
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE INFERENCE-TIME COMPUTE:
LLMS CAN PREDICT IF THEY CAN DO BETTER,
EVEN MID-GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference-time computation is a powerful paradigm to enhance the performance
of large language models (LLMs), with Best-of-N sampling being a widely used
technique. However, this method is computationally expensive, requiring both (1)
an external reward model and (2) the generation of multiple samples. In this work,
we introduce a new generative self-evaluation scheme designed to adaptively re-
duce the number of generated samples while maintaining or even improving per-
formance. We use a generative reward model formulation, allowing the LLM to
predict mid-generation the probability that restarting the generation will yield a
better response. These predictions are obtained without an external reward model
and can be used to decide whether or not to generate more samples, prune un-
promising samples early on, or to pick the best sample. This capability is very
inexpensive as it involves generating a single predefined token. Trained using a
dataset constructed with real unfiltered LMSYS user prompts, Llama 3.1 8B’s win
rate against GPT-4 on AlpacaEval increases from 21% to 34% with 16 samples
and math performance on GSM8K improves from 84% to 91%. By sampling only
when the LLM determines that it is beneficial to do so and adaptively adjusting
temperature annealing, we demonstrate that 74% of the improvement from us-
ing 16 samples can be achieved with only 1.2 samples on average. We further
demonstrate that 50–75% of samples can be pruned early in generation with min-
imal degradation in performance. Overall, our methods enable more efficient and
scalable compute utilization during inference for LLMs.

1 INTRODUCTION

As large language models (LLMs) continue to advance, delivering high-quality responses across
diverse applications becomes increasingly important. One promising direction to enhance response
quality is the strategic use of inference-time computation, particularly through methods like Best-
of-N sampling Snell et al. (2024); Charniak & Johnson (2005); Cobbe et al. (2021), which selects
the best response from multiple candidates. However, this method incurs substantial inference cost
from querying an external reward model and producing a large, fixed number of samples.

In this work, we introduce a new reward modeling paradigm, which we denote as capability-aware
self-evaluations. This paradigm allows for adaptive allocation of inference-time compute, aiming
to reduce the computational overhead while maintaining or improving LLM performance across
various domains. We demonstrate that LLMs can directly model the probability that restarting gen-
eration yields in a better response, enabling informed decisions about whether to continue generating
a response, initiate new ones, as well as rank responses. These predictions are obtained by simply
appending a predefined self-evaluation prompt to the partially or fully generated response and gen-
erating a single predefined token whose likelihood is used as the prediction. This is in contrast to
preference-based reward models which can primarily only be used to rank responses.

Our self-evaluation method is highly cost-effective, requiring no external reward models and in-
curring only the minimal cost of generating a single token. In contrast, an external reward model
inherently requires more memory and storage. Additionally, it is unable to reuse the KV cache ob-
tained when generating the response and would have to process the input and response from scratch.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Easy User Query: What city is the
Eiffel Tower in?

Difficult User Query: What is 1234
multiplied by 5678?

User Query:
Write a novel

Assistant: The Eiffel Tower is located
in Paris, France.

Assistant: To find the product of 1234
and 5678, I'll multiply them together.

1234 * 5678 = 7,017,132

Very Difficult User Query: Show me
how to prove Riemann Hypothesis

Assistant: I can't assist you with that.
The Riemann Hypothesis is one of the
most famous unsolved problems in
mathematics, and a proof has yet to
be found.

System: Would you do better if you
started over? ("Yes." or "No.")

System: Would you do better if you
started over? ("Yes." or "No.")

System: Would you do better if you
started over? ("Yes." or "No.")

Capability-Aware Self-Evaluations

Mid-Generation Self-Evaluations

Assistant: In the heart of the Amazon rainforest,
where the dense foliage seemed to swallow the sky
whole, there existed a city hidden from the world for
centuries. Ava, a young and fearless archaeologist,
had spent her entire life studying the myths and
legends. She then pivoted to AI research …

System: Would you do better if you
started over? ("Yes." or "No.")

Generation can
be interrupted to
evaluate a partial

response

Model Likely Cannot Do Better Model Likely Cannot Do Better Model Likely Can Do Better

Assistant:

No Yes

Assistant:

No Yes
Assistant:

No Yes

Model Likely Should Start Over

Assistant:
No Yes

(*Story starts spiraling out of control*)

 Reward Model: 11.4 ?? Reward Model: 3.8 ?? Reward Model: 2.2 ??
Rewards are not interpretable as they are not normalized for the difficulty of the query or the capability of the model

Figure 1: Capability-Aware and Mid-Generation Self-Evaluations enable adaptive inference-time compute
strategies. They are obtained without an external reward model and can determine whether or not to generate
more samples, prune unpromising samples early on, and pick the best sample.

To demonstrate adaptive inference-time compute allocation, we introduce two techniques: (1) adap-
tive sampling and (2) early pruning of unpromising samples. Adaptive sampling involves resampling
a response for a given prompt until it is predicted that further samples will not yield additional im-
provements, thus conserving computation for complex tasks that will benefit from it. Furthermore,
early pruning discards samples midway through generation if they are likely to result in suboptimal
completions. These are not possible with standard reward models.

To give an LLM the ability to self-evaluate, one must construct an on-policy pairwise preference
dataset with ties. In our experimental evaluation, we construct a dataset of approximately 30,000
preferences constructed using real unfiltered LMSYS (Chiang et al., 2024) user prompts and an
existing reward model, ArmoRM (Wang et al., 2024) trained on roughly 1 million preferences or
ratings. With this dataset, we fine-tune a Llama 3.1 8B Instruct (Dubey et al., 2024) model to
self-evaluate and demonstrate significant performance improvements across both in-distribution and
out-of-distribution tasks. Notably, as shown in Figure 4, the win rate against GPT-4 on AlpacaEval
increases from 21% to 34% with 16 samples, and performance on held-out GSM8K math problems
improves from 84% to 91%. We find that with adaptive sampling, using just 1.2 samples on average
captures 74% of the improvement observed with 16 samples and 1.9 samples captures 84%. Addi-
tionally, early pruning can prevent 75% of unpromising samples from being fully generated, saving
56% of tokens generated with very minimal degradation in performance.

Our approach allows for more efficient and scalable use of compute resources during inference. By
enabling models to dynamically allocate compute during inference based on task complexity and
the model’s capability, we optimize resource usage, ensuring efficiency in processing all types of
prompts and tasks. This adaptability makes using inference-time compute far more practical and
ready for the real world where LLMs are used for a wide variety of applications.

2 PRELIMINARIES AND NOTATION

An autoregressive language model generates a sequence y = (y1, y2, . . . , yT) given an input context
x by predicting tokens sequentially. Assuming the model is parameterized by θ, the conditional
probability distribution of generating a sequence y given context x is

pθ(y|x) =
T∏

t=1

pθ(yt|x, y<t), (1)

with the convention y<t = (y1, y2, . . . , yt−1). For ease of notation, we define pθ(yt|x) :=
pθ(yt|y<t,x). For a vocabulary size M , the probability of predicting the t-th token yt is determined

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

using a softmax with temperature γ on logit scores z of all the tokens:

pθ(yt|x) =
exp(zt/γ)∑M
i=1 exp(zi/γ)

, (2)

where zt = logitθ(yt|x, y<t). Higher values of γ introduce more randomness; as the temperature γ
approaches zero, the distribution becomes concentrated on the token with the highest logit.

Next-token prediction is a typical approach used for pre-training and fine-tuning of LLMs. In
particular, supervised fine-tuning (SFT) minimizes the cross-entropy loss between the model’s pre-
dicted next token and the target token in a given sequence. Given a dataset D = {(x,y)} of input
context x and target response y, the SFT loss is given by:

LSFT(θ,D) = −E(x,y)∼D

 |y|∑
t=1

log pθ(yt|x, y<t)

 . (3)

On-policy pairwise preference dataset is a preference dataset that consists of responses generated
by a single model:

Dpreference = {(x,y1,y2, l)i}
N
i=1

, (4)

where x is the input, y1 and y2 are two responses generated by the model, and l is the preference
label that indicates the outcome of the comparison between y1 and y2:

l =


1 if y1 resulted in a Win and y2 resulted in a Loss (y1 ≻ y2),

0 if y1 and y2 resulted in a Tie (y1 ≈ y2),

−1 if y1 resulted in a Loss and y2 resulted in a Win (y1 ≺ y2).

(5)

To simplify our analysis, we assume that the preference labels l are based on an underlying reward
function r(x,y) and a threshold ϵ that defines if one completion is more preferred:

l =


1 if r(x,y1)− r(x,y2) > ϵ,

0 if |r(x,y1)− r(x,y2)| ≤ ϵ,

−1 if r(x,y1)− r(x,y2) < −ϵ.
(6)

Bradley-Terry (BT) (Bradley & Terry, 1952) reward models consist of a base model θB and
a shallow MLP reward head θR. They predict a scalar reward score R̂ = rθB ,θR(x,y) given an
input and response. They are initialized from a pretrained base model and a randomly initialized
reward head, then trained on a dataset of N examples, D = {(x,ywin,yloss)i}Ni=1, where ywin is the
preferred response and yloss is the dispreferred response. They are trained to predict a higher reward
for ywin than for yloss under the Bradley-Terry model. This is achieved by minimizing:

LRM (θB , θR, D) = −E(x,yloss,ywin)∼D [log (σ(rθB ,θR(x,ywin)− rθB ,θR(x,yloss)))] , (7)

Best-of-N (Snell et al., 2024) is a widely used test-time compute approach to improve the perfor-
mance of LLMs. Specifically, given a prompt, N candidate responses from an LLM are scored using
a reward model, and the highest-scoring response is filtered as the final response.

3 ADAPTIVE INFERENCE-TIME COMPUTE VIA CAPABILITY-AWARE AND
MID-GENERATION SELF-EVALUATIONS

A simple, yet effective method for allocation of test-time compute is Best-of-N, allowing the model
to improve upon its responses over greedy sampling. However, the generation of a large, fixed
number of samples is computationally expensive and the efficacy of this approach relies heavily on
the quality of an external reward model, which can additionally incur substantial computational cost.
In the following section, we address the cost and robustness of the reward model by establishing a
general framework for self-evaluation via token prediction. We show how to train capability-aware
and mid-generation self-evaluators to reduce the cost of generating a large, fixed number of samples.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 CAPABILITY-AWARE AND MID-GENERATION SELF-EVALUATIONS

In the classic reward modeling paradigm, a pre-trained LM is used as an initialization for reward
modeling. However, this approach also relies on a newly added reward head to output the reward,
which diverges from the token prediction task for which the LLM was trained, which can hurt per-
formance for reward modeling. Additionally, generally preference-based reward models learn only
to rank arbitrary responses. This may be limiting for comparing on-policy samples (such as those
from Best-of-N) during inference to determine how good the response is with respect to the model’s
own capabilities. Furthermore, reward models are generally only able to evaluate full responses.
Responses that are clearly unpromising very early on in generation still have to be generated until
the end for evaluation, wasting computational resources. Can we use an alternate paradigm to
model rewards to address these limitations?

We propose capability-aware and mid-generation self-evaluations, a paradigm in which we query
the reward model to predict the probability that restarting generation will not yield a better response.
This probability can be used to elicit adaptive test-time computation, where the model can dynami-
cally allocate compute dependent on the difficulty of a query and its own capability. This is because
to decide whether or not to allocate more compute to a given input, we need to know if it is fruitful to
do so. For example, for easy queries, the model may have already outputted the best response it can,
so resampling is unnecessary. Additionally, for difficult queries, sampling more may lead to a minor
improvement in performance, leading to unfruitful resampling. We illustrate this paradigm in Fig-
ure 1. Modeling this probability effectively has three components: (1) reward modeling using token
prediction to better leverage the pretrained model’s existing knowledge and capabilities (2) relying
on on-policy pairwise preferences and ties to model the probability that the model cannot generate a
more preferred response (3) using truncated responses to model the probability that restarting gen-
eration will not yield a more preferred response. Traditional reward models can suffer at this task
as they are model agnostic. Though these models can rank how different responses perform for a
given task, they are unable to quantify how effective resampling would be (not capability aware).
Furthermore, a desirable property for a reward model is to early stop the generation of samples that
are not promising in order to give the model another chance without wasting compute.

Reward Modeling with Token Prediction. To obtain a self-evaluation of a response from an LLM,
we simply append a predefined self-evaluation prompt I to the generated response y and obtain a
score in the form of the likelihood of a predefined token tgood corresponding to the likelihood of
the response being good. This approach allows us to acquire rewards without any external reward
model, making it highly cost-effective as we can reuse the KV cache obtained during the generation
of the response. Also, this leverages the existing zero-shot capability of the models to judge its own
responses as a prior, which has been shown to be effective in works such as Madaan et al. (2023).

Formally, given a preference dataset Dpref = {x,ygood,ybad}, which contains input context x and
response pairs y, we can train a self-evaluation model by maximizing the likelihood of the good
token log pθ(tgood | (x,ygood)) for good responses ygood, and the likelihood of the bad token
log pθ(tbad | (x,ybad)) for bad responses ybad. To achieve this, we minimize the SFT loss in eq. (3)
on a modified variant of the preference dataset Dself-evaluation

Dself-evaluation = {((x,ygood, I), tgood)} ∪ {((x,ybad, I), tbad)}. (8)

During inference, we normalize the likelihood of tgood as the score to rank responses:

Score =
pθ(tgood | x,y, I)∑

t∈{tgood,tbad} pθ(t | x,y, I)
. (9)

Given that the language model has a fixed vocab size |V |, probability mass can be spuriously as-
signed to tokens t /∈ {tgood, tbad}, resulting in this normalization to be desirable.

Note: it is beneficial to establish within the self-evaluation prompt that the LLM has to perform a
classification task and that the target tokens are natural responses to effectively leverage the zero-shot
capability of the model. We find that with a poorly designed self-evaluation prompt I , the model will
overgeneralize during training and respond with tgood or tbad for all queries, regardless of relevance.
We need to keep the underlying policy or model unchanged when learning to self-evaluate. To do
so, we need the model’s prior distribution over tokens to be similar to what we expect after training
where pθ(tgood∪ tbad | x,y, I) ≈ 1. Fortunately, this can easily be done by explicitly stating that the
LLM should respond with only tgood or tbad in the self-evaluation prompt I .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The probability that the model cannot generate a more preferred response can be easily derived
from on-policy pairwise preferences and ties. It is the probability that the current sample y results
in a Win or a Tie against another sample y′. More formally:

Py′∼pθ(y|x) (r(x,y)− r(x,y′) ≥ −ϵ) = P (Win ∪ Tie | x,y). (10)

Accounting for ties in reward modeling is especially important for on-policy pairwise data where
responses coming from the same model are very likely to be similar. Ties commonly occur when
generating responses from the same model (e.g. 40% of the time) and are even more common with
simple tasks. Since ties indicate that the model cannot do better, they are crucial when learning to
do capability-aware self-evaluations. If ties are not specified, it is also harder to model the reward
as the model has to distinguish between extremely similar responses. Furthermore, since (100 −
40)/2 = 30% of samples result in a Loss, we see that the model can do significantly better on a
query only roughly 30% of the time.

Notice that P (Win ∪ Tie | x,y) monotonically increases with the sample’s underlying reward
r(x,y). This means that it can also be used to determine if one sample has a higher reward than
another. Since inference-time compute strategies only care about being able to rank responses, it
turns out that modeling P (Win ∪ Tie | x,y) is more useful than r(x,y) since it can also be used
inform decisions on whether or not to allocate more compute.

The probability that restarting generation will not yield a more preferred response can be
used to evaluate the quality of a partial response y1:t. In the context of adaptive inference-time
compute, if we find that this probability is low, we can stop spending additional inference resources
on generating the remainder of the partial response, pruning this poor partial response. Again, in the
context of on-policy pairwise preferences or ties, this probability is simply P (Win∪Tie) conditioned
on a partial response y1:t:

P y′∼pθ(y|x)
yt+1:T∼pθ(yt+1:T |x,y1:t)

(r(x,y1:T)− r(x,y′) ≥ −ϵ) = P (Win ∪ Tie | x,y1:t). (11)

Modeling these probabilities with an on-policy pairwise preference dataset with ties. To train
LLMs to make capability-aware self-evaluations, we construct a dataset derived from an on-policy
pairwise preference dataset with ties, where good responses are those that resulted in a Win or Tie
(ywin, ytie), and bad responses are those that resulted in a Loss (yloss). To train LLMs to make
capability-aware self-evaluations mid-generation, we simply include the same examples but with
responses randomly truncated (ywin,trunc,ytie,trunc,yloss,trunc).

We use the following self-evaluation prompt and target tokens:

I = ‘Would you do better if you started over? (“Yes.” or “No.”)’

tgood = ‘No’, tbad = ‘Yes’

Our final dataset Dcapability-aware, used to minimize the SFT loss (eq. (3)), is constructed as:

Dcapability-aware = {((x,ywin, I), tgood)} ∪ {((x,ytie, I), tgood)} ∪ {((x,yloss, I), tbad)} (12)

∪ {((x,ywin,trunc, I), tgood)} ∪ {((x,ytie,trunc, I), tgood)} ∪ {((x,yloss,trunc, I), tbad)}.

During inference, we compute the normalized likelihood of the tgood (‘No’) token to score full or
partial responses:

pθ(Win ∪ Tie | x,y1:t) =
pθ(tgood | x,y1:t, I)∑

t∈{tgood,tbad} pθ(t | x,y1:t, I)
(13)

3.2 MAKING BEST-OF-N EFFICIENT AND SCALABLE

Best-of-N is very computationally expensive, as it requires the generation of a large, fixed number
of samples. This leads to wasted computation on queries that do not require more compute, and
underutilization of compute on queries that could benefit from it. To remedy this and make Best-
of-N more practical, we introduce two new primitives that leverage the capability-aware and mid-
generation self-evaluations that we introduced in the last section. The first is adaptive sampling,
where additional samples are allocated to a query only if they are predicted to be beneficial. The
second is early pruning, where unpromising samples are stopped from being generated further to
save inference computation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Adaptive Sampling and Annealing
Require: Input prompt x, maximum samples Nmax, threshold τ

1: Initialize k ← 1, Ncum ← 0, S ← ∅
2: while Ncum < Nmax do
3: Nk ← 1 if k = 1 else 2k−2

4: Ncum ← Ncum +Nk

5: γk ← 1− 2−(k−1)

6: Sample Nk responses {yi}Nk
i=1 using temperature γk

7: for each yi in {yi}Nk
i=1 do

8: Compute pi ← pθ(Win ∪ Tie | x,yi); add (yi, pi) to S
9: end for

10: if Any pi > τ then break
11: end if
12: k ← k + 1
13: end while
14: Select y∗ from S with highest pi
15: Return y∗

3.2.1 ADAPTIVE SAMPLING AND ANNEALING

We introduce adaptive sampling as a technique to allocate inference-time compute only when it is
beneficial to do so. We further introduce exponentially increasing parallel sampling to mitigate the
main disadvantage of adaptive sampling, latency. Finally, we introduce a temperature annealing
strategy to balance exploration and exploitation while adaptively sampling and boost efficiency.

Resampling until meeting a threshold. We adaptively sample by resampling only when the model
predicts it can produce a better response. We do so by computing the likelihood that the model
cannot generate a better response pθ(Win ∪ Tie | x,y) for every sample. If this probability exceeds
a predefined threshold τ for any sample, we stop resampling and select the sample with the highest
pθ(Win ∪ Tie | x,y) as the final response. Otherwise, we resample, repeating this process until the
threshold is met or a maximum number of samples Nmax is reached. This approach concentrates
computational resources on prompts where improvement is likely, avoiding unnecessary sampling
when further gains are improbable.

Increasing number of parallel samples exponentially. To reduce latency, we sample in expo-
nentially increasing batch sizes. Specifically, for the k-th sampling iteration, the batch size Nk is
defined as:

N1 = 1, Nk = 2k−2 for k > 1. (14)

This ensures that the cumulative number of samples by the k-th iteration is 2k−1. This exponential
increase minimizes latency, reducing the number of iterations needed to meet Nmax, while allowing
for enough self-evaluations to determine if larger batches of samples are necessary.

Temperature annealing schedule based on number of samples generated so far. To balance
exploitation and exploration, we vary the temperature γ. The temperature for the k-th iteration is
given by:

γk = 1− 2−(k−1). (15)

Initially, the temperature starts low (e.g., γ1 = 0) to prioritize high-probability responses. As k
increases, γk quickly approaches 1, encouraging more diverse and creative sampling. This anneal-
ing schedule allows the model to first focus on exploiting the most likely responses, then explore
alternative options as more samples are generated.

3.2.2 EARLY PRUNING OF UNPROMISING SAMPLES

One downside to adaptive sampling requires the generation of samples in series, which introduces
latency. However, can we still leverage parallel sampling to avoid increasing the latency of response
generation but still enable adaptive test-time compute allocation? One approach to reducing compu-
tational costs in parallel generation is to early prune unpromising samples based on mid-generation
self-evaluations.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

When to prune. Pruning too early risks discarding samples that could improve, while pruning too
late offers minimal savings. Thus, we balance this trade-off when selecting the fixed number of
initial tokens (e.g., 64 or 128) before making any pruning decisions.

Which samples to prune. After generating an initial number of tokens, we compute the interme-
diate self-evaluations for each partially generated sample. After ranking samples by the resulting
scores, we stop the generation of the bottom x% (e.g., 50% or 75%) to conserve computation. This
ensures that only the most promising partial samples continue to be generated.

4 EXPERIMENTS

We evaluate our methods by first examining the sample efficiency of self-evaluation. We then eval-
uate its impact on optimizing inference-time compute with adaptive sampling and early pruning of
unpromising samples.

4.1 TRAINING DATA AND EVALUATIONS

Construction of On-Policy Pairwise Preference Dataset with Ties. Training reward models typ-
ically requires human-labeled preferences, which are costly to obtain, especially for on-policy data
generated by the model being trained. To mitigate this, we utilize an existing reward model, Ar-
moRM (Wang et al., 2024) trained on approximately 1,000,000 preferences. This reward model
serves as our underlying reward r(x,y).

We conduct our experiments using the Llama 3.1 8B Instruct model, which is fine-tuned on a prefer-
ence dataset of 50,000 real user prompts from LMSYS (Chiang et al., 2024) and pairs of on-policy
responses (sampled from the same Llama 3.1 8B Instruct model). These responses are scored using
ArmoRM, the underlying reward. Preferences or ties between responses are determined using a
threshold ϵ of 0.01 on the reward difference, resulting in an on-policy pairwise preference dataset
with approximately 40% ties.

Evaluation Protocol We evaluate the performance of our self-evaluation model and adaptive test-
time compute approaches in two domains: (1) the AlpacaEval (Dubois et al., 2024) benchmark
and (2) the GSM8K dataset (Cobbe et al., 2021). AlpacaEval 2.0 is an automatic benchmark that
compares model responses to those generated by GPT-4 across approximately 800 representative
prompts. The final metric is the win rate against GPT-4, adjusted to increase correlation with human
preferences (Spearman correlation of 0.98). While highly correlated with human judgments, this
metric is relative—it measures success based on outperforming another model rather than achieving
absolute human satisfaction. GSM8K is a collection of 8.5K grade school math word problems
involving multi-step reasoning and basic arithmetic operations. We use GSM8K as it is a popular
benchmark for reasoning as well as absolute measure of performance that is not relative to an-
other LLM. This is particularly useful in evaluating adaptive sampling where it allocates compute
resources to queries that benefit from it.

4.2 PERFORMANCE AND SAMPLE EFFICIENCY

Benchmark Random Zero-Shot Bradley-Terry Capability-Aware Underlying
(1 sample) (LLM-as-a-Judge) Reward Model pθ(Win ∪ Tie) r(x,y)

AlpacaEval 21.2 24.4 33.2 33.8 36.3
GSM8K 84.2 86.7 87.7 91.0 92.6

Table 1: Best-of-16 Performance on AlpacaEval (Win Rate vs GPT-4, %) and GSM8K (%) using
capability-aware self-evaluations using token prediction, LLM-as-a-Judge which also uses token prediction
but without finetuning, the commonly used Bradley-Terry external reward model, and the underlying reward
model used to create our experimental preference data.

Baselines. To evaluate performance with Best-of-N, we use two baselines. The Zero-Shot (LLM-as-
a-Judge) baseline uses Llama 3.1 8B Instruct without additional training. We prompt and get scores
for zero-shot predictions in the exact same manner that we do for capability-aware self-evaluations.
The Bradley-Terry Reward Model also uses Llama 3.1 8B Instruct as the base model and is trained
using the same on-policy pairwise preference dataset with ties.

As shown in Table 1, the zero-shot approach performs modestly on both benchmarks, confirming
that LLMs have a non-trivial ability to self-evaluate. The Bradley-Terry reward model unsurpris-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

A) B)

FLOPs vs Performance for Adaptive Annealing (GSM8K, and Math500)

Figure 2: FLOPs vs Performance for Adaptive Sampling and Annealing In two domains (A:
GSM8K, and B: MATH), we find savings in FLOPs from (1) self-evaluation, (2) adaptive allocation
of samples and (3) a temperature annealing schedule.

ingly does much better. Our token prediction method outperforms both. On AlpacaEval, it achieves
a 33.8% win rate against GPT-4 using Best-of-16 sampling, slightly surpassing the Bradley-Terry
model’s 33.2% and nearing the underlying reward model’s 36.3% (trained on 1 million preferences).
On GSM8K, token prediction attains 91.0% accuracy, significantly outperforming the Bradley-Terry
model’s 87.7%. This suggests that our method is more sample-efficient and generalizes better, espe-
cially on queries that might be uncommon among real user prompts like those in GSM8K.

These results demonstrate that token prediction effectively leverages the pre-trained model’s priors
for self-evaluation, approaching the performance of the larger Llama 3.1 70B, which achieves 38.1%
on AlpacaEval and 95.1% on GSM8K.

We also examined other probabilities to model with token prediction, specifically pθ(Win) or
pθ(Win | ¬Tie). Our findings, as shown in Table 2, indicate that including or removing ties does not
significantly impact performance, but modeling pθ(Win) is significantly more difficult as it forces
the model to distinguish between samples that result in wins or ties, which are both cases in which
the model performs relatively well for its capability.

Notably, using Best-of-N sampling with our methods allows the Llama 3.1 8B model to approach
the performance of Llama 3.1 70B, a model roughly 10× larger that gets 38.1% and 95.1% respec-
tively. This highlights the efficacy of Best-of-N sampling in enhancing model performance. In the
following section, we address the expensive nature of this method with adaptive compute strategies.

4.3 EFFICIENCY AND SCALING OF ADAPTIVE SAMPLING AND ANNEALING

Metrics for Evaluation Following prior work (Hoffmann et al., 2022; Pope et al., 2022; Chen et al.,
2023), we study the efficiency as a measure of floating-point operations per second (FLOPS), which
is proportional to the number of inference tokens generated. We additionally consider the inference
latency through the number of sequential calls/batches and the wall time.

We evaluate the efficiency gains and performance trade-offs of our adaptive sampling and annealing
strategy on the GSM8K and MATH datasets. Our objective is to retain the performance benefits
of Best-of-16 sampling while significantly reducing the average number of FLOPs utilized. In this
setting, we want to evaluate the methods’ ability to allocate samples when necessary. Therefore, our
experiments always use capability-aware self-evaluations to select the best sample so that the final
selection method is not a confounding factor.

As a baseline, we first assess the performance of Best-of-N. The best sample is selected using self-
evaluation with token prediction. Figure 2 shows that increasing the number of samples from 1 to
16 incrementally improves the GSM8K Pass@1 accuracy from 84.2% to 91.0%. This represents
the maximum achievable performance with our method, which we define as 100% of the maximum
improvement. However, generating a fixed large number of samples per query is expensive.

To mitigate this, we introduce adaptive sampling controlled by a threshold τ and a maximum number
of samples Nmax. Initially, we test adaptive sampling using the underlying reward model to decide
whether to generate additional samples. As shown in Figure 2, this approach does not significantly
outperform random selection. While the underlying reward model effectively ranks responses, it
does not consider the model’s capability to improve upon its own outputs, substantially limiting its
effectiveness in informing resampling decisions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

B)

Early Pruning (FLOPs and Latency Advantages)
A)

Figure 3: FLOPs and Latency vs Performance for Pruning In Alpaca Eval, we find (A) savings
in FLOPs from pruning with (B) no increase in latency (in Wall Time).

In contrast, our adaptive sampling method utilizing capability-aware self-evaluations via token pre-
diction yields substantial efficiency gains. Table 4 demonstrates that by adjusting the threshold τ
for the win-or-tie probability pθ(Win ∪ Tie | x,y), we can control the average number of samples.
For instance, setting τ = 0.98 results in 97.1% of the maximum performance while using only an
average of 4.1 samples, compared to the 16 samples required for maximum performance.

Moreover, incorporating the annealing schedule further enhances performance, particularly at lower
thresholds. As illustrated in Table 3, with annealing, we achieve 73.5% of the maximum improve-
ment using an average of just 1.2 samples when τ = 0.92. This indicates that our annealing strategy
effectively balances exploitation and exploration during sampling.

Our adaptive sampling approach offers significant inference compuational savings compared to
Best-of-N. By adjusting τ and Nmax, we can tune the trade-off between performance and efficiency.
The latency introduced by adaptive sampling is minimal due to the exponentially increasing batch
sizes as seen in Figure 3, and a higher performance can be tradeoff with some additional latency.
However, can we construct an approach that has no additional latency altogether?

4.4 EFFICIENCY GAINS OF PRUNING UNPROMISING SAMPLES

We evaluate the efficiency gains from early pruning of unpromising samples on the AlpacaEval
benchmark. We begin with 16 samples and prune from them. Our primary metrics are the percent
of maximum improvement achieved and the average FLOPs per prompt. We additionally study the
Wall Clock Time (seconds) to estimate the latency of sampling approaches.

Our experiments control two variables: the number of tokens generated before making pruning
decisions (64 or 128 tokens), and the percentage of samples pruned (e.g., pruning 75%). Again, the
capability-aware self-evaluations are used the final sample selection method.

Impact of Evaluation Timing on Performance. As shown in Figure 3, pruning at 64 tokens
improves performance over random pruning at 0 tokens. For instance, pruning 50% of samples at 64
tokens achieves a win rate of 33.4%, closely approaching the maximum win rate of 33.8% without
pruning. Pruning 75% of samples at 128 tokens yields even better results, attainning a win rate of
33.2%, nearly matching the maximum performance without pruning. This improvement is expected,
as longer partial responses provide more context for accurate self-evaluation.

Overall, there are substantial savings if one prunes at the right time and the right number of samples.
In terms of computational cost measured by FLOPs, pruning 8 of the 16 samples at 128 tokens sig-
nificantly reduces the average FLOPs per prompt by 2x as shown in Figure 5, resulting in significant
efficiency gains, without any additional inference latency.

5 RELATED WORK

Reward Modeling in RLHF. Traditionally, reward models (RMs) within Reinforcement Learning
with Human Feedback (RLHF) have been trained using discriminative techniques, often drawing
on ranking models like the Bradley-Terry (BT) framework (Bradley & Terry, 1952). These RMs
are generally treated as binary classifiers, distinguishing between preferred and dispreferred com-
pletions for a given prompt (Stiennon et al., 2020; Ouyang et al., 2022). The preference signal is
predicted by generating a continuous score, typically derived from a linear head appended to an au-
toregressive language model. An alternative line of work departs from this discriminative paradigm

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

by directly modeling preferences through joint probability estimations, as seen in methods that pre-
dict the likelihood of one response being preferred over another (An et al., 2023).

Recent advancements in RLHF have introduced implicit reward models that circumvent the neces-
sity for a distinct reward classifier by learning the distribution of preferred and dispreferred comple-
tions via objectives like Direct Preference Optimization (DPO) (Rafailov et al., 2023) and Implicit
Preference Optimization (IPO) (Gheshlaghi Azar et al., 2023). These methods embed preference
learning directly into the policy optimization process, unlike explicit preference modeling.

“LLM as a Judge” (Zheng et al., 2023) is another form of reward modeling where the model is
prompted to act as evaluators without additional finetuning. Despite the potential of these meth-
ods, even advanced models like GPT-4o underperform when compared to dedicated RMs in more
complex evaluations, such as those found in the RewardBench benchmark (Lambert et al., 2024).

Techniques for Inference-time Compute. During inference, the integration of a reward model with
a proposal distribution (LLM) can be employed to refine the output responses to a given prompt. One
notable paradigm in this context is Self-Consistency Wang et al. (2023), which is designed for fac-
tual queries with extractable answers. In this approach, the language model selects the response it
generates with the highest frequency across multiple samples. Optimizations such as Early Stop-
ping Self-Consistency have been proposed, which terminate the sampling process early if a subset
of responses shows strong consistency. However, these approaches face limitations due to their
dependence on identifying the most “consistent” response from a large pool of discrete answers,
restricting their applicability to tasks like multiple-choice or mathematical problem-solving.

In addition, search algorithms such as Best-of-N and Beam Search have been explored in works such
as Snell et al. (2024), which leverage reward models to select the most promising candidate samples
in reasoning tasks. In this work, we examine how to enhance the efficiency of token generation
relative to the accuracy of the outputs, with the complexity of the query dictating the amount of
inference compute allocation. Furthermore, for multi-step reasoning tasks, this work presupposes
that the problem can be decomposed into discrete semantic steps—a potentially strong assumption
in domains outside of well-structured fields like mathematics.

Generative Verifiers. Concurrent work, such as Zhang et al. (2024); Ankner et al. (2024), demon-
strate that token-based reward modeling outperforms traditional reward modeling techniques. We
further introduce capability-aware self-evaluation, which allows a model to understand its own gen-
eration capability to enable dynamic allocation of computational resources during inference. We
also introduce mid-generation self-evaluations, allowing for the pruning of unpromising samples.

6 DISCUSSION, CONCLUSION, AND LIMITATIONS

As large language models (LLMs) evolve, enhancing response quality through inference-time com-
putation becomes critical. Best-of-N sampling, a traditional approach, generates multiple response
candidates and selects the best, but it incurs high computational costs due to its reliance on ex-
ternal reward models and fixed sample sizes. This work introduces a cost-effective alternative:
capability-aware self-evaluations performed mid-generation. By appending a self-evaluation prompt
to responses, LLMs predict the likelihood of generating a better response without requiring exter-
nal reward models. Two adaptive inference-time techniques—adaptive sampling and early prun-
ing—are also proposed, allowing LLMs to resample or discard suboptimal responses during gen-
eration dynamically. These methods significantly improve efficiency, with fewer samples yielding
performance gains similar to a larger set, and early pruning reducing unnecessary computation. Ex-
perimental results demonstrate notable improvements in performance across tasks, achieving a 34%
win rate against GPT-4 on AlpacaEval with 16 samples and increasing accuracy on GSM8K math
problems from 84% to 91%. Overall, this approach optimizes inference-time compute allocation,
making it more scalable and practical for diverse real-world applications.

The main limitation of our method is that adaptive sampling introduces latency, which otherwise
would not be a problem with only parallel sampling. We minimized this with exponentially increas-
ing batch sizes. We also introduced early pruning to save computation even in parallel sampling.
For future work, it may be possible to predetermine the number of samples one needs to allocate to
a given query based on the probabiliy that samples result in a Tie. While this would be significantly
less efficient than adaptive sampling, it would eliminate latency for adaptive sampling. It may be
possible to do different types of search with active capability-aware self-evaluations. Beam search
or other similar types of search may be possible on general prompts with this new capability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCABILITY STATEMENT

For reproducability, we provide the following details so that readers can replicate our results. Firstly,
we provide details on how the dataset is constructed in sections 3 and 4 to enable Capability-Aware
and Mid-Generation Self-Evaluations for any model. Additionally, we provide algorithm pseu-
docode as seen in algorithm 1, giving the reader transparency in how to replicate the adaptive sam-
pling and annealing algorithm. Additionally, we provide details on how the dataset is constructed
in sections 3 and 4 to enable Capability-Aware and Mid-Generation Self-Evaluations for any model.
Finally, we provide evaluation details in section 4. For the camera ready, we hope to open-source
the model we train and release a public Github implementation.

REFERENCES

Gaon An, Junhyeok Lee, Xingdong Zuo, Norio Kosaka, Kyung-Min Kim, and Hyun Oh Song.
Direct preference-based policy optimization without reward modeling, 2023. URL https://
arxiv.org/abs/2301.12842.

Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D. Chang, and Prithviraj Ammanabrolu.
Critique-out-loud reward models, 2024. URL https://arxiv.org/abs/2408.11791.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952. ISSN 00063444. URL http:
//www.jstor.org/stable/2334029.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meeting on Association for Computational Lin-
guistics, ACL ’05, pp. 173–180, USA, 2005. Association for Computational Linguistics. doi:
10.3115/1219840.1219862. URL https://doi.org/10.3115/1219840.1219862.

Jierun Chen, Shiu hong Kao, Hao He, Weipeng Zhuo, Song Wen, Chul-Ho Lee, and S. H. Gary
Chan. Run, don’t walk: Chasing higher flops for faster neural networks, 2023. URL https:
//arxiv.org/abs/2303.03667.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Sto-
ica. Chatbot arena: An open platform for evaluating llms by human preference, 2024. URL
https://arxiv.org/abs/2403.04132.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der

11

https://arxiv.org/abs/2301.12842
https://arxiv.org/abs/2301.12842
https://arxiv.org/abs/2408.11791
http://www.jstor.org/stable/2334029
http://www.jstor.org/stable/2334029
https://doi.org/10.3115/1219840.1219862
https://arxiv.org/abs/2303.03667
https://arxiv.org/abs/2303.03667
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback, 2024.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A General Theoretical Paradigm to Understand Learning from Human
Preferences. arXiv e-prints, art. arXiv:2310.12036, October 2023. doi: 10.48550/arXiv.2310.
12036.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi
Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh
Hajishirzi. Rewardbench: Evaluating reward models for language modeling, 2024. URL
https://arxiv.org/abs/2403.13787.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
refine: Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/
2303.17651.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm Lev-
skaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling trans-
former inference, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F. Christiano. Learning to summarize from human feedback. CoRR,
abs/2009.01325, 2020. URL https://arxiv.org/abs/2009.01325.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2009.01325

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
via multi-objective reward modeling and mixture-of-experts, 2024. URL https://arxiv.
org/abs/2406.12845.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction, 2024. URL https://arxiv.
org/abs/2408.15240.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

A APPENDIX

A.1 EFFICIENCY WITH THE NUMBER OF SAMPLES GENERATED

Figure 4: Adaptive Inference-Time Compute: Strategies such as adaptive sampling (left) and early pruning
(right) make compute utilization during inference far more efficient and scalable.

A.2 COMPARING LIKELIHOODS

We briefly compare alternative probabilities one might consider to model using an on-policy pair-
wise preference dataset with ties.

Benchmark (Best-of-16) pθ(Win) pθ(Win | ¬Tie) pθ(Win ∪ Tie)

Win Rate vs GPT-4 on AlpacaEval (%) 27.7 30.1 29.6

GSM8K Pass @ 1 (%) 86.9 88.5 88.6

Table 2: Performance of different likelihoods with token prediction trained on a much smaller dataset
of roughly 600 preferences.

A.3 ADAPTIVE SAMPLING RESULTS

We show adaptive sampling performance with various aspects of the algorithm removed.

14

https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Win-or-Tie Probability Threshold 0.92 0.96 0.98 0.99 1.00

Average Samples Used 1.2 1.9 3.7 6.8 16.0

Average Batches Used (Latency) 1.1 1.4 2.0 2.9 5.0

Average Wall Clock Time in seconds (Latency) 8.92 11.4 15.9 23.1 39.5

GSM8K Pass@1 (%) 89.2 89.9 90.8 90.8 91.0

Percent of Maximum Improvement 73.5 83.8 97.1 97.1 100.0

Table 3: Adaptive Sampling and Annealing performance gains and efficiency on GSM8K. We find
that latency (in the number of batches used and Wall Time) is comparable to Best-of-16 for smaller
threshold values.

Win-or-Tie Probability Threshold 0.92 0.96 0.98 0.99 1.00

Average Samples Used 1.4 2.2 4.1 6.9 16.0

Average Batches Used (Latency) 1.3 1.6 2.0 2.9 5.0

Average Wall Clock Time in seconds (Latency) 10.5 12.9 15.9 22.9 40.1

GSM8K Pass@1 (%) 88.0 89.9 90.8 91.0 91.0

Percent of Maximum Improvement 55.9 83.8 97.1 100.0 100.0

Table 4: Performance on GSM8K with adaptive sampling using capability-aware self-evaluations.
This is without the annealing schedule.

Reward Threshold 0.119 0.133 0.150 0.163 Inf

Average Samples Used 1.4 2.2 4.1 6.9 16.0

Average Batches Used (Latency) 1.2 1.4 2.0 2.8 5.0

Average Wall Clock Time in seconds (Latency) 9.4 11.3 15.9 22.4 39.2

GSM8K Pass@1 (%) 86.9 87.9 89.0 89.9 91.0

Percent of Maximum Improvement 39.7 54.4 70.6 83.8 100.0

Table 5: Performance on GSM8K with adaptive sampling using the underlying reward model.

Samples Used 1 2 4 8 16

GSM8K Pass@1 (%) 84.2 87.7 88.9 89.9 91.0

Average Batches Used (Latency) 1.0 1.0 1.0 1.0 1.0

Average Wall Clock Time in seconds (Latency) 8.2 8.3 8.3 8.4 8.3

Percent of Maximum Improvement 0.0 51.5 69.1 83.8 100.0

Table 6: Performance on GSM8K with Best-of-N at varying number of samples.

A.4 EARLY PRUNING RESULTS

We show the results associated with early pruning shown in Figure 4 as well as tokens generated.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 5: Early Pruning performance gains and efficiency on AlpacaEval.

Win Rate vs GPT-4 Samples Used (Pruned Samples)
on AlpacaEval (%) 1 (Prune 15) 2 (Prune 14) 4 (Prune 12) 8 (Prune 8) 16 (Prune 0)

Prune @ 0 tokens (Random) 21.2 25.1 29.1 31.4 33.8

Prune @ 64 tokens 25.3 28.3 31.2 33.4 33.8
Prune @ 128 tokens 28.3 30.4 33.2 33.8 33.8

No Pruning 33.8 33.8 33.8 33.8 33.8

Table 7: Win Rate vs GPT-4 on AlpacaEval with varying pruning strategies.

Percent of Maximum Samples Used (Pruned Samples)
Improvement (%) 1 (Prune 15) 2 (Prune 14) 4 (Prune 12) 8 (Prune 8) 16 (Prune 0)

Prune @ 0 tokens (Random) 0.0 31.0 62.7 81.0 100.0
Average Batches Used (Latency) 1.0 1.0 1.0 1.0 1.0
Average Wall Clock Time in seconds (Latency) 7.9 8.1 8.1 8.0 8.2

Prune @ 64 tokens 32.5 56.3 79.4 96.8 100.0
Prune @ 128 tokens 56.3 73.0 95.2 100.0 100.0
Average Batches Used (Latency) 1.0 1.0 1.0 1.0 1.0
Average Wall Clock Time in seconds (Latency) 8.1 8.2 8.2 7.9 8.3

No Pruning 100.0 100.0 100.0 100.0 100.0

Table 8: Percent of Maximum Improvement achieved on AlpacaEval with different pruning strate-
gies.

Tokens Generated Samples Used (Pruned Samples)
per Prompt 1 (Prune 15) 2 (Prune 14) 4 (Prune 12) 8 (Prune 8) 16 (Prune 0)

Prune @ 0 tokens (Random) 454 907 1,815 3,629 7,259

Prune @ 64 tokens 1,370 1,763 2,544 4,113 7,259
Prune @ 128 tokens 2,214 2,551 3,220 4,566 7,259

No Pruning 7,259 7,259 7,259 7,259 7,259

Table 9: Average tokens generated per prompt on AlpacaEval with different pruning strategies.

16

	Introduction
	Preliminaries and Notation
	Adaptive Inference-Time Compute via Capability-Aware and Mid-Generation Self-Evaluations
	Capability-Aware and Mid-Generation Self-Evaluations
	Making Best-of-N Efficient and Scalable
	Adaptive Sampling and Annealing
	Early Pruning of Unpromising Samples

	Experiments
	Training Data and Evaluations
	Performance and Sample Efficiency
	Efficiency and Scaling of Adaptive Sampling and Annealing
	Efficiency Gains of Pruning Unpromising Samples

	Related Work
	Discussion, Conclusion, and Limitations
	Reproducability Statement
	Appendix
	Efficiency with the number of samples generated
	Comparing likelihoods
	Adaptive Sampling Results
	Early Pruning Results

