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Abstract

Neural ordinary differential equations (neural ODE) are powerful continuous-time ma-
chine learning models for depicting the behavior of complex dynamical systems, but their
verification remains challenging due to limited reachability analysis tools adapted to them.
We propose a novel interval-based reachability method that leverages continuous-time
mixed monotonicity techniques for dynamical systems to compute an over-approximation
for the neural ODE reachable sets. By exploiting the geometric structure of full initial
sets and their boundaries via the homeomorphism property, our approach ensures effi-
cient bound propagation. By embedding neural ODE dynamics into a mixed monotone
system, our interval-based reachability approach, implemented in TIRA with single-step,
incremental, and boundary-based approaches, provides sound and computationally efficient
over-approximations compared with CORA’s zonotopes and NNV2.0 star set representa-
tions, while trading tightness for efficiency. This trade-off makes our method particularly
suited for high-dimensional, real-time, and safety-critical applications. Applying mixed
monotonicity to neural ODE reachability analysis paves the way for lightweight formal
analysis by leveraging the symmetric structure of monotone embeddings and the geomet-
ric simplicity of interval boxes, opening new avenues for scalable verification. This novel
approach is illustrated on two numerical examples of a spiral system and a fixed-point
attractor system modeled as a neural ODE.
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1. Introduction

Neural ordinary differential equations (neural ODE) are a recent machine learning model
that has been introduced into the machine learning community (Rico-Martinez et al., 1992;
Chen et al., 2018), and since then, they have gained prominence in time-series modeling over
traditional neural networks (Kidger, 2021; Haber and Ruthotto, 2017; Oh et al., 2025). As
neural ODE constitute a relatively recent technique, fewer verification tools are available
for them compared with those for traditional neural networks. In particular, reachability
analysis is a useful and important approach for neural ODE, and most of the current
available verification tools for neural ODE are based on reachability analysis.

The first work on neural ODE reachability analysis was introduced in Grunbacher et al.
(2021) using Stochastic Lagrangian Reachability, an abstraction-based technique that com-
putes confidence intervals for reachable sets with probabilistic guarantees. This work was
later extended to the GoTube tool (Gruenbacher et al., 2022), enabling computation of neu-
ral ODE reachable sets over longer time horizons. However, both Grunbacher et al. (2021)
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and Gruenbacher et al. (2022) provide only stochastic bounds on reachable sets, lacking for-
mal guarantees. For deterministic neural ODE reachability analysis, Manzanas Lopez et al.
(2022) have extended the neural network verification tool (NNV') (Tran et al., 2020) by in-
troducing NNVODE, a general neural ODE class combining continuous and discrete time
layers. NNV was later upgraded to NNV 2.0 (Lopez et al., 2023), which offers support
for neural ODE. A different form of reachability based formal verification for neural ODE
was introduced in Sayed et al. (2025), where a formal relationship between neural ODE and
ResNet was introduced to verify safety properties of one model based on the other without
running verification tools twice on both models.

Mixed Monotonicity was first introduced in Gouzé and Hadeler (1994) and then in-
troduced into reachability analysis field in Coogan and Arcak (2015). The first charac-
terization of continuous-time systems that satisfy mixed monotonicity was investigated in
Coogan and Arcak (2016); Coogan et al. (2016), showing that systems with sign-stable Ja-
cobian matrices satisfy the mixed monotonicity property. This was then generalized for non-
linear systems in Yang et al. (2019), provided the Jacobian matrices are bounded. Such a
result was subsequently applied to the neural network reachability analysis in Meyer (2022),
and Coogan (2020) further discussed how mixed monotonicity enables efficient reachable
set approximation for safety critical dynamical systems.

Some of the tools that consider mixed monotonicity for neural network reachability
analysis include immrax, a JAX-based tool that employs mixed monotonicity to compute
interval-based over-approximations of reachable sets for neural networks, utilizing GPU
acceleration for computational efficiency (Harapanahalli et al., 2024). Additionally, npin-
terval implemented in numpy, uses inclusion functions to provide interval bounds on a
function’s output (Harapanahalli et al., 2023). To the best of our knowledge, no other work
has considered mixed monotonicity for the reachability analysis of neural ODE.

Our Contributions: We present a novel method for the reachability analysis of neural
ODE by adapting existing mixed monotonicity reachability methods for continuous-time
dynamical systems (Meyer et al., 2021) to obtain an interval over-approximation of the
reachable output set starting from a given input set. We also compare our novel neural
ODE mixed monotonicity reachability approach implemented in TIRA (Meyer et al., 2019)
against two well-known reachability analysis toolboxes that can handle neural ODE which
are CORA (Althoff, 2015) and NNV2.0 (Lopez et al., 2023), in addition to a boundary
analysis-based reachability approach inspired by the work of Liang et al. (2023).

2. Preliminaries

We consider the following neural ODE:

B(t) = = f(x(?)), (1)

with state z € R", initial state 2(0) = u, and vector field f : R” — R™ defined as a finite
sequence of classical neural network layers (such as fully connected layers, convolutional
layers, activation functions, batch normalization). Although the proposed approach in this
paper is applicable to any neural ODE with Lipschitz continuous vector field f, for simplicity
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of presentation in the notations relying on the derivatives of f, we restrict ourselves to the
cases where the vector field is continuously differentiable.

Definition 1 (neural ODE Reachability) Given an initial set X, C R™ and final time
ty for the neural ODE, we define the set of reachable outputs as:

Rneuml ODE(Xin) - {y eR" ‘ Yy = (I)(tﬁu)) u € in}a

where ® : R x R™ — R” is the solution to the state trajectories of (1) based on the
corresponding initial value problem:

z(ty) = @(tr, 2(0)) = @(ts, u).

Since we usually cannot compute these output reachable sets exactly, we rely on computing
an over-approximation denoted as Q(X;,) such that Rueural oDE(Xin) C Q(Xin)-

2.1. Homeomorphism

A homeomorphism function is a continuous function that preserves topological character-
istics, mapping only boundaries to boundaries and interiors to interiors (Massey, 1991).
In Liang et al. (2023), a homeomorphism is defined as a relational map between two sets
that preserves all topological properties between them, as illustrated in Figure 1. The
homeomorphism property was introduced in some reachability analysis works involving a
set-boundary reachability method for ordinary differential equations (Xue et al., 2016), and
delay differential equations (Xue et al., 2020).

Definition 2 (Homeomorphism) For two given sets X,) C R", there exists a map
m(.) : X — Y which is a homeomorphism w.r.t. X if it is a continuous bijection and the
map inverse m~1(.) : Y — X is also continuous.

Figure 1: Homeomorphism (Right) vs. non-homeomorphism (Left) sets

Lemma 3 (Massey (1991)) Assuming that the two sets X,Y C R" are closed and
bounded, i.e., compact. For a homeomorphism map m(.) : X — Y, m maps the bound-
aries of the set X to the boundaries of the set ), and the interior of the set X to the
interior of the set ).

Neural ODE are naturally invertible (Liang et al., 2023), which means that they are able
to reconstruct their inputs from their outputs, i.e., they correspond to continuous reversible
maps. Based on Lemma 3, and the fact that the two sets X',) are compact, the neural
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ODE exhibit the homeomorphism property, which allows us to over-approximate the neural
ODE reachable set from the boundaries of its initial set instead of over-approximating the
neural ODE reachable set from the full initial set. Based on that, we propose a mixed
monotonicity set boundary reachability method for neural ODE, and their corresponding
computation procedure is presented in Section 3.4 and Algorithm 3.

2.2. Continuous time Mixed Monotonicity

Mixed monotonicity is a property of dynamical systems that allows for efficient computa-
tion of reachable sets by decomposing the system’s vector field into components that are
monotonically increasing and decreasing in their arguments (Coogan, 2020). Such decom-
position allows the embedding of the original system into a higher-dimensional monotone
system, where the bounds can be propagated forward to over-approximate the reachable
sets (Meyer et al., 2021).

Definition 4 (Neural ODE Mixed Monotonicity) The neural ODE (1) is mized mono-
tone if there exists a decomposition function g : R™ x R® — R™ such that g is increasing

in its first argument, g is decreasing in its second argument based on Definition II.1 from
Angeli and Sontag (2003), and f is embedded in the diagonal of g: g(x,x) = f(x).!

The mixed monotonicity property is satisfied on any system that is Lipschitz continuous.
Lipschitz continuity ensures that the system’s vector field has a bounded Jacobian matrix,
which is the only condition required to construct such a decomposition function using the
continuous-time mixed monotonicity methods from (Meyer et al., 2021).

In this paper, we leverage an existing tool based on mixed monotonicity and named
TIRA (Meyer et al., 2019) for neural ODE. Notably, mixed monotonicity is an interval-
based approach, relying on hyperrectangular (box) bounds for computational simplicity
while ensuring soundness (Meyer et al., 2021), compared with other approaches focusing on
other set representations, such as zonotopes used in CORA (Althoff, 2015), and star sets in
NNV 2.0 (Lopez et al., 2023).

3. Boundary analysis Mixed Monotonicity Reachability for neural ODE

In this section, we present our approach for computing reachable set over-approximations
for neural ODE using mixed monotonicity, enhanced with boundary analysis to leverage the
homeomorphism property introduced in Section 2.1 (Lemma 3). We use Jacobian bounds
based on the neural ODE reachable tube R;‘éﬁfal opg- These bounds enable two continuous-
time mixed monotonicity methods from (Meyer et al., 2021) which are continuous-time
mixed monotonicity and sampled-data mixed monotonicity adapted to neural ODE using
three different approaches for reachable set over-approximation: single-step, incremental,
and boundary-based. These approaches, illustrated in Figure 2, are evaluated on the spiral
and FPA systems.

1. The enthusiastic reader is encouraged to refer to Appendix C for more details.
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Figure 2: Hlustration of the steps for reachability analysis of neural ODE using different
tools, methods and mixed monotonicity approaches

3.1. Computing the Jacobian bounds

To apply mixed monotonicity, we first need to satisfy the only required condition which is
to bound the Jacobian matrix of the neural ODE vector field f(x), ensuring the existence
of a sign-stable decomposition (Yang et al., 2019). Using CORA or NNV2.0 (Althoff, 2015;
Lopez et al., 2023), we compute the neural ODE reachable tube R;‘éﬁ;’al opg over the time
interval [0, 1] for the spiral system and [0, 2] for the FPA system, as a sequence of zonotopes,
where each zonotope corresponds to an intermediate time range?. We then compute the
union of all the reachable sets in Rf;é‘flfal opg to approximate the region containing all
neural ODE trajectories over the time interval. From this union, we extract the minimum
and maximum values along each dimension across all the reachable sets corresponding to
the lower and upper bounds of the reachable tube. Then based on these bounds, we use
interval arithmetic (Jaulin et al., 2001) as it is a simple and computationally efficient way
to derive bounds on the Jacobian matrices, which will be used as the foundation for the
over-approximation methods of continuous-time mixed monotonicity® (Meyer et al., 2021).

3.2. Single-Step Reachability analysis

In the single-step approach, we compute the reachable set over-approximation directly from
the initial time to the final time t; without intermediate subdivisions. For the neural
ODE (1) with initial set Aj,, we embed the system into a mixed monotone form using the
decomposition function g(x, ) derived based on Jacobian bounds. The embedded system is
solved over the full time horizon [0, %], with ¢; = 1 for the spiral system and ¢y = 2 for the
FPA system, propagating the interval bounds [z(0),Z(0)] from Xj, to obtain the interval
over-approximation Q(X,) = [z(tf), T(tf)].

2. We performed the test while using a longer time range than the ones used in our examples and the re-
sulting Jacobian matrices made the over-approximations not as tight as using only the Jacobian matrices
based on the reachable tube of our examples time interval.

3. For further details about bounding the Jacobian matrices and its usage in mixed monotonicity, please
refer to Appendices B and C
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This approach is computationally efficient, as it involves a single integration of the
embedded monotone system, providing a direct interval over-approximation of the reachable
set at the final time. It is particularly well-suited for systems where achieving a balance
between simplicity and soundness is more important than obtaining the tightest bounds.

3.3. Incremental Reachability analysis

The incremental approach refines the single-step method by dividing the time horizon into
smaller steps, computing intermediate reachable set over-approximations to potentially re-
duce conservatism. For each step, we apply the mixed monotonicity embedding and prop-
agate the bounds sequentially, using the output of one step as the input for the next one.

For the FPA system, we use a step size of 0.05, resulting in 40 incremental reach-
able set over-approximations, i.e., step%. For the spiral system, a finer step size of 0.01
is considered, resulting in 100 over-approximations. This method can yield tighter over-
approximations than the single-step method, especially for systems with varying dynamics,
but at the cost of increased computational time due to repeated numerical integrations of
the embedded monotone system.

3.4. Boundary Reachability analysis

To take advantage of the homeomorphism property of neural ODE, we extend the single-
step approach to compute the over-approximation of the reachable set from the boundaries
of the initial set only. This can reduce the computation by focusing on the boundary of
Xy, rather than the entire set, as the interior reachable states are enclosed by the boundary
evolution (Liang et al., 2023; Xue et al., 2020, 2016).

For the spiral 2-dimensional system, we compute the reachable sets from 2 x n = 4
boundaries (the faces of the dashed-zonotope in Figure 5 of Appendix D). For the FPA 5-
dimensional system, this involves 2 x 5 = 10 boundaries (the intervals with the blue and red
boundary points in Figure 11 of Appendix D). For each boundary, we apply the mixed mono-
tonicity embedding and integrate the embedded system over the full time horizon [0,t¢]. We
then take the interval hull of the union of the resulting interval over-approximations to form
the final over-approximation (Xj,,). This approach remains sound by enclosing all reach-
able sets within the boundary evolution, while leveraging the homeomorphism property of
the neural ODE, ensuring that the invertible flow map preserves the topological structure
of X;,. This approach offers computational efficiency for both low and high dimensional
systems, as it scales linearly with the state dimension.

4. Numerical illustration

In this section, two commonly used neural ODE academic examples (Chen et al., 2018;
Musau and Johnson, 2018), described in detail in Appendices A.1 and A.2, are used to
demonstrate our neural ODE mixed monotonicity reachability approaches. The spiral 2-
dimensional example results at t = 1 are illustrated in Table 2 and Figure 3, while the FPA
5-dimensional example results at ¢ = 2 are presented in Table 3 and Figure 4, using three
subfigures to project the 5-dimensional results into two dimensions for visual comparison
with TIRA’s interval boxes.
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Using the Jacobian bounds computed in Appendix B, we satisfy the only condition
required to compute the over-approximation of the neural ODE mixed monotonicity based
reachability approaches, as discussed in Section 3.

In the spiral example, as shown in Figure 3, the single-step and mixed
monotonicity approaches gives identical interval over-approximations, but the

approach requires approximately 96 times more computational time than the single-
step approach. Similarly, the single-step and dashed boundary-based sampled-data mixed
monotonicity approaches yield equivalent over-approximations, where the boundary-based
method is approximately 5 times slower than single-step due to computing reachable sets
across the four boundaries of the 2D initial set. Comparing across tools, CORA’s zonotopes
and NNV2.0 achieve tighter over-approximations than TIRA’s approaches, with
CORA'’s dashed-boundaries zonotope being the tightest. However, CORA’s computational
time is approximately 25 times greater, and NNV2.0 is approximately 6 times greater
than TIRA’s single-step mixed monotonicity approach, highlighting TIRA’s efficiency for
simpler interval-based representations.

X1 vs Xz

3.0

2.54

2.0

1.54

X:

1.01

0.5 1

otonicity (Boundary)

-15 -1.0 -0.5 0.0 0.5

Figure 3: Spiral Comparison between TIRA vs. CORA vs. NNV2.0 at t =1

In contrast, for the FPA example illustrated in Figure 4, the single-step,
and dashed-boundary-based mixed monotonicity yield identical over-approximation, but
the computational time of the approach is approximately 31 times greater
than that of the single-step approach, while the dashed-boundary approach is approxi-
mately 9 times greater, making single-step the most efficient choice due to equivalent re-
sults. Additionally, the sampled-data mixed monotonicity approach produces less tight over-
approximations than continuous-time mixed monotonicity at a significantly higher compu-
tational cost. Across tools, CORA’s zonotopes consistently outperform NNV2.0 in
tightness with comparable computation times, except for CORA’s dashed-boundaries zono-
tope which achieve the tightest over-approximations overall. However, TIRA’s single-step
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mixed monotonicity remains the fastest method, with CORA requiring approximately 131
times more computation time than TIRA’s single-step mixed monotonicity approach.

For both examples, we used three different set representations to illustrate their strengths
and weaknesses. Zonotopes have a more flexible representation, allowing them to model
diverse shapes and fit tightly to any set (Girard, 2005). Thus, for both examples, it is
evident that CORA’s zonotopes provide the tightest over-approximations compared with
NNV2.0 star sets and TTRA’s interval boxes, which are very simple rectangular box shapes,
but very constrained as well*. In terms of complexity, the simple rectangular box shapes of
intervals are easier to compute, resulting in shorter computational times for TIRA compared
to CORA and NNV2.0 as illustrated in Table 1, and this is due to the fact that zonotopes
require processing and storing more data, leading to longer computational times.

X1 Vs Xz 0.380 X3 Vs Xy

-0.45

0.375

-0.50

0.370
-0.55

—0.60 0.365

= 065 * 0360

-0.70 0.355

-0.75 0.350

-0.80
0.345

-1.40 -1.35 -1.30 -1.25 -1.20 -115 -1.10 -0.76

(a) x1 — 9

Xa Vs Xs
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0 2.425

2.400

2.375

2.350

2.325

0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380
Xa

(c) x4 — w5

Figure 4: FPA Comparison between TIRA vs. CORA vs. NNV2.0 at ¢t = 2

4. Interval boxes cannot be rotated or have their corners truncated.
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Table 1: Spiral and FPA computation times (in seconds) with CORA, NNV2.0, and TIRA

Methods Spiral@t=1 | FPA @ t=2
CORA Full Reachable Set 19.64 13.22

CORA Boundaries only 70.83 109.1

NNV2.0 Full Reachable Set 17.25 11.98

TIRA (single-step) Mixed-Monotonicity 0.66 0.83

TIRA (single-step) Sampled-Data Mixed-Monotonicity | 0.95 1.34

TIRA (incremental) Mixed-Monotonicity 63.13 25.41

TIRA (incremental) Sampled-Data Mixed-Monotonicity | 111.16 48.06

TIRA (Boundary) Mixed-Monotonicity 2.84 7.06

TIRA (Boundary) Sampled-Data Mixed-Monotonicity | 4.35 12.76

5. Conclusions and Future Work

In this paper, we propose an interval-based reachability method for neural ODE, leveraging
mixed monotonicity to compute over-approximations of the reachable sets. By adapting
continuous-time mixed monotonicity techniques (Meyer et al., 2021), our approach effi-
ciently computes interval-based over-approximations, both from the full initial input set
and its boundaries solely, exploiting the homeomorphism property to reduce computational
costs. This novel method, implemented in TIRA, provides a lightweight alternative for the
reachability analysis of neural ODE, offering lower complexity and faster computation times
compared with more flexible set representations such as zonotopes in CORA and star sets
in NNV2.0.

Through numerical illustrations on the spiral and FPA examples, we demonstrate that
our single-step, incremental, and boundary-based variants yield sound over-approximations,
albeit at the cost of tightness. Ultimately, the choice between our interval-based methods
and zonotope or star set based tools depends on the trade-off between over-approximation
tightness and computational efficiency, making our approach particularly suitable for high-
dimensional and real-time safety verification scenarios.

In future work, we plan to extend the boundary-based reachability approach by inte-
grating the incremental reachability analysis method to compute over-approximations of
the boundaries of the input set over finer incremental steps. We also aim to explore parti-
tioning the initial input set into smaller subsets, performing reachability analysis on each
subset using our interval-based method, and subsequently taking the union of all result-
ing over-approximations. In addition, we intend to incorporate this framework into a full
verifier to check safety properties in neural ODE. Finally, evaluating our interval-based
reachability method in real-world applications, such as neural ODE-based control systems,
typically real-time obstacle detection, will validate the practical utility of the method and
guide possible refinements for safety-critical domains.
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Appendix A. System description

Experiments Settings: All the experiments® herein are run on MATLAB 2024b with
the Continuous Reachability Analyzer (CORA) version 2025.1.1, the Toolbox for Interval
Reachability Analysis (TIRA) version 2, and the Neural Network Verification Software Tool
(NNV2.0) on an Intel (R) Core (TM) i5-1145G7 CPU@2.60 GHz and 32 GB of RAM.

A.1. Spiral

The spiral system is a 2-dimensional nonlinear dynamical system modeled as a neural ODE
(Chen et al., 2018), characterized by dynamics that produce spiral trajectories in the state
space, making it a valuable benchmark for studying complex, non-convergent behaviors in
continuous-time systems, we consider here the following 2-dimensional neural ODE with
the following dynamics

T = f(l’) =Wy tanh(Wlx + bl) + bo,

where € R? is the state vector, W; € R!9%2 is the weight matrix of the first layer,
b1 € R is the bias vector of the first layer, Wo € R?*10 is the weight matrix of the second
layer, by € R? is the bias vector of the second layer, and tanh(-) is the hyperbolic tangent
activation function applied element-wise to the vector Wiz + by € R, The exact values of
the weight matrices and bias vectors are defined within the Matlab function spiral_non.m.

A.2. FPA

The FPA system is a 5-dimensional nonlinear dynamical system with dynamics that con-
verge to a fixed point (an equilibrium state) under certain conditions (Beer, 1995), and the
fixed-point aspect makes it a useful model for studying convergence and stability, which are
important in safety-critical applications where the system must not diverge or enter unsafe
states. As in the proposed benchmark in Musau and Johnson (2018), we consider here the
following 5-dimensional neural ODE approximating the FPA dynamics:

& = f(z) = Tx + Wtanh(x),

where 2 € R? is the state vector, 7 = —107% is a time constant for the neurons, W € R>*?
O2x2 A )

O3xo2 BA

1.21464 —0.10502
), and B= [ 0.12023  0.19387

—1.36695 0.12201

Here, tanh(x) is the hyperbolic tangent activation function applied element-wise to the state
vector x.

is a composite weight matrix defined as W = <

—1.20327 —0.07202 —0.93635

with A = ( 118810  —1.50015 0.93519

5. Code available in the following repository:
https://github.com/ab-sayed/Mixed-Monotonicity-Reachability-Analysis-of-neural-0DE
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Appendix B. Jacobian Bounds

Considering the FPA system in Appendix A.2, the Jacobian of f(x) is:

Jo(x) = %(m) = 715 + W - diag(1 — tanh?(x;)) = 715 + W - diag(sech?(z;)),

where I5 is a 5 x 5 identity matrix, and diag(1 —tanh?(z;)) is a diagonal matrix with entries
1 — tanh?(z;) for i = 1,...,5, since the derivative of tanh(z;) is 1 — tanh?(z;). So, the goal
is to find interval bounds [J,, J,] such that J,(x) € [J,, J,] for all € [z,7].

It is worth noting here that interval arithmetic can be used to directly compute the
range of J,(x) by evaluating the expression over the interval [z, Z]. This involves bounding
the nonlinear term 1 — tanh?(z;) and combining it with the linear terms, as follows:

1. For each i € {1,...,5}, compute the interval [T}, T;] such that 1 — tanh?(z;) € [T}, T;]

for all z; € [z;, T;].

2. Create an interval diagonal matrix [D, D] = diag([T1, T1), - - ., [T5, T5))-

3. Compute the matrix product W - [D, D] using interval arithmetics:

(W-[D,D])ij = > Wi [Dyj, Dy = Wi - [T, T5) = (Wi Ly, Wi ') j 2
k=1 (Wi Ty, WiiT;] otherwise

4. Add the constant term 715 to get [J,, J.| = 715 + W - [D, D]

(1 1), AL D] [n(1,2), Jup(1,2)] -+ [Jin(L,5), Jun(1,5)]
— [Jlb(z, 1)7Jub(27 1)] [Jlb(272)>Jub(272)] [Jlb(2’5)’JUb(2’5)]

Jx(l‘): [lmv*]ff] = : : . :
[Jib(5,1), Jun(5,1)]  [J1n(5,2), Jup(5,2)] -+ [Jib(5,5), Jub(5,5)]

Appendix C. Mixed Monotonicity

In this appendix, we adapt the continuous-time mixed monotonicity and sampled-data
mixed monotonicity methods from Meyer et al. (2021), which were originally established
for continuous-time dynamical systems, to neural ODE.

C.1. Continuous-Time Mixed Monotonicity

The autonomous neural ODE (1) is mixed monotone if there exists a decomposition function
g :R" x R® — R" such that for all z,z € R™, the following conditions hold:

e ¢ is increasing in its first argument (off-diagonally):

0gi

Vl,j@{l,,n},]#l (l’,i’)>0,

a$j

14



MIXED MONOTONICITY REACHABILITY ANALYSIS OF NEURAL ODE

e g is decreasing in its second argument:

Vi,je{l,...,n}:

e f is embedded in the diagonal of g:
9(z,z) = f(z),

This decomposition implies that the embedded dynamical system is evolving in R2"=:

m _ [g(ﬂf,@)] = h(x, ),

x| |9(@ )
is monotone with respect to the orthant R’}* x R™* in its state space.

Requirements and Limitations: For applicability, there must exist a matrix L, €
R™*"= guch that J(z)+ L, is sign-stable over the considered time and state ranges (where
J(x) = g—g(a:) is the Jacobian matrix). This means that each off-diagonal element of
J(z) + L, maintains a constant sign (positive or negative) for all z in the domain (e.g., the
reachable tube estimate containing all trajectories over [0, T7).

To construct L, while minimizing the conservatism of the over-approximation, Meyer et al.
(2021) recommends shifting each off-diagonal Jacobian element based on its interval bounds

[+ Ji;]. Namely, for each 4, j with j 7 i, the shifting value y = Lg,; is chosen to move
the interval to the nearest sign-stable half-plane with minimal distance:

\min(0, = Tey,) if L, | > [Tayl-

which handles the cases where the interval is already sign-stable (no shift, y = 0) or crosses
zero (shift by a smaller overhang).

The decomposition function g embeds the vector field such that its i-th component is:

gi(xai') = fl(&) + Z |LIij’(xj - jj)?

Jj=1

where §; € R" is defined component wise as §;; = x; if Ly, >0, else §;; = @
The reachable set at time 7" from initial interval [xo,Zp] is over-approximated by sim-
ulating the embedded system only once from the initial condition [;Egﬂ = BO]: the
0
n, first output variables of the embedded system represent the lower bound of this over-
approximation; and the n, last output variables its upper bound. This method is compu-
tationally efficient for neural ODE, although conservatism may increase with larger 7.
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Algorithm 1: Continuous-Time Mixed Monotonicity Reachability for Neural ODE

Input: Neural ODE (1), initial set [z, ZTo] € R", time horizon T' > 0, optional:
reachable tube estimate [z, Z] C R™ containing {z(t) | t € [0,7T],z(0) € [z, To]}
Output: Interval bounds [z(T"),Z(T)] for the reachable set at time T’
begin
if [z, 7] is not provided then
Compute Lipschitz constant Ly of f
Set [z,T] < [zg — LyT - 1,Z0 + LT - 1]
end
Jacobian bounds:
Compute [J,, J,] € R™™" for the Jacobian matrix .J, = % over z € [z,T]
Shifting matrix L,:
Set L, <+ Opxn
for i <1 ton do
for j < 1ton, j#ido
Set Ly,; <y, where:

_ ma'X(O7 _lx”) lf ’lx”‘ S ’jxw |7
min(0, —Jy;) i [ Ly, | > [Tl

end

end

Decomposition function g(z, Z):
for i < 1 ton do

Set &+ 0,
for j «+ 1 tondo
if L;,; > 0 then
‘ Set §Zj —x
end
else
| Set & « i
end
end
Set gi(z, &) « fi(&) + 2oj=q [Lay (25 — 25)
end

Auxiliary system:

Simulate the system iv = g(gf’ 7) from t = 0 to T with initial conditions |~2
& 9(2, ) o

z(T)

to obtai tput ding to |Z ;
o obtain an output corresponding to #T)|’

return Interval bounds [z(T),z(T)]
end
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C.2. Sampled-Data Mixed Monotonicity

The main idea in this method is to model the continuous-time system as a discrete-time
system by sampling at specific time points, with initial conditions z(tg) = x(0), the sampled-
data version is defined as:

= ®(tg;to, 2(0)),

where ®(t¢;t9,2(0)) is the solution of the ODE at time ¢; starting from x(0) at tg. This
allows us to apply discrete-time reachability methods to the continuous-time system by
treating the evolution from tg to ¢y as a single discrete step. Thus, the sampled-data
approach can be directly applied by considering the solution map ®(t¢;t,x(0)), which for
neural ODE (1) is computed by integrating the ODE defined by the neural network, as it
is an autonomous system.

This method relies on the sensitivity matrix:

0%(t;to, z(0))
9z(0) ’
which describes how small changes in the initial state x(0) affect the state at time t;.

Based on Assumption 5.1 from Meyer et al. (2021), there exists a matrix L, such that for
all 1,5 € {1,...,n}, either:

S

S (ty;to, x(0)) =

(tgito,z0) + Lay; >0 Vag € [20, Zo),

ij
or

Sz

which enforces a sign-stability condition similar to that used in discrete-time mixed mono-

(trito,zo) + Ley; <0 Vg € [20, T0),

ij

tonicity.

To construct L, while minimizing the conservatism of the over-approximation, Meyer et al.
(2021) recommends shifting each sensitivity element based on its interval bounds [S zij? ?xij].
For each 4, j, the shifting value y = L, is chosen to move the interval to the nearest sign-
stable half-plane with minimal distance:

_ maX(07 _51'2]) lf |§.’E” | S |§I7,j ‘7
min(O, _grij) if ‘ﬁa:w’ > |§$”‘

which handles the cases where the interval is already sign-stable or crosses zero.
The decomposition function g embeds the flow map such that its ¢-th component is:

n
gi(to,,8) = i(tsito, &) + D [Lay, |(25 — 25).
j=1
Finally, the reachable set at time ¢ is over-approximated by:
[g(t()a xz, f): g(t()a f? &)] )

similar to the discrete-time mixed monotonicity method, where only two evaluations of
the decomposition function are needed to compute the bounds. This approach is particu-
larly advantageous for larger time horizons, as it avoids the accumulating conservatism of
continuous-time methods.
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Algorithm 2: Sampled-Data Mixed Monotonicity Reachability for Neural ODE

Input: Neural ODE (1), initial set [z, ZTo] € R", time horizon T' > 0, optional:
reachable tube estimate [z,7] C R™ containing {z(t) | t € [0,T],x(0) € [z, To]}
Output: Interval bounds [z(T"),Z(T)] for the reachable set over-approximation at
time T'
begin
if [z, 7] is not provided then
Compute Lipschitz constant Ly of f
Set [x,%] « [xg— LT - 1,79+ LT - 1]
end
Jacobian bounds:
Compute [J,, J,] € R™™ for the Jacobian matrix J, = % over = € [z,T]
Sensitivity bounds:
Compute [S,, Sz] € R™ " for the sensitivity matrix S;(T;0,z0) =
2(0) € [z, To)
Shifting matrix L,:
Set Lz < Opxn
for ¢ <+~ 1 to n do
for j <« 1ton, j#ido
Set Lz, <y, where:

0P(T;0,x0)

Do over

| min(0, =S.,,) i IS, | > [Sayl.

end
end
Decomposition function ¢(z, ):
for i <~ 1 ton do
Set & — 0p
for j < 1 tondo
if Ly;; > 0 then
| Set & « x;
end
else
| Set & « i
end

end

Solve ODE & = f(x) from t = 0 to T" with 2:(0) = &; to obtain ®(T’;0,&;)
Set gi({L‘, QAL’) — (I%(T, O, &) + Z?:l |Lzz]|(.7jJ - f])

end

Reachability bounds:

Compute g(zy,To) and ¢g(To, zg)

Set z(T') + g(zg,To) and T(T') < g(To, zp)

return Interval bounds [z(T'),z(T)]

end
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C.3. Boundary-Based Mixed Monotonicity Reachability Analysis for neural
ODE

The boundary-based mixed monotonicity neural ODE reachability approach, outlined in
Algorithm 3, computes the over-approximation of the reachable set Q(Xj,) of the neural
ODE (1) from the boundaries of the initial input set X}, instead of the entire input set.

The algorithm begins by extracting the boundaries B of X}, (typically the 2 x n facets of
the hyperplanes as illustrated in Figures 5 and 11), and the output over-approximation set
Q(X;y,) is initialized as empty. For each of the extracted boundaries, the mixed monotonicity
embedding is applied based on the mixed monotonicity method chosen from the two methods
discussed in Sections C.1 and C.2.

Finally, the over-approximations Q(B) from all boundaries are combined via a union,
and we then take the interval hull of this union to ensure that it also contains the interior
of the reachable set.

Algorithm 3: Boundary-Based Mixed Monotonicity Reachability for Neural ODE

Input: neural ODE (1), initial set [z, To] C R", time horizon T > 0, single-step mixed

monotonicity

Output: Over-approximation Q(X,) of the reachable set at time T'

begin

Set Xip + [QO,EU]

Extract the boundaries B of X,

Initialize Q(X;,) < 0

for each boundary B of X, do

Apply mixed monotonicity embedding to compute decomposition function
g(z, %) based on Jacobian bounds

Simulate the embedded system {ﬁ = [g(x, i)] over [0, 7] with initial bounds

from B
Obtain over-approximation Q(B5)
Set Q(Xin) < Q(&in) U Q(B)
end
Set Q(Xin) as the interval hull of itself
return Interval over-approximation Q(X,)
end
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Appendix D. Numerical Results

This appendix provides separate numerical results for each of the Spiral and FPA examples
for CORA, NNV2.0, and TIRA toolboxes. Tables 2 and 3 contain the tightness metrics that
represent the ratio of the area of the computed reachable set over-approximations to the area
spanned by the sampled successors in each 2D projection®, as well as the computation times.
The tightness metrics ratio is used to evaluate the conservatism of the over-approximation,
where higher values indicate a more conservative (larger) over-approximation.

D.1. Spiral
D.1.1. CORA

1 VS. T2

.o
o

B e ey
.

[—JFull Reachable Set OA

I___"\Boundaries only OA

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3

Figure 5: CORA Full Reachable Set OA vs. Boundaries only OA for Spiral at ¢t = 1

D.1.2. NNV2.0

D.1.3. TIRA

6. The FPA example results are appearing over three subfigures, each representing the projection of two
dimensions only as the FPA is a 5-dimensional example.
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1.9

1.8F

1.7

NEURAL ODE

T VS. I

[—JFull Reachable Set
Sampled points

1.4 - ‘

-0.5 -0.4 -0.3

Figure 6: NNV2.0 Full Reachable Set OA for Spiral at t = 1

2.5

I VS. I9

o)

15

0.5+

Sampled points

Figure 7: TIRA single-step vs.

incremental vs. boundary for Spiral at t =1
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Table 2: Spiral Numerical results at t = 1 with CORA, NNV2.0, and TIRA

Methods x1 — x2 | Time(sec.)
CORA Full Reachable Set 1.61 19.64
CORA Boundaries only 1.15 70.83
NNV2.0 Full Reachable Set 1.71 17.25
TIRA (single-step) Mixed-Monotonicity 24.59 0.66
TIRA (single-step) Sampled-Data Mixed-Monotonicity | 12.14 0.95
TIRA (incremental) Mixed-Monotonicity 24.59 63.13
TIRA (incremental) Sampled-Data Mixed-Monotonicity | 23.24 111.16
TIRA (Boundary) Mixed-Monotonicity 12.05 2.84
TIRA (Boundary) Sampled-Data Mixed-Monotonicity | 12.14 4.35

D.2. FPA

D.2.1. CORA
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Figure 8: CORA Full Reachable Set OA vs. Boundaries only OA for FPA at t = 2
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D.2.2. NNV2.0
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Figure 9: NNV2.0 Full Reachable Set OA at t =2
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Figure 10: TIRA single-step vs. incremental vs. boundary for FPA at ¢t = 2
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Table 3: FPA Numerical results at t = 2 with CORA, NNV2.0, and TIRA

Methods X1 — T2 | 3 — x4 | *4 — x5 | Time(sec.)
CORA Full Reachable Set 1.33 1.11 1.13 13.22
CORA Boundaries only 1.18 0.99 1.08 109.1
NNV2.0 Full Reachable Set 2.52 8.74 2.43 11.98

TIRA (single-step) Mixed-Monotonicity 2.29 2.30 1.79 0.83

TIRA (single-step) Sampled-Data Mixed-Monotonicity | 33.57 40.67 8.05 1.34

TIRA (incremental) Mixed-Monotonicity 2.29 2.30 1.79 25.41

TIRA (incremental) Sampled-Data Mixed-Monotonicity | 18.92 43.64 5.50 48.06
TIRA (Boundary) Mixed-Monotonicity 2.29 2.30 1.79 7.06

TIRA (Boundary) Sampled-Data Mixed-Monotonicity | 33.57 40.67 8.05 12.76
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