also experiment with1096

other PLM backbones such as BERT (Devlin et al.,1097

2019), RoBERTa (Liu et al., 2019), and GPT2 (Rad-1098

ford et al., 2019). The results of these experiments1099

are shown in Table 9. Firstly, the Longformer de-1100

tector achieves the best performance in terms of1101

both AvgRec and AUROC due to its ability to han-1102

dle longer texts, while maintaining a small model1103

size for efficient detection. Secondly, increasing1104

the model size improves detection performance for1105

each backbone PLM. Thirdly, masked language 1106

models (BERT, RoBERTa, and Longformer) out- 1107

perform causal language models (GPT2). 1108

F Data Balance 1109

Since the number of machine-generated texts is 1110

larger than that of human-written ones in the train 1111

set. We investigate whether such an imbalance has 1112

an impact on the model performance. Specifically, 1113

we randomly sample machine-generated texts to 1114

be the same quantity as human-written ones. We 1115

experiment on the Longformer detector and present 1116

the results in Table 10. Despite the narrowed gap 1117

between HumanRec and MachineRec, we can ob- 1118

serve that data balance has little influence on model 1119
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Figure 12: Distribution of machine-generated instances by model: For example, "FLAN-T5-small-C, 9382"
indicates that the model "FLAN-T5-small" generated 9382 texts using continuation prompts. The letters C, T and S
represent the types of prompts used: "continuation" "topical" and "specified", respectively.

CMV Yelp XSum TLDR ELI5 WP ROC HellaSwag SQuAD SciGen all

# human 80 100 100 77 100 100 100 100 100 99 1912
# machine 80 100 100 77 100 100 100 100 100 99 1912

Table 7: Number of human-written and machine-generated texts of the sampled testset for naive baselines.

Randomness HumanRec MachineRec AvgRec AUROC

Data Split 83.00%±2.82% 97.74%±0.34% 90.37%±1.29% 0.99±0.0010

Training (Longformer) 82.81%±2.38% 97.90%±0.25% 90.36%±1.12% 0.99±0.0021

Table 8: Stability of the empirical results considering both data split randomness and training randomness.

performance in terms of AvgRec and AUROC. In1120

addition, the tendency of the Longformer detec-1121

tor to classify human-written texts as machine-1122

generated ones still exists with a perfectly balanced1123

training set.1124

G Detection Performance on the Two 1125

Challenging Test Sets 1126

The detection performance of all methods on the 1127

two challenging test sets, i.e., Unseen Domains & 1128

Unseen Model and Paraphrase Attack, is shown in 1129

Table 11. Detect-GPT is not included due to its 1130

reliance on the white-box detection setting. We 1131

can observe that all methods suffer severe perfor- 1132
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PLM # Parameters HumanRec MachineRec AvgRec AUROC

BERT-base 110M 67.11% 98.34% 82.72% 0.97
BERT-large 336M 80.96% 93.27% 87.12% 0.96

RoBERTa-base 125M 72.29% 95.28% 83.78% 0.96
RoBERTa-large 355M 70.81% 98.38% 84.59% 0.98

GPT2 117M 57.42% 97.84% 77.63% 0.96
GPT2-medium 345M 69.94% 96.82% 83.39% 0.96

GPT2-large 774M 84.27% 96.67% 90.47% 0.98
Longformer 149M 82.80% 98.27% 90.53% 0.99

Table 9: Performance comparison of different PLM-based classifiers.

Figure 13: Linguistic statistics (word frequency distribution, part-of-speech distribution, named entity distribution
and constituency distribution) for human-written and machine-generated samples.

HumanRec MachineRec AvgRec AUROC

85.38% 92.95% 89.16% 0.99

Table 10: Effects of data balance on detection perfor-
mance (Longformer) under the Arbitrary-domains &
Arbitrary-models setting.
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Figure 14: Sentiment polarity.

mance degradation in terms of AUROC, indicating1133

weakness in detecting machine-paraphrased texts.1134

H Text Characteristics1135

We first explore to find potential surface patterns1136

that can help discriminate between human-written1137
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Figure 15: Grammar formality. A lower number of edits
indicates better grammar formality.

texts and machine-generated ones. The length 1138

statistics are shown in Table 12. As can be seen 1139

from the table, although we do not exert explicit 1140

length control over the model generation, the aver- 1141

age length of machine-generated texts is marginally 1142

longer than that of human-written. 1143

Linguistic Pattern. We further use Stanza, a lin- 1144

guistics analysis tool (Qi et al., 2020), to gain a 1145

more systematic understanding of the linguistic 1146
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Methods HumanRec MachineRec AvgRec AUROC

Unseen Domains & Unseen Model

FastText 71.78% 68.88% 70.33% 0.74
GLTR 16.79% 98.63% 57.71% 0.73
Longformer 52.50% 99.14% 75.82% 0.94
Longformer† 88.78%† 84.12%† 86.54%† 0.94

Paraphrasing Attack

FastText 71.78% 50.00% 60.89% 0.66
GLTR 16.79% 82.44% 49.61% 0.47
Longformer 52.16% 81.73% 66.94% 0.75
Longformer† 88.78%† 37.05%† 62.92%† 0.75

Table 11: Detection performance on the two challenging test sets. ‘†’ denotes the boundary is adjusted.

Data Source Human-written Machine-generated All

Average Document Length 232.02 279.99 263.87
Average Sentence Length 18.90 18.80 18.83

Average # Sentences per Document 13.48 15.33 14.71

Table 12: Length statistics for human-written and machine-generated samples.

components in both sources, with results shown1147

in Figure 13. We can observe that texts from both1148

sources share similar distributions under various1149

linguistic scales, such as word frequency, part-of-1150

speech frequency, named-entity frequency, and con-1151

stituent frequency. In other words, there is no1152

significant linguistic difference between the text1153

sources (human-written versus machine-generated)1154

that can assist the classifier in differentiating them1155

in a wild setting.1156

In addition, we explore whether there are dif-1157

ferences between human-written and machine-1158

generated texts in other characteristics (such as1159

sentiment polarity and grammar formality) when1160

considering diverse writing tasks and various text-1161

generating LLMs.1162

Sentiment Polarity. We use an off-the-shelf sen-1163

timent classifier (Barbieri et al., 2022) trained on1164

198M tweets for sentiment analysis to analyze the1165

sentiment polarity of both texts, with results shown1166

in Figure 14. As suggested by Guo et al. (2023),1167

ChatGPT expresses more neutral sentiments than1168

humans. In a large-scale setting that considers vari-1169

ous domains and LLMs, however, there is no clear1170

distinction between human-written and machine-1171

generated texts in terms of sentiment polarity. No-1172

tably, LLMs generally generate more positive texts,1173

especially when creating reviews or comments1174

(Yelp).1175

Grammatical Formality. We use an off-the-1176

shelf grammar error correction model (Zhang1177

et al., 2022b) to evaluate the grammar formality 1178

of human-written and machine-generated texts. We 1179

adopt the average number of edits to quantify gram- 1180

mar formality. As shown in Figure 15, machine- 1181

generated texts are equally or even more grammati- 1182

cal in domains (CMV, Yelp, ELI5, and WP) where 1183

texts are less formal (reviews or posts on forums). 1184

In formal domains such as XSum (news articles), 1185

SQuAD (Wikipedia documents), and SciGen (sci- 1186

entific writings), human-written texts exhibit better 1187

grammatical formality. 1188
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