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Abstract

Large pre-trained models are capable of few-
shot in-context learning (ICL), i.e., performing
a new task by prepending a few demonstrations
before the test input. However, the concate-
nated demonstrations are often excessively long
and induce additional computation. Inspired
by fusion-in-decoder (FiD) models which effi-
ciently aggregate more passages and thus out-
performs concatenation-based models in open-
domain QA, we hypothesize that similar tech-
niques can be applied to improve the efficiency
and end-task performance of ICL. To verify
this, we present a comprehensive study on ap-
plying three fusion methods—concatenation-
based (early fusion), FiD (intermediate), and
ensemble-based (late)—to ICL. We adopt a
meta-learning setup where a model is first
trained to perform ICL on a mixture of tasks us-
ing one selected fusion method, then evaluated
on held-out tasks for ICL. Results on 11 held-
out tasks show that FiD-ICL matches or outper-
forms the other two fusion methods. Addition-
ally, we show that FiD-ICL (1) is 10x faster
at inference time compared to concat-based
and ensemble-based ICL, as we can easily pre-
compute the representations of in-context ex-
amples and reuse them; (2) enables scaling up
to meta-training 3B-sized models, which would
fail for concat-based ICL.1

1 Introduction

Large pre-trained models demonstrated remarkable
performance in learning new language tasks via
few-shot fine-tuning (FT)—initializing a model
with pre-trained weights and optimizing it based
on a few examples (Zhang et al., 2021). FT-based
approaches currently achieve state-of-the-art per-
formance (Liu et al., 2022), yet they require back-
propagating and computing gradients over the full
models, which can be prohibitive under memory
and resource constraints.

†Work done while interning at Allen Institute for AI.
1Code: https://github.com/INK-USC/FiD-ICL
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Figure 1: Overview. In this study we compare different
methods to incorporate examples for in-context learning.
We term these as “fusion methods”. ⊕ marks where and
how fusion is implemented.

An alternative approach to few-shot learning is
in-context learning (ICL). By concatenating a few
examples and prepending them before the test in-
stance, the model can perform a new task read-
ily (Brown et al., 2020). ICL is more efficient at
its “learning” stage, as it only uses one forward-
pass and does not require gradients at all. Yet it
is less efficient at inference stage, as the concate-
nated examples can become overly long and induce
excessive computational costs. Additionally, ICL
performance typically falls short of FT-based meth-
ods (Liu et al., 2022).

These limitations and trade-offs between ICL
and FT motivate our exploration of methods that
are efficient at both few-shot learning and inference
time. In particular, we aim to achieve this by explor-
ing different methods that incorporate (or “fuse”)
the in-context examples during inference. We draw
connections between open-domain QA (Chen and
Yih, 2020) and ICL, since both problems task a
model with reading long context (multiple retrieved
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passages vs. multiple examples) and making a pre-
diction based on the context (answer a relevant
question vs. infer about a new input). Further, we
draw inspiration from fusion-in-decoder (FiD; Izac-
ard and Grave 2021), a method that can efficiently
“aggregate evidence” from many retrieved passages
to answer open-domain questions. Given that FiD
models significantly outperforms concatenation-
based methods for open-domain QA, we hypothe-
size that FiD can be applied to ICL analogously to
improve its efficiency and end-task performance.

To verify this, we present a systematic compar-
ison of three different methods to incorporate in-
context examples: concatenation-based, fusion-in-
decoder, and ensemble-based (Fig. 1). We term
them as “fusion” methods, and characterize them as
early, intermediate, and late fusion, based on their
formulation. We conduct comprehensive experi-
ments with the P3 dataset (Sanh et al., 2022) in a
meta-learning setting similar to Min et al. (2022b)–
i.e., a model is first trained to perform ICL on a
mixture of tasks using one selected fusion method,
then evaluated on held-out tasks for ICL.

Our empirical results suggest that, while being
significantly more efficient on computation com-
plexity and memory usage, FiD-ICL is comparable
to or outperforms the other two fusion methods
on the 11 P3 held-out tasks. This observation is
consistent across three different model sizes. No-
tably, given the memory efficiency of FiD-ICL, we
are able to meta-train 3B-sized ICL models within
an academic budget, which would lead to out-of-
memory errors and fail in the case of concatenation-
based ICL. Our best model, FiD-ICL trained from
T5-LM-XL (3B), narrows the gap with T-Few (Liu
et al., 2022)–a state-of-the-art few-shot FT method–
to 3% difference in accuracy.

Moreover, our formulation of FiD-ICL decou-
ples the computation of few-shot examples and the
test input, allowing the computation over the few-
shot examples to be pre-computed and reused. As
a result, FiD-ICL is up to 10x faster at inference
time compared to the other two fusion methods.
We further support this argument with computation
cost analysis and inference speed tests.

However, it is still questionable whether the ICL
models we investigate learn effectively from the
few-shot examples. We replicate a set of diagnostic
experiments in Min et al. (2022c) by perturbing the
in-context examples (e.g., using fewer/more shots,
replacing correct labels with random labels). We

found that ICL methods, regardless of what fusion
method is employed, are still rather insensitive to
these perturbations, and do not rely on input-label
mapping as much as expected. These observations
call for further investigation and efforts to improve
the effectiveness of in-context learning.

2 Related Work

Few-shot Fine-tuning. It has been shown that
fine-tuning a large pre-trained model with only a
few examples yields strong performance on a wide
range of NLP tasks (Zhang et al., 2021). The per-
formance can be further improved by incorporating
prompts and demonstrations in the input (Schick
and Schütze, 2021; Gao et al., 2021). Moreover,
parameter-efficient fine-tuning methods can be ap-
plied to improve memory and storage costs (Liu
et al., 2022). However, these methods are still rel-
atively expensive at training time as they require
back-propagating through the full model.

In-Context Learning. In-context learning (ICL)
is an alternative approach for few-shot learning by
simply concatenating the few-shot examples and
using them as a prompt before the actual inference
example. Very large pre-trained models, such as
GPT-3 (Brown et al., 2020) and PaLM (Chowdhery
et al., 2022), are capable of ICL off the shelf (i.e.,
without any gradient update) and achieve compet-
itive performance. Smaller models can be meta-
trained to obtain this capability (Chen et al., 2022;
Min et al., 2022b). We follow the latter problem
setting and focus on smaller models (up to 3B size).
One disadvantage of ICL is that the inference cost

grows rapidly as the number of few-shot examples
increases. Researchers also find that ICL models
do not rely on input-label mapping as much as ex-
pected, casting doubts on the effectiveness of ICL
(Min et al., 2022c).

Zero-shot/Few-shot Task Generalization. To-
wards the goal of building a generalist NLP sys-
tem, recent works adopt a meta-learning paradigm
(Schmidhuber, 1987) and propose to meta-train
a model on a set of given tasks (i.e., meta-train
set). The resulting model is expected to solve novel
tasks (in a meta-test set) in a zero-shot or few-shot
setting. This is made possible by unifying task
format with prompts (Zhong et al., 2021; Sanh
et al., 2022; Wei et al., 2022), providing task in-
structions/descriptions (Weller et al., 2020; Mishra
et al., 2022; Wang et al., 2022b), and scaling up



and diversifying the meta-train set (Ye et al., 2021;
Chung et al., 2022). The meta-training set is typ-
ically utilized with multi-task learning (Caruana,
1997) or model-agnostic meta-learning (Finn et al.,
2017). In this work, we compare different fusion
methods in such meta-learning setting. In particu-
lar, we focus on applying fusion-in-decoder tech-
nique to ICL and investigate the benefits and limi-
tations of it.

3 Investigating Fusion Methods for ICL

3.1 Problem Setting

Overview. Our goal is to build models that are
capable of few-shot in-context learning without gra-
dient updates when handling an unseen task. Prior
work show that such capabilities can be obtained by
learning from a collection of seen tasks and train-
ing the model on concatenation-based in-context
learning (Chen et al., 2022; Min et al., 2022b). In
this work, we examine alternative ways to synthe-
size and incorporate information in multiple shots
(i.e., “fusion method”).

Data. We use three non-overlapping sets of tasks,
meta-train (Ttrain), meta-valid (Tvalid), and meta-
test (Ttest). We assume all tasks are in text-to-text
format. Each task T in Ttrain contains a set of
training examples, i.e., T = {(x, y)}. Tasks in
Tvalid and Ttest are few-shot. Each task T in Tvalid

or Ttest contains a support set and a query set.2

Models in this study are expected to learn from

the k-shot support set {(x
(s)
i , y

(s)
i )} without gra-

dient updates, and do inference on the query set

{(x
(q)
i , y

(q)
i )}. Additionally, we assume all tasks in

Tvalid and Ttest can be evaluated with rank classifi-
cation, with a set of choices C given for each query

example (x
(q)

, y
(q)

). In this case, the model does
inference by ranking the probabilities assigned to
each choice c ∈ C.

Meta-Training and Inference Procedure. We
closely follow the procedure described in MetaICL
(Min et al., 2022b). In the meta-training phase,
we first sample one task T from Ttrain, then sample

k support examples {(x
(s)
i , y

(s)
i )} and m query ex-

amples {(x
(q)
i , y

(q)
i )} from the task. We update the

model (using a selected fusion method) to minimize
the loss of generating the correct target sequences

2Support/query set are the same as few-shot train/test set.
We adopt these terms to distinguish from meta-train/meta-test.

y
(q)
i . In the meta-test/inference phase, for each un-

seen task in Ttest, we are given a fixed set of k-shot
support examples, and the model is expected to do

inference on all query examples {(x
(q)
i , y

(q)
i )}.

3.2 Fusion Methods

Previously in Fig. 1 we provide the visualizations
of fusion methods that we compare. In this section,
we reinstate our motivations and describe them
more formally.

Overview. Fusion-in-decoder (Izacard and
Grave, 2021) is a competitive method for in-
corporating multiple retrieved documents for
open-domain QA, and it significantly outperforms
concatenation-based methods (Lewis et al., 2020b).
Bringing these insights to few-shot learning,
in-context learning can be viewed as concatenating
the raw text of few-shot examples and doing

“early fusion”. We investigate whether doing fusion

at later stages, such as fusion-in-decoder (i.e.,
“intermediate fusion”) or ensemble (i.e., “late

fusion”) will bring additional benefits.3

Early Fusion: Concatenation-based ICL.

This refers to the method of concatenat-
ing (x

(s)
1

, y
(s)
1

, ..., x
(s)
k , y

(s)
k , x

(q)
) into a

long text input and feeding this sequence
to a model. The model is expected to

generate y
(q). Specifically, we compute

argmaxc∈C P (c∣x
(s)
1

, y
(s)
1

, ..., x
(s)
k , y

(s)
k , x

(q)
).

Note that in transformer models the computation
cost typically grow quadratically with sequence
length (and thus the number of shots).

Intermediate Fusion: Fusion-in-decoder (FiD).

In fusion-in-decoder, the support examples

(x
(s)
1

, y
(s)
1

), ..., (x
(s)
k , y

(s)
k ) and the query x

(q) are
encoded separately by the same encoder layers in
the transformer model. The representations pro-
duced by the last encoder layer are then concate-
nated (i.e., “fused”) and sent to the decoder layers.
In this way, the computation cost grows linearly
with the number of shots.

Note that our formulation is slightly different
from the original fusion-in-decoder models for
open-domain QA (ODQA). In ODQA, the ques-

tion (x(q)) is first concatenated with each retrieved

paragraph (x
(s)
i ) and then encoded separately by

3The terms of early/intermediate/late fusion are inspired by
multi-modal literature, but their meanings are slightly different
in this work.



Method
Meta-Train Meta-Test
T0 ICL Fine-tune # shots

Initialize from T5-LM

Zero-shot % % % 0
Concat/FiD/Ensemble-ICL % ! % k

Simple/TFew Fine-tune % % ! k

Initialize from T0

Zero-shot ! % % 0
Concat/FiD/Ensemble-ICL ! ! % k

Simple/TFew Fine-tune ! % ! k

Table 1: Meta-training and inference procedure for all
compared methods.

the model. For ICL, we decouple the computation
of support examples and the query example. In this
way, the support examples can be encoded only
once and re-used throughout the inference phase.
See §5.2 for discussion.

Late Fusion: Ensemble-based ICL. Early
fusion and intermediate fusion naturally bring
us to the idea of ensemble-based approaches,
which are effectively doing “late fusion”. They
are previously explored in Min et al. (2022a)
for classification tasks and demonstrate com-
petitive performance. We implement this by
training one-shot concat-based ICL models and
aggregating the k different predictions at in-
ference time. More specifically, we compute

argmaxc∈C ∑k
i=1 P (c∣x

(s)
i , y

(s)
i , x

(q)
). Theoreti-

cally, the cost of ensemble-based ICL grows lin-
early with the number of shots.

Other Variants. Adapting FiD in open-domain
QA for ICL is non-trivial. In the early stages of this
work, we also examined two more variants named
as FiD-Pairwise and FiD+Ensemble. FiD-Pairwise
is closer to the original FiD implementation for
open-domain QA. FiD+Ensemble a hybrid method
that combines the techniques in FiD and Ensem-
ble. Details are elaborated in Fig 6 and §A.1. The
fusion-in-decoder design illustrated in Fig. 1 is the
best one in our preliminary study, and therefore we
adopt it in the main experiments.

4 Experiment Settings

4.1 Data

We use Public Pool of Prompts (P3) dataset (Sanh
et al., 2022). The dataset includes a collection of
diverse NLP tasks with crowd-sourced prompt tem-
plates. The tasks are partitioned into a Meta-Train
set and a Meta-Test set. In the main experiments

we use all 11 tasks in the meta-test set (Meta-Test-
11). For analysis experiments, we use a subset of
7 tasks for faster experimentation (Meta-Test-7).
We use 16 shots for all few-shot experiments, un-
less specified otherwise. Additionally, we use 14
BIG-bench tasks (Srivastava et al., 2023) as a Meta-
Validation set for selecting the best checkpoint. We
provide the full list of datasets and more details in
Table 4 and §B.

4.2 Model

We limit our scope to encoder-decoder models for
our experiments.4 We use T5-LM-Adapt models5

and T0 models (Sanh et al., 2022) as initializations
in our experiments. The two model groups have the
same model architecture but different weights; T0
is trained to multi-task on the P3 meta-train set us-
ing T5-LM-Adapt as initialization. We experiment
with models of three different sizes: Base (250M),
Large (800M), XL (3B).6

4.3 Compared Methods

The goal of using few-shot ICL methods is to learn
from the few-shot examples so that it improves
on top of zero-shot performance; further, we aim
to close its gap to few-shot fine-tuning, which re-
quires gradient updates. To quantify these, we in-
clude zero-shot inference and few-shot fine-tuning
in our experiments, in addition to the three fusion
methods that we compare. We provide an overview
of the training and evaluation procedure of these
methods in Table 1.

Zero-shot. We directly evaluate T5-LM-Adapt
and T0 models on the Meta-Test, in the zero-shot
setting.

Few-shot ICL. We initialize from either T5-LM-
Adapt or T0, meta-train it with the three fusion
methods (concatenation, fusion-in-decoder, ensem-
ble) described in §3.2. We evaluate all saved check-
points on Meta-Validation, then evaluate the one
selected checkpoint on Meta-Test. Unless speci-
fied otherwise, we use 16 shots during training and
evaluation.

4We elaborate our discussion on encoder-decoder vs.
decoder-only models in §A.4.

5
https://huggingface.co/google/t5-xl-lm-adapt

6We replicate the experiment setting in Sanh et al. (2022)
and trained our own T0-Base/Large/3B model for this work.
Notably, our reproduction of T0-3B outperforms the public
checkpoint by a large margin, suggesting that the public T0-
3B checkpoint may be undertrained. See §C.1 for details on
training these models.

https://huggingface.co/google/t5-xl-lm-adapt
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Figure 2: Main Results on Meta-Test-11. Bar height represents average accuracy on Meta-Test-11. X-tick labels
represent the model size and initialization. Methods within each size group should be compared together (see
Table 1 for difference in training procedure). ⋆ marks the best ICL method in each size group, ▲ marks the best
fine-tuning method in each size group. Observations: (1) FiD-ICL outperforms Concat-ICL and Ensemble-ICL in
all three size groups. (2) FiD-ICL (T5-LM XL) narrows the performance gap between ICL and T-Few to be 3%.

Few-shot Fine-tuning. For each meta-test task,
we fine-tune either T5-LM-Adapt or T0 with the
few-shot examples. Apart from simple fine-tuning,
we also experiment with the T-Few fine-tuning
recipe (Liu et al., 2022), which updates only a
small portion of parameters, and includes an unlike-
lihood loss and a length normalization loss during
fine-tuning.

4.4 Reporting the Results

For a high-level comparison across different meth-
ods, we report Meta-Test-11 average accuracy.
Note that this one number is taking average on
three levels: (1) averaging over the 11 held-out
tasks; (2) for each task, averaging over all prompts
associated with the task (in P3 dataset, each task is
accompanied with multiple prompts); (3) for each
(task, prompt) pair, averaging over 5 different sam-
ples of few-shot examples, to mitigate the influence
brought by a specific set of few-shot examples.

We also report detailed per-task performance of
Meta-Test-11 for more fine-grained analysis.

5 Experiment Results

5.1 Performance on Held-out Tasks

Following our experiment settings, we present the
results of all compared methods in Fig. 2. We have
the following observations. Firstly, we highlight
that the efficient design of FiD-ICL and Ensemble-
ICL enables us to train them in a larger scale (e.g.,
3B models) on an academic budget. We fail to do
so for Concat-ICL as training with a max sequence
length of 4096 results in out-of-memory errors.7

74096 tokens = 16 examples × 256 tokens/example. We
are able to train 3B models when reducing k to 4, and we
include the result in Table 7 for completeness. Our conclusion

Secondly, when comparing the three fusion meth-
ods, FiD is comparable or outperforms the other
two fusion methods in all three model sizes. Izac-
ard and Grave (2021) attribute the success of FiD to
“scaling to large number of contexts” in the encoder
and “better aggregating evidence from multiple pas-
sages” in the decoder. We conjecture that the same
inductive biases are also beneficial for few-shot
ICL. Thirdly, our best FiD-ICL model (trained
from T5-LM XL) achieves an average accuracy of
60.0% on Meta-Test-11. As a gradient-free method,
this leaves a 1.4% gap compared to simple fine-
tuning, and a 3.0% gap to T-Few fine-tuning (using
T0-3B). This demonstrates the great potential of
gradient-free ICL methods, and we hope future
work can further improve ICL to close the gap.

5.2 Efficiency

One major motivation of our work is efficiency—to
find a few-shot learning method that is efficient at
both few-shot learning and inference time. In this
section we estimate and compare the computational
cost and inference speed of all methods.

Computation Complexity. Our estimation is
based on the following assumptions: (1) the output
length lout is much smaller than the input length
lin, i.e., lout ≪ lin, so that the cost for an input
(lin) and a complete in-context example (lin + lout)
are roughly comparable, i.e., lout + lin ≈ lin; (2)
training (forward and backward pass) requires 3
times the cost of inference (forward pass) (Liu
et al., 2022). We use M1,M2,M3 to represent
the baseline cost for one forward pass using a zero-
shot model over one example in the encoder self-
attention layers, decoder cross-attention layers and

on performance and efficiency remains the same.



Zero-shot Concat. FiD Ensemble Simple FT

Complexity Analysis

Pre-Inference 0 0 kM1 0 > 3kN(M1 +M2 +M3)

Inference (Encoder Self Attn) M1 (k + 1)
2
M1 M1 4kM1 M1

Inference (Decoder Cross Attn) M2 (k + 1)M2 (k + 1)M2 2kM2 M2

Inference (Decoder Self Attn) M3 M3 M3 kM3 M3

Run Time: RTE (277 test examples)

Pre-Inference (time; sec) - - 0.2 - 151.2
Inference (speed; #examples/sec) 46.2 2.7 24.0 1.8 46.2
Pre-Inference + Inference (time) 1x 17x 2x 26x 26x

Run Time: StoryCloze (1871 test examples)

Pre-Inference (time; sec) - - 0.1 - 126.0
Inference (speed; #examples/sec) 72.6 2.7 28.1 2.5 72.6
Pre-Inference + Inference (time) 1x 27x 3x 29x 6x

Performance (Meta-Test-11 Avg.)

Performance (Large)⋆ 52.4 53.2 55.2 54.5 56.6
Performance (XL)⋆ 51.0 N/A 60.0 57.7 61.4

Table 2: Computation Cost Comparison. M1/M2/M3 stands for the unit computation costs used for one forward
pass over one example. N is the number of epochs over the k shots during fine-tuning. See §5.2 for assumptions
and details. Run time is measured when evaluating large-size (800M) models. ⋆We list the performance of the
better model between T5-LM and T0 initialization.

decoder self-attention layers, respectively. Compu-
tation costs of other methods will be represented in
multipliers of M1,M2,M3.

We summarize our estimation in the top sec-
tion of Table 2. (1) We use “pre-inference cost”
in the table to represent the one-time costs. For
FiD-ICL, this refers to the cost of pre-computing
the representations of examples using the encoder.
For few-shot FT, this refers to the cost of applying
gradient-based optimization. FiD-ICL has a sig-
nificantly smaller pre-inference cost compared to
few-shot FT. (2) In terms of inference cost, FiD-
ICL is more efficient than the other two fusion
methods in all the layers that we list. It uses kM2

more computation in the decoder cross attention
layers compared to a zero-shot or fine-tuned model.

Inference Speed. Additionally, we select two
tasks (RTE and StoryCloze) in the meta-test set
and measure the run time. For few-shot FT, we
optimize the model for 300 updates, which is the
recommended value in T-Few (Liu et al., 2022). In
Table 2, we show that FiD-ICL is up to 10x faster
than the other two fusion methods. Moreover, FiD-
ICL, while achieving competitive performance, is
faster than few-shot FT when pre-inference and
inference time are combined.

Note that inference speed comparison above is
dependent on number of test examples. In practice,
when the test set is larger, the pre-inference cost
will be amortized and FT will become faster when

pre-inference cost and inference cost are summed.
The break-even point for FiD-ICL and FT appears
at 3.4k test instances for RTE and 5.6k test in-
stances for Story Cloze. Therefore we believe FiD-
ICL is most useful when the test set is small or
when fast prototyping is needed.

6 Analysis

In this section we evaluate our ICL models in var-
ious scenarios, in hope to better understand their
behavior and limitations. In §6.1 we evaluate the
models to perform ICL with varying number of
shots, when they were originally meta-trained to
do 16-shot ICL. In §6.2 we study the influence to
performance when the in-context examples are per-
turbed. In §6.3 we try to understand where ICL
methods lie among other recent advances by com-
paring the performance of different model families.

6.1 Evaluate with Varying Number of Shots

Performance. One advantage of fusion-in-
decoder models is that they may be trained with
a small number of passages (e.g., 5 passages), but
evaluated with a larger number of passages (e.g.,
100 passages) (Izacard and Grave, 2021). For few-
shot learning, this enables flexibility in the number
of shots used. We conduct a similar analysis by
changing the number of shots available at meta-test
time. All our models are originally meta-trained to
perform 16-shot in-context learning, and here we
evaluate them with {2, 4, 8, 16, 32} shots. Results
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Run Time: RTE (277 test examples)

Pre-Inference (time; sec) - - <0.1 - - <0.1 - - 0.1 - - 0.2 - 151.2
Inference (speed; #examples/sec) 46.2 20.6 39.2 7.87 13.2 36.1 4.6 4.2 31.4 2.3 2.8 24.0 1.8 46.2
Pre-Inference + Inference (time) 1x 2.2x 1.2x 5.9x 3.5x 1.3x 10.1x 11.0x 1.5x 20.0x 16.9x 2.0x 26.1x 26.2x

Run Time: StoryCloze (1871 test examples)

Pre-Inference (time; sec) - - <0.1 - - <0.1 - - <0.1 - - 0.1 - 126.0
Inference (speed; #examples/sec) 72.6 23.5 59.8 19.1 14.1 51.5 9.78 4.6 40.2 4.9 2.7 28.1 2.5 72.6
Pre-Inference + Inference (time) 1x 3.1x 1.2x 3.8x 5.1x 1.4x 7.4x 15.7x 1.8x 14.8x 27.2x 2.6x 29.0x 5.9x

Table 3: Run time (pre-inference + inference) comparison when k = 2,4,8,16. FiD-ICL has substantial
efficiency benefits at inference even when k is small.

are visualized in Fig. 3 and reported in Table 9.

While the performance of fine-tuning method
consistently increases when more shots become
available, the performance of in-context learning
methods is less sensitive to the number of shots. We
further look at per-task performance and find two
distinctive patterns: (1) On COPA and WSC, the
performance gradually improves with more shots,
as expected. Interestingly, FiD-ICL outperforms
simple fine-tuning on WSC, suggesting that FiD-
ICL is somehow “good at” learning WSC in par-
ticular. (2) On NLI tasks such as RTE and CB,
performance surprisingly drops with more shots.
These two patterns together lead to the unchanging
performance on average (in Fig. 3 Left).

These observations suggest that ICL may be
more suitable to certain task types than others. This
may be relevant to the intrinsic task hardness (Zhao
et al., 2022) or the difference between inductive bi-
ases exhibited by ICL and FT methods (Chan et al.,
2022). One relevant observation is that on RTE,
GPT-3 few-shot performance is not always better
than zero-shot or one-shot performance (Brown
et al. 2020, Appendix H), suggesting that RTE may
have some unique characteristics. We leave further
investigation as future work.

Inference Speed. Previously in §5.2, our run
time analysis has been limited to the case of k = 16.
As shown in the Complexity Analysis section in
Table 2, efficiency is dependent on the number of in
context example k, and the efficiency benefit of FiD
is more significant with larger k. To provide a full
picture of the efficiency benefits of FiD-ICL with
smaller k, we report the run time when k = 2, 4, 8

in Table 3. We observe that FiD-ICL is constantly
faster than Concat-ICL and Ensemble-ICL.

6.2 Perturbation to In-Context Examples

Min et al. (2022c) show that ICL models are rather
insensitive to perturbations in in-context examples.
Even with 100% wrong labels, little performance
drop is observed with ICL models.8 This is unex-
pected as the performance of fine-tuning would be
drastically worse when labels are incorrect.

To investigate whether the fusion methods we
use in this work help resolve these issues, we con-
duct a similar ablation study. We compare the per-
formance of the following: (1) No Perturbation;
(2) No Input, remove the inputs but keep the la-

8A more recent work (Wei et al., 2023) suggest that ex-
tremely large LMs can override semantic priors when these
perturbations are applied.



bels; (3) Random Label, randomly select one of
the valid options as the output; (4) Wrong Label,
randomly select one of the wrong options; (5) No

Label, remove the labels but keep the inputs. We
examine both large-size (800M) and XL-size (3B)
models, selecting the better model between T5-LM
and T0 initialization.9 We visualize the results in
Fig. 4.

As expected, we observe a clear trend of No
Perturbation > Random Label > Wrong Label for
the T0-FT method. For ICL methods, performance
drops in most cases when No Label perturbation
is applied, suggesting that the presence of labels
is essential. FiD-ICL suffers from No Label per-
turbation more than other two methods, suggesting
that it may be capturing more information from
the labels. However, performance does not change
significantly with Random Label or Wrong Label
perturbation, suggesting that FiD-ICL also strug-
gle to learn from input-label mapping, despite their
improved performance over Concat-ICL. Enabling
ICL models to learn effectively and faithfully from
examples remains a challenging problem.

6.3 Comparing with Other Model Families

Previously, we limit our scope to encoder-decoder
models meta-trained to perform in-context learn-
ing. It is also necessary to have contextualized
understanding by referencing and comparing with
performance of other model families. We plot per-
formance of various models in Fig. 5 and Fig. 7. We
hope this can explain where FiD-ICL lies among
other recent advances, and partly disentangle fac-
tors such as model architecture, training procedure.

Meta-trained vs. Not Meta-trained. In Fig. 5(a)
we show the performance of T5-LM models that
do not go through any meta-training. We show
that in our problem setting, meta-training is crucial
for the model to acquire the capability of zero-
shot learning or few-shot in-context learning. Sur-
prisingly, T5-LM models demonstrate little zero-
shot or few-shot in-context learning capabilities on
our meta-test tasks. We further try to quantify the
effect of model architecture (encoder-decoder vs.
decoder-only) and prompts used (P3 prompts or
GPT-3 prompts), which we visualize in Fig. 7 and
discuss in §A.2.

9Note that all four perturbations can be applied to ICL
models, but only (3)(4) can be applied to FT-based method.
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Figure 4: Performance when Perturbing In-Context

Examples. Large models (800M) and XL models (3B)
are evaluated on Meta-Test-7. Observation: All ICL
methods are still rather insensitive to perturbations. FiD-
ICL suffers from No Label perturbation more than the
other two methods.

vs. GPT-3 models. We quote the GPT-3 perfor-
mance (Brown et al., 2020) on Meta-Test-7 tasks in
Table 13 and visualize them in Fig. 5(b). Note that
the performance is not directly comparable as the
number of shots vary from 20 to 70 for GPT-3 mod-
els, while our experiments are using 16 shots.10 We
would like to highlight that meta-trained encoder-
decoder models outperforms off-the-shelf decoder
models by a large margin, which aligns with the
findings in Sanh et al. (2022); Wang et al. (2022a).
Further, few-shot ICL models improves on top of
zero-shot methods.

7 Conclusion

Motivated by the train-test efficiency differences
between few-shot in-context learning and few-shot
fine-tuning, we aim to find a balance and ben-
efit from the strengths of both approaches. To-
wards this goal, we introduce FiD-ICL, a fusion-
in-decoder approach for ICL, inspired by fusion-
in-decoder models for open-domain QA (Izacard
and Grave, 2021). With extensive experiments, we
show that fusion-in-decoder ICL (intermediate fu-
sion) is more favorable compared to concatenation-

10This comparison is less fair due to differences in model
architecture, pre-training procedure, and prompts used. Yet,
we think GPT-3 performance provide a reasonable reference.
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Figure 5: Performance Comparison with (a) Not-Meta-Trained Models and (b) GPT-3 Models. (a) Meta-
training is crucial for the model to acquire zero-shot and few-shot ICL capabilities. (b) Meta-trained encoder-decoder
models outperforms off-the-shelf decoder-only models by a large margin, consistent with findings in Sanh et al.
(2022); Wang et al. (2022a).

based ICL (early fusion) and ensemble-based ICL
(late fusion), in terms of both performance and com-
putation efficiency. Moreover, fusion-in-decoder
ICL partly closes the gap between gradient-free
ICL methods and gradient-based fine-tuning meth-
ods, highlighting the potential of approximating
gradient-based optimization with efficient forward-
only methods (Phang et al., 2022). Future work
may build upon our insights to further improve the
computation efficiency of few-shot learning. How-
ever, similar to the findings in Min et al. (2022c),
our analysis on ICL models suggest that they barely
learn the input-label mapping from the in-context
examples. We also have mixed results when more
shots become available for the ICL model. We hope
future work can further improve the performance
of ICL by enabling it to learn from input-label map-
ping effectively and faithfully.

Limitations

Firstly, following the work of T0 (Sanh et al., 2022),
we mainly focus on NLP tasks that can be formu-
lated as rank classification. This covers classifica-
tion and multiple-choice tasks, but not other task
categories such as generation or regression. We
hope to extend our training and evaluation to en-
compass a wider range of task categories, and hope
the research community will collaborate in creating
resources for such study.

Secondly, though we showed that FiD-ICL out-
performs Concat-ICL, we still lack clear under-
standing on the source of such improvement. We
hypothesized that FiD enables the model to learn
from in-context examples more effectively, yet our
perturbation experiments show that FiD-ICL mod-

els still learn little from input-label mapping (§6.2).
Much more work is needed to further understand
of the working mechanism of ICL models.

Thirdly, given the complexity of our study, we
limit the scope to encoder-decoder models. We
made this decision due to the superior performance
of encoder-decoder models in task-level general-
ization (Wang et al., 2022a) and their compatibility
with fusion-in-decoder method. Also, our impor-
tant baselines, T0 (Sanh et al., 2022) and T-Few
(Liu et al., 2022), are implemented with the T5
model family. We include more discussion in §A.4.
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A Additional Experiments and Findings

A.1 Alternative Fusion Methods

In addition to the three methods we investigate in
the main paper, we experimented with two other
methods, which we refer to as FiD-Pairwise and
FiD+Ensemble. We illustrate these two methods in
Fig. 6. FiD-Pairwise is closer to the original fusion-
in-decoder model for open-domain QA. In FiD-
Pairwise, the input is appended to each example
individually. FiD+Ensemble is a hybrid model that
employs the “fusion” operations in both FiD and
Ensemble-based ICL. It applies fusion-in-decoder
with one example and the input. Then it aggregates
the predictions similar to ensemble-based ICL.

We conduct experiments with these two methods
with base-size model (250M). We report the per-
formance in Table 8. FiD (with T0 initialization)
remains the best method among all compared fu-
sion methods. Given the fact that FiD-Pairwise and
FiD+Ensemble are less efficient than the FiD we
use in the main paper, we stop investigating them
in larger model scales.

A.2 Influence of Using P3 Prompted Data

In Fig. 7(a) we report performance on P3 held-out
tasks using P3 prompted data and T5-LM models.
Surprisingly we the performance does not grow
with model scale. Also it does not grow when
more shots become available. For all models the
performance is close to majority/random baseline.
We were skeptical about these results so we fur-
ther evaluate public GPT models with the same
P3 prompted data, which is reported in Fig. 7(b).
The public GPT models include GPT-2 of various
sizes, GPT-Neo-2.7B and GPT-J-6B. We still ob-
serve similar trends as in Fig. 7(a).

In Fig. 7(b), the main differences between the
two groups were the prompt templates used. We

Variant 1

FiD-Pairwise

Example 1 Example 2 Input

Encoder

Decoder

Output

Encoder

Input

Variant 2

FiD+Ensemble

Output Output

Final Output

Decoder Decoder

Example 1 Example 2 Input

Encoder Encoder Encoder Encoder

Input

Figure 6: Illustration of two altenative fusion meth-

ods: FiD-Pairwise and FiD+Ensemble. See §A.1 for
discussion.

hypothesize that P3 prompts may appear unnatural
for GPT models and thus leads to the near random
performance. We did some initial experiments with
the COPA dataset using GPT-J-6B model, where
using GPT-3 prompts yields zero-shot accuracy of
81%, but using P3 prompts gives accuracy ranging
from 47% to 54%. We hope future work conducts
rigorous comparisons about this.

A.3 T5-LM or T0 as initialization?

In Fig. 2, we observe that for large/XL models,
T5-LM is a better initialization than T0 for ICL
meta-training. Our hypothesis is that T0 training
(i.e., training T5-LM to become T0) may cause
the model to forget general pre-train knowledge
or lose the capabilities in modeling long context.
This results in meta-training ICL being less effec-
tive. However this observation is dependant on
model size. For base-size models, T0 is a better
initialization.

A.4 Discussion on Enc-Dec vs. Dec-only

Models

Prior work suggest that in a similar meta-learning
setting, enc-dec models outperform dec-only mod-
els (Wang et al. 2022a, Sec 4.2). Another sup-
porting evidence is that a 3B FLAN-T5 (enc-dec)
model outperforms 175B OPT-IML (dec-only) on
few-shot in-context learning (Longpre et al. 2023,
Figure 1). Given the competitive performance of
enc-dec models on the problem of interest, we fo-
cus on enc-dec models in this work.

To give our best efforts in make fair and com-
prehensive comparisons between enc-dec and dec-
only models, we evaluated our meta-test tasks with
publicly-available GPT models (Fig. 7, Table 12),
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Figure 7: Performance comparison when comparing model architectures and prompts. In this figure, all models
do not go through a meta-training phase. We find that P3 prompts are less effective (near random performance)
when no meta-training is applied.
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conclusions in §5.1 remain the same.

quoted the performance on these tasks using GPT-3
models (Fig. 5, Table 13), and discussed our find-
ings in §A.2.

One may argue that the computation for ICL us-
ing decoder-only models is also partly cache-able
and thus the conclusions on computation efficiency
may vary when decoder-only models are used. We
agree with this argument. To account for this, we
experimented with a key-value caching mechanism
for a dec-only Concat-ICL model.11 Caching en-
ables a 3-5x speed-up, demonstrating that this is a
promising direction. We hope a rigorous compari-
son between enc-dec and dec-only models regard-
ing this matter can be done in future work.

B Data

B.1 Meta-Train and Meta-Test

We use the data and prompts provided in P3 (Sanh
et al., 2022). We use the meta-train and meta-test
partition used to train T0 (as opposed to the ones

11We used the catwalk library: https://github.com/a
llenai/catwalk/tree/prefix-caching

use for training T0+ or T0++). We provide the full
list of these datasets and their reference in Table 4.

For meta-train, we use all the prompts associ-
ated with meta-train tasks. For meta-test, Sanh
et al. (2022) provide the list of prompts for eval-
uation.12 We want to point out a caveat here
that this list is only a portion of all prompts
associated with meta-test tasks. For example,
hellaswag_Topic_of_the_context is a prompt
name associated with the HellaSwag dataset, but it
is not relevant to the original HellaSwag task, and
should not used in evaluation.

We consider ANLI R1/R2/R3 as three separate
tasks. Therefore the original meta-test in P3 has 11
tasks (Meta-Test-11).

B.2 Meta-Validation

In our preliminary experiments we observe that ICL
methods may suffer from meta-overfitting: meta-
test performance drops when the model is trained
for more steps on meta-train. To ensure a fair eval-

12
https://github.com/bigscience-workshop/t-zer

o/blob/master/evaluation/template_list.py

https://github.com/allenai/catwalk/tree/prefix-caching
https://github.com/allenai/catwalk/tree/prefix-caching
https://github.com/bigscience-workshop/t-zero/blob/master/evaluation/template_list.py
https://github.com/bigscience-workshop/t-zero/blob/master/evaluation/template_list.py


uation set up, we additionally use 14 BIG-bench
Task used in Sanh et al. (2022) as meta-validation
(listed in Table 4). We use this meta-validation set
for selecting intermediate checkpoints saved during
meta-training. Apart from this, we do not tune any
other hyper-parameters.

B.3 Few-shot Sampling

The performance of few-shot learning is highly
subject to the sample of few-shot examples. To
mitigate its influence in evaluation, our evaluations
are based on 5 different few-shot samples. We first
obtain the 5 samples of T0 held-out tasks used in
Liu et al. (2022).13 We then further sub-sample
16 examples to be our few-shot support set. We
report the average of the 5 samples for all few-shot
methods.

B.4 Data Sources

We obtain all our data from huggingface datasets
(Lhoest et al., 2021). In the following we provide
the links:

• P3 (meta-train/meta-test): https://huggin
gface.co/datasets/bigscience/P3

• BIG Bench (meta-validation): https://hugg
ingface.co/datasets/bigbench

The full list of datasets and their citations are in
Table 4.

C Training Details

C.1 Training T0-Base/Large/3B

Sanh et al. (2022) only provide model checkpoints
in sizes of 3B and 11B. For a thorough investigation
of different fusion methods, we aim to conduct ex-
periments across different model sizes. Therefore,
we replicate training procedure of T0-3B/T0-11B
and train our own T0 models. We also largely refer-
ence the practice in Lin et al. (2022), in which the
authors trains a BART0 model using BART-Large
(Lewis et al., 2020a).

Specifically, we sub-sample at most 50k exam-
ples for each prompted task, following Lin et al.
(2022). We combine all examples as a large dataset
for multi-task learning, and do not apply any task
sampling re-weighting technique. We list the key
hyper-parameters in Table 5.

Sanh et al. (2022) reported an average of 51.0 on
P3 held-out tasks. Our re-evaluation of the public

13
https://github.com/r-three/t-few
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Figure 9: A hypernetwork view of fusion-in-decoder.

The encoder is generating prefix parameters for the de-
coder.

checkpoint yields the same value of 51.0. Our T0-
Base achieves 49.1, our T0-Large achieves 52.4,
and our replication of T0-3B achieves 57.6. We hy-
pothesize that the publicly released T0-3B may be
under-trained, which corroborates with the findings
in Lin et al. (2022) and Ivison et al. (2022).

C.2 ICL methods

Hyperparameters are listed in Table 6. Gradient
checkpointing is enabled when training Concat-
ICL-Large, FiD-ICL-3B and Ensemble-ICL-3B
models.

C.3 Few-shot Fine-tuning

Hyperparameters are listed in Table 5.

C.4 Implementation

Our implementations are based on huggingface
transformers (Wolf et al., 2020).

D Extended Related Work

Sparse Attention for In-Context Learning.

Concurrent to our work, Ratner et al. (2022) pro-
posed parallel context window (PCW) and Hao
et al. (2022) proposed structured prompting for in-
context learning. In a broader sense, these two
works and our FiD-ICL can be viewed as applying
sparse attention mask to the in-context examples.
Ratner et al. (2022) and Hao et al. (2022) mainly
focus on (1) applying such sparse masks to off-the-

shelf decoder-only models and (2) incorporating
more in-context examples than what one context
window can typically fit. Our work differs in (1)
problem settings, as we mainly compare different
fusion methods in a meta-learning setting; (2) ex-
periment settings, as we fix the number of shots
available, and investigate the performance and effi-
ciency of the models. Despite these differences, the
shared intuitions and findings invite future research
in adopting efficient architectures for improving
different aspects of ICL.

https://huggingface.co/datasets/bigscience/P3
https://huggingface.co/datasets/bigscience/P3
https://huggingface.co/datasets/bigbench
https://huggingface.co/datasets/bigbench
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Fusion-in-decoder and Hypernetworks. In re-
cent years, hypernetworks (Ha et al., 2017) are
explored for various NLP problems (Ivison and
Peters, 2022; Karimi Mahabadi et al., 2021), in-
cluding zero-shot and few-shot task generalization
(Ye and Ren, 2021; Phang et al., 2022). We believe
the encoder in our fusion-in-decoder approach can
be viewed as a hypernetwork. The encoder is effec-
tively generating prefix parameters for the decoder,
as demonstrated in Fig. 9. In Table 7 we compare
with HyperT5 (Phang et al., 2022), a concurrent
work that trains a hypernetwork to produce adap-
tation parameters.14 Our fusion-in-decoder ICL is
comparable with HyperT5.

Related to the concept of hypernetworks, recent
work also suggest that in-context learning can be
viewed as applying implicit optimization to the
model itself (Akyürek et al., 2023; von Oswald
et al., 2022; Dai et al., 2022).

E Extended Results

• Table 7 reports the per-task performance and
average accuracy reported in Fig. 2.

• Table 9 includes the numbers in Fig. 3.

• Table 10 and Table 11 includes the numbers
in Fig. 4.

• Table 13 includes the GPT-3 results quoted
from the original paper (Brown et al., 2020).
They were visualized in Fig. 5 and Fig. 7.

• Table 12 includes the numbers of our eval-
uation with GPT-style models. They were
visualized in in Fig. 7.

• Table 14 includes the performance of not-
meta-trained encoder-decoder models, also
visualized in Fig. 5.

14Though the performance is not directly comparable (e.g.,
the in-context examples used are different), we believe they
provide reasonable references.

Dataset Reference

Meta-Train (from P3)

adversarial_qa dbert Bartolo et al. (2020)
adversarial_qa dbidaf Bartolo et al. (2020)
adversarial_qa droberta Bartolo et al. (2020)
ag_news Zhang et al. (2015a)
ai2_arc ARC-Challenge Clark et al. (2018)
ai2_arc ARC-Easy Clark et al. (2018)
amazon_polarity McAuley and Leskovec (2013)
cnn_dailymail 3.0.0 See et al. (2017)
common_gen Lin et al. (2020)
cos_e v1.11 Rajani et al. (2019)
cosmos_qa Huang et al. (2019)
crows_pairs Nangia et al. (2020)
dbpedia_14 Lehmann et al. (2015)
dream Sun et al. (2019)
duorc ParaphraseRC Saha et al. (2018)
duorc SelfRC Saha et al. (2018)
gigaword Graff et al. (2003)
glue mrpc Dolan and Brockett (2005)
glue qqp (link)
imdb Maas et al. (2011)
kilt_tasks hotpotqa Yang et al. (2018)
multi_news Fabbri et al. (2019)
openbookqa main Mihaylov et al. (2018)
paws labeled_final Zhang et al. (2019)
piqa Bisk et al. (2020)
qasc Khot et al. (2020)
quail Rogers et al. (2020)
quarel Tafjord et al. (2019a)
quartz Tafjord et al. (2019b)
quoref Dasigi et al. (2019)
race high Lai et al. (2017)
race middle Lai et al. (2017)
ropes Lin et al. (2019)
rotten_tomatoes Pang and Lee (2005)
samsum Gliwa et al. (2019)
sciq Welbl et al. (2017)
squad_v2 Rajpurkar et al. (2016)
super_glue axg Rudinger et al. (2018)
super_glue boolq Clark et al. (2019)
super_glue multirc Khashabi et al. (2018)
super_glue record Zhang et al. (2018)
trec Li and Roth (2002)
trivia_qa unfiltered Joshi et al. (2017)
web_questions Berant et al. (2013)
wiki_bio Lebret et al. (2016)
wiki_hop original Welbl et al. (2018)
wiki_qa Yang et al. (2015)
wiqa Tandon et al. (2019)
xsum Narayan et al. (2018)
yelp_review_full Zhang et al. (2015b); (link)

Meta-Validation (from BIG-bench, Srivastava et al. 2023)

conceptual_combinations code_line_description
hindu_knowledge known_unknowns
language_identification logic_grid_puzzle
logical_deduction misconceptions
movie_dialog_same_or_different novel_concepts
strategyqa formal_fallacies_syllogisms_negation
vitaminc_fact_verification winowhy

Meta-Test-11 (from P3; Meta-Test-7 marked with †)

†hellaswag Zellers et al. (2019)
†super_glue cb De Marneffe et al. (2019)
†super_glue copa Roemmele et al. (2011)
†super_glue rte Dagan et al. (2005)

Bar-Haim et al. (2006)
Giampiccolo et al. (2007)
Bentivogli et al. (2009)

†super_glue wic Pilehvar and Camacho-Collados (2019)
†super_glue wsc.fixed Levesque et al. (2012)
†story_cloze Mostafazadeh et al. (2016)
anli (r1/r2/r3) Nie et al. (2020)
winogrande winogrande_xl Sakaguchi et al. (2020)

Table 4: Datasets used in this study: P3 and part of
BIG-bench.

http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://www.yelp.com/dataset


T0-Base T0-Large Few-shot FT

Initialization t5-base-lm-adapt t5-large-lm-adapt -
Max Input Len 1024 1024 256

Max Output Len 256 256 64
Optimizer adafactor adafactor adafactor

Learning Rate 0.001 0.001 0.0003
# Training Steps 50000 50000 300

Batch Size 16 8 4
Gradient Accumulation 2 4 2

Effective Batch Size 32 32 8
Train Time 30 hours 60 hours -

Table 5: Hyperparameters for Training T0-Base/Large and Hyperparameters for Few-shot Fine-tuning Experiments.

Concat FiD Ensemble

Max Input Len 256 256 256
Max Output Len 64 64 64

Optimizer adamw adamw adamw
Learning Rate Base:5e-5; Large:1e-4; XL:1e-4

# Training Steps Base:50k; Large:50k; XL:10k
# Warmup Steps 6% of total training steps

Validation Interval Base:10k; Large:5k; XL:2k
k 16 16 1
m 1 16 1

Batch Size 4 1 16
Gradient Accumulation 2 8 2

Table 6: Hyperparameters for Training ICL Models. k/m represents the number of support/query examples in a
forward pass.



Task ANLI♦ (R1) (R2) (R3) HSwag CB COPA RTE WiC WSC WGD SCloze
MTest11 MTest7 HyperT5

Avg. Avg. Avg.

Majority / Random 33.4 33.4 33.4 33.4 25.0 50.0 50.0 52.7 50.0 63.5 50.0 50.0 44.7 52.3 46.8

Base (250M)

T5-LM 33.4 33.3 33.5 33.5 24.7 44.3 54.3 47.9 49.7 57.9 49.8 54.1 43.9 51.1 45.2
T5-LM-Concat-ICL 33.3 33.0 33.4 33.3 25.6 45.1 55.0 48.7 50.2 55.9 48.8 57.5 44.2 51.6 45.3
T5-LM-FiD 33.0 32.4 33.1 33.4 26.7 42.5 58.8 54.6 51.1 57.9 50.3 76.3 47.0 55.9 46.9
T5-LM-Ensemble-ICL 32.6 31.5 34.0 32.4 25.8 44.5 56.5 47.7 50.2 56.4 49.4 62.6 44.6 52.5 45.4
T5-LM Simple Fine-tune 33.8 34.5 33.4 33.5 24.8 66.5 45.7 51.1 53.7 46.3 49.8 50.9 44.6 52.0 46.5
T5-LM T-Few Fine-tune 34.0 34.7 33.9 33.6 26.2 66.1 49.2 52.7 53.8 50.2 48.1 58.7 46.1 54.1 47.5

T0♥ 32.3 31.5 32.4 33.1 26.5 45.8 65.9 69.3 51.6 56.7 51.2 76.1 49.1 59.5 49.9
T0-Concat-ICL 32.5 31.0 32.6 33.9 26.2 43.6 65.1 65.1 51.6 57.7 50.8 77.1 48.6 58.7 49.1
T0-FiD 32.7 31.7 32.9 33.6 26.2 54.9 68.2 68.1 51.9 60.3 51.3 82.3 51.0 62.4 51.7
T0-Ensemble-ICL 32.3 31.0 32.4 33.5 25.7 51.3 68.8 68.5 50.9 58.7 50.4 77.2 49.9 60.8 50.8
T0 Simple Fine-tune 33.5 32.6 33.9 33.9 29.1 73.2 66.3 68.0 53.1 50.9 51.0 79.0 51.9 63.1 53.1
T0 T-Few Fine-tune 33.1 30.5 35.1 33.6 32.2 73.6 59.8 64.3 51.9 50.6 54.2 81.3 51.6 62.2 52.5

Large (800M)

T5-LM 32.7 32.1 33.4 32.7 25.3 33.8 50.5 49.0 51.0 50.4 50.5 47.8 41.5 47.6 42.9
T5-LM-Concat-ICL 33.4 33.0 33.9 33.3 25.7 49.7 63.4 47.3 50.0 63.4 51.1 73.0 47.6 56.8 48.0
T5-LM-FiD 34.4 33.9 33.4 35.8 28.3 60.2 81.1 72.6 50.7 63.7 55.6 91.6 55.2 67.9 55.8
T5-LM-Ensemble-ICL 33.5 32.2 33.1 35.3 27.0 62.1 77.5 77.9 50.9 61.0 55.0 87.5 54.5 67.4 55.6
T5-LM Simple Fine-tune 34.1 35.1 33.6 33.6 26.1 65.4 47.1 51.7 53.5 47.5 49.9 56.5 45.5 53.1 46.9
T5-LM T-Few Fine-tune 34.3 34.6 34.1 34.1 30.3 65.4 49.6 51.6 52.4 50.4 49.2 64.3 46.9 54.7 47.9

T0♥ 34.1 32.2 34.2 36.0 26.1 56.8 76.6 65.3 50.8 56.4 53.9 88.4 52.4 64.0 52.5
T0-Concat-ICL 33.7 32.1 33.2 35.9 27.0 58.4 80.1 65.2 50.9 60.6 52.2 89.2 53.2 65.2 53.5
T0-FiD 33.4 31.8 32.8 35.7 26.1 60.7 77.6 67.1 52.1 59.1 54.7 89.5 53.4 65.8 53.9
T0-Ensemble-ICL 34.4 32.8 34.0 36.5 26.6 62.3 79.0 65.6 51.4 59.6 53.6 89.3 53.7 65.8 54.1
T0 Simple Fine-tune 35.3 34.5 35.4 36.2 33.1 80.1 80.8 69.2 54.1 53.2 56.3 90.0 56.6 69.1 57.8
T0 T-Few Fine-tune 35.2 33.2 37.3 34.9 36.6 79.6 79.0 69.5 53.9 56.4 56.2 90.6 57.0 69.3 58.3

HyperT5-Prefixβ 33.4 - - - 32.3 60.1 73.9 71.5 51.1 63.0 51.1 - - - 54.6

HyperT5-LoRAβ 33.6 - - - 33.0 49.5 74.2 67.4 52.0 64.0 52.9 - - - 53.3

XL (3B)

T5-LM 32.7 32.2 33.4 32.7 24.6 32.7 53.1 48.8 50.8 57.6 50.9 51.4 42.6 49.3 43.9
T5-LM-Concat-ICL OOM
T5-LM-Concat-ICL (k=4) - - - - - 56.3 83.2 65.2 50.3 54.9 54.6 86.4 - 64.4 -
T5-LM-FiD 39.3 39.8 37.6 40.4 31.4 67.0 92.3 78.8 50.4 64.5 61.2 96.5 60.0 73.0 60.6
T5-LM-Ensemble-ICL 34.1 33.9 33.8 34.6 27.2 51.8 89.5 51.2 50.2 58.9 53.8 93.3 52.6 64.1 52.1
T5-LM Simple Fine-tune 34.6 35.5 34.3 33.9 27.1 67.8 54.8 50.7 53.7 47.7 50.7 63.3 47.2 55.5 48.4
T5-LM T-Few Fine-tune 35.5 37.2 35.4 33.8 37.1 79.3 62.0 48.7 52.3 51.4 45.4 67.9 50.0 58.1 51.5

T0α 33.4 33.8 33.1 33.3 27.2 45.4 73.1 64.6 50.7 65.1 51.0 84.0 51.0 62.0 51.3
T0-Concat-ICL OOM
T0-FiD 37.8 39.1 36.7 37.6 30.0 61.2 90.8 71.6 51.8 63.1 59.6 96.0 58.0 70.6 58.2
T0-Ensemble-ICL 36.9 38.1 36.0 36.6 28.7 54.5 86.2 76.0 54.1 57.4 56.2 94.1 56.2 68.4 56.3
T0 Simple Fine-tune 37.1 39.3 36.6 35.4 35.1 75.0 75.8 72.8 53.2 55.6 52.1 88.0 56.3 67.5 57.1
T0 T-Few Fine-tune 40.1 42.4 40.7 37.1 51.9 81.8 84.6 71.7 55.1 57.2 57.5 93.5 61.2 71.6 62.5

T0♥ 38.0 38.4 35.7 40.0 26.5 67.7 82.2 80.1 53.5 57.3 57.8 94.0 57.6 70.4 57.9
T0-Concat-ICL OOM
T0-Concat-ICL (k=4) - - - - - 62.7 86.4 78.9 51.3 63.2 56.5 93.5 - 70.4 -
T0-FiD 38.6 39.0 36.5 40.5 28.5 62.9 87.4 74.6 52.1 62.7 61.0 95.5 58.2 70.9 58.5
T0-Ensemble-ICL 37.3 37.2 35.8 39.0 27.1 63.4 87.6 76.2 51.6 65.1 56.8 95.0 57.7 70.8 58.2
T0 Simple Fine-tune 38.5 37.5 38.8 39.2 38.7 81.9 88.0 80.1 55.9 59.5 61.4 95.0 61.4 74.5 63.0
T0 T-Few Fine-tune 40.2 41.2 40.0 39.5 44.9 82.1 88.4 81.3 56.9 64.1 59.6 94.8 63.0 75.3 64.7

HyperT5-Prefixβ 38.7 - - - 33.6 69.6 88.4 79.5 53.1 57.6 56.6 - - - 59.6

HyperT5-LoRAβ 35.3 - - - 30.8 66.4 83.3 68.5 50.3 60.0 56.1 - - - 56.4

XXL (11B)

T5-LM 33.5 33.0 33.8 33.8 27.0 33.9 55.0 53.0 50.3 54.1 51.2 48.2 43.0 49.4 44.8
T0α 41.0 43.2 38.7 41.3 33.6 70.1 90.0 81.0 56.1 61.1 59.9 92.4 60.7 72.9 61.6

Table 7: Main Results. All few-shot methods are using 16 shots. “-” means not reported. ♥Trained by us. See
§C.1 for details. ♦Computed as the average of R1/R2/R3 (except for HyperT5 rows where the numbers are quoted).
αSanh et al. (2022) βPhang et al. (2022)



CB COPA RTE WiC WSC WGD SCloze MTest7 Avg.

Base (250M)

T5-LM 44.3 54.3 47.9 49.7 57.9 49.8 54.1 51.1
T5-LM FiD 42.5 58.8 54.6 51.1 57.9 50.3 76.3 55.9
T5-LM FiD-Pairwise 54.0 60.4 65.9 51.1 54.0 51.1 77.2 59.1
T5-LM FiD+Ensemble 48.5 65.0 65.9 52.3 58.6 51.5 79.5 60.2

T0 45.8 65.9 69.3 51.6 56.7 51.2 76.1 59.5
T0 FiD 54.9 68.2 68.1 51.9 60.3 51.3 82.3 62.4
T0 FiD-Pairwise 46.1 68.7 70.4 51.9 61.5 50.4 79.8 61.3
T0 FiD+Ensemble 51.1 69.5 67.9 51.7 60.8 50.7 78.4 61.4

Table 8: Performance using two alternative fusion methods: FiD-Pairwise and FiD+Ensemble. Base-size
(250M) models are trained evaluated.

CB COPA RTE WiC WSC WGD SCloze MTest7 Avg.

0-shot

T0 56.8 76.6 65.3 50.8 56.4 53.9 88.4 64.0

2-shot

T0-Concat-ICL 57.5 80.5 64.8 51.2 59.8 52.5 88.5 65.0
T5-LM-FiD 62.9 79.0 73.9 50.9 57.9 55.9 91.6 67.5
T5-LM-Ensemble-ICL 62.3 77.2 77.7 50.9 61.5 54.8 87.4 67.4
T0 Simple Fine-tune 58.4 80.1 60.5 51.9 50.3 54.4 89.0 63.5

4-shot

T0-Concat-ICL 57.1 80.2 64.6 51.1 60.7 52.5 88.9 65.0
T5-LM-FiD 62.5 79.8 73.8 50.8 61.0 55.6 91.7 67.9
T5-LM-Ensemble-ICL 61.7 77.2 77.9 50.9 60.8 54.8 87.5 67.3
T0 Simple Fine-tune 68.9 79.7 67.6 52.4 52.5 55.1 89.3 66.5

8-shot

T0-Concat-ICL 57.8 80.1 64.9 50.8 60.8 52.3 89.1 65.1
T5-LM-FiD 61.3 80.5 73.4 50.8 62.7 55.6 91.7 68.0
T5-LM-Ensemble-ICL 62.1 77.2 78.0 51.0 60.7 54.9 87.5 67.3
T0 Simple Fine-tune 78.6 80.6 71.6 52.2 52.8 55.6 89.7 68.8

16-shot

T0-Concat-ICL 58.4 80.1 65.2 50.9 60.6 52.2 89.2 65.2
T5-LM-FiD 60.2 81.1 72.6 50.7 63.7 55.6 91.6 67.9
T5-LM-Ensemble-ICL 62.1 77.5 77.9 50.9 61.0 55.0 87.5 67.4
T0 Simple Fine-tune 80.1 80.8 69.2 54.1 53.2 56.3 90.0 69.1

32-shot

T0-Concat-ICL 58.7 78.7 65.5 50.9 60.3 52.3 89.3 65.1
T5-LM-FiD 58.2 81.5 70.8 50.6 63.7 56.0 91.5 67.5
T5-LM-Ensemble-ICL 62.1 77.3 78.0 51.0 61.4 55.0 87.5 67.5
T0 Simple Fine-tune 81.0 81.0 72.3 55.1 57.6 56.3 90.2 70.5

Table 9: Performance when using varying number of shots at meta-test time. Large (800M) models trained to
perform ICL with 16 shots are evaluated.



CB COPA RTE WiC WSC WGD SCloze MTest7 Avg.

Zero-shot Baselines (Large/800M)

T5-LM 33.8 50.5 49.0 51.0 50.4 50.5 47.8 47.6

T0♥ 56.8 76.6 65.3 50.8 56.4 53.9 88.4 64.0

T0-ICL (Large/800M)

No Perturbation 58.4 80.1 65.2 50.9 60.6 52.2 89.2 65.2
Random Label 58.4 80.2 65.2 50.9 60.5 52.2 89.2 65.2
Wrong Label 58.4 80.2 65.2 50.9 60.6 52.2 89.2 65.2
No Label 58.7 80.2 65.1 50.8 60.9 52.2 89.1 65.3
No Input 56.6 79.5 65.0 51.2 58.7 51.7 88.5 64.4

T5-LM-FiD (Large/800M)

No Perturbation 60.2 81.1 72.6 50.7 63.7 55.6 91.6 67.9
Random Label 59.6 81.0 72.7 50.7 63.1 55.6 91.6 67.8
Wrong Label 59.6 81.0 72.9 50.7 64.2 55.6 91.6 67.9
No Label 45.7 81.2 66.0 52.5 43.8 55.5 91.8 62.3
No Input 64.4 79.2 74.7 51.0 59.7 55.9 91.5 68.1

T5-LM-Ensemble (Large/800M)

No Perturbation 62.1 77.5 77.9 50.9 61.0 55.0 87.5 67.4
Random Label 63.0 77.5 77.9 50.9 61.0 55.0 87.5 67.5
Wrong Label 63.1 77.4 77.9 51.0 61.2 55.0 87.5 67.6
No Label 59.2 75.0 78.6 50.8 56.8 53.4 86.3 65.7
No Input 61.4 75.5 76.3 50.7 60.0 53.9 86.0 66.2

T0 Simple Fine-tune (Large/800M)

No Perturbation 80.1 80.8 69.2 54.1 53.2 56.3 90.0 69.1
Random Label 48.6 79.9 68.1 52.1 52.8 56.3 90.0 64.0
Wrong Label 24.3 76.8 64.9 50.5 53.3 56.3 90.0 59.4
No Label Not Applicable
No Input Not Applicable

Table 10: Performance with perturbation to in-context examples at meta-test time. Large size (800M) models
are compared.

CB COPA RTE WiC WSC WGD SCloze MTest7 Avg.

Zero-shot Baselines (XL/3B)

T5-LM 32.7 53.1 48.8 50.8 57.6 50.9 51.4 49.3
T0α 45.4 73.1 64.6 50.7 65.1 51.0 84.0 62.0

T0♥ 67.7 82.2 80.1 53.5 57.3 57.8 94.0 70.4

T5-LM-FiD (XL/3B)

No Perturbation 67.0 92.3 78.8 50.4 64.5 61.2 96.5 73.0
Random Label 65.5 92.2 78.8 50.5 64.7 61.2 96.5 72.8
Wrong Label 65.5 92.2 78.9 50.5 64.5 61.2 96.5 72.8
No Label 55.8 92.2 68.5 52.0 38.8 62.6 96.3 66.6
No Input 71.1 92.8 79.5 51.0 59.4 62.5 96.2 73.2

T0-Ensemble (XL/3B)

No Perturbation 63.4 87.6 76.2 51.6 65.1 56.8 95.0 70.8
Random Label 63.3 87.6 76.2 51.6 65.2 56.8 94.8 70.8
Wrong Label 63.3 87.6 76.2 51.6 65.2 56.8 94.8 70.8
No Label 59.4 83.5 69.3 50.8 65.6 54.8 94.7 68.3
No Input 64.0 86.0 78.2 51.3 65.1 56.3 94.7 70.8

T0 Simple Fine-tune (XL/3B)

No Perturbation 38.7 81.9 88.0 80.1 55.9 59.5 61.4 74.5
Random Label 46.7 84.0 75.7 53.7 57.9 61.4 94.9 67.8
Wrong Label 23.2 79.8 71.1 50.7 58.1 61.4 95.0 62.8
No Label Not Applicable
No Input Not Applicable

Table 11: Performance with perturbation to in-context examples at meta-test time. XL size (3B) models are
compared.



CB COPA RTE WiC WSC WGD SCloze MTest7 Avg.

Majority / Random 50.0 50.0 52.7 50.0 63.5 50.0 50.0 52.3

GPT2-Small (117M)

Zero-shot 37.3 56.0 48.1 51.6 54.1 49.6 54.3 50.1
Concat-ICL 42.2 46.8 51.8 51.1 42.2 49.1 51.4 47.8
Ensemble-ICL 41.3 46.8 51.2 50.6 42.0 50.2 53.4 47.9

GPT2-Medium (345M)

Zero-shot 30.5 54.4 47.9 52.2 54.1 49.7 53.2 48.9
Concat-ICL 33.6 48.6 48.2 51.5 54.2 50.2 45.7 47.4
Ensemble-ICL 32.8 45.1 48.4 51.0 51.4 49.7 48.6 46.7

GPT2-Large (762M)

Zero-shot 36.1 55.5 47.5 50.9 56.1 49.7 53.6 49.9
Concat-ICL 43.6 50.4 48.5 51.0 54.0 49.8 50.2 49.6
Ensemble-ICL 34.5 46.7 47.8 50.5 52.1 49.8 52.2 47.7

GPT2-XL (1542M)

Zero-shot 34.9 52.5 47.2 51.2 55.7 49.4 54.2 49.3
Concat-ICL 30.8 50.8 47.6 50.5 55.3 49.6 53.6 48.3
Ensemble-ICL 31.9 51.4 48.5 50.7 46.0 48.8 53.5 47.3

GPT-Neo (2.7B)

Zero-shot 25.8 55.9 47.7 51.6 48.1 48.9 53.9 47.4
Concat-ICL 46.6 56.6 54.2 50.7 48.9 50.2 50.6 51.1

GPT-J (6B)

Zero-shot 24.8 55.1 50.3 52.1 48.7 49.1 53.6 47.7
Concat-ICL 45.7 57.4 54.6 52.6 45.6 49.7 53.2 51.2

Table 12: Performance using public decoder-only models (without meta-training). We evaluate these public
checkpoints using P3 formatted data. For all ICL methods, 16 shots are used.



CB COPA RTE WiC WSC WGD SCloze MTest7 Avg.

Majority / Random 50.0 50.0 52.7 50.0 63.5 50.0 50.0 52.3

GPT-3 (Small/125M)

Zero-shot 0.0 66.0 47.7 0.0 59.6 52.0 63.3 41.2
One-shot 55.4 62.0 53.1 50.0 58.7 51.3 62.3 56.1
Few-shot∗ 42.9 67.0 52.3 49.8 58.7 51.3 62.3 54.9

GPT-3 (Medium/350M)

Zero-shot 32.1 68.0 49.8 0.0 56.7 52.1 68.5 46.7
One-shot 53.6 64.0 47.3 50.3 58.7 53.0 68.7 56.5
Few-shot∗ 58.9 64.0 48.4 55.0 60.6 52.6 70.2 58.5

GPT-3 (Large/760M)

Zero-shot 8.9 73.0 48.4 0.0 65.4 57.4 72.4 46.5
One-shot 53.6 66.0 49.5 50.3 60.6 58.3 72.3 58.7
Few-shot∗ 53.6 72.0 46.9 53.0 54.8 57.5 73.9 58.8

GPT-3 (XL/1.3B)

Zero-shot 19.6 77.0 56.0 0.0 61.5 58.7 73.4 49.5
One-shot 48.2 74.0 49.5 49.2 62.5 59.1 74.2 59.5
Few-shot∗ 69.6 77.0 50.9 53.0 49 59.1 76.1 62.1

GPT-3 (2.7B)

Zero-shot 19.6 76.0 46.6 0.0 66.3 62.3 77.2 49.7
One-shot 57.1 76.0 54.9 49.4 66.3 61.7 77.3 63.2
Few-shot∗ 67.9 83.0 56.3 51.6 62.5 62.6 80.2 66.3

GPT-3 (6.7B)

Zero-shot 28.6 80.0 55.2 0.0 60.6 64.5 77.7 52.4
One-shot 33.9 82.0 54.9 50.3 60.6 65.8 78.7 60.9
Few-shot∗ 60.7 83.0 49.5 53.1 67.3 67.4 81.2 66.0

GPT-3 (13B)

Zero-shot 19.6 84.0 62.8 0.0 64.4 67.9 79.5 54.0
One-shot 55.4 86.0 56.3 50.0 66.3 66.9 79.7 65.8
Few-shot∗ 66.1 86.0 60.6 51.1 75.0 70.0 83.0 70.3

GPT-3 (175B)

Zero-shot 46.4 91.0 63.5 0.0 65.4 70.2 83.2 60.0
One-shot 64.3 87.0 70.4 48.6 69.2 73.2 84.7 71.1
Few-shot∗ 82.1 92.0 72.9 55.3 75.0 77.7 87.7 77.5

Table 13: Performance of GPT-3 models (without meta-training). Numbers are quoted from Brown et al. (2020).
∗In the GPT-3 paper the number of shots is task-specific and vary from 20 to 70.

CB COPA RTE WiC WSC WGD SCloze MTest7 Avg.

Majority / Random 50.0 50.0 52.7 50.0 63.5 50.0 50.0 52.3

T5-Base-LM-Adapt (250M)

Zero-shot 44.3 54.3 47.9 49.7 57.9 49.8 54.1 51.1
Concat-ICL 45.1 49.9 47.3 50.0 58.0 49.4 56.2 50.8
Ensemble-ICL 38.0 52.0 47.7 50.1 63.1 50.2 53.6 50.7

T5-Large-LM-Adapt (800M)

Zero-shot 33.8 50.5 49.0 51.0 50.4 50.5 47.8 47.6
Concat-ICL 43.9 54.5 47.6 50.0 58.0 49.7 50.9 50.7
Ensemble-ICL 42.5 51.0 47.2 49.9 52.6 49.9 54.4 49.6

T5-XL-LM-Adapt (3B)

Zero-shot 32.7 53.1 48.9 50.8 57.6 51.0 51.4 49.3
Concat-ICL 40.3 55.5 48.1 50.1 50.6 49.6 52.3 49.5
Ensemble-ICL 43.2 48.9 52.3 50.2 40.4 50.0 53.0 48.3

T5-XXL-LM-Adapt (11B)

Zero-shot 34.3 54.9 53.0 50.3 54.1 50.7 48.2 49.4

Table 14: Performance using encode-decoder models for ICL (without meta-training). As opposed to results in
Table 7, models in this tables are evaluated directly and do not go through a meta-training phase.


