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Abstract

Robotic manipulation systems operating in diverse, dy-001
namic environments must exhibit three critical abilities:002
multitask interaction, generalization to unseen scenarios,003
and spatial memory. While significant progress has been004
made in robotic manipulation, existing approaches often005
fall short in generalization to complex environmental varia-006
tions and addressing memory-dependent tasks. To bridge007
this gap, we introduce SAM2Act, a multi-view robotic008
transformer-based policy that leverages multi-resolution009
upsampling with visual representations from large-scale010
foundation model. SAM2Act achieves a state-of-the-art av-011
erage success rate of 86.8% across 18 tasks in the RLBench012
benchmark, and demonstrates robust generalization on The013
Colosseum benchmark, with only a 4.3% performance014
gap under diverse environmental perturbations. Building015
on this foundation, we propose SAM2Act+, a memory-016
based architecture inspired by SAM2, which incorporates017
a memory bank, an encoder, and an attention mechanism to018
enhance spatial memory. To address the need for evaluating019
memory-dependent tasks, we introduce MemoryBench, a020
novel benchmark designed to assess spatial memory and021
action recall in robotic manipulation. SAM2Act+ achieves022
competitive performance on MemoryBench, significantly023
outperforming existing approaches and pushing the bound-024
aries of memory-based robotic systems.025

1. Introduction026

The world in which we live is diverse and constantly chang-027
ing, encompassing a wide variety of objects, scenes, and028
environmental conditions. Consider the seemingly simple029
task of following a recipe when cooking: we can seamlessly030
perform the action of picking it up and sprinkling it into the031
pan, recognize salt even if it comes in different types of032
container, and remember whether we have already added033
salt. Humans excel in such environments because they can034
interact with their surroundings to achieve specific goals,035

generalize to unseen scenarios, and retain knowledge from 036
past experiences [33]. These abilities—multitask interac- 037
tion, generalization, and memory—serve as guiding princi- 038
ples for developing robotic systems capable of operating in 039
similarly complex environments. 040

Significant progress has been made in robotic manipula- 041
tion through prior work. Early methods, such as the Trans- 042
porter Network [39] and CLIPort [31], demonstrated effec- 043
tive 2D action-centric manipulation but were limited in their 044
ability to handle spatially complex tasks. More recent ap- 045
proaches, such as PerAct [32] and RVT [9], have pushed to- 046
ward 3D-based manipulation. PerAct employs a multitask 047
transformer that interprets language commands and predicts 048
keyframe poses, achieving strong results across a variety of 049
tasks. RVT builds on this foundation by adopting a 2.5D 050
representation, improving training efficiency and inference 051
speed. Its successor, RVT-2, further enhances performance 052
with a coarse-to-fine strategy, increasing precision for high- 053
accuracy tasks. Despite these advances, important chal- 054
lenges remain, including improving multitask performance, 055
enhancing generalization to novel environment configura- 056
tions, and integrating memory mechanisms for tasks requir- 057
ing episodic recall. 058

We introduce SAM2Act, a multi-view robotics 059
transformer-based policy that enhances feature repre- 060
sentation by integrating multi-resolution upsampling with 061
visual embeddings from large-scale foundation models. 062
Built on the RVT-2 multi-view transformer, SAM2Act 063
achieves strong multitask success and generalization. 064
Building on this foundation, we introduce SAM2Act+, 065
which incorporates a memory-based architecture inspired 066
by SAM2’s approach. Using a memory bank, an encoder, 067
and an attention mechanism, SAM2Act+ enables episodic 068
recall to solve spatial memory-dependent manipulation 069
tasks. We evaluate SAM2Act and SAM2Act+ using 070
MemoryBench, a new benchmark suite that tests policies’ 071
spatial memory capabilities and the ability to retain and 072
recall past actions. SAM2Act+ achieves competitive 073
performance on MemoryBench, with an average accuracy 074
of 94.3%, outperforming next highest baseline by a huge 075

1



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 1. SAM2Act is a multi-view, language-conditioned behavior cloning policy trained with fewer demonstrations. Given a language
instruction, it can execute high-precision tasks, such as turning the tiny knob on the lamp. It also generalizes to various environmental
variations, such as changes in lighting conditions. Through further training with our proposed memory architecture, it now evolves into
SAM2Act+, which is now capable of solving tasks that require implicit spatial memory—such as remembering where the robot previously
stored the pliers, as depicted in the above figure.

margin of 39.3%. Furthermore, we assess the general-076
ization capabilities of SAM2Act on The Colosseum077
[26], a benchmark designed to test robotic manipulation078
under various environmental perturbations. SAM2Act079
demonstrates robust performance on The Colosseum080
with an average decrease of 4.3% across all perturbations,081
highlighting its ability to generalize effectively in diverse082
and challenging scenarios. Lastly, our approach outper-083
forms the baseline methods in real-world evaluations while084
exhibiting comparable generalization and spatial memory085
capabilities.086

In summary, this work makes three key contributions.087
First, we introduce a novel model formulation that lever-088
ages visual foundation models to solve high-precision,089
memory-dependent manipulation tasks. Second, we pro-090
pose MemoryBench, a evaluation benchmark for assess-091
ing spatial memory in behavior cloning models. Finally,092
we present empirical results and insights on the model’s093
performance across both simulation and real-world tasks.094

2. Related Work095

2.1. 3D-based Robotic Transformer for Manipula-096
tion097

2D-based methods [2, 5, 31, 39, 41] are effective for sim-098
ple pick-and-place tasks due to fast training, low hardware099
requirements, and minimal computational cost. However,100
they depend on pretrained image encoders and fail in tasks101
requiring high precision, robust spatial interaction, or re-102
silience to environmental and camera variations [26]. Re-103
cent work addresses these limitations with 3D perception.104
Methods like PolarNet [4], M2T2 [38], and Manipulate-105
Anything [7] reconstruct point clouds, while C2F-ARM106
[15] and PerAct [32] use voxel-based 3D representations.107
Act3D [8] and ChainedDiffuser [36] adopt multi-scale 3D108

features. RVT [9] introduces 2.5D multi-view images for 109
faster training, refined by RVT-2 [10] with a coarse-to-fine 110
architecture for improved precision. Our work, SAM2Act, 111
combines RVT-2’s spatial reasoning with enhanced virtual 112
images from the SAM2 visual encoder, achieving high pre- 113
cision and generalization across diverse tasks. 114

2.2. Visual Representations for Robot Learning 115

Robotics research heavily relies on visual representations 116
from computer vision to process high-dimensional inputs 117
and improve policy learning. Visual representations are in- 118
tegrated into robot learning through pre-training [23–25], 119
co-training [19, 20, 29, 37], or frozen encoders [28, 34, 40], 120
all of which effectively support policy training. These 121
representations also enhance invariance, equivariance, and 122
out-of-distribution generalization [6, 26, 35]. SAM-E [40] 123
demonstrates the use of a pre-trained SAM encoder for 124
robotic manipulation by leveraging image embeddings for 125
policy learning. Expanding on this, our approach employs 126
the SAM2 visual encoder to generate image embeddings 127
for robotic transformers and utilizes its multi-resolution fea- 128
tures to improve convex upsampling for next-action predic- 129
tion. 130

2.3. Memory in Robotics 131

Memory is a fundamental component of human cognition, 132
and equipping generalist robotic agents with episodic and 133
semantic memory is crucial for enabling them to perform 134
complex tasks effectively [17]. Early research on mem- 135
ory in robotics primarily addressed navigation tasks, re- 136
lying on semantic maps that were often constrained in 137
scope [1, 3, 11]. Recent advancements leverage represen- 138
tations derived from vision-language models (VLMs) and 139
Large Vision Models (LVMs), utilizing voxel maps or neu- 140
ral feature fields to encode, store, and retrieve information 141
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[7, 13, 14, 22]. Alternative methods represent semantic142
memory for manipulation tasks using Gaussian splats to en-143
code spatial information [18, 30]. In contrast, our approach144
draws inspiration from the framework of Partially Observ-145
able Markov Decision Processes (POMDPs) [21], incorpo-146
rating memory directly into the training process. By inte-147
grating spatial memory from past actions into the agent’s148
belief state, we enhance the robustness and adaptability of149
learned policies.150

3. MemoryBench: A Memory Benchmark for151

Robotic Manipulation152

We introduce MemoryBench, a benchmark designed to153
systematically evaluate the spatial memory capabilities of154
robotic manipulation policies. In subsection 3.1, we begin155
by outlining the logic and rules behind task design. We will156
then describe the tasks we have developed in subsection 3.2.157

3.1. Task Design158

Unlike standard RLBench tasks [16], many of which in-159
volve long-horizon scenarios, our tasks are specifically de-160
signed to require spatial memory. Without such memory,161
the agent would be forced to rely on random actions. To162
create these tasks, we intentionally violate the Markov as-163
sumption, which states that in a Markov Decision Process164
(MDP), the next observation depends solely on the current165
observation and action:166

P
(
ot+1 | o1, a1, . . . , ot, at

)
= P

(
ot+1 | ot, at

)
.167

This assumption implies that knowing only ot and at is168
sufficient to predict ot+1. However, in our tasks, we de-169
sign scenarios where two distinct action histories lead to170
the same observation ot, but require different subsequent171
actions. This forces the agent to recall which action history172
led to ot to perform the correct next action. Furthermore,173
we standardized the language instructions to prevent unin-174
tentional leakage of spatial information that could aid the175
model in memory-based tasks. These principles guided the176
development of our spatial memory-based tasks.177

3.2. Spatial Memory-based Tasks178

MemoryBench extends the RLBench simulator to pro-179
vide scripted demonstrations for three spatial mem-180
ory tasks: reopen drawer, put block back, and181
rearrange block. Each task is designed to evaluate a182
specific aspect of spatial memory and adheres to the prin-183
ciples outlined in Section 3.1. To introduce complexity,184
these tasks include two to four variations and additional185
steps—such as pressing a button mid-sequence—that dis-186
rupt the Markov property. This forces the agent to rely on187
memory rather than solely on immediate observations.188

The reopen drawer task evaluates the agent’s ability189
to recall 3D spatial information along the z-axis. Initially,190

one of three drawers (top, middle, or bottom) is open. The 191
agent must close the open drawer, press a button on the ta- 192
ble, and then reopen the same drawer. After the button is 193
pressed, all drawers are closed, and the scene becomes vi- 194
sually indistinguishable, requiring the agent to use memory 195
to identify the correct drawer. This task tests the agent’s 196
ability to recall spatial states over a temporal sequence. 197
The put block back task tests the agent’s ability to re- 198
member 2D spatial information on the x-y plane. Four red 199
patches are placed on a table, with a block initially posi- 200
tioned on one of them. The agent should move the block to 201
the center of the patches, press a button, and return the block 202
to its original position. The agent must rely on its memory 203
of the block’s initial location to succeed, demonstrating its 204
capability to encode and retrieve 2D spatial information. 205

The rearrange block task evaluates the agent’s 206
ability to perform backward reasoning by recalling and re- 207
versing prior actions. Initially, one block is placed on one 208
of two red patches, while the other patch remains empty. A 209
second block is positioned at the center of both patches. The 210
agent must move the second block to the empty patch, press 211
a button, and then relocate the first block off its patch. Suc- 212
cessfully completing this task requires the agent to deter- 213
mine which block to move without having interacted with 214
the correct one in previous actions, thereby testing its ca- 215
pacity for backward spatial memory reasoning. These tasks 216
collectively evaluate both forward and backward spatial rea- 217
soning across 3D (z-axis) and 2D (x-y plane) spaces. By 218
introducing non-Markovian elements, they emphasize the 219
need for memory representations to solve complex sequen- 220
tial decision-making problems. 221

4. Method 222

Our method, SAM2Act, enables precise 3D manipulation 223
with strong generalization across environmental and object- 224
level variations. Building upon the RVT-2 framework [10], 225
SAM2Act introduces key architectural innovations that en- 226
hance visual feature representation and task-specific rea- 227
soning. The architecture reconstructs a point cloud of the 228
scene, renders it from virtual cameras at orthogonal views, 229
and employs a two-stage multi-view transformer (coarse- 230
to-fine) to predict action heatmaps. The coarse branch 231
generates zoom-in heatmaps to localize regions of inter- 232
est, while the fine branch refines these into precise action 233
heatmaps. SAM2Act leverages the pre-trained SAM2 en- 234
coder [27] to extract multi-resolution image embeddings, 235
which are further refined through the multi-resolution up- 236
sampling technique to predict accurate translation heatmaps 237
with minimal information loss. To address tasks requiring 238
spatial memory, SAM2Act+ extends the SAM2Act archi- 239
tecture by incorporating memory-based components. These 240
include Memory Bank, Memory Encoder, and Memory At- 241
tention, enabling the model to encode historical actions and 242
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Figure 2. Simulation and Real Tasks. We demonstrate the effectiveness of SAM2Act+ in solving memory-based tasks by evaluating it
against baselines on the three benchmark memory tasks (shown at the top). Additionally, we validate our approach using a Franka Panda
robot on four real-world tasks (shown at the bottom), including tests under out-of-distribution perturbations.

condition current observations. This memory-based pol-243
icy enhances the agent’s ability to predict actions based on244
past contextual information, significantly improving perfor-245
mance in tasks that require sequential decision-making.246

In the following sections, we detail the SAM2Act ar-247
chitecture (subsection 4.1), including its multi-resolution248
upsampling mechanism (Figure 4). We also present249
the SAM2Act+ extension, which integrates memory-based250
components for solving spatial memory tasks (subsec-251
tion 4.2).252

4.1. SAM2Act: Multi-Resolution Upsampling for253
Enhanced Visual Feature Representation254

A distinctive feature of SAM2Act is the incorporation of255
the SAM2Act Module into the manipulation backbone for256
training, as illustrated in Figure 4. The coarse and fine257
SAM2Act Modules share the same architecture, with the258
fine branch generating additional features to predict actions259
beyond translation, while the coarse branch focuses exclu-260
sively on translation. Point-cloud representations are recon-261
structed from raw image inputs, and virtual images are gen-262

erated from three viewpoints using virtual cameras. Instead 263
of directly inputting these images into the multi-view trans- 264
former, their RGB channels are duplicated and processed 265
by the SAM2 [27] image encoder, which produces object- 266
centric multi-resolution embeddings. These embeddings, 267
generated at three resolution levels, are combined with vir- 268
tual images containing RGB, depth, 3D translation coordi- 269
nates, and language instructions before being fed into the 270
multi-view transformer. 271

To adapt the SAM2 image encoder to our domain, 272
we fine-tune it using Low-Rank Adaptation (LoRA) [12] 273
with a default rank of 16, which enables domain adap- 274
tation with minimal computational cost while maintain- 275
ing model efficiency. Additionally, to fully leverage the 276
multi-resolution embeddings produced by the SAM2 im- 277
age encoder, we introduce a multi-resolution upsampling 278
method. This method uses the embeddings as auxiliary 279
inputs to enhance the generation of translation heatmaps, 280
thereby improving spatial precision and overall system per- 281
formance. The multi-resolution upsampling mechanism, 282
also detailed in Figure 4, leverages cascaded convex up- 283
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Figure 3. Overview of the SAM2Act (top) and SAM2Act+ (bottom) architectures. The SAM2Act architecture leverages the SAM2
image encoder to generate prompt-conditioned, multi-resolution embeddings, fine-tuned with LoRA for efficient adaptation to manipu-
lation tasks. A multi-view transformer aligns spatial coordinates with language instructions, while a cascaded multi-resolution upsam-
pling mechanism refines feature maps and generates accurate translation heatmaps. SAM2Act+ extends this architecture by incorporating
memory-based components, including the Memory Encoder, Memory Attention, and Memory Bank, into the coarse branch. These compo-
nents enable memory-driven reasoning by processing historical heatmaps and integrating prior observations, allowing the agent to predict
actions based on stored contextual information. Observations are reconstructed into point clouds, rendered into three virtual images, and
lifted into 3D translation points, enabling precise spatial reasoning across both architectures.

Figure 4. SAM2Act Module and multi-resolution upsampling
mechanism. A cascade of three convex upsamplers processes fea-
ture maps at increasing resolutions, integrating multi-resolution
embeddings from the SAM2 image encoder through elementwise
addition and layer normalization. The upsamplers progressively
refine features, doubling spatial dimensions at each stage, to gen-
erate accurate translation heatmaps while capturing fine-grained
spatial details critical for manipulation tasks.

samplers to progressively refine feature maps across resolu-284

tions. Let X l ∈ RB×Cl×Hl×W l

denote the feature maps at285

stage l and El ∈ RB×Cl×Hl×W l

the corresponding multi-286

resolution embedding from SAM2. Also let U(·) denote the 287
upsampling operator that doubles the spatial dimensions. 288
The feature maps are updated at each stage as follows: 289

X l+1 = LayerNorm
(
U(X l) ⊕ El

)
, 290

where⊕ represents element-wise addition. The upsampling 291
operator U is defined as: 292

U : RB×Cl×Hl×W l

→ RB×(Cl/2)×(2Hl)×(2W l). 293

At each stage, the output of the upsampler is combined with 294
the corresponding multi-resolution embedding El from the 295
SAM2 encoder, ensuring alignment between the multi- 296
resolution features and the decoder’s spatial refinement pro- 297
cess. A layer normalization step follows each addition to 298
stabilize training and maintain feature coherence. This re- 299
sults in direct integration of the embeddings into the trans- 300
lation heatmap generation process. The cascading structure 301
refines features across multiple resolutions, capturing fine- 302
grained spatial details critical for manipulation tasks. 303
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Algorithm 1 Forward Pass of SAM2Act+ Module

1: Initialize: Number of steps N , maximum number of
memories M , number of views V , empty memory bank
Q with V separate FIFO queues, input X

2: for i = 1 to N do
3: for j = 1 to V do
4: Get embeddings Eraw from MVT Tmv(Xj)
5: Retrieve past memoriesMold from Q[j]
6: Get memory-conditioned embeddings Emem

from Memory Attention Tmem(Eraw,Mold)
7: Predict translation heatmap H with upsampler

U(Emem)
8: Encode new memoryMnew using Memory En-

coder Emem(H, Eraw)
9: Store new memory Q[j]← Q[j] ∪ {Mnew}

10: if |Q[j]| = M then
11: Q[j]← Q[j]2:n
12: end if
13: end for
14: end for

4.2. SAM2Act+: Action Memory Architecture for304
Improved Spatial Awareness in Past Observa-305
tions306

To extend the SAM2Act architecture (subsection 4.1) with307
memory-based capabilities inspired by SAM2, we intro-308
duce SAM2Act+, a task-specific variant designed for solv-309
ing memory-based tasks. SAM2Act+ integrates the three310
core memory components from SAM2—Memory Atten-311
tion, Memory Encoder, and Memory Bank—into the coarse312
branch of SAM2Act. Originally developed for object track-313
ing in SAM2, these components are adapted to align with314
the needs of SAM2Act+, enabling the agent to retain prior315
actions and observations for sequential decision-making.316
In SAM2, the Memory Encoder processes predicted ob-317
ject masks, while the Memory Attention module fuses im-318
age embeddings with positional information from previous319
frames. SAM2Act+ adopts a similar structure: the pre-320
dicted heatmaps, which serve as binary indicators of spa-321
tial positions in the image, function analogously to object322
masks. This conceptual alignment ensures a seamless inte-323
gration of memory mechanisms, allowing the agent to lever-324
age stored information to predict subsequent actions based325
on historical context.326

Architecture. The SAM2Act+ architecture is illustrated327
in Figure 3. After pretraining SAM2Act in Stage 1, we328
freeze the SAM2 image encoder and the multi-view trans-329
former in the coarse branch, as these components effectively330
generate robust embeddings for multi-view images in ma-331
nipulation tasks. We also freeze the entire fine branch, given332
its proven ability to predict fine-grained actions accurately.333
The reason why we only fine-tune the coarse branch is be-334

cause it focuses on generating heatmaps that provide richer 335
contextual information for recalling past actions. The fine 336
branch, in contrast, primarily emphasizes small objects or 337
localized regions, which typically contain less information 338
relevant to memory-based tasks. 339

Training. To train SAM2Act+, we fine-tune the coarse 340
branch by integrating the three memory components (and 341
train them from scratch) with the multi-resolution up- 342
sampling module. During fine-tuning, consecutive ac- 343
tion keyframes are sampled as input, training the multi- 344
resolution upsampler to predict new translations condi- 345
tioned on memory. The memory components function sim- 346
ilarly to their implementation in SAM2 for object track- 347
ing, with one key distinction: the input to the Memory 348
Encoder. Instead of using image embeddings from the 349
SAM2 image encoder, we input feature embeddings gen- 350
erated by the multi-view transformer (not conditioned by 351
memory). This adaptation ensures that memory encod- 352
ing incorporates multi-view information while maintaining 353
independence in handling stored representations. Virtual 354
images are treated independently during memory encod- 355
ing and attention, with each view’s memory encoded sep- 356
arately. Feature embeddings from each view are attended to 357
using their corresponding stored memories, preserving spa- 358
tial and contextual alignment while leveraging fused multi- 359
view information. This structured approach prevents cross- 360
view interference and enhances the model’s ability to reason 361
over sequential tasks. The memory-based forward pass for 362
SAM2Act+ is outlined in 1. By incorporating the memory 363
mechanism, SAM2Act+ enhances performance in scenarios 364
requiring long-term reasoning, enabling the agent to make 365
informed decisions based on historical context. 366

5. Experiments 367

We study SAM2Act and SAM2Act+ in both simulated and 368
real-world environments. Specifically, we are interested in 369
answering the following questions: 370

§ 5.2 How does SAM2Act compare with state-of-the-art 3D 371
manipulation policies? 372

§ 5.3 Can SAM2Act generalize across object and environmen- 373
tal perturbations? 374

§ 5.4 Can SAM2Act+ solve spatial memory-based tasks that 375
other baselines cannot? 376

§ 5.5 How well does SAM2Act and SAM2Act+ perform on 377
real-world tasks? 378

5.1. Experimental Setup 379

We benchmark SAM2Act in both simulated and real-world 380
environments. The simulated environments serve as a con- 381
trolled platform to ensure reproducible and fair compar- 382
isons. The real-world experiments demonstrate the appli- 383
cability of the method to real-world settings. Section 5.1 384
details our experimental setup and outlines the evaluation 385
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Table 1. Multi-Task Performance on RLBench. We report the success rates for 18 RLBench tasks [16], along with the average success
rate and ranking across all tasks. Our method, SAM2Act, outperforms all baselines, achieving a significant performance margin of 5.8%
over RVT-2 [10], the current state-of-the-art 3D keyframe-based behavior cloning (BC) policy.

Method Avg. Success ↑ Avg. Rank ↓ Close Jar Drag Stick Insert Peg Meat off Grill Open Drawer Place Cups Place Wine Push Buttons

PerAct [32] 49.4 ± 4.3 4.6 55.2 ± 4.7 89.6 ± 4.1 5.6 ± 4.1 70.4 ± 2.0 88.0 ± 5.7 2.4 ± 3.2 44.8 ± 7.8 92.8 ± 3.0
RVT [9] 62.9 ± 3.7 3.6 52.0 ± 2.5 99.2 ± 1.6 11.2 ± 3.0 88.0 ± 2.5 71.2 ± 6.9 4.0 ± 2.5 91.0 ± 5.2 100.0 ± 0.0
RVT-2 [10] 81.4 ± 3.1 1.9 100.0 ± 0.0 99.0 ± 1.7 40.0 ± 0.0 99.0 ± 1.7 74.0 ± 11.8 38.0 ± 4.5 95.0 ± 3.3 100.0 ± 0.0
SAM-E [40] 70.6 ± 0.7 2.6 82.4 ± 3.6 100.0 ± 0.0 18.4 ± 4.6 95.2 ± 3.3 95.2 ± 5.2 0.0 ± 0.0 94.4 ± 4.6 100.0 ± 0.0
SAM2Act (Ours) 86.8 ± 0.5 1.8 99.0 ± 2.0 99.0 ± 2.0 84.0 ± 5.7 98.0 ± 2.3 83.0 ± 6.0 47.0 ± 6.0 93.0 ± 3.8 100.0 ± 0.0

Method Put in Cupboard Put in Drawer Put in Safe Screw Bulb Slide Block Sort Shape Stack Blocks Stack Cups Sweep to Dustpan Turn Tap

PerAct [32] 28.0 ± 4.4 51.2 ± 4.7 84.0 ± 3.6 17.6 ± 2.0 74.0 ± 13.0 16.8 ± 4.7 26.4 ± 3.2 2.4 ± 2.0 52.0 ± 0.0 88.0 ± 4.4
RVT [9] 49.6 ± 3.2 88.0 ± 5.7 91.2 ± 3.0 48.0 ± 5.7 81.6 ± 5.4 36.0 ± 2.5 28.8 ± 3.9 26.4 ± 8.2 72.0 ± 0.0 93.6 ± 4.1
RVT-2 [10] 66.0 ± 4.5 96.0 ± 0.0 96.0 ± 2.8 88.0 ± 4.9 92.0 ± 2.8 35.0 ± 7.1 80.0 ± 2.8 69.0 ± 5.9 100.0 ± 0.0 99.0 ± 1.7
SAM-E [40] 64.0 ± 2.8 92.0 ± 5.7 95.2 ± 3.3 78.4 ± 3.6 95.2± 1.8 34.4 ± 6.1 26.4 ± 4.6 0.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
SAM2Act (Ours) 75.0 ± 3.8 99.0 ± 2.0 98.0 ± 2.3 89.0 ± 2.0 86.0 ± 4.0 64.0 ± 4.6 76.0 ± 8.6 78.0 ± 4.0 99.0 ± 2.0 96.0 ± 5.7

methodology.386

Simulation Setup. All simulated experiments were con-387
ducted in the CoppeliaSim environment via PyRep, using a388
7-DoF Franka Emika Panda robot in a tabletop setting. Ob-389
servations were captured from five RGB-D cameras—front,390
left shoulder, right shoulder, overhead and wrist—each at391
128 px × 128 px. The robot receives a keyframe specify-392
ing translation and quaternion orientation and utilizes an393
OMPL-based motion planner to move to the target pose.394

Real-robot Setup. We validate SAM2Act in real-world395
scenarios using a Franka Emika Panda robot with a Robotiq396
2F-85 gripper and a exocentric Intel RealSense D455 depth397
sensor. We study four manipulation tasks, aligning three398
with RVT-2 for comparison and introducing a new memory-399
based task. For each task, we collect 10–15 demonstrations400
via kinesthetic teaching and scripted execution with scene401
and object variations. As in Figure 2, we evaluate SAM2Act402
against RVT-2 for tasks (a)–(c) and SAM2Act+ for mem-403
ory task (d). Each task undergoes 10 in-distribution and 10404
out-of-distribution trials, including environmental perturba-405
tions, measuring total success.406

18 RLBench & MemoryBench Tasks. To evaluate the407
general performance of SAM2Act and the memory capabil-408
ities of SAM2Act+, we conducted simulation experiments409
on two benchmarks: a subset of 18 tasks from RLBench and410
MemoryBench. RLBench is a standard multi-task manip-411
ulation benchmark, from which we selected 18 tasks well-412
studied in prior work. MemoryBench is a curated set of413
three tabletop manipulation tasks in CoppeliaSim that re-414
quire the trained policy to have both semantic and spatial415
memory of past scenes and actions. In both benchmarks,416
each task is defined by a language instruction with 2–60417
variations (e.g., handling objects, locations, and colors). We418
collected 100 demonstrations per task for training and held419
out 25 unseen demonstrations per task for testing. All poli-420
cies are evaluated four times to obtain standard deviations.421

3D Baselines. We benchmark SAM2Act and422
SAM2Act+ against the current state-of-the-art 3D next-423
best-pose prediction model, RVT-2. RVT-2 is a multi-424

view robotics transformer that leverages a coarse-to-fine ap- 425
proach on the constructed point cloud to predict the next 426
best action heatmap. We also compare with RVT [9], Per- 427
Act [32], and SAM-E [40]. 428

5.2. Performances Across 18 RLBench Tasks 429

Table 1 compares SAM2Act with prior keyframe-based 430
3D BC methods on the RLBench benchmark. Overall, 431
SAM2Act achieves an average success rate of 86.8%±0.5, 432
surpassing the previous best (RVT-2) by 5.4%. A closer 433
look at individual tasks reveals that SAM2Act ranks first 434
in 9 out of 18 tasks and remains highly competitive in 435
7 others, coming within one successful attempt or 4% 436
of the best performance. These tasks include Close Jar, 437
Drag Stick, Meat Off Grill, Place Wine, Screw Bulb, Sweep 438
to Dustpan, and Turn Tap. The largest margin of im- 439
provement occurs in Insert Peg, where SAM2Act ex- 440
ceeds RVT-2 by 44% (approximately 2.1×), and in Sort 441
Shape, where it outperforms RVT-2 by 29%. Both tasks 442
require precise manipulation, underscoring the effective- 443
ness of SAM2Act’s multi-resolution upsampling strategy. 444
These results establish SAM2Act as a leading policy for 445
complex 3D tasks, highlighting its ability to handle high- 446
precision manipulations - an area where prior methods have 447
struggled. 448

5.3. Semantic Generalization across Tasks 449

The results evaluated in subsection 5.2 were obtained 450
by training and testing models within the same environ- 451
ment. However, to truly assess generalization perfor- 452
mance, policies must remain robust against both environ- 453
mental and object-level perturbations. We therefore trained 454
SAM2Act and the baseline methods on 20 tasks from The 455
Colosseum benchmark and tested them under 13 different 456
perturbation categories over three runs. SAM2Act exhibits 457
the smallest performance drop compared to the base- 458
lines, with an average decrease of 4.3% (standard deviation 459
of 3.59%). Notably, it proves particularly robust to envi- 460
ronmental perturbations – such as changes in lighting, table 461

7



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. The Colosseum results. Task-average success rate percentage change for SAM2Act and other baselines across 13 perturbation
factors from The Colosseum, relative to evaluations without perturbations. Our approach, SAM2Act, demonstrates the lowest average
percentage change across all perturbations, with a minimal drop of -4.3±3.6%, highlighting its robustness in handling various environmen-
tal and object-level perturbations.

Method Average ↑ MO-Color ↑ RO-Color ↑ MO-Texture ↑ RO-Texture ↑ MO-Size ↑ RO-Size ↑
RVT-2 [10] -19.5±2.8 -20.7±1.0 -11.8±0.8 -13.3±4.6 -11.4±3.7 -13.2±3.1 -17.7±0.1
SAM2Act (SAM2→ SAM) -20.7±1.2 -26.1±0.7 -15.7±2.9 -15.0±3.3 -16.5±6.2 -18.7±1.9 -19.8±1.3
SAM2Act (w/o Multi-res Input) -19.1±4.5 -15.5±6.4 -13.5±4.6 -20.4±0.5 -16.6±6.1 -21.3±7.5 -12.6±7.5
SAM2Act (Ours) -4.3±3.6 -1.1±2.5 -0.7±7.2 -3.3±2.4 24.72±6.1 -15.9±5.0 0.9±6.8

Method Light Color ↑ Table Color ↑ Table Texture ↑ Distractor ↑ Background Texture ↑ Camera Pose ↑ All Perturbations ↑
RVT-2 [10] -15.6±1.3 -26.5±4.4 -14.6±4.4 -4.9±5.3 -4.4±4.0 -19.5±2.8 -77.9±1.7
SAM2Act (SAM2→ SAM) -16.3±1.2 -23.5±5.3 -12.3±3.1 0.6±2.9 -5.4±3.2 -20.7±1.2 -79.5±2.5
SAM2Act (w/o Multi-res Input) -7.2±3.6 -18.3±6.1 -17.5±3.3 -4.6±3.5 -5.7±3.5 -19.1±4.5 -73.8 ±2.2
SAM2Act (Ours) 4.5±4.4 1.1±2.5 -3.7±5.2 1.7±1.7 -1.5±2.7 -4.3±3.6 -58.3±4.4

color/texture, the addition of distractors, and even camera462
pose – while also maintaining competitive performance un-463
der object-level perturbations.464

5.4. Performance on MemoryBench465

In Table 3, we evaluate SAM2Act+ against SoTA 3D466
BC model, RVT-2 on MemoryBench, training all mod-467
els in a single-task setting to isolate memory-related468
challenges (e.g., opening the wrong drawer rather than469
unrelated mid-task failures). This setup ensures that470
performance differences stem from memory capabili-471
ties. For a random agent, the expected success rates472
are determined by the number of possible choices per473
task: 33% for reopen drawer (three drawers), 25%474
for put block back (four patches), and 50% for475
rearrange block (two blocks). However, variations476
in task complexity, fixed training data, and imbalanced477
task distributions lead to slight deviations from these base-478
lines. Our proposed memory-based model, SAM2Act+,479
demonstrates a strong understanding of spatial memory,480
achieving an average success rate of 94.3% across all tasks.481
It outperforms SAM2Act (without memory) by a huge482
margin of 39.3% on MemoryBench, highlighting the sig-483
nificant impact of explicit memory modeling.484

Table 3. Performance on MemoryBench. We report the success
rates for the three spatial memory tasks in MemoryBench. Our
method, SAM2Act+, significantly outperforms all baseline meth-
ods that lack an explicit memory mechanism, achieving an average
improvement of 37.6% across all three tasks.

Methods / Tasks Avg. Success ↑ (a) Reopen Drawer (b) Put Block Back (c) Rearrange Block

RVT-2 54.0 ± 5.3 60.0 ± 0.0 50.0 ± 2.3 52.0 ± 3.3
SAM2Act (Ours) 55.0 ± 24.3 48.0 ± 0.0 35.0 ± 3.8 82.0 ± 2.3

SAM2Act+ (Ours) 94.3 ± 9.0 84.0 ± 0.0 100.0 ± 0.0 99.0 ± 2.0

5.5. Real-robot Evaluations485

Table 4 presents our real-world experiment results, where486
our method achieves a 75% task success rate, compared to487
43% for RVT-2. SAM2Act significantly outperforms the488

baseline in high-precision tasks (60% vs 0%). It excels 489
in memory-based tasks, such as (d) Push the same 490
button, which requires recalling the button’s previous lo- 491
cation. Here, SAM2Act achieves 70% success, while RVT- 492
2, relying on random guessing, scores 40%. We also test 493
models’ generalization against perturbations like lighting 494
changes, distractors, and position variations. 495

Table 4. Real-world results. We compare RVT2 against
SAM2Act for the first three tasks and SAM2Act+ on the last real-
world tasks (indicated with *), evaluating performance both in-
distribution and out-of-distribution during test time.

In-Distribution Out-Distribution

Task RVT-2 SAM2Act RVT-2 SAM2Act

(a) turn on the lamp 0/10 6/10 0/10 6/10
(b) push button sequence 4/10 9/10 1/10 9/10
(c) stack cubes 8/10 8/10 3/10 3/10
(d) push the same button * 4/10 7/10 2/10 6/10

6. Conclusion & Limitation 496

We introduce SAM2Act, a multi-view, language- 497
conditioned behavior cloning policy for 6-DoF 3D 498
manipulation, enabling high-precision manipulations 499
while generalizing effectively to unseen perturbations. 500
Building on this foundation, we propose SAM2Act+, a 501
memory-based multi-view language-conditioned robotic 502
transformer-based policy that equips the agent with spatial 503
memory awareness, allowing it to solve spatial memory- 504
based tasks. While both SAM2Act and SAM2Act+ achieve 505
SOTA performance across multiple benchmarks, chal- 506
lenges remain in extending them to dexterous continuous 507
control. Additionally, SAM2Act+ relies on a fixed memory 508
window length, which differs from task to task, limiting 509
its adaptability to tasks of varying length. Despite these 510
challenges, we believe SAM2Act+ is an important step 511
towards memory-based generalist manipulation policies. 512
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