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Abstract
Learning user sequence behaviour embedding is
very sophisticated and challenging due to the com-
plicated feature interactions over time and high
dimensions of user features. Recent emerging
foundation models, e.g., BERT and its variants,
encourage a large body of researchers to inves-
tigate in this field. However, unlike natural lan-
guage processing (NLP) tasks, the parameters of
user behaviour model come mostly from user em-
bedding layer, which makes most existing works
fail in training a universal user embedding of
large scale. Furthermore, user representations
are learned from multiple downstream tasks, and
the past research work do not address the seesaw
phenomenon. In this paper, we propose SUPER-
MOE, a generic framework to obtain high quality
user representation from multiple tasks. Specifi-
cally, the user behaviour sequences are encoded
by MoE transformer, and we can thus increase the
model capacity to billions of parameters, or even
to trillions of parameters. In order to deal with
seesaw phenomenon when learning across multi-
ple tasks, we design a new loss function with task
indicators. We perform extensive offline experi-
ments on public datasets and online experiments
on private real-world business scenarios. Our ap-
proach achieves the best performance over state-
of-the-art models, and the results demonstrate the
effectiveness of our framework.

1. Introduction
Recent works have demonstrated that the pre-trained model
plays a critical role on a wide range of applications, e.g.,
(Devlin et al., 2018; Dosovitskiy et al., 2020; Riquelme
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et al., 2021; Bommasani et al., 2021b; Geng et al., 2022;
Sun et al., 2019; Qiu et al., 2020; Khan et al., 2021; Wu
et al., 2020; Xiao et al., 2021; Zeng et al., 2021). To improve
the efficiency and effectiveness of these models, many re-
searchers attempt to exploit transformer in order to capture
chronological pattern and dynamics of user intentions (Zeng
et al., 2021; Xue et al., 2021). With the remarkable achieve-
ments of pre-trained models, especially BERT-based models
(Qiu et al., 2021), the transformer backbone has been uti-
lized to address user data sparsity and cold-start problems
in downstream applications (Yuan et al., 2020; Zhang et al.,
2020a). In addition, DNN-based self-supervised learning
(SSL) model is designed to improve semantic representa-
tions for highly-skewed data distribution, with inadequate
explicit user feedback in user behaviour sequence interac-
tions via unlabeled data (Yao et al., 2021; Shin et al., 2021;
Zhang et al., 2020b).

However, the existing pre-trained model suffers from many
difficulties in achieving good user representations, e.g., only
a few behaviour channels are used in the model due to the
huge sizes of vocabularies and the resulting low training
efficiency. In AETN (Zhang et al., 2020a), only three be-
haviour channels are utilized, yielding sub-optimal user
representations. Therefore, the motivations of our work
are threefold, supported by our practical observations in
online production system. Firstly, most of model param-
eters come from feature embedding of ID and categorical
features, which usually dominate GPU memory usage (Lian
et al., 2021). For example, the number of user IDs are of-
ten in the scale of billions, resulting in parameter size of
numberIDs × embeddingDIMs. Secondly, the front embed-
ding layer accounts for the majority of the model’s size,
while the rest of model layers are extremely computation-
ally expensive. Consequently, training feature embedding
layer and main neural networks simultaneously and syn-
chronously for model of large scale is challenging, which
calls for efficient model training algorithm for sparsity. Fi-
nally, there are multiple training objectives no matter in
model pre-training stage or in fine-tuning stage, which often
causes pre-trained user embedding models with sub-optimal
performance when using simple bottom-shared mechanism
for the reason of seesaw phenomenon (Tang et al., 2020)
and negative transfer (Ma et al., 2018; Chen et al., 2019).
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Model Large channels Sequential Temporal Multi-task learning Scalability up to Trillions

MTL(Tang et al., 2020)
√

× ×
√

×
PERSIA(Lian et al., 2021)

√
× × ×

√

MTSSL(Yao et al., 2021)
√

× × × ×
BERT(Sun et al., 2019) ×

√
×

√ √

AETN(Zhang et al., 2020a) ×
√

×
√

×
OURS

√ √ √ √ √

Table 1. Advantages and limitations of the proposed model and the other models

In this paper, we propose SUPERMOE, a general frame-
work for user sequence behaviour representation and predic-
tion using sparse MoE transformer. Intuitively, transformer
demonstrates the importance of capturing long range depen-
dencies and pairwise or higher order interactions between
elements (Bommasani et al., 2021a). The sparse gating
mechanism, such as MoE, has shown its great advantages in
multi-objective learning in user recommendation systems.
Therefore, embedding the gating function in transformer
would be a good alternative to conventional models in user
representation learning. The comparison of advantages and
limitations of the proposed model and the other models is
listed in Table 1.

Our contributions can thus be summarized as follows: 1)
We propose a sparse MoE transformer model to deal with
huge amount of user behaviour sequence data with high
dimensions. 2) We propose a novel multi-task optimization
algorithm in order to address seesaw problem and negative
transfer problem across multiple tasks. 3) We devise a novel
method to split feature projection layer in order to address
the issue of GPU memory explosion, which successfully
integrates hundreds of behaviour channels into model train-
ing. 4) Our method significantly outperforms existing user
behaviour representation learning methods.

2. Problem Statement
Generally, we denote a typical one-channel user behaviour
sequence as s = [s1, s2, ..., si, ..., sN ], where si indicates
the ith user behaviour for this channel, which has length of
N . A multi-channel user behaviour sequence is denoted as
S = {[sj1, s

j
2, ..., s

j
i ..., s

j
N ]}, and [sj1, s

j
2, ..., s

j
i ..., s

j
N ] is the

jth channel of user behaviour sequence corresponding to
M behaviour channels. Each instance S in each task con-
tains a userID u ∈ U , and three types of sequence channels,
namely, category channel Scategory, ID channel SID and
dense channel Sdense. Therefore, given a set of N tasks
T = {t1, t2, ..., tn} with corresponding supervised label
Y = {y1, y2, ..., yn}, our goal is to learn the base user rep-
resentations across these tasks in order to apply them to
downstream applications. Following the two-stage training
paradigm (Devlin et al., 2018), we pre-train a base model

firstly on the huge pre-training dataset and then fine-tune
a new model on downstream target dataset with parame-
ters initialized as the pre-trained model. After the training,
our base representation model should be able to produce
universal representation H to serve all downstream tasks.

3. Methodology
3.1. User Embedding Pre-training Framework

Pre-training Tasks. Similar to the pre-training task in (De-
vlin et al., 2018), a new user representation pre-training
task is designed to cater to the attribution of user behaviour
data, i.e., masked channel prediction (MCP) task. Slightly
different from masked language modeling (MLM) task in
NLP, not all of the features are masked due to multi-channel
problem in user behaviour data which would produce too
many feature vocabularies. Theoretically, in the MCP task,
some channel elements in the behaviour sequence are ran-
domly masked with special token [MASK] at pre-training
stage. Therefore, an MCP task of one feature channel is
elaborated as input = [s1, s2, ..., [MASK]i..., sN ], with
label = [MASK]i. However, only a few channels are
selected to be MCP tasks due to our belief that the more
important a user behaviour sequence is, the more likely the
sequence is selected as MCP task. In order to preserve es-
sential information of user behaviours, we choose user ID,
location, time interval, payment tool, product, trade amount,
super position model (SPM) trace, click, and conversion etc.

Pre-training Objectives. Formally, we denote smask as
the probability of the estimated activity, and the probability
p(smask; Θ) is represented by the product of the conditional
distributions over the masked sequence:

p(smask; Θ) =

N∏
i=1

p(smask|s1, s2, ..., [MASK]..., sN ; Θ)

(1)
Our objective is to maximize p(smask; Θ), which is equiva-
lent to minimizing the following loss function:

Li
mcp = − 1

|Si|
∑
j∈Si

−logp(ŝj = sj) , (2)
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Figure 1. The SuperMoE framework consists of three different stages. In the multi-channel feature projection stage, all the channel
features are embedded as dense vectors. During the pre-training stage, a series of masked channel prediction(MCP) tasks are utilized in
order to achieve general user representations. The upper right shows the finetune stage, which freezes the parameters of pre-training
model as an initialization. The upper left depicts a standard MoE transformer unit with dynamic routing mechanism.

where Si is the set of positions of masked elements of the
ith MCP task, and ŝj and sj are the predicted user behaviour
and the ground-truth behaviour, respectively. Notably, user
behaviours are of very different statistical characteristics
from NLP or CV, e.g., the click and conversion task are
sequential tasks. Hence, we propose a new training objective
function:

Lk(Θk) =
1∑
i δ

i
k

∑
i

δiklossk(ŝ
i
k(Θk), s

i
k) , (3)

where δ is the indicator of training samples among k tasks.

Pre-training Model Framework. The main architecture
ingredients of pre-training model are a stack of MoE trans-
formers. Basically, our MoE transformer’s backbone has a
simple structure which consists of a multi-channel feature
projection (MFP) layer, a MoE multi-head self-attention
(MoE-MSA) layer and two MoE feed-forward network
(MoE-FFN) layers. MFP layer takes the following form:

ympf = [scategory∗wcategory, split(sID∗wID), sdense] ,
(4)

where [·] means the concatenation operator of all vectors.
Each MFP layer in the encoder block is followed by a layer

normalization and nonlinear activation layer. The operator
split(·) is a model parallel operation, implemented by the
whale framework (Xianyan Jia, 2022). Note that the splitting
of MFP layer addresses the issue of GPU memory explosion,
which successfully integrate hundreds of behaviour channels
into model training. An MoE-MSA layer takes the output
of MFP ympf as input, formulated as:

ymsa = softmax(
(qwqGq(q))(kw

kGk(k))
T

√
dk

)(vwvGv(v)) ,

(5)
where q, k, v is the output of an MFP layer, and ymsa is
output of an MoE-MSA layer, connected by two MoE-FNN
layers. Lastly, the point-wise MoE-FNN(Fedus et al., 2021)
can be formulated as:

yffn =

E∑
e=1

Ge(x) · FFNe(x) , (6)

with FFNe(x) = woe · Relu(wie · x),Ge(x) =
softmax(TopK(he(x), k)) , where wo and wi are the stan-
dard feed-forward networks with the same parameters. We
choose top 1 strategy (Fedus et al., 2021) for TopK(·) func-
tion. In summary, yffn is the output of backbone of an MoE
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transformer. Formally, a series of MoE transformer blocks
can be described as:

ymoe = MoETransformer([scategory, sID, sdense]) , (7)

where MoETransformer =MoEFFN (MoEMSA(MFP(·))).
The overall pre-training architecture is shown in Figure 1.

3.2. User Embedding Fine-tuning Framework

After pre-training, we adapt the learned user representations
to specific downstream tasks, instead of using pre-trained
representations directly, which is somehow unrelated to
our defacto targets in production environment. Therefore,
we need to develop a new model to fine-tune our user be-
haviour model across multiple downstream tasks with a
unified framework. Assuming that we have restored and ini-
tialized the parameters of the previous pre-trained model, the
fine-tuning model shares the parameters of the pre-trained
part, and a linear classification layer is placed on the top of
the final output without activation function. Denoting ho as
the output of the final MoE-transformer, we have:

yi = Toweri(MaxPooling(ho)) , (8)

and the Toweri is a linear classification layer of the ith

fine-tuning task. Note that the user representation H =
MaxPooling(ho). The overall architecture of our fine-tuning
framework is shown in Figure 1.

3.3. Multi-task Training Optimization

In order to address seesaw and negative transfer problems
and to improve learning from multiple tasks, such as re-
gression and classification, we leverage a multi-task op-
timization strategy, i.e., jointly optimize across multiple
tasks, which can be applied in both pre-training stage and
fine-tuning stage. Mathematically, we get k training objec-
tives from equation (5), and therefore, the total loss can be
formulated as:

Loss(Θ) = λ1 ∗ l1(ŝ1(Θ1), s1)+

λ2 ∗ l2(ŝ2(Θ2), s) + ...+ λk ∗ lk(ŝk(Θk), sk) ,
(9)

where Loss(Θ) denotes the total loss and αk is the regular-
ization strength of the kth loss. Recall that our objective is
actually to maximize Area Under Curve (AUC) score, we
consider the following bi-level optimization problem:

Max AUCval(θλ, λ) s.t.θλ = argmin
Θ

Loss(Θ, λ) ,

(10)
where AUCval is the AUC score on validation dataset while
training. However, AUCval(θλ, λ) is non-differentiable
with the indicator function I(f(λ, x+

i ) < f(λ, x−
j )), and

x+
i and x−

j are the positive and negative samples, respec-
tively. We therefore employ max{0, 1 − (f(λ, x+

i ) −
f(λ, x−

j ))} as a differentiable convex surrogate of the above
indicator function.

4. Experimental Methodology
In this section, we demonstrate the online and offline per-
formance of SUPERMOE in generating general embedding
for user behaviour sequence. We evaluate our model in four
different real world test datasets, and one for public and
three for private datasets respectively.

4.1. Experiment Settings

4.1.1. DATASET DESCRIPTION

We evaluate the performance of our model on four differ-
ent downstream applications, i.e., SIUPD, Paytool, MCP,
and Fortune. SIUPD dataset comes from the IJCAI17 con-
test 1, which contains 139,6245 users’ shopping logs on
Alipay platform. Paytool is a user payment preference
dataset, which describes the behaviour of using payment
tools for online users. In MCP dataset, we use 103 channels
of subscription and redemption behaviour sequences for
users. Fortune dataset includes users ”impression→click”
and ”click→purchase” behaviours. All these four datasets
are split into training/test sets with the ratio of 0.8/0.2. The
statistics of the datasets can be found in Table 3.

4.1.2. BASELINES

We fine-tune and evaluate our model against four other rep-
resentative models: MMOE(Ma et al., 2018), a classical
multi-task recommendation model, PLE(Tang et al., 2020),
an extension of MMOE with multiple progressive extraction
layers, BERT(Devlin et al., 2018), a well-famed sequence
model widely used in large scale representation learning,
especially in NLP and AETN(Zhang et al., 2020a), a user
representation learning model, which combines multi-head
attention and Denoising Autoencoder(DAE) model to gen-
erate user embeddings.

4.2. Offline Evaluation Results

In order to show the advantages of our model, we conduct
the following intrinsic experiments to evaluate offline and
online performances.

4.2.1. OFFLINE MODEL PERFORMANCE

In this section, we present the results of offline model per-
formance in the downstream tasks. Table 2 summarizes the
overall AUC scores of different models across all datasets.
Taking the evaluation results of SIUPD dataset as an ex-
ample, it is obvious that our model improves the baseline
method MMoE by gains of 2.7 and 1.8, respectively, in
two combined tasks, for the reason that our model utilizes
more abundant chronological user behaviours to address
the behaviour sparsity issue. Moreover, we outperform the

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=58
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Table 2. Overall AUC performance for different models

Model SIUPD PAYTOOL MCP FORTUNE
Category1 Category2 Category1 Category2 Category3 Category4 Category5 subscription CTR CVR

MMOE 80.758 79.172 87.691 55.016 92.166 61.019 90.581 67.843 80.988 90.765
PLE 81.819 79.798 87.762 55.269 92.803 61.267 91.924 68.351 81.719 91.751

BERT 83.021 80.319 88.908 56.081 93.217 62.832 93.657 70.092 82.683 92.014
AETN 82.828 80.774 89.293 55.961 93.229 62.706 92.899 70.055 82.952 91.817
OURS 83.453 80.971 89.598 56.192 93.461 63.574 94.356 71.218 83.791 92.331

Table 3. Dataset Descriptions

Dataset Training Test Channels AverageLength

SIUPD 16M 4M 11 150
Paytool 240M 60M 12 128
MCP 80M 20M 103 128

Fortune 32M 8M 786 128

other two sequential models with gains of 0.63 and 0.19,
respectively, benefiting from of our multi-task optimiza-
tion. Similar performances can be observed in other three
datasets. It is worth mentioning that our methods all achieve
the state-of-the-art performances with significant gains.

4.2.2. OFFLINE EMBEDDING PERFORMANCE

To evaluate the user embedding quality and efficiency of our
model, we conduct six different experiments for compari-
son, and analyze the effects of different embedding methods,
as well as different model capacities. We select the user’s
payment switching task in PAYTOOL dataset to report AUC
score, Recall@85 and Recall@50 respectively. The results
are illustrated in Table 4. Notably, all sequential embedding
methods are better than PLE-only model, which demon-
strates the advantage of user embedding. Furthermore, our
embedding is more effective than other two sequential mod-
els, which takes the same model size of 1 billion. We also
investigate the performance of different model capacities,
and it can be seen in Table 4 that MoE with 20 billions
parameters performs much better than MoE with 1 billion,
which generates gains of 0.67 AUC, 2.01 recall@85, and
1.39 recall@50, respectively.

4.2.3. ONLINE A/B TESTING

To further investigate the quality and effectiveness of our
user embeddings, we conduct two A/B testing experiments
against online baseline model. ”Online1” experiment is a
payment switching scenario operating on real-world Alipay
platform. In this experiment, our model brings on gains
of 13.41% pv, 1.97% in conversion and 21.36% GMV. In
addition, our model achieves gains of 4.95%,9.11% and

Table 4. Embedding Evaluation in PAYTOOL

Model AUC Score Recall@85 Recall@50

PLE 92.183 19.583 46.581
PLE+BERT 94.067 28.751 50.673
PLE+AETN 94.143 29.033 50.894

PLE+MoE1B 95.721 30.628 53.766
PLE+MoE10B 96.169 31.193 54.938
PLE+MoE20B 96.395 32.640 55.174

Table 5. Online Comparison of Different Models

Scenario Models PV PVCVR GMV

Online1 PLE+BERT 0 0 0
OURS 13.41% 1.97% 21.36%

Online2 PLE+BERT 0 0 0
OURS 4.95% 9.11% 25.19%

25.19%, respectively, in ”Online2” experiment, which is a
fund subscription and redemption scenario. These results
are summarized in Table 5.

5. Conclusions
In this paper, we investigated the utilization of multi-layer
MoE networks as a practical way to massively increase
model capacity and to deal with seesaw phenomenon and
negative transfer problem. To complete this research, we
introduce an user behaviour representation pre-training and
fine-tuning model using sparse MoE. We have shown that
it is possible to learn large scale user embeddings, while
capturing ubiquitous high order correlations using sparse
MoE, with our meticulous model architecture. Moreover,
we formulated a bi-level optimization method in order to
address multi-task optimization. Extensive empirical exper-
iments demonstrated the overwhelming superiority of our
method on various real-world datasets comparing to other
state-of-the-art methods.
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