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Abstract

Sparsity of the data needed to learn about anomalies is often a key challenge
faced when training deep supervised models for the task of Anomaly Detection
(AD). Generating synthetic data by applying pre-determined transformations that
conform to a set of known invariances has shown to improve performance of such
deep models. In this work we present C-GATS to show that one can learn a much
larger invariance space using the available sparse data by training a conditional
generative model to do Data Augmentation (DA) for anomalous Time Series (TS)
in a model-agnostic way. Particularly, we factorize an anomalous TS sequence
into 3 attributes— normal sub-sequence, anomalous sub-sequence, and position of
the anomaly and model each of them separately. This factorization helps exploit
samples from the dominant class i.e normal TS to train a generative model for
the sparse class i.e anomalous TS. We provide an exhaustive study to showcase
that C-GATS not only learns to generate different types of anomalies (eg: point
anomalies and level-shift) but those generated anomalies improve performance
of multiple SOTA TS AD models on a set of popular public TS AD benchmark
datasets.

1 Introduction

Deep models have been successful at achieving exceptional performance on a wide variety of
machine learning tasks, ranging from vision and natural languages understanding to TS forecasting
and anomaly detection [24]. The models have millions or even billions of parameters, allowing
them to learn and represent complex functions, features and transformation automatically from data.
However, learning the values of these parameters requires a large data-set. Gathering real world
labelled training data is usually non-trivial and a costly task. As a result, the performance of deep
algorithms is limited in data sparse tasks such as segmentation or AD [37].

A well studied way to handle this problem is by generating synthetic data that belongs to the original
data distribution [28, 9, 10, 18, 34, 15]. We categorize these methods into two broad categories-
(i) when invariances are known apriori; (ii) when invariances are learned from the original data
distribution. The traditional Data Augmentation (DA) techniques like scaling, translations, rotations
and their variants fall in the former category [13, 43, 40, 19] while the generative approaches like
Generative Adversarial Networks (GANs), Variational Auto Encoders (VAEs) and their variants fall
in the latter category. Although considered best practices for a long time [30], the former class of
methods are shown to have limitations such as incapability of exploring a large invariance space [1]
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Figure 1: For a fixed latent z sampled from a standard gaussian, we vary the conditional vector
Y A ∈ RT (in red) and generate the anomalous TS, XA ∈ RT . Without any additional information
about the type of anomaly, C-GATS uses the conditional vector to infer the type of anomaly from
the training data. For example, lengthier anomalies are level-shift and the shorter ones are point
anomalies. C-GATS is able to learn useful invariances hidden in the data.

and requiring domain knowledge to design augmentation schemes [18]. Hence, in this paper we build
upon the latter class of methods.

Some recent works [14, 39, 8] have shown the value of using generative models for TS data but
only on TS classification task. No work has been done to explore the same for more complicated
task of TS AD, the only exception being [6, 7] where the problem of AD was again framed as a
binary classification task. We consider the task of univariate TS AD in its original form [37] where
given a TS sample Xi ∈ RT , goal is to output a corresponding label Yi ∈ {0, 1}T where 0 denotes
normal value and 1 denotes anomaly at each timestamp. In this task a well-known problem is class
imbalance between the TS samples that are normal, i.e without any anomalies v/s the ones that
contain anomalies, which prevents us from training deep AD models in a supervised manner [5, 17].

We argue that generating synthetic anomalous TS samples for AD is non-trivial as compared to other
tasks like classification due to 3 key reasons– (a) temporal labels: the labels are no longer scalar
and vary temporally for a given TS sample; (b) data imbalance: the number of TS samples in the
dataset that contain anomalies are sparse; (c) data scarcity: for a given TS sample the number of
data points that are anomalous are sparse. We show an example of (a) in supp figure 5 where either
the DA method itself introduces new anomalies in the data or it corrupts the anomalous samples
leading to contradicting labels. On the other hand, off-the-shelf deep generative models like vanilla
GANs and VAEs fail to learn a good distribution of anomalous TS due to reasons (b) and (c). We
show this in our experiments (Section 4). Conditional variants of these generative models [32] show
some improvement by learning class dependent latent distributions, however when applied directly
in our setting, face the curse of dimensionality [12] as the number of classes in TS AD task grow
exponentially with the length of TS samples. A thorough survey of related work is provided in supp
section 6.1.

To address these issues, we propose C-GATS, a conditional generative model trained in a semi-
supervised manner to produce synthetic TS that contain anomalies. The main contribution of this
paper is that these synthetic anomalies are—

• effective: they improve performance of several SOTA TS AD models on downstream task of
AD.

• diverse: C-GATS learns to generates different types of anomalies present in the dataset (eg:
point, level-shift).

• label-preserving: they conform to the label used to condition C-GATS during generation.
• model agnostic: they are independent of the downstream AD model.
• domain agnostic: we show C-GATS can be trained on TS dataset from multiple domains.

2 Problem Definition

Consider a setting where XA ∈ RT is a univariate TS of length T with anomaly. We represent
XN ∈ RT as a univariate TS of length T without any anomaly. Y A ∈ {0, 1}T is the corresponding
binary label vector for XA and Y N ∈ {0}T is the label vector for XN . We thus have a dataset
D which comprises of m number of anomalous pairs (XA, Y A) and n number of normal pairs
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(XN , Y N ) such that m << n. Our goal is to learn a model that can produce anomalous TS with
labels, i.e, learn a density p̂(XA, Y A) that best approximates p(XA, Y A) .

3 Proposed Algorithm

A standard way of learning the joint distribution (XA, Y A) is by trying to learn the conditional
p(XA|Y A) typically modeled using a CVAE [32]. This works well when the number of unique
classes are relatively fewer, eg: MNIST [25] but doesn’t scale as number of classes increase, i.e
the condition vector becomes high dimensional [12]. In our setting, there are 2T unique classes as
Y A ∈ RT and a vanilla CVAE fails to learn a good distribution w.r.t each class due to the well-known
problem in generative models called mode-collapse [33]. An example of this is seen in Figure 6.a
where a vanilla CVAE fails to reconstruct an anomalous TS.

Note that in multi-class generative problems with class imbalance in vision domain, where for eg. the
dominant class is ’dog’ and sparse class is ’ship’— the two classes do not share underlying structural
similarity. Hence, trying to generate samples of ’ship’ by exploiting samples from ’dog’ is possible,
[4] but limited. However, in our setting the normal and anomalous TS share significant structural
similarity that can be exploited. More formally, we study anomalous TS XA where we can factorize
them as shown in Eq. 1 where xA is a sub-sequence of XA that contains the anomalous data points,
xN is the normal sub-sequence such that xA ∪ xN ≡ XA, and Y A is the corresponding binary label
vector.

p(XA) = p(xN )︸ ︷︷ ︸
modeled

using p(XN )

· p(xA)︸ ︷︷ ︸
modeled using

p(XA|XN ,Y A)

· p(Y A)︸ ︷︷ ︸
modeled

using P (Y A)

(1)

To learn this factorized generative model, we model the following distributions–

Anomaly Label model: Y A ∼ p(Y A) (2)

Sample Occlusion model: X̃ ∼ p(X̃|XN , Y A) (3)

Foundation model:
{

Encθ : z ∼ qθ(z|X̃)
Decψ : XN ∼ pψ(XN |z) (4)

Anomaly
Generation Model:

{
Encθ∗ : z ∼ qθ∗(z|X̃)
Decϕ : XA ∼ pϕ(XA|z, Y A) (5)

We start by decomposing the problem into two sub-problems— (i) learning a latent space of the
normal sequences; (ii) learning to insert anomalies in latent space. Stage 1: We model the first
sub-problem using an unconditional VAE (Eq. 4) with an important modification. Instead of learning
a vanilla variational encoder pψ(z|XN ), we learn pψ(z|X̃) where X̃ ∈ RT is the occluded version
of a normal sequence XN . Here occlusion refers to removing a set of values from the given TS
and replacing with zeros [26]. Instead of occluding values randomly, we occlude values that follow
p(Y A). More specifically, we sample a Y A ∼ p(Y A) and replace the values in XN ∼ D with zeros
that correspond to timestamps that are labeled as 1 in Y A. This is the sample occlusion model in Eq.
3 that gives us X̃. We then train the VAE’s encoder and decoder jointly on the paired samples of
(XN , X̃) to maximize the following evidence lower bound (ELBO),

log p(XN ) ≥ Eqθ(z|X̃)[log pψ(X
N |z)]−KL(qθ(z|X̃) || p(z)) (6)

We use this ELBO objective to write a differentiable loss function below to train θ and ψ jointly—

L(θ, ψ) = −KL(qθ(z|X̃i)||p(z)) +
1

n

n∑
i=1

log pψ(X
N
i |zi) (7)

Both θ and ψ are implemented using a 2-layer neural network with 32 and 64 units respectively and
trained using ADAM optimizer [21] with an initial learning rate of 10−3. Similar to [22] we assume
p(z) as multivariate Gaussian with a diagonal covariance N (z;µz, σ

2
zI). We are interested in the

posterior qθ∗(z|X̃) which learned by above objective can produce a latent representation from an
occluded version of a TS sample. This learned posterior will serve as our foundation model to the
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Figure 2: Labelled anomalous time series generated by C-GATS for different datasets showing
generality, diversity and consistency of the method.

next stage of training. See pseudo code in Algorithm 1. Stage 2: We perform the same occlusion
on anomalous samples where we replace the anomalous data points in XA with zeros to obtain
X̃ ∼ p(X̃|XA, Y A). Note that post-occlusion the samples obtained from both normal and anomalous
sequences belong to the same distribution, i.e p(X̃|XN , Y A) ≈ p(X̃|XA, Y A). This allows us
to run inference using occluded anomalous sequences on a posterior learned on occluded normal
sequences. We now make use of the anomalous training samples (XA, Y A) to train a generator
XA ∼ pϕ(XA|z, Y A) conditioned on the labels Y A where z is obtained from the learned posterior.
Note that the posterior model θ∗ is frozen and does not receive gradient updates during this stage of
training. We model ϕ using a similar 2-layer LSTM decoder architecture as that of ψ. The condition
vector Y A, which is a binary label corresponding to each timestamp is applied temporally. We
found that we must apply this condition at the very last layer of the decoder network to prevent the
condition vector from interfering with the reconstruction process of the base signal and restrict it
to contribute only in the anomaly insertion process in the high level feature space. This helps in
achieving consistency in the generated samples. We show the qualitative and quantitative advantage
of this approach in our ablation study in Supp. section 6.7. Training is done in a supervised fashion
where ϕ is forced to generate an anomalous sequence by inserting anomalies in the latent space where
the position and type of anomaly is controlled by the label on which the model is conditioned upon
(see Algorithm 2). More specifically, we obtain ϕ∗ by minimizing the below objective —

min
ϕ

m∑
i=1

− log p(XA
i |zi, Y Ai ;ϕ)

where z ∼ qθ∗(z|X̃) and X̃ ∼ p(X̃|XA, Y A)

(8)

Once trained, the decoder ϕ∗ can be used to generate synthetic anomalous TS samples (XA, Y A)
where Y A is provided by the user which implicitly controls the attributes of anomaly such as
position, duration or type. z is either sampled directly from a normal distribution or from a latent
distribution produced by θ∗ when given an occluded version of any normal or anomalous TS from
same distribution. The overall architecture of C-GATS is shown in Figure 4 in Supplementary.

Figure 3: t-SNE visualization on Synthetic Sines dataset. Each plot denotes the visualization of a
different TS generation/augmentation method. Red denotes original anomalous TS, and blue denotes
the generated anomalous TS.

4 Experiments

We compare C-GATS with 7 different TS generation/augmentation methods— Mixup [43], CutMix
[40], RCGAN [14] and a combination of classical methods like Scaling, Jittering, Permutation and
TimeWarp [19] on 6 different public TS datasets using 8 different TS AD algorithms. Following
[37], we emphasize that AD is both a quantitative and qualitative study. Hence, we observe the
following desiderata as outlined in Section 1— (a) diversity; (b) label-preserving; (c) effectiveness;
(d) model-agnostic; and (e) domain-agnostic. First two are analyzed qualitatively and the next three
quantitatively.
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Datasets We use 6 different datasets to run quantitative assessments of C-GATS. These datasets
are common in most recent AD papers, and have (a) variety of attributes like noise, periodicity, trend,
non-stationarity; (b) different types of anomalies like point anomalies, level-shift, change-point, etc;
(c) are collected from different domains like machine telemetry, traffic data. This justifies our claim
of domain-agnostic nature of C-GATS. Details of each dataset is described in Supp. section 6.2.

4.1 Qualitative Analysis

We apply t-SNE [35] on both the generated and real anomalous TS on the Synthetic Sines dataset to
visualize the overlap between the two distributions in Figure 3, as in [31]. 3(h) shows a good overlap
between the real anomalous TS and that generated by C-GATS. Furthermore, we visualize the raw
generated samples by C-GATS in Figure 2. The red dots denote the inserted anomalies. In Synthetic
Sines and KPI datasets, these are point anomalies while in RealAWSCloudWatch they correspond to
change points. This provide support to the claim that C-GATS is able to generate diverse anomalies
across dataset from different domains.

Next we qualitatively assess the label-preserving nature of C-GATS, i.e, if C-GATS is able to
generate anomalies in position dictated by the conditioned label vector. We use Synthetic Sines
dataset where we insert two different types of anomalies— point anomalies and level-shift anomalies
randomly in the dataset and train C-GATS on it. Once trained, we use the decoder ϕ∗ to generate
anomalous samples XA by passing as input a noise vector z sampled from a normal distribution
along with a conditional vector Y A as shown in Figure 1. C-GATS not only successfully inserts
anomalies in the conditioned positions but also attributes the type of anomaly to the conditioned label
vector, i.e, long anomalous period means level-shift, short anomalous period means point anomalies.

Table 1: Performance of different AD algorithms in different augmentation settings on Synthetic Sines
dataset

AD Algorithm TRTR T(R+S)TR TRTS TSTR
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RobustTAD 0.76 0.73 0.74 0.76 0.75 0.75 0.74 0.70 0.71 0.77 0.75 0.75
SR-CNN 0.75 0.70 0.73 0.76 0.71 0.74 0.67 0.65 0.65 0.77 0.73 0.75
NCAD 0.80 0.74 0.77 0.81 0.78 0.79 0.75 0.70 0.71 0.80 0.76 0.77

Table 2: Performance of different AD algorithms in different augmentation settings on KPI Dataset

AD Algorithm TRTR T(R+S)TR TRTS TSTR
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RobustTAD 0.57 0.53 0.55 0.69 0.66 0.67 0.50 0.45 0.48 0.65 0.64 0.64
SR-CNN 0.55 0.51 0.54 0.61 0.55 0.58 0.47 0.43 0.44 0.60 0.55 0.57
NCAD 0.60 0.68 0.64 0.70 0.69 0.69 0.51 0.54 0.52 0.65 0.73 0.68

Table 3: Deep TS AD algorithms performance across different datasets

Algorithm
Dataset w/o Aug. Mixup CutMix Combination RCGAN C-GATS

(alpha=0.2) (Scaling, Jitter,
Permute,TimeWarp)

RobustTAD

Synthetic Sines 0.74 ±0.005 0.74 ±0.007 0.27 ±0.003 0.75 ±0.006 0.23 ±0.002 0.75 ±0.004
KPI 0.55 ±0.011 0.56 ±0.008 0.23 ±0.010 0.59 ±0.003 0.19 ±0.009 0.67 ±0.003

RealTweets 0.54 ±0.021 0.53 ±0.011 0.32 ±0.026 0.57 ±0.009 0.18 ±0.041 0.57 ±0.010
RealTraffic 0.67 ±0.026 0.68 ±0.029 0.37 ±0.020 0.69 ±0.012 0.27 ±0.071 0.73 ±0.015

RealAWSCloudWatch 0.34 ±0.262 0.34 ±0.089 0.06 ±0.344 0.36 ±0.218 0.04 ±0.181 0.34 ±0.192
ArtificialWithAnomaly 0.36 ±0.275 0.38 ±0.118 0.33 ±0.229 0.38 ±0.136 0.05 ±0.099 0.41 ±0.107

SR-CNN

Synthetic Sines 0.73 ±0.009 0.72 ±0.002 0.18 ±0.009 0.74 ±0.001 0.16 ±0.010 0.74 ±0.003
KPI 0.54 ±0.008 0.55 ±0.005 0.19 ±0.009 0.56 ±0.003 0.17 ±0.011 0.58 ±0.007

RealTweets 0.46 ±0.027 0.45 ±0.019 0.24 ±0.033 0.51 ±0.009 0.19 ±0.008 0.53 ±0.009
RealTraffic 0.64 ±0.021 0.65 ±0.017 0.33 ±0.019 0.65 ±0.028 0.26 ±0.035 0.66 ±0.020

RealAWSCloudWatch 0.25 ±0.319 0.25 ±0.283 0.04 ±0.081 0.28 ±0.193 0.01 ±0.198 0.27 ±0.199
ArtificialWithAnomaly 0.28 ±0.019 0.30 ±0.174 0.24 ±0.111 0.32 ±0.081 0.12 ±0.059 0.34 ±0.011

NCAD

Synthetic Sines 0.77 ±0.008 0.76 ±0.001 0.30 ±0.003 0.78 ±0.019 0.27 ±0.071 0.79 ±0.001
KPI 0.64 ±0.006 0.66 ±0.003 0.24 ±0.009 0.67 ±0.010 0.21 ±0.004 0.69 ±0.001

RealTweets 0.57 ±0.019 0.55 ±0.014 0.32 ±0.028 0.58 ±0.010 0.20 ±0.085 0.61 ±0.009
RealTraffic 0.69 ±0.029 0.69 ±0.033 0.43 ±0.098 0.71 ±0.051 0.28 ±0.171 0.71 ±0.019

RealAWSCloudWatch 0.35 ±0.219 0.34 ±0.118 0.11 ±0.092 0.37 ±0.071 0.07 ±0.215 0.35 ±0.111
ArtificialWithAnomaly 0.39 ±0.101 0.42 ±0.213 0.36 ±0.128 0.42 ±0.098 0.13 ±0.023 0.45 ±0.091
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4.2 Quantitative Analysis

Evaluation Frameworks We select 3 supervised NN-based, and 5 baseline TS anomaly detection
(AD) algorithms to benchmark the improvement in anomaly detection quality using C-GATS. Details
about these baseline algorithms are provided in Supp. section 6.6. We pick 7 different DA techniques
to compare against C-GATS and details are in section 6.5. We adopt 4 evaluation frameworks [14],
namely– TRTR (Train on real, Test on real), TSTR (Train on synthetic, Test on real), TRTS (Train on
real, Test on synthetic) and T(R+S)TR (Train on real+synthetic, Test on real). We split each of the 6
datasets into a 80:20 train:test ratio. We use the 80% train set to train C-GATS and generate equal no.
of synthetic samples as there are in the train set. More details about these frameworks are provided in
Supp. section 6.3. For results, we report the average point-based precision, recall and F1 scores and
justify the choice of these metrics in Supp. section 6.4.

Benchmark Results Tables 1-2 along with tables 5-8 in the supplementary show the performance of
three neural-net based AD algorithms in different evaluation frameworks for each of 6 datasets. (1) We
compare the TRTR and T(R+S)TR frameworks to see if augmenting the training data with C-GATS
generated anomalous samples further improves the AD performance? On the simulated dataset where
the training set is large and diverse (Synthetic Sines) the improvement is minimal (< 2%) but on a
more realistic dataset (KPI) the improvement is higher, ∼ 18% increase in F1 score. (2) TSTR results
help identify if generated samples actually lead to a useful AD model. We see that on both simulated
and real-world datasets, the performance is equivalent and in some cases better than TRTR case. This
indicates that the generated samples are not only realistic but also consistent with their corresponding
ground truth labels leading to a comparable performance on real test sets. (3) In TRTS setting we
see that the performance of AD models decline as compared to TRTR. This means if trained on
real-world samples and tested on generated anomalous samples the detection quality declines. One
could argue that this could mean the generates samples are corrupt/incorrect. But since TSTR leads
to a higher performance than TRTR, we can safely conclude that the generated samples are not only
good quality and correctly labelled but also much more diverse than the real dataset. (4) Table 3
shows the mean and standard deviation of F1 scores across 5 runs for each setting. The column of w/o
Aug. simply represents the numbers from TRTR framework while all the other augmentation methods
are evaluted in T(R+S)TR framework. We observe that— (a) Classic vision based augmentation
strategies like CutMix [40] or Mixup [43] are not as effective when compared to an ensemble of
traditional TS augmentation methods like scaling, jittering, permutation or TimeWarp on anomalous
data. This is because the former approaches sometimes lead to corrupt anomalous samples with
incorrect ground truth labels (see Figure 6 in Supp.) causing poor AD performance. (b) Complex
GAN-based method like RCGAN [14] lead to unstable training and fail to learn sparse anomalous
signal in the long complex TS. This leads to generation of unrealistic anomalous sequences and hence
poor AD performance. (c) C-GATS outperforms all these augmentation methods for anomalous TS
data on 5 out 6 datasets. However, when training set is small (eg: RealAWSCloudWatch dataset),
C-GATS fails to learn good realistic patterns and hence in those cases an ensemble of classical DA
methods outperforms C-GATS. (d) The algorithms Case 1-3, One-liner A and B serve as robust
baselines to avoid creating an illusion of improvement in detection quality when using the DA method,
as these baselines remain largely unaffected by augmentation strategies. We notice that some of these
baselines, e.g. One-liner A and B have comparable, and in some cases, even better performance than
some of the deep AD algorithms with augmentations (See Table 9 in Supp.). This echoes the claims
made in [37] that deep learning might not always be the right solution to problem in TS AD domain.
We further add that complex DA strategies do not boost the detection quality significantly in cases
when the anomalies are trivial to detect.

5 Conclusion & Future Work

We present a simple semi-supervised approach to generate synthetic anomalous TS data with labels,
and demonstrate that the generated samples exhibit properties similar to the anomalies in real dataset.
What is unique is that our model is able to learn and embed invariances present in the real data
into synthetic data without any extra supervision, leading to generation of more diverse anomalous
samples as compared to traditional DA approaches. In Supp section 6.8 we discuss how this idea can
be further extended to achieve not just diverse but more complex set of synthetic anomalies.
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6 Supplementary Material

6.1 Related Work

6.1.1 Generating synthetic data using known invariances

Making deep learning models robust when they are trained on limited data is critical. One approach
is to encode known invariances into the model directly [18]. For example a classifier trained to detect
cat images should be invariant to rotated, cropped or blurred images of cat. However, it is non-trivial
to encode all invariances directly into the model. A simpler way is to encode those invariances in the
training data by generating additional data using transformations. Traditional DA techniques used for
this purpose employ a limited set of invariances that are static, known a priori, and easy to implement
[13, 43, 40, 19]. Although considered best practices for a long time [30], this class of methods are
shown to have limitations such as incapability of exploring a large invariance space [1] and requiring
domain knowledge to design augmentation schemes [18].

6.1.2 Generating synthetic data by learning invariances

Recently a lot of work has been done in vision domain to infer invariances directly from training data
[28, 9, 10, 1, 18] using generative models like GANs/VAEs that have been successfully adapted to
TS domain [8, 39, 14, 34, 15], to generate synthetic TS samples that show effectiveness primarily
on the task of TS classification. [39] supplements a GAN based generative model with a supervised
autoregressive objective in the latent space and shows that it leads to more realistic TS that improve
performance on a classification task. [8] use a GAN based approach and learn a modal-agnostic
generative framework by jointly training a classifier in the latent space. Although the intuition behind
GANs is quite elegant as exhibited in these papers, they are difficult to train and often experience
mode collapse (which prevents from generalizing), vanishing gradients, and/or unstable updates.
In [11] authors use a deterministic approach and train a denoising auto encoder [36] to generate
financial TS data. Although impressive, there is no evidence that these complex GAN-based or
compression-based auto encoding methods would work equally well on anomalous TS where its
much harder to learn to generate sparse signals like point anomalies and level-shifts, in the synthetic
data. In [6, 7] authors show anomalous TS can synthetically be generated by sampling from a learned
latent space. Although impressive, there are two key limitations- (a) they still use a limited set of
known invariances (eg: jittering, scaling, permutation) to handle class imbalance to train a VAE; (b)
they pose AD task as a classification task to alleviate the problem of dealing with temporal labels
which limits this approach to be of use in a traditional TS AD setting [37].

Conditional Generative Models. Explicitly conditioning the generative models on class labels has
shown to learn a sharper and class-dependent data distribution. This idea has been adopted to modify
both VAEs [32] and GANs [31, 27, 14] for TS generation. In [31] authors train two Wasserstein
GANs [2] in a sequential manner where the spectograms generated from first WGAN are used to
condition the second WGAN, which is trained to generate synthetic TS data. In [27] authors apply
conditioning on timestamp information to handle irregular sampling while [14] applies conditioning
on class labels in a temporal fashion to both the generator and discriminator to learn a class-dependent
generative model.

VAEs for data imputation. Another interesting line of work involving VAEs for TS generation is data
imputation. In [26] authors show how VAEs can be used to fill missing data in a high-dimensional
heterogenous setting which was extend to TS by [16] by building a sequential latent variable model
and using a prior that exploits temporal dynamics in latent space. [42] is another recent work where
VAEs are proven to be useful for imputing missing TS data.

Inspired by these recent successes of VAEs we show how C-GATS adopts a factorized training
procedure and uses ideas from data imputation to train an unconditional VAE on just the normal
samples that acts as a foundation model [4] which is then used to fine-tune a conditional generative
model that learns to generate synthetic anomalous TS with labels and addresses the limitations of
previous approaches.
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Figure 4: C-GATS Architecture. (a) Step 1: sample occlusion model is used to obtain X̃ from normal
TS; (b) Step 2: Paired samples (X̃,XN ) are then used to train the foundation model θ; (c) Step 3:
sample occlusion model is used to obtain X̃ from anomalous TS; (d) Step 4: Anomaly generation
model ϕ is trained in a conditional manner using (X̃i, X

A
i , Y

A
i )mi=1. Solid lines around θ in (d) denote

frozen weights.

6.2 Dataset Description

Synthetic Sines– We simulate univariate sinusoidal sequences of different frequencies η and phases
θ, providing continuous-valued periodic samples each of fixed length, T = 240 timestamps; xi(t) =
sin(2πηt + θ), where η ∼ U [0, 1] and θ ∼ U [−π, π]. We simulate a total of 64000 TS. Then we
insert point anomalies in the data. We sample 3 attributes randomly at uniform– (1) whether to insert
an anomaly or not s ∼ {1, 0}; (2) the position where to insert the anomaly, p ∼ range(240); (3) how
long will the anomaly be, l ∼ range(10); (4) direction of anomaly, i.e, either positive of negative
spike d ∼ {+1,−1}. Thus, for sequence xi in simulated data, we corrupt it by inserting anomaly
using the process- xAi = f(xi; s, p, l, d).
KPI dataset1– A univariate TS dataset consisting of KPI curves from different internet companies in
1 minute interval. We use a sliding window of 240 to downsample the long TS in the data and obtain
a fixed size datasets of 30000 TS each of length 240 timesteps.
NAB2– A public anomaly detection benchmark dataset [23] that contain streaming data from different
domains. We select 4 different datasets from this benchmark- (a) RealTweets, (b) RealTraffic, (c)
RealAWSCloudWatch, (d) ArtificialWithAnomaly. Each dataset was resampled to sequences of
fixed length. Statistics of each dataset are provided in Table 4.

Table 4: Statistics of datasets

Dataset Total Total Anomaly
Series Points Points

Synthetic Sines 64000 15360000 171071
KPI 30000 7200000 328527

RealTweets 4000 960000 159740
RealTraffic 1200 288000 14364

RealAWSCloudWatch 121 29040 3070
ArtificialWithAnomaly 180 43200 5040

6.3 Evaluation Mechanisms

• TRTR: Train on the 80% real train set and evaluate on the 20% held-out real test set.

1http://iops.ai/competition_detail/?competition_id=5&flag=1
2https://github.com/numenta/NAB/tree/master/data
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Figure 5: We augment 2 different sine curves with 2 popular DA methods from vision domain that
have been applied to TS [38]- first, CutOut [13] where we randomly replace a small section of TS
with 0; second, we add random noise sampled from a normal distribution. In both cases DA fails–
either Standard DA techniques either introduce new anomalous behavior in the data or corrupt the
anomalous timestamps leading to incorrect ground-truth labels.

Figure 6: Samples generated by four different augmentation methods. Column (a) shows 3 different
samples generated by a CVAE; Blue curve represents the input sample and orange curve represents
the generated sample. Column (b), (c) and (d) show samples generated by CutMix [40], Mixup [43]
and Combination (i.e jittering, scaling, permute and timewarp) augmentation methods.

• T(R+S)TR: Train on the combined data (i.e 80% train set and all of the generated synthetic
data) and test on the held-out 20% real test set.

• TSTR: Train on the all of the generated synthetic data and test on the held-out 20% real test
set.

• TRTS: Train on all the real data (80% + 20%) and test on a 20% random split of synthetic
data.

6.4 Evaluation Metrics

We observed that most of these AD methods [17, 29, 5] report performance scores using either a
point-adjusted scoring function [3] or a relaxed version of F1 [17], which leads to an overestimation
of detection performance [20]. We therefore use point-based evaluation metrics as recommended by
[20] and also use the baselines by [37] and [20]. We report the average point-based precision, recall
and F1 scores for each of the AD evaluation experiment performed. A series of AD experiments are
run on each of the 6 datasets where we evaluate all the 8 different AD algorithms with 6 different DA
strategies. Each experiment was run 5 times with different splits and we report the mean and standard
deviation of the F1 score in Table 3, 9, 10 and 11.
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6.5 DA Baselines

We pick 7 different DA techniques to compare against C-GATS. We also include an eighth baseline
which is simply not using any augmentation method. Mixup [43] creates new training examples out
of original samples by using a convex combinations of the features and their labels (controlled by
α) resulting into plausible new TS (e.g. see Figure 6.c). We choose α = 0.2 for our experiments as
it yielded the best results across different values of α. CutMix [40] is another strategy popular in
vision domain which involves randomly cutting a patch from one sequence and pasting it into another
sequence. The new sequences generated by this method are not very ideal for anomaly detection task
as abruptly changing patterns in a sequence could introduce new anomalies that labels won’t account
for (see Figure 6.b). As third baseline we pick RCGAN [14] as it is a neural-network based approach
that applies conditionals in a temporal fashion like C-GATS. Out fourth baseline is a combination of
traditional TS augmentation methods 3 including Scaling, Jittering, Permutation and TimeWarping.
In this method, for each sequence in a given dataset, we randomly sample one DA strategy from the
mix and apply it to the sequence. (e.g. see Figure 6.d).

6.6 AD Baselines

We pick 3 supervised neural-network based AD algorithms– RobustTAD [17], SR-CNN [29] and
NCAD [5] as each claim to utilize DA techniques for better detection performance making them an
ideal choice for our experiments. Apart from these, we select 5 other baselines that are much simpler
but have been shown to be effective on the TS AD benchmark datasets [37, 20]. We refer to them
as One-liner A, One-liner B, Case 1, 2 and 3. Case 1 [20] baseline randomly assigns an anomaly
score for every timestamp in a given sequence, i.e A(xt) ∼ U(0, 1). Case 2 [20] baseline assigns a
score proportional to the value at each timestamp, i.e A(xt) = ||xt − η||2 where η = 0. Case 3 [20]
baseline is same as Case 2 but η is obtained from an untrained 2-layer LSTM neural network whose
parameters are fixed after being initialized from a Gaussian distribution N (0, 0.02). The scores are
then converted into anomaly labels using a threshold 0 ≤ δ ≤ 1. We do a grid search for the value of
δ and report the metrics for the best value. Another set of baselines obtained from [37] are one-liners.
There are 2 main types of one-liners proposed in [37] one with abs and without. We test both the
categories and pick the one that obtain best performance. We pick One-liner A as —

abs(diff(TS)) > b

and One-liner B as —

abs(diff(TS)) > movmean(diff(TS), k)
+ c * movstd(diff(TS), k) + b

As recommended by [37], we adopt a similar brute-force strategy to compute individual k, c, b for all
the datasets.

6.7 Ablation Study

To better understand the advantage brought by different components of our method, we perform an
ablation study on 6 different datasets and 3 different AD algorithms. We consider variations of the
framework by (a) varying the training procedure; and (b) altering the model architecture and train the
model in each configuration thrice. We report the average performance metrics of these runs.

6.7.1 Dual-step training strategy

In this experiment we remove the training phase-I from C-GATS and simply train a standard CVAE
with temporal conditionals with anomalous samples. Table 10 summarizes the performance of
C-GATS in these two different settings. Our study shows that the use of dual-training step contributes
to decoupling complex processes of representation learning and anomaly insertion which leads to
generation of more controlled and sharper anomalies and contributes to additional performance gain.
We further demonstrate this in Figure 7 where the left hand column represents sampled generated

3https://tsaug.readthedocs.io/en/stable/
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Figure 7: For a fixed z and Y A in each row; Blue: samples generated by C-GATS in 1-phase training;
Green: samples generated by C-GATS in a 2-phase training.

Figure 8: For a fix latent vector z, we vary Y A in each row. Blue plots: represent samples generated
by C-GATS when temporal conditioning is applied at the very first layer of the generator. Green
plots: samples generated when conditioning is applied at the last layer of generator.

via one-step training procedure and right-hand column represents the dual-step training of C-GATS
on KPI dataset. For each row, we use a fixed noise vector z sampled from a normal distribution
along with a fixed condition vector Y A. The samples generated by on-step training fail to learn sharp
distinguishable anomalies in data which can be seen in the samples generated by the two-step training
strategy.

6.7.2 Positioning of Conditionals

We study the effectiveness of our proposed approach of applying temporal conditionals for anomaly
generation. By varying the position of the temporal conditionals we study its impact on the generation
process. Changing the position of applying conditionals from final-most layer to the very first layer of
the anomaly generator leads to a decline in AD performances by upto 12% in some cases, see Table
11. Neural networks are known to learn more fundamental and primitive features at the initial layers
while more advanced and developed ones at the later layers [41]. Similar phenomena is observed
when we assess the quality of generated anomalous samples in Figure 8. The study reveals that
applying conditionals at the first layer of the generator interferes with the basic reconstruction of TS
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Figure 9: Top center: For a given conditional vector Y A and a latent vector z sampled from a standard
Gaussian, we generate an anomalous sequence. Then we vary z across each of its 16 dimensions one
by one keeping the rest constant. For a given conditional vector and a latent z C-GATS can generate
multiple reasonable and interesting synthetic anomalous signals.

signal and leads to ambiguous and inconsistent anomalous samples. Whereas when applied at the
final-most layer, the generated samples are consistent and better in quality and hence contribute to
better AD performance.

6.7.3 Diversity in generation of anomalies across a fixed input

Here we assess the generative power of C-GATS qualitatively in Figure 9. For a fixed condition
vector Y A we take a random noise z which is a 16-dimensional vector and generate an anomalous
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Algorithm 1 Training the foundation model

Input: an anomaly label model p(Y A); a sample occlusion model p(X̃|XN , Y A); set of normal
sequences {XN

i }ni=1; batch size B.
Parameter: θ and ψ initialized randomly.
Output: A learned posterior model p(z|X̃; θ∗).

1: while SGD not converged do
2: Sample a batch of B normal sequences (XN

i )Bi=1;
3: Initialize an empty bufferM of size B;
4: for i = 1, . . ., B do
5: Sample Y A from label model Y A ∼ P (Y A);
6: Feed (XN

i , Y
A) to sample occlusion model and obtain X̃i ∼ p(X̃|XN

i , Y
A);

7: Collect samplesM←M∪ {(X̃,XN )i};
8: end for
9: ϵ ∼ p(ϵ); (Random noise for every datapoint inM)

10: Compute Lθ,ψ(M, ϵ) via Eq.(7) and its corresponding gradients∇θ,ψLθ,ψ(M, ϵ);
11: Update θ and ψ using SGD optimizer;
12: end while

Algorithm 2 Training the anomaly generation model

Input: a trained variational encoder p(z|X̃; θ∗); a sample occlusion model p(X̃|XA, Y A); set of
anomalous sequences and labels {XA

i , Y
A
i }mi=1; batch size B.

Parameter: ϕ initialized randomly.
Output: A learned generative model p(XA|z, Y A;ϕ∗).

1: while SGD not converged do
2: Sample a batch of B anomalous sequences pairs (XA

i , Y
A
i )Bi=1;

3: Initialize an empty bufferM of size B;
4: for i = 1, . . ., B do
5: Feed (XA

i , Y
A
i ) to sample occlusion model and obtain X̃i ∼ p(X̃|XA

i , Y
A);

6: Feed X̃i to the trained encoder and obtain the latent representation zi ∼ p(z|X̃i; θ
∗)

7: Collect samplesM←M∪ {(zi, XA
i , Y

A
i )};

8: end for
9: Compute Lϕ(M) (8) and gradients∇ϕLϕ(M);

10: Update ϕ using SGD optimizer;
11: end while

sample as shown in the top-center of the figure. We then vary each of 16 dimensions of z one-by-one
between values (−1, 1) keeping the rest constant. The figure shows that on varying each dimension
of z, we control different attributes of the generated sample such as frequency, noise, etc. while
retaining the anomaly in the same desired location. This displays the generative power of C-GATS in
producing a diverse range of synthetic anomalous samples.

6.8 Future Work

In the future, we plan to further improve C-GATS’s generation quality by forcing it to generate not
just realistic but hard examples that can further improve the quality of AD models. Similar ideas
have been used in approaches like MODALS [8] where sampling in latent space is advised by a
classifier to pick samples that can potentially fool the classifier. We believe adapting a similar strategy
in C-GATS where we use a group of different anomaly detectors to aid the sampling process in latent
space could force C-GATS to generate samples in feature space that are not only anomalous but
can simultaneously fool these detectors, and hence improve downstream AD methods substantially.
Another area of improvement is to model the latent distribution using a prior that captures temporal
dynamics like [16].
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Table 5: Performance of different AD algorithms in different augmentation settings on RealTweets
Dataset

AD Algorithm TRTR T(R+S)TR TRTS TSTR
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RobustTAD 0.53 0.57 0.54 0.59 0.59 0.57 0.47 0.54 0.49 0.57 0.57 0.56
SR-CNN 0.49 0.51 0.46 0.55 0.54 0.53 0.45 0.50 0.47 0.52 0.53 0.50
NCAD 0.55 0.60 0.57 0.61 0.64 0.61 0.49 0.55 0.53 0.58 0.63 0.59

Table 6: Performance of different AD algorithms in different augmentation settings on RealTraffic
Dataset

AD Algorithm TRTR T(R+S)TR TRTS TSTR
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RobustTAD 0.74 0.65 0.67 0.78 0.70 0.73 0.64 0.63 0.62 0.76 0.69 0.69
SR-CNN 0.69 0.60 0.64 0.71 0.63 0.66 0.68 0.55 0.58 0.70 0.61 0.65
NCAD 0.75 0.66 0.69 0.78 0.69 0.71 0.75 0.65 0.67 0.77 0.67 0.69

Table 7: Performance of different AD algorithms in different augmentation settings on RealAWSCloud-
Watch Dataset

AD Algorithm TRTR T(R+S)TR TRTS TSTR
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RobustTAD 0.30 0.48 0.34 0.31 0.48 0.34 0.25 0.42 0.29 0.30 0.48 0.34
SR-CNN 0.27 0.42 0.25 0.29 0.43 0.27 0.22 0.37 0.25 0.26 0.42 0.25
NCAD 0.29 0.49 0.35 0.31 0.49 0.35 0.24 0.45 0.26 0.28 0.49 0.35

Table 8: Performance of different AD algorithms in different augmentation settings on ArtificialWith-
Anomaly Dataset

AD Algorithm TRTR T(R+S)TR TRTS TSTR
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RobustTAD 0.44 0.32 0.36 0.50 0.37 0.41 0.41 0.30 0.34 0.47 0.35 0.37
SR-CNN 0.39 0.17 0.28 0.43 0.26 0.34 0.37 0.15 0.25 0.41 0.21 0.29
NCAD 0.45 0.36 0.39 0.50 0.42 0.45 0.43 0.35 0.37 0.48 0.40 0.41

Table 9: Baseline TS AD algorithms performances across different datasets

Algorithm
Dataset w/o Aug. Mixup CutMix Combination RCGAN C-GATS

(alpha=0.2) (Scaling, Jitter,
Permute,TimeWarp)

One-liner A

Synthetic Sines 0.70 ±0.000 0.70 ±0.000 0.70 ±0.000 0.70 ±0.000 0.70 ±0.000 0.70 ±0.000
KPI 0.61 ±0.000 0.61 ±0.000 0.61 ±0.000 0.61 ±0.000 0.61 ±0.000 0.61 ±0.000

RealTweets 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000
RealTraffic 0.51 ±0.000 0.51 ±0.000 0.51 ±0.000 0.51 ±0.000 0.51 ±0.000 0.51 ±0.000

RealAWSCloudWatch 0.38 ±0.000 0.38 ±0.000 0.38 ±0.000 0.38 ±0.000 0.38 ±0.000 0.38 ±0.000
ArtificialWithAnomaly 0.19 ±0.000 0.19 ±0.000 0.19 ±0.000 0.19 ±0.000 0.19 ±0.000 0.19 ±0.000

One-liner B

Synthetic Sines 0.69 ±0.000 0.69 ±0.000 0.69 ±0.000 0.69 ±0.000 0.69 ±0.000 0.69 ±0.000
KPI 0.56 ±0.000 0.56 ±0.000 0.56 ±0.000 0.56 ±0.000 0.56 ±0.000 0.56 ±0.000

RealTweets 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000
RealTraffic 0.52 ±0.000 0.52 ±0.000 0.52 ±0.000 0.52 ±0.000 0.52 ±0.000 0.52 ±0.000

RealAWSCloudWatch 0.36 ±0.000 0.36 ±0.000 0.36 ±0.000 0.36 ±0.000 0.36 ±0.000 0.36 ±0.000
ArtificialWithAnomaly 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000

Case 1

Synthetic Sines 0.09 ±0.004 0.09 ±0.008 0.09 ±0.003 0.09 ±0.002 0.09 ±0.003 0.09 ±0.001
KPI 0.08 ±0.006 0.09 ±0.003 0.08 ±0.009 0.08 ±0.010 0.09 ±0.004 0.08 ±0.001

RealTweets 0.12 ±0.009 0.11 ±0.004 0.12 ±0.001 0.12 ±0.010 0.11 ±0.008 0.12 ±0.003
RealTraffic 0.07 ±0.002 0.06 ±0.010 0.07 ±0.005 0.07 ±0.008 0.06 ±0.001 0.07 ±0.006

RealAWSCloudWatch 0.12 ±0.002 0.12 ±0.007 0.11 ±0.001 0.11 ±0.011 0.12 ±0.005 0.11 ±0.004
ArtificialWithAnomaly 0.14 ±0.000 0.13 ±0.003 0.14 ±0.003 0.14 ±0.001 0.14 ±0.003 0.14 ±0.001

Case 2

Synthetic Sines 0.43 ±0.000 0.43 ±0.000 0.43 ±0.000 0.43 ±0.000 0.43 ±0.000 0.43 ±0.000
KPI 0.33 ±0.000 0.33 ±0.000 0.33 ±0.000 0.33 ±0.000 0.33 ±0.000 0.33 ±0.000

RealTweets 0.21 ±0.000 0.21 ±0.000 0.21 ±0.000 0.21 ±0.000 0.21 ±0.000 0.21 ±0.000
RealTraffic 0.14 ±0.000 0.14 ±0.000 0.14 ±0.000 0.14 ±0.000 0.14 ±0.000 0.14 ±0.000

RealAWSCloudWatch 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000
ArtificialWithAnomaly 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000

Case 3

Synthetic Sines 0.43 ±0.002 0.43 ±0.001 0.42 ±0.001 0.43 ±0.003 0.43 ±0.005 0.43 ±0.004
KPI 0.33 ±0.003 0.33 ±0.004 0.32 ±0.001 0.32 ±0.009 0.32 ±0.006 0.32 ±0.005

RealTweets 0.20 ±0.003 0.21 ±0.005 0.21 ±0.001 0.20 ±0.001 0.20 ±0.002 0.20 ±0.000
RealTraffic 0.18 ±0.009 0.18 ±0.010 0.18 ±0.007 0.18 ±0.003 0.18 ±0.005 0.18 ±0.011

RealAWSCloudWatch 0.19 ±0.001 0.19 ±0.002 0.19 ±0.002 0.19 ±0.000 0.19 ±0.001 0.19 ±0.003
ArtificialWithAnomaly 0.19 ±0.004 0.19 ±0.001 0.19 ±0.008 0.19 ±0.002 0.19 ±0.003 0.19 ±0.001
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Table 10: Comparison of change in detection performance under different training strategies.

AD Algorithm Dataset w/o Aug. C-GATS w/ C-GATS w/
end-to-end decoupled

training training

RobustTAD

Synthetic Sines 0.74 ±0.005 0.74 ±0.002 0.75 ±0.004
KPI 0.55 ±0.011 0.63 ±0.009 0.67 ±0.003

RealTweets 0.54 ±0.021 0.56 ±0.011 0.57 ±0.010
RealTraffic 0.67 ±0.026 0.70 ±0.021 0.73 ±0.015

RealAWSCloudWatch 0.34 ±0.262 0.33 ±0.281 0.34 ±0.192
ArtificialWithAnomaly 0.36 ±0.275 0.39 ±0.151 0.41 ±0.107

SR-CNN

Synthetic Sines 0.73 ±0.009 0.73 ±0.001 0.74 ±0.003
KPI 0.54 ±0.008 0.57 ±0.004 0.58 ±0.007

RealTweets 0.46 ±0.027 0.52 ±0.018 0.53 ±0.009
RealTraffic 0.64 ±0.021 0.65 ±0.009 0.66 ±0.020

RealAWSCloudWatch 0.25 ±0.319 0.25 ±0.220 0.27 ±0.199
ArtificialWithAnomaly 0.28 ±0.019 0.33 ±0.015 0.34 ±0.011

NCAD

Synthetic Sines 0.77 ±0.008 0.77 ±0.007 0.79 ±0.001
KPI 0.64 ±0.006 0.67 ±0.011 0.69 ±0.001

RealTweets 0.57 ±0.019 0.60 ±0.021 0.61 ±0.009
RealTraffic 0.69 ±0.029 0.71 ±0.012 0.71 ±0.019

RealAWSCloudWatch 0.35 ±0.219 0.35 ±0.117 0.35 ±0.111
ArtificialWithAnomaly 0.39 ±0.101 0.44 ±0.082 0.45 ±0.091

Table 11: Comparison of change in detection performance under different architecture choices.

AD Algorithm
Dataset w/o Aug. C-GATS w/ C-GATS w/

conditioning conditioning
at first layer at last layer

RobustTAD

Synthetic Sines 0.74 ±0.005 0.74 ±0.003 0.75 ±0.004
KPI 0.55 ±0.011 0.60 ±0.007 0.67 ±0.003

RealTweets 0.54 ±0.021 0.55 ±0.017 0.57 ±0.010
RealTraffic 0.67 ±0.026 0.67 ±0.019 0.73 ±0.015

RealAWSCloudWatch 0.34 ±0.262 0.32 ±0.198 0.34 ±0.192
ArtificialWithAnomaly 0.36 ±0.275 0.36 ±0.119 0.41 ±0.107

SR-CNN

Synthetic Sines 0.73 ±0.009 0.74 ±0.002 0.74 ±0.003
KPI 0.54 ±0.008 0.56 ±0.005 0.58 ±0.007

RealTweets 0.46 ±0.027 0.48 ±0.011 0.53 ±0.009
RealTraffic 0.64 ±0.021 0.65 ±0.019 0.66 ±0.020

RealAWSCloudWatch 0.25 ±0.319 0.25 ±0.222 0.27 ±0.199
ArtificialWithAnomaly 0.28 ±0.019 0.29 ±0.018 0.34 ±0.011

NCAD

Synthetic Sines 0.77 ±0.008 0.77 ±0.003 0.79 ±0.001
KPI 0.64 ±0.006 0.66 ±0.010 0.69 ±0.001

RealTweets 0.57 ±0.019 0.58 ±0.015 0.61 ±0.009
RealTraffic 0.69 ±0.029 0.69 ±0.021 0.71 ±0.019

RealAWSCloudWatch 0.35 ±0.219 0.35 ±0.109 0.35 ±0.111
ArtificialWithAnomaly 0.39 ±0.101 0.41 ±0.159 0.45 ±0.091

18


	Introduction
	Problem Definition
	Proposed Algorithm
	Experiments
	Qualitative Analysis
	Quantitative Analysis

	Conclusion & Future Work
	Supplementary Material
	Related Work
	Generating synthetic data using known invariances
	Generating synthetic data by learning invariances

	Dataset Description
	Evaluation Mechanisms
	Evaluation Metrics
	DA Baselines
	AD Baselines
	Ablation Study
	Dual-step training strategy
	Positioning of Conditionals
	Diversity in generation of anomalies across a fixed input

	Future Work


