
LineFlow: A Framework to Learn Active Control of Production Lines

Kai Müller 1 Martin Wenzel 1 Tobias Windisch 1

Abstract
Many production lines require active control
mechanisms, such as adaptive routing, worker
reallocation, and rescheduling, to maintain opti-
mal performance. However, designing these con-
trol systems is challenging for various reasons,
and while reinforcement learning (RL) has shown
promise in addressing these challenges, a stan-
dardized and general framework is still lacking.
In this work, we introduce LineFlow, an extensi-
ble, open-source Python framework for simulat-
ing production lines of arbitrary complexity and
training RL agents to control them. To demon-
strate the capabilities and to validate the under-
lying theoretical assumptions of LineFlow, we
formulate core subproblems of active line control
in ways that facilitate mathematical analysis. For
each problem, we provide optimal solutions for
comparison. We benchmark state-of-the-art RL
algorithms and show that the learned policies ap-
proach optimal performance in well-understood
scenarios. However, for more complex, industrial-
scale production lines, RL still faces significant
challenges, highlighting the need for further re-
search in areas such as reward shaping, curricu-
lum learning, and hierarchical control.

1. Introduction
At its core, manufacturing is about transforming raw ma-
terials into finished goods, often on a large scale. In most
production systems, the necessary process steps are carried
out by work stations which each component has to traverse
sequentially. Typically, the work steps necessary have to
be applied in a fixed order, creating an interdependence be-
tween stations in the sense that performance issues of one
station directly affect stations down- and upstream.

In theory, finding optimal layouts for production lines that

1University of Applied Sciences Kempten, Kempten, Ger-
many. Correspondence to: Tobias Windisch <tobias.windisch@hs-
kempten.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

take the interdependence of the individual work steps into
account is a computationally hard but well understood prob-
lem called assembly line balancing problem (Padrón et al.,
2009; Scholl & Becker, 2006). Solution strategies are pow-
ered by good stochastic models for interlinked production
lines, like in (Bierbooms, 2012; Liberopoulos et al., 2006),
that help computing the equilibrium state of the throughput
for a given layout. However, in practice, optimal layouts
and theoretic knowledge on the equilibrium of the through-
put does not guarantee that the production line unfold its
full theoretical potential. This may be due to situations like
changing processing conditions, adverse coincidences in the
stochasticity of the processes, or machine failures. These
circumstances can suddenly lead to full buffers, jams, and
shifting bottlenecks (Roser et al., 2003; Mahmoodi et al.,
2022). Thus, reacting in a dynamic and optimal way at
runtime is key to keep the performance of the production
line at its best. At present, this is either a completely manual
task accomplished by line workers on-site or by line control
systems, that actively adjust line parameters in real-time
(see Figure 1). Possible interventions are rerouting tasks to
alternative stations (Huang et al., 2019), reallocating work-
ers (Pérez-Wheelock et al., 2022; Dolgui et al., 2018), or
scheduling maintenance (Geurtsen et al., 2023). Classical

Processing timesBuffer fills

π

Send parts
to Sink2

Figure 1. Active line control based on real-time data.

active line control systems typically combine rule-based
strategies and mathematical models to optimize schedul-
ing and resource allocation, focusing mostly on bottleneck
identification, see for instance (Roser et al., 2014; 2017; Li
et al., 2009; Lai et al., 2021) and references therein. Find-
ing optimal control strategies is a complex task that not
only requires a detailed understanding of the production line
dynamics but also involves time-intensive trial-and-error
session on the real system and simulations. While effective

1



LineFlow: A Framework to Learn Active Control of Production Lines

in predictable scenarios, classical approaches often struggle
in dynamic and complex environments with high uncertain-
ties, which has motivated the use of machine learning for
tasks like predicting bottlenecks (Subramaniyan et al., 2021)
and forecasting demand (Gonçalves et al., 2021).

Since active production line control is, at its core, a se-
quence of observing a state and taking action, it seems like
a natural next step to learn line control in an end-to-end
fashion through interactions with a simulation using rein-
forcement learning (RL). RL algorithms have demonstrated
the ability to learn complex relationships between states and
actions (Vinyals et al., 2019; Silver et al., 2016; Wu et al.,
2023; Jumper et al., 2021). Significant research has been
conducted on learning control policies for production lines
(see Section 1.1); however, progress is hindered because
existing studies each rely on their own ad hoc or domain-
specific simulations, making benchmarking, reproducibility,
and the assessment of RL progress in active line control
difficult. One reason for this is the absence of a theoretical
or practical framework to train and evaluate RL agents in
various production settings in a standardized way.

In this work, we address exactly this research gap by intro-
ducing LineFlow1, a free and extensible Python package
specifically tailored to simulate production lines in order to
train RL agents for active line control at scale (Section 2).
LineFlow not only is a fine-graded and fast discrete-event
simulation of production lines, it also comes with an imple-
mentation of conventional action- and state-spaces as well
as a flexible score (Section 2.3) inspired by classical per-
formance indicators that allows to train agents for various
production settings (Section 3). To evaluate its theoretic un-
derpinnings, we study well understood and realistic produc-
tion scenarios by computing their mathematical optimum
(Section 4) and then comparing it with the performance of
control policies interacting with LineFlow (Section 5). To
showcase the current limits, we also analyze a very com-
plex production setting as mentioned above with unclear
optimum and train RL agents via curriculum learning (Sec-
tion 4.4). As there exist strong privacy concerns among
manufacturers when it comes to releasing production line
layouts, publicly available datasets holding performance
information and non-trivial layouts are rare. Here, we hope
that LineFlow will close this gap by allowing manufac-
turers to provide synthetic non-confidential digital twins
preserving their key runtime challenges to the public. In
Section D, we model a real-world production line based on
publicly available data in LineFlow. Our research is purely
application-driven by the needs of end-users in manufactur-
ing and opens up a wide range of challenges for machine
learning researchers to investigate. Since implementing ac-
tive control systems is currently a highly manual task guided

1https://github.com/hs-kempten/lineflow.

by domain expertise, we aim for LineFlow to accelerate re-
search on learning active line control in the future.

1.1. Related Work

There has been a lot of research where RL methods are
studied to control a given manufacturing technology, like
for welding (Jin et al., 2019; Masinelli et al., 2020; Zou &
Lan, 2020) or molding (Szarski & Chauhan, 2023; Guo et al.,
2019) just to name a few. We refer to (Nian et al., 2020)
and references therein for an overview. In contrast, our
work treats the industrial technology happening inside the
processes as a black box and solely considers the processing
time of the stations and their statistical interplay. This means,
we neither model physical relations nor monitor physical
parameters of the processes, which is a fruitful application
field for RL on its own (Viharos & Jakab, 2021).

A large body of research directly related to our work has
been done for production scenarios where tasks of varying
length have to be scheduled on heterogeneous machines
with different processing capabilities or resources. Such
scheduling problems are tackled with RL-based approaches
in many works, like in (Shi et al., 2020; Shiue et al., 2018;
Kim & Lee, 1998; Tortorelli et al., 2022; Ali & Tirel, 2023;
Overbeck et al., 2021). A comprehensive overview is pro-
vided in (Kuhnle et al., 2021). Other research focuses on
machine interactions, as in (Wang et al., 2016), where RL
is used to control a layout consisting of two stations and
one buffer to maximize throughput or in (Loffredo et al.,
2024; 2023), where energy costs are minimized by switch-
ing stations dynamically to standby mode. In (Geurtsen
et al., 2023), the scheduling of predictive maintenance of a
production line using RL has been studied.

2. Simulating Production Lines
Production lines can be characterized in many ways, like by
the types of their processes or parts, their production vol-
ume, or how their stations are arranged (Kang et al., 2020;
Liberopoulos et al., 2006). Here, we focus on production
lines that produce discrete items. This section introduces
general principles and mechanisms of such production sys-
tems and explains how these are reflected in LineFlow.

2.1. Objects of Production Lines

The main objective of production lines studied in this work
is to produce discrete items called parts. Typically, the pro-
duction of a single part requires a specific set of work steps
that need to be applied in a certain order involving the pro-
duction and assembly of a series of sub-components. Each
work step is carried out in a specific station. One of the ob-
jectives of LineFlow is to model the statistical dynamics of
a production line by considering the individual processing

2

https://github.com/hs-kempten/lineflow


LineFlow: A Framework to Learn Active Control of Production Lines

Buffers

Carriers Stations

Figure 2. A production line visualized with LineFlow.

times of the stations and their interplay. To be more precise,
the processing times are assumed to be exponentially dis-
tributed like in (Bierbooms, 2012) as T = T+ExpS , where
T ≥ 0 is the minimal processing time possible and where
ExpS denotes the exponential distribution2 with mean S.
We distinguish different types of stations, among them are
sources that set up components, processes that apply a piece
of work on a single component, assemblies that join two or
more components into one, and sinks that remove a fully
build part from the line (see Figure 2). Components are
transported by carriers from station to station via buffers,
which work on a first-in-first-out principle. Buffers can only
hold a predefined number of carriers, called their capacity.
Time-intense work steps may be distributed over identical
parallel stations, while switches handle the routing of car-
riers. The arrangement of stations and buffers is typically
called the layout of the production line.

2.2. Active Line Control

The overall performance of a production line depends sen-
sitively on the individual performances of its stations as
performance issues of any station are propagated down- and
upstream by their linking buffers. For instance, consider the
production line shown in Figure 2: If the processing time
of Process is higher than the processing time of Assembly,
the buffer in between fills up and once its maximal capac-
ity is reached, the previous station is blocked as it cannot
push finished components to the buffer. Such a jam can
be propagated backwards through the line and may even
block the source. Similarly, subsequent stations like the
two sinks with faster processing times are not served with
components and have to wait till new components arrive. In
the equilibrium, the performance of the full system depends
essentially on the bottleneck station, which is in simple
cases just the station having the highest processing time.
Buffers constitute an important parameter of production
lines as they can dampen fluctuations in processing times
at the stations. However, buffers and their capacity are
fixed parameters of the layout, whereas stochasticity in the
processing times of the processes can result in a shifting
runtime bottleneck (Roser et al., 2003). Thus, the bottle-

2In the literature typically denoted as Exp 1
λ

.

neck can vary, whereas the buffer capacities cannot. We
refer to (Bierbooms, 2012) for a detailed analysis of the
interplay of stations and buffers. Bottlenecks in production
lines do not only reduce throughput by slowing down the
overall part flow, but they can also lead to quality issues
and even scrap. One prominent example arises in processes
with strict timing constraints between consecutive steps. In
adhesive bonding, for instance, components must be joined
within a certain time window after the adhesive is applied.
If a downstream bottleneck causes delays and this thresh-
old is exceeded, the bond can no longer be guaranteed to
meet quality standards, and the affected part must be dis-
carded (Chen et al., 2005). Such timing-sensitive constraints
make bottleneck prevention critical not only for efficiency,
but also for product quality and material waste reduction.

To circumvent or mitigate such harmful runtime effects,
we essentially study three corrective actions and their inter-
play: Changing worker assignments to speed up bottleneck
stations, changing the distribution of components, and in-
cluding waiting times to prevent scrap. On the one hand,
increasing the waiting time is an important counter activity
to prevent scrap, but there is a thin line between preventing
scrap and slowing down the bottleneck and, in turn, the
whole line (see Section 4.1). Switches, on the other hand,
allow to change the routing and distribution of components
to keep the bottleneck loaded constantly. For instance, if the
processing time of Sink1 starts to increase, the switch could
change the distribution ratio between the sinks (see Sec-
tion 4.2). Finally, reassigning workers from one station to
another directly impacts their processing time and can help
to handle peak loads but can create a bottleneck elsewhere
(see Section 4.3). A more involved scenario where all these
actions have to be combined effectively is studied in Sec-
tion 4.4. Even if a bottleneck is correctly detected, choosing
an optimal action sequence to mitigate is challenging since
actions take time to show results. For example, reassigning a
worker requires task completion and relocation first. While
this reduces the bottleneck’s mean processing time, high
variance makes changes hard to detect. In general, even
with the right actions, high data variability delays recog-
nizing improvements. Compounding this issue, production
lines often operate near equilibrium states, where minor dis-
ruptions can cascade into buffer overflows, bottlenecks, or
system-wide jams. Moreover, the combination of different
actions may have unintended negative consequences on the
performance. For instance, if Sink1 is the current bottleneck,
then assigning more workers to Sink1 and sending more
components to Sink2 additionally, may result in a worse
overall performance. To apply optimal actions, line control
systems rely on real-time data from various production line
objects, which is often noisy, incomplete, and lagged (see
Section 3.2 and Section A.7).

3



LineFlow: A Framework to Learn Active Control of Production Lines

2.3. Performance Measurements

There are several ways to measure the performance of pro-
duction lines. A commonly used metric is the Overall
Equipment Effectiveness, short OEE, which quantifies the
effectiveness of equipment and machinery used (Nakajima,
1988). Assume we have given a control policy π for a pro-
duction line decomposed into stations P1, . . . , Pk. Denote
by nπ

ok(t, i) and nπ
nok(t, i) the cumulated number of OK and

not OK (NOK) parts produced at station Pi at time t. Then,
following (Nakajima, 1988), the OEE for Pi is essentially
defined as OEEi(t) = Ti

t · nπ
ok(t, i) where Ti is the min-

imum of the processing time of Pi. By construction, we
have nπ

ok(t, i) · Ti ≤ t for all t and thus the maximal possi-
ble OEE is 1. Analogously, the OEE of a production line
can be defined. The OEE definition is mainly focusing on
productivity and quality, but a more economic view requires
to also take costs of the individual stations and components
into account, for instance as some stations require more
energy for their processing, like in (Loffredo et al., 2024), or
because only some components are scraped, not the full part.
Thus, we assume that applying work at station Pi comes
with a cost ci, which may be material costs for joining a
component or costs for energy as in (Loffredo et al., 2024).
The value of the final part is considered to be the sum of all
costs c =

∑k
i=1 ci. At simulation time t, the production has

produced an aggregated value of

Cπ(t) =
TC

t

(
c · nπ

ok(t)−
k∑

i=1

ci · nπ
nok(t, i)

)
(1)

where nπ
ok(t) ∈ N denotes the number of parts produced at

all sinks combined and TC denotes the minimal possible
time the line needs to produce a single part. One can think
of Equation 1 as the value the production line generates:
If Cπ(t) > 0, the line generates revenue, if Cπ(t) < 0, it
generates costs. If no scrap can occur, maximizing Cπ(t) is
equivalent to maximize the number of produced parts.

Generally, one wants to find a control policy π that max-
imizes Cπ(t) and simultaneously minimizes the time t to
reach the maximum. It then depends on the exact usecase
to weight a smaller t needed with a higher C(t) reached
by. To circumvent this distinction in our work and to cre-
ate a general benchmarking environment, one either has
to fix the available time Tsim and to maximize the output
Cπ(Tsim), or to fix the desired output C̃ and to minimize
the time needed by a policy π to reach it. In our benchmark
studies, we decided to fix Tsim as this typically originates
from high-volume production where the output needs to be
maximized in a given work shift of length Tsim.

3. RL for Active Line Control
In this section, we describe how RL can be used to learn
policies for active line control. Specifically, we consider
active line control as an episodic and partially-observed
Markov decision process. Let S be a set of states and A a
set of actions. Transition probabilities P dictate how likely
transition from a state s ∈ S to a state s′ ∈ S is when
choosing action a ∈ A at s, namely P (s′|s, a). When se-
lecting a at s, a reward R(s, a) is observed. Additionally
given a desired length T ∈ N, this gives a Markov deci-
sion process (S,A, P,R, T ) where the goal is to find a pol-

icy π : S → A to maximize EP,π

[∑T
t=0 R(st, π(st−1)

]
where (st)t∈N is chosen under the interplay of P and π. If
the states s ∈ S cannot be observed directly by the pol-
icy but only features f ∈ F instead controlled by another
conditional probability density function O, i.e., the likeli-
hood of observing f at state s is O(f |s), then the tuple
(S,A, P,R,F , O) defines a partially-observed Markov de-
cision process where a policy π : F → A needs to be found
maximizing EP,O,π

[∑T
t=0 R(st, π(ft−1)

]
. Note that the

definitions given here are streamlined versions of the com-
mon way of defining Markov decision processes, where the
process typically ends in a set of defined terminal states and
additionally, a discount factor γ ∈ [0, 1] is given to trade-off
rewards in early and late states.

While the formulation above assumes a discrete-time deci-
sion process, we emphasize that the underlying dynamics
of the production line still can be continuous time and only
the agent interaction—i.e., observation and action execu-
tion—is restricted to fixed intervals. This modeling choice
reflects real-world production control, where decisions like
worker reallocation or routing changes are typically made at
regular intervals, such as every few seconds or at shift-level
granularity. This approach offers a practical compromise
between physical realism and learning efficiency, and is con-
sistent with prior work in industrial reinforcement learning.
Section 3.3 provides details how this is realized in LineFlow.

3.1. Episodes and Rewards

As described in Section 2.3, we consider constant operation
times Tsim of the manufacturing setting to be optimized. In
principle, a control policy can interact with a production line
at any time. We, however, assume that the policy can only
interact with the production line at fixed and equidistant time
points each Tstep apart, thus we get T = Tsim

Tstep
many interac-

tions in an episode. This approach introduces the possibility
that the model may miss certain state changes occurring
between observation intervals, such as a very brief buffer
overflow. However, from a RL point of view, this has mul-
tiple advantages: First, the trajectories all become of fixed
length and second, the policy does not need the time scale.

4



LineFlow: A Framework to Learn Active Control of Production Lines

Allowing arbitrary interactions of a policy, particularly at
the early stage of the training, can lead to many thousands
of interactions within only a few time units. Although in
LineFlow, Tstep and Tsim are considered to be constants
coming from the situation to be optimized, both can be var-
ied sequentially in a curriculum learning fashion (Narvekar
et al., 2020). The goal of an episode is to find a policy π that
maximizes Cπ(Tsim). To allow temporal difference learning
(see (Sutton & Barto, 2020, Chapter 6)), we decompose Cπ

into discrete quantities for t ∈ {0, . . . , Tsim} by defining

R(st, π(st−1)) = Cπ(Tstep · (t+ 1))− Cπ(Tstep · t).

That way, we get
∑T

i=0 R(t) = Cπ(Tsim) as desired.

3.2. States, Observations, and Actions

Due to the stochastic nature of production processes and
sensor inaccuracies, the true system state of a production
line is not directly observable. Instead, it must be inferred
from incomplete, noisy, and delayed observations. Key
features relevant for performance estimation include buffer
fill levels, station processing times, production rates, station
modes, and routing information from switches (Roser et al.,
2003; 2014). Whenever available, features in LineFlow are
constrained by known upper and lower bounds. For example,
fill levels are normalized to [0, 1], while production rates or
processing times are positive but unbounded.

The action space in LineFlow primarily consists of dis-
crete control decisions, such as assigning workers or routing
components across stations. Additionally, stations can be
switched on or off, similar to (Loffredo et al., 2023). Work-
ers are drawn from predefined pools associated with specific
station groups. Each worker is modeled as an individual
and independent dimension in the action space, where the
possible values correspond to the stations the worker can
be assigned to. While this introduces symmetries in the
action space when workers are indistinguishable, it enables
fine-grained modeling of worker attributes—such as skill
levels or expertise—when they are not. Furthermore, rep-
resenting workers as explicit objects within the production
line ensures that side constraints, such as a fixed number
of available workers, are respected at all times. Switches
typically feature two discrete actions: one controlling in-
coming buffers and another for outgoing buffers. Beyond
the core actions, LineFlow also supports modifications to the
physical production environment, such as actively adding
or removing carriers from the line. While not included in
our case studies, these actions provide additional flexibility
for modeling dynamic settings. A list of all observable and
actionable dimensions is in Section A.7.

(a) WT and WTJ (b) WA3,10 (c) PD5

Figure 3. Representatives of the three atomic production line chal-
lenges analyzed in this case study.

3.3. Implementation Details

LineFlow is designed to address key challenges in opti-
mizing active line controls while meeting the needs of RL
researchers. The discrete event simulation, handling station
interactions and stochasticity, is built on SimPy (SimPy,
2025). Its object-oriented structure enables easy customiza-
tion of stations and rapid setup of complex production sce-
narios. A visualization module based on pygame provides
insights into layout dynamics and agent interactions. Fully
implemented in Python, LineFlow integrates seamlessly
with data science tools like pandas (Wes McKinney, 2010)
and numpy (Harris et al., 2020). RL interaction follows
the gymnasium API (Towers et al., 2024), allowing training
with stable-baselines3 (Raffin et al., 2021) or skrl (Serrano-
Muñoz et al., 2023). Environments support vectorization
and parallelization to accelerate training. Further details are
provided in Section A.1, with a complete example in Sec-
tion A, illustrating the layout in Figure 2. Although agent
interaction follows the discrete-time process described in
Section 3, the underlying production dynamics in LineFlow
is simulated in continuous time using a discrete-event en-
gine. The interaction frequency of the agent can be adjusted
via a parameter, allowing the discrete-time control to ap-
proximate continuous-time behavior with high fidelity.

4. Case Studies
In this section, we introduce and study realistic production
scenarios where active control is required. The scenarios
have been selected for two reasons: First, their theoretical
optimum can be computed statistically allowing us to quan-
tify whether RL algorithms learn optimal policies. Second,
they appear as subproblems in many production scenarios.

4.1. Optimal Waiting Time WT and WTJ

In this scenario, the optimal waiting time between parts
produced by a source station SC has to be found (see also
Figure 3a). The source SC serves together with another
source SM an assembly station A, which joins the compo-
nents from both sources to produce the final product and
sends it to sink S. Components from source SC have a fixed

5



LineFlow: A Framework to Learn Active Control of Production Lines

0 500 1000 1500 2000 2500 3000 3500 4000
t

20

30

40

50

60

70
A

Figure 4. The jumps in the processing time of the assembly A in
WTJ for different simulations of length 4000.

expiration time TAC called assembly condition: If the time
from their setup at SC to the time the process starts at A
is larger than TAC, then A has to dispose this component
and has to wait for the next one. The removal of a scrap
part not only generates costs, it also blocks the assembly
for a certain amount of time as the defective component
has to be removed first. Such a situation is typical in many
joining processes, like gluing applications, where adhesives
can dry out if not processed in time (Chen et al., 2005). If
the waiting time is chosen too small, SC produces to many
components which cannot be handled by A in time and thus
drives scrap costs. On the other hand, if the waiting time is
chosen to high, A has to wait for components which delays
the production of final parts. The goal is to balance the wait-
ing time of SC to maintain a continuous component supply
at A. Assuming costs cM and cS for components produced
at SM and SC respectively and that only components of SC

can potentially be scraped, the performance of the line as
described in Section 2.3 within a given time frame t is

Cπ(t) =
TC

Tsim
((cM + cS) · nπ

ok(t)− cS · nπ
nok(t, A)) .

We generally assume that the processing times without po-
tential waiting times are such that A is the bottleneck of the
line. Thus, the maximum number of parts produced depends
on the time A needs to get one carriers and one component,
to assemble them, and to push the final product to the buffer.
The optimal waiting time essentially fills the between the
times A and SC need to handle and process their parts. We
give an explicit equation for the optimal waiting time and
the maximum number of parts in Section B.1.

To force a dynamic adaption we now introduce the related
scenario Waiting time jump (WTJ). Here, we uniformly
sample a length Tjump and a trigger time Ttrigger such that
[Ttrigger, Ttrigger+Tjump] ⊂ [0, Tsim]. Then, the processing
time of A at simulation time t from{

T + ExpS , if t ̸∈ [Ttrigger, Ttrigger + Tjump]

f · T + ExpS , if t ∈ [Ttrigger, Ttrigger + Tjump]
.

As f and Tjump can be different in each episode, the maxi-
mal possible reward can vary, too. To ease the comparison
of agents over multiple runs, we construct f for given Tjump

in a way that the maximal possible reward remains a con-
stant (see Section B.1 for details). More precisely, we fix a
constant 0.5 < R < 1.0 and construct f such that expected
maximal parts produced is R ·N , where N is the expected
number of parts of WT without jump. A visualization of the
processing time of A for multiple simulations is in Figure 4.
Although, by design, the expected maximal number of parts
produced by the line is R ·N , this value cannot be reached
by a control agent. The reason is that at time Ttrigger if the
processing time of the assembly jumps to a higher level,
the new processing time of A can first be observed once
the first part has been produced. Thus, from Ttrigger to
Ttrigger + f · T +ExpS , the source SC runs with a too low
waiting time and possibly sends components to A which are
going to expire. The same happens once the processing time
of A jumps to the lower level. Here, the source may run at
a higher waiting time causing A to wait. To quantify the
optimum reachable by agents learning from observations,
we evaluate the performance of an agent learning the means
of the processing times online (see Section B.1).

4.2. Optimal Part Distributions PDk

Our next case study is a subproblem of scheduling prob-
lems in manufacturing and is already extensively researched
in literature (see Section 1.1). Here, components have to
be distributed onto k many parallel processes P1, . . . , Pk

with processing time distributions T1, . . . , Tk by a single
switch in an optimal way. Moreover, another switch needs
to fetch the outputs of the processes and sends them to a
sink (see Figure 3c). We assume that Ti = Ti + ExpSi·Ti

where Ti and Si are constants for all i ∈ [k]. To compute
the optimum, we assume for simplicity that get and put
times from the connecting buffers are already contained
in Ti. Within a given time frame Tsim, the expected maxi-
mal number of parts Ni produced by process i is obtained
when Pi is served with parts constantly without time gaps:
E[Ni] = Tsim

E[Ti]
= Tsim

(1+Si)·Ti
. When we assume that the

processing times of the source and the sink are negligible
compared to the processing times of the processes Pi. The
maximal number of parts N produced by the production line
within Tsim is the sum of the maximal parts produced by all
processes, i.e., N =

∑k
i=1 Ni as all processes can work in

parallel. This allows us to compute the maximum number of
parts the layout can produce theoretically, see Section B.2.
Clearly, the greedy policy deployed at both switches which
pushes components on the buffer with lowest fill and fetches
components from the buffer with highest fill loads the pro-
cesses in an optimal way (see also Section B.2).

4.3. Optimal Worker Assignments WAk,N

In many production scenarios, processes involve manual
work which can be completed faster by multiple workers

6



LineFlow: A Framework to Learn Active Control of Production Lines

collaborating. In this case study, the goal is to find the
right distribution of a limited number of workers over mul-
tiple stations each having a varying processing time. We
assume that the required processing time of a station, where
n workers are assigned to, is sampled from the distribution
TT,S,n := T · pc(n) + ExpS·T where T, S ∈ R>0 are con-
stants and where pc(n) = exp(−c · n) is a performance
coefficient (see also Section B.3). In our benchmarks, we
set c = 0.3, which means that an additional worker reduces
the processing time by approximately 74%. Now, consider
a layout of k sequential stations A1, . . . , Ak with constants
T1, . . . , Tk and S1, . . . , Sk. Moreover, assume the line has
a pool of N workers to distribute. As the stations are sequen-
tially arranged and connected via buffers (see Figure 3b),
the slowest process determines the speed of the overall pro-
duction line. This means, a partition of N into k integer
summands, i.e., n1+n2+. . .+nk = N with ni ∈ N0 needs
to be found such that the maximum of all processing times
is minimal. Clearly, the assignment process is bound to
certain constraints, like delayed start of processes due to the
waiting for assigned workers because of traversal times. We
refer to Section 3.2 for more details about how the worker
assignment is modeled in LineFlow. Let NN,k ⊆ [N ]k be
the set of partitions of N into many k non-negative integer
numbers. More formally, the following max-min integer
optimization problem needs to be solved:

T ∗
C = min

(n1,...,nk)∈NN,k

max
i∈[k]

E[TTi,Si,ni ] (2)

where in our case, the expected value of the processing time
is E[TTi,Si,ni

] = Ti ·pc(ni)+Si ·Ti. The maximum number
of parts that can be produced is then essentially given by
Tsim−Toff

T∗
C

after removing some initial offsets Toff due to the
ramp-up of the production line. Mathematically, solving
Equation (2) is computationally hard not alone because it
is a min-max problem but also because it involves integer
partitions. Learning an optimal distribution in an interac-
tive environment is even more challenging, as first good
estimates for Ti and Si need to be learned as well as for pc.
In Section B.3, we formulate Equation 2 as mixed-integer
optimization problem and compare the empirical results
obtained with LineFlow with the theoretical optimum.

4.4. Complex Line CL

Finally, we combined all studied problems into a problem
we call complex line, short CL (see Figure 5). Here the
agent has to distribute workers and components over k se-
quential assembly stations such that an assembly condition
TAC as in WT for the components is kept. Interestingly,
simply combining the individual and optimal solutions of
the individual subproblems does not lead to an optimal solu-
tion for CL. A straightforward distribution approach with a
fixed distribution of workers, parts and a fixed waiting time
at the source can cause excessive scrap or a slow buffer-

Figure 5. Scenario CL with 8 assemblies.

filling process between the source, switch, and assembly
stations. In Section B.4, we present a profitable heuristic
found by extensive testing meaning the number of produced
parts outweighs the cost of scrap.

5. Benchmarks
5.1. Layout of Experiments

First, we want to emphasize that our benchmark is in-
tended to serve as a proof of principle how evaluation can
be done with LineFlow and to show that optimal control
can be learned. For that, we only select a handful of al-
gorithms and hyperparameters to consider, although many
more would be feasible as well. Concretely, we use the
following algorithms in our experiments: PPO (Schulman
et al., 2017) and its recurrent version (Pleines et al., 2022),
A2C (Mnih et al., 2016), and TRPO (Schulman et al., 2015),
all of which can deal with multi-dimensional observations
of mixed types and multi-dimensional categorical action
spaces. We used the implementations provided by the
stable-baselines (Raffin et al., 2021) package and
evaluated multiple hyperparameters with three different ran-
dom seeds for each case study. More details on the hyperpa-
rameters used can be found in Section C. The performance
of the agents was measured in online evaluations, reporting
the mean reward of 5 episodes on a separate evaluation en-
vironment 5 times (see also Figure 6 for the evolution of the
reward over global steps). When not stated differently, the
deterministic version of a trained policy is evaluated, that
is, the action with the highest probability is selected. In all
experiments, the agents are trained and evaluated on five
environments stacked into a vectorized environment.

5.2. Results for WT, WTJ, WA, and PD

All benchmarks we set Tsim = 4000. For WT and WTJ,
we set TA = 20+Exp2, TSC

= 5+Exp0.5, and use a con-
stant get time Tg = 1. The trigger time Ttrigger is uniformly
sampled from the interval [500, 1500] whereas Tjump is uni-
formly sampled from [1600, 2000]. The assembly condition
is set to TAC = 35. In PDk, the time distributions are
Ti = 10 · (i + 1) + Exp0.1 for i ∈ [k]. In WAk,N , we set
N = 3 · k and use c = 0.3 for the performance coefficient.
Moreover, we set Ti = (16 + i · 4).

7



LineFlow: A Framework to Learn Active Control of Production Lines

0.2 0.4 0.6 0.8 1.0
Global step 1e6

200

300

400

500

Re
wa

rd

A2C
PPO

RecurrentPPO
TRPO

Figure 6. Evaluation reward over global steps for PD3.

PPO TRPO rPPO A2C Optimal

WT 155.0± 3.0 (158.4) 157.1± 1.9 (158.6) 157.7± 1.3 (159.0) 154.4± 5.9 (158.6) 156.2± 1.5

WTJ 93.7± 6.9 (101.4) 93.9± 7.6 (102.4) 105.9± 11.6 (113.0) 100.5± 11.1 (110.2) 114.8± 0.9

WA3,9 274.7± 13.3 (288.6) 244.6± 18.0 (262.8) 273.7± 21.9 (288.4) 278.9± 17.4 (289.4) 287.1± 2.7

WA4,12 243.1± 9.0 (252.0) 194.6± 7.7 (202.6) 231.9± 21.3 (246.4) 244.7± 15.4 (255.0) 252.8± 2.1

WA5,15 210.5± 22.0 (235.0) 151.2± 6.9 (155.6) 211.9± 27.8 (230.0) 207.7± 38.4 (234.2) 236.3± 2.1

PD3 578.7± 0.6 (579.2) 539.1± 61.3 (577.8) 359.6± 95.1 (469.4) 304.3± 0.5 (304.8) 582.7± 2.6

PD4 651.1± 9.3 (661.2) 582.1± 101.5 (657.2) 585.8± 31.7 (620.2) 305.1± 0.1 (305.2) 670.7± 2.2

PD5 651.3± 107.0 (715.6) 664± 77.0 (712.6) 305.1± 0.2 (305.4) 358.3± 92.5 (465.2) 738.3± 3.5

Table 1. Overview of rewards obtained by the best hyperparam-
eter combination. Number in brackets denotes maximal reward
obtained (see Section B for details). Note that optimal policies
are shaped by stochasticity as well and trained RL agents may
outperform the expected mean performance in individual episodes.

The performance of the best hyperparameter combination
for each algorithm, averaged over multiple seeds, is shown
in Table 1. More details of the rewards obtained during
online evaluation of all hyperparameter sets is in Section C.
Scenario WT is feasible for all algorithms, but only re-
current PPO approaches the optimal value for WTJ. The
actor-critic method A2C outperforms policy-based methods
in WA by achieving a better performance with fewer steps.
However, in part distribution, actor-critic methods fail to
learn good controls while policy-based approaches succeed.

5.3. Results for CL

Informed decisions for CL require to keep past actions in
memory. For instance, sending a component to station i at
a give step requires to send a part to station i + 1 in the
one of the subsequent step in order to keep the part flow
on the main track. We found that, no matter which hyper-

Figure 7. An agent trained with the PPO algorithm causing a block-
ing state of the line: All components send to A0 causing A1 to
wait. As A1 is blocked, the buffer between A0 and A1 gets full,
which in turn blocks A0 and consequently the full line.

0

50

100

Re
wa

rd

RecurrentPPO (lr=0.0001)
with CL
no CL

0

50

100

RecurrentPPO (lr=0.0005)

0

50

100

RecurrentPPO (lr=0.001)

0 1 2 3 4 5 6 7
global_step 1e6

0.0

0.1

0.2

0.3

Sc
ra

p 
fa

ct
or

0 1 2 3 4 5 6 7
global_step 1e6

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6 7
global_step 1e6

0.0

0.1

0.2

0.3

0

50

100

Re
wa

rd

StackedPPO (lr=0.01)
stack=100
stack=40

0

50

100

StackedPPO (lr=0.001)

0

50

100

StackedPPO (lr=0.0001)

0.0 0.2 0.4 0.6 0.8 1.0
global_step 1e7

0.0

0.1

0.2

0.3

Sc
ra

p 
fa

ct
or

0.0 0.2 0.4 0.6 0.8 1.0
global_step 1e7

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
global_step 1e7

0.0

0.1

0.2

0.3

Figure 8. Upper figure shows a comparison of recurrent PPO
trained with (blue) and without (red) curriculum using three differ-
ent seeds. Lower figure shows a comparison of the stacked PPO
trained using curriculum with a stack of 40 (red) and 100 (blue).

parameters have been used, hardly an algorithm reached a
strictly positive reward. Since, at the start of the training
the number of scrap parts heavily outweighs the number
of produced parts the reward starts significantly negative.
Interestingly the agents all converged to a reward of zero.
An investigation revealed that agents learn to dead-lock the
line, leading to no produced parts but also, no scrap parts
(see Figure 7). From there, the same train data is gener-
ated during all subsequent rollouts leading to poor update
steps of the agent. In our experiments, no algorithm tested
managed to escape from these dead-lock situation when
trained from scratch. Thus, we applied a curriculum which
slightly increases the scrap costs of a component scraped at
one of the assemblies. The intention behind is that first, the
agents learn the general mechanics of the production line
and which actions are necessary to bring parts to the final
station. Then, they have to get more efficient by reducing
the number of scrap parts. We increase the scrap weight
by a constant factor until 1

k is reached (in our experiments
0.006 for the scenario having k = 3) once the reward is
above 100 in five subsequent evaluations. As optimizing
CL requires to memorize past actions, we consider only two
algorithms here: A stacked PPO (Schulman et al., 2017) re-
ceiving the past k observations (with k = 40 and k = 100)
and a recurrent PPO (Heess et al., 2015) as in (Pleines et al.,
2023). First, we can see that using an curriculum is effective:
Agents obtained through a curriculum obtain a large positive
reward right from the beginning and they manage to keep it
also when the scrap costs are increased. Figure 8 shows a
comparison of the recurrent PPO trained with and without
the curriculum for different random seeds and learning rates.
In addition, we see that the stacked version of PPO does not
manage to reach the performance of the recurrent version,
even when trained 10 times longer.

8



LineFlow: A Framework to Learn Active Control of Production Lines

When implementing a baseline for CL, it is essential to
consider the waiting time of the source as well as the dis-
tribution of components and workers. Our heuristics priori-
tized the buffer with the lowest fill level fills, while buffers
feeding into later assembly stages receive higher priority.
We then conducted a grid search over various waiting times
and worker distributions. The best heuristic we identified
achieved a reward of 254.6 ± 1.1. Overall, even the best-
performing RL algorithms in our CL benchmark still fall
short of the manually implemented heuristic.

6. Discussion
In this work, we explore a rich problem class from manufac-
turing and make it accessible for RL research by introducing
a novel framework LineFlow. We demonstrated that RL al-
gorithms can learn effective control policies for various
production line challenges, achieving optimal performance
in well-understood scenarios. Moreover, we showed that for
more complex, dynamic production settings, traditional RL
approaches struggle without additional techniques such as
curriculum learning and memory-based policies. We found
that learning effective control strategies from interactions
alone is difficult as the ramp-up phase of production plays a
crucial role in training stability and poor early decisions can
lead to deadlocks and stalled learning. Thus, more complex
settings require structured learning approaches, including
curriculum learning and hierarchical control.

Researchers and engineers can now use LineFlow to imple-
ment their specific production settings and systematically
generate simulation data. It enables both the testing of
custom policies and the training of RL agents. The behav-
ior of trained agents can be used for analysis, but these
policies can also be deployed in the real-world. LineFlow
enables research in diverse directions. It supports the study
of non-stationary problems, such as machine breakdowns
or processing time drifts, which are common in real-world
manufacturing. Additionally, improving reward structures
for curriculum learning and advancing algorithms could sig-
nificantly reduce training times and enhance performance in
complex production settings. Another promising avenue is
transfer learning, which could facilitate knowledge transfer
across related tasks for more efficient and effective solutions.
Beyond RL, LineFlow serves as a data generator, enabling
analysis of production line dynamics, bottleneck prediction,
and maintenance forecasting through supervised learning.
To advance RL research in production control, a unified
training and evaluation framework is essential for tracking
and improving the state of the art. LineFlow fills this gap and
drives further research into optimizing agent performance
in complex, dynamic manufacturing environments.

Acknowledgments
The project LineFlow is funded by the Bavarian state min-
istry of research. TW is funded by the Hightech Agenda
Bavaria. We thank our research partners from Robert Bosch
GmbH and DMG Mori AG for helpful discussions, particu-
larly Martin Roth, Dominik Böhnlein, Markus Guggemoos,
and Thomas Stark. Many thanks to Matthias Burkhardt,
Cindy Buhl, Kilian Führer, Andreas Fritz, Fabian Hueber,
Lea Müller, and Edgar Wolf for their helpful suggestions.

Impact Statement
This work introduces a reinforcement learning framework
for active control of production lines, enabling optimized
operations with improved efficiency. By addressing the
challenges of real-time decision-making in dynamic man-
ufacturing environments, our method supports sustainable
industrial practices by using existing resources of manufac-
turing lines in an optimal way. This research aligns with
global efforts toward smarter and greener production sys-
tems, benefiting industries, workers, and society.

References
Ali, A. M. and Tirel, L. Action masked deep reinforcement

learning for controlling industrial assembly lines. In 2023
IEEE World AI IoT Congress (AIIoT), pp. 0797–0803,
2023. doi: 10.1109/AIIoT58121.2023.10174426.

Beal, L., Hill, D., Martin, R., and Hedengren, J. Gekko
optimization suite. Processes, 6(8):106, 2018. doi: 10.
3390/pr6080106.

Bierbooms, R. Performance analysis of production lines:
Discrete and continuous flow models. PhD Thesis, Tech-
nische Universiteit Eindhoven, 2012.

Chen, X., Schoenau, G., and Zhang, W. Modeling and con-
trol of dispensing processes for surface mount technology.
IEEE/ASME Transactions on Mechatronics, 10:326–334,
2005. doi: 10.1109/TMECH.2005.848295.

Dolgui, A., Kovalev, S., Kovalyov, M. Y., Ma-
lyutin, S., and Soukhal, A. Optimal workforce
assignment to operations of a paced assembly line.
European Journal of Operational Research, 264
(1):200–211, 2018. doi: 10.1016/j.ejor.2017.06.
017. URL https://www.sciencedirect.com/
science/article/pii/S0377221717305350.

Geurtsen, M., Adan, I., and Atan, Z. Deep reinforcement
learning for optimal planning of assembly line main-
tenance. Journal of Manufacturing Systems, 69:170–
188, 2023. doi: https://doi.org/10.1016/j.jmsy.2023.05.
011. URL https://www.sciencedirect.com/
science/article/pii/S0278612523000845.

9

https://www.sciencedirect.com/science/article/pii/S0377221717305350
https://www.sciencedirect.com/science/article/pii/S0377221717305350
https://www.sciencedirect.com/science/article/pii/S0278612523000845
https://www.sciencedirect.com/science/article/pii/S0278612523000845


LineFlow: A Framework to Learn Active Control of Production Lines

Gonçalves, J. N., Cortez, P., Carvalho, M. S., and Frazão,
N. M. A multivariate approach for multi-step demand
forecasting in assembly industries: Empirical evidence
from an automotive supply chain. Decision Support Sys-
tems, 142:113452, 2021. doi: 10.1016/j.dss.2020.113452.
URL https://www.sciencedirect.com/
science/article/pii/S0167923620302074.

Guo, F., Zhou, X., Liu, J., Zhang, Y., Li, D., and Zhou,
H. A reinforcement learning decision model for
online process parameters optimization from offline
data in injection molding. Applied Soft Computing,
85:105828, 2019. doi: 10.1016/j.asoc.2019.105828.
URL https://www.sciencedirect.com/
science/article/pii/S156849461930609X.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gom-
mers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor,
J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer,
S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Rı́o, J. F., Wiebe, M., Peterson, P., Gérard-Marchant,
P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H.,
Gohlke, C., and Oliphant, T. E. Array programming
with NumPy. Nature, 585(7825):357–362, 2020. doi:
10.1038/s41586-020-2649-2.

Heess, N., Hunt, J. J., Lillicrap, T. P., and Silver, D. Memory-
based control with recurrent neural networks, 2015. URL
https://arxiv.org/abs/1512.04455.

Huang, B., Wang, W., Ren, S., Zhong, R. Y., and Jiang,
J. A proactive task dispatching method based on future
bottleneck prediction for the smart factory. International
Journal of Computer Integrated Manufacturing, 32(3):
278–293, 2019.

Jin, Z., Li, H., and Gao, H. An intelligent weld con-
trol strategy based on reinforcement learning approach.
The International Journal of Advanced Manufacturing
Technology, 100(9):2163–2175, 2019. doi: 10.1007/
s00170-018-2864-2.

Jumper, J. M., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
Žı́dek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl,
S. A. A., Ballard, A., Cowie, A., Romera-Paredes, B.,
Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S.,
Reiman, D., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S., Silver,
D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli,
P., and Hassabis, D. Highly accurate protein structure
prediction with alphafold. Nature, 596:583 – 589, 2021.

Kang, Z., Catal, C., and Tekinerdogan, B. Machine
learning applications in production lines: A systematic
literature review. Computers & Industrial Engineering,
149:106773, 2020. doi: 10.1016/j.cie.2020.106773.

URL https://www.sciencedirect.com/
science/article/pii/S036083522030485X.

Kim, G. H. and Lee, C. S. G. Genetic reinforcement learning
approach to the heterogeneous machine scheduling prob-
lem. IEEE Transactions on Robotics and Automation, 14
(6):879–893, 1998. doi: 10.1109/70.736772.

Kuhnle, A., Kaiser, J.-P., Theiss, F., Stricker, N., and
Lanza, G. Designing an adaptive production control
system using reinforcement learning. Journal of In-
telligent Manufacturing, 32(3):855–876, 2021. doi:
10.1007/s10845-020-01612-y.

Lai, X., Shui, H., Ding, D., and Ni, J. Data-
driven dynamic bottleneck detection in complex man-
ufacturing systems. Journal of Manufacturing Sys-
tems, 60:662–675, 2021. doi: 10.1016/j.jmsy.2021.07.
016. URL https://www.sciencedirect.com/
science/article/pii/S0278612521001539.

Li, L., Chang, Q., Ni, J., and Biller, S. Real time production
improvement through bottleneck control. International
Journal of production research, 47(21):6145–6158, 2009.

Liberopoulos, G., Papadopoulos, C. T., Tan, B. s., Smith,
J. M., and Gershwin, S. B. (eds.). Stochastic Mod-
eling of Manufacturing Systems: Advances in Design,
Performance Evaluation, and Control Issues. Springer,
2006. ISBN 978-3-540-26579-5 978-3-540-29057-5.
doi: 10.1007/3-540-29057-5. URL https://link.
springer.com/10.1007/3-540-29057-5.

Loffredo, A., May, M. C., Schäfer, L., Matta, A.,
and Lanza, G. Reinforcement learning for energy-
efficient control of parallel and identical machines.
CIRP Journal of Manufacturing Science and Technol-
ogy, 44:91–103, 2023. doi: 10.1016/j.cirpj.2023.05.
007. URL https://www.sciencedirect.com/
science/article/pii/S1755581723000706.

Loffredo, A., May, M. C., Matta, A., and Lanza, G.
Reinforcement learning for sustainability enhancement
of production lines. Journal of Intelligent Manufac-
turing, 35(8):3775–3791, dec 2024. doi: 10.1007/
s10845-023-02258-2.

Mahmoodi, E., Fathi, M., and Ghobakhloo, M. The
impact of industry 4.0 on bottleneck analysis in pro-
duction and manufacturing: Current trends and future
perspectives. Computers & Industrial Engineering,
174:108801, 2022. doi: 10.1016/j.cie.2022.108801.
URL https://www.sciencedirect.com/
science/article/pii/S0360835222007896.

10

https://www.sciencedirect.com/science/article/pii/S0167923620302074
https://www.sciencedirect.com/science/article/pii/S0167923620302074
https://www.sciencedirect.com/science/article/pii/S156849461930609X
https://www.sciencedirect.com/science/article/pii/S156849461930609X
https://arxiv.org/abs/1512.04455
https://www.sciencedirect.com/science/article/pii/S036083522030485X
https://www.sciencedirect.com/science/article/pii/S036083522030485X
https://www.sciencedirect.com/science/article/pii/S0278612521001539
https://www.sciencedirect.com/science/article/pii/S0278612521001539
https://link.springer.com/10.1007/3-540-29057-5
https://link.springer.com/10.1007/3-540-29057-5
https://www.sciencedirect.com/science/article/pii/S1755581723000706
https://www.sciencedirect.com/science/article/pii/S1755581723000706
https://www.sciencedirect.com/science/article/pii/S0360835222007896
https://www.sciencedirect.com/science/article/pii/S0360835222007896


LineFlow: A Framework to Learn Active Control of Production Lines

Masinelli, G., Le-Quang, T., Zanoli, S., Wasmer, K., and
Shevchik, S. A. Adaptive laser welding control: A rein-
forcement learning approach. IEEE Access, 8:103803–
103814, 2020. doi: 10.1109/ACCESS.2020.2998052.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
Balcan, M. F. and Weinberger, K. Q. (eds.), Proceedings
of The 33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning Re-
search, pp. 1928–1937, New York, New York, USA, 20–
22 Jun 2016. PMLR. URL https://proceedings.
mlr.press/v48/mniha16.html.

Nakajima, S. Introduction to TPM: Total Productive Main-
tenance. Preventative Maintenance Series. Productivity
Press, 1988. ISBN 9780915299232. URL https://
books.google.de/books?id=XKc28H3JeUUC.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor,
M. E., and Stone, P. Curriculum learning for reinforce-
ment learning domains: A framework and survey. Jour-
nal of Machine Learning Research, 21(181):1–50, 2020.
URL http://jmlr.org/papers/v21/20-212.
html.

Nian, R., Liu, J., and Huang, B. A review on
reinforcement learning: Introduction and ap-
plications in industrial process control. Com-
puters & Chemical Engineering, 139:106886,
2020. doi: 10.1016/j.compchemeng.2020.106886.
URL https://www.sciencedirect.com/
science/article/pii/S0098135420300557.

Overbeck, L., Hugues, A., May, M. C., Kuhnle,
A., and Lanza, G. Reinforcement learning
based production control of semi-automated man-
ufacturing systems. Procedia CIRP, 103:170–
175, 2021. doi: 10.1016/j.procir.2021.10.027.
URL https://www.sciencedirect.com/
science/article/pii/S2212827121008684.
9th CIRP Global Web Conference – Sustainable, resilient,
and agile manufacturing and service operations : Lessons
from COVID-19.

Padrón, M., de los A. Irizarry, M., Resto, P., and Mejı́a,
H. P. A methodology for cost-oriented assembly line bal-
ancing problems. Journal of Manufacturing Technology
Management, 20(8):1147–1165, 2009.

Pleines, M., Pallasch, M., Zimmer, F., and Preuss, M. Gener-
alization, mayhems and limits in recurrent proximal pol-
icy optimization, 2022. URL https://arxiv.org/
abs/2205.11104.

Pleines, M., Pallasch, M., Zimmer, F., and Preuss, M. Mem-
ory gym: Partially observable challenges to memory-
based agents. In International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=jHc8dCx6DDr.

Pérez-Wheelock, R. M., Ou, W., Yenradee, P., and Huynh,
V.-N. A demand-driven model for reallocating workers
in assembly lines. IEEE Access, 10:80300–80320, 2022.
doi: 10.1109/ACCESS.2022.3194658.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Risdal, M., Prasanth, RumiGhosh, soundar, W., S.,
and Cukierski, W. Bosch production line perfor-
mance. https://kaggle.com/competitions/
bosch-production-line-performance, 2016.
Kaggle.

Roser, C., Nakano, M., and Tanaka, M. Shifting bottle-
neck detection. In Proceedings of the Winter Simulation
Conference. IEEE, 2003.

Roser, C., Lorentzen, K., and Deuse, J. Reliable shop
floor bottleneck detection for flow lines through
process and inventory observations. Procedia CIRP,
19:63–68, 2014. doi: 10.1016/j.procir.2014.05.020.
URL https://www.sciencedirect.com/
science/article/pii/S2212827114006520.
2nd CIRP Robust Manufacturing Conference (RoMac
2014).

Roser, C., Lorentzen, K., Lenze, D., Deuse, J., Klenner,
F., Richter, R., Schmitt, J., and Willats, P. Bottleneck
prediction using the active period method in combina-
tion with buffer inventories. In Lödding, H., Riedel, R.,
Thoben, K.-D., von Cieminski, G., and Kiritsis, D. (eds.),
Advances in Production Management Systems. The Path
to Intelligent, Collaborative and Sustainable Manufac-
turing, pp. 374–381, Cham, 2017. Springer International
Publishing. ISBN 978-3-319-66926-7.

Scholl, A. and Becker, C. State-of-the-art exact and heuristic
solution procedures for simple assembly line balancing.
European Journal of Operational Research, 168(3):666–
693, 2006.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and
Moritz, P. Trust region policy optimization. In
Bach, F. and Blei, D. (eds.), Proceedings of the 32nd
International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Research,
pp. 1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

11

https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://books.google.de/books?id=XKc28H3JeUUC
https://books.google.de/books?id=XKc28H3JeUUC
http://jmlr.org/papers/v21/20-212.html
http://jmlr.org/papers/v21/20-212.html
https://www.sciencedirect.com/science/article/pii/S0098135420300557
https://www.sciencedirect.com/science/article/pii/S0098135420300557
https://www.sciencedirect.com/science/article/pii/S2212827121008684
https://www.sciencedirect.com/science/article/pii/S2212827121008684
https://arxiv.org/abs/2205.11104
https://arxiv.org/abs/2205.11104
https://openreview.net/forum?id=jHc8dCx6DDr
https://openreview.net/forum?id=jHc8dCx6DDr
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://kaggle.com/competitions/bosch-production-line-performance
https://kaggle.com/competitions/bosch-production-line-performance
https://www.sciencedirect.com/science/article/pii/S2212827114006520
https://www.sciencedirect.com/science/article/pii/S2212827114006520


LineFlow: A Framework to Learn Active Control of Production Lines

URL https://proceedings.mlr.press/v37/
schulman15.html.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Serrano-Muñoz, A., Chrysostomou, D., Bøgh, S., and
Arana-Arexolaleiba, N. skrl: Modular and flexible li-
brary for reinforcement learning. Journal of Machine
Learning Research, 24(254):1–9, 2023. URL http:
//jmlr.org/papers/v24/23-0112.html.

Shi, D., Fan, W., Xiao, Y., Lin, T., and Xing, C. Intelli-
gent scheduling of discrete automated production line
via deep reinforcement learning. International Journal
of Production Research, 58(11):3362–3380, 2020. doi:
10.1080/00207543.2020.1717008.

Shiue, Y.-R., Lee, K.-C., and Su, C.-T. Real-time
scheduling for a smart factory using a reinforcement
learning approach. Computers & Industrial Engineer-
ing, 125:604–614, 2018. doi: 10.1016/j.cie.2018.03.
039. URL https://www.sciencedirect.com/
science/article/pii/S036083521830130X.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

SimPy, T. Simpy 4.1 webpage, 2025. URL https://
simpy.readthedocs.io/en/latest/.

Subramaniyan, M., Skoogh, A., Bokrantz, J., Sheikh, M. A.,
Thürer, M., and Chang, Q. Artificial intelligence for
throughput bottleneck analysis–state-of-the-art and future
directions. Journal of Manufacturing Systems, 60:734–
751, 2021.

Sutton, R. S. and Barto, A. Reinforcement Learning: An
Introduction. Adaptive Computation and Machine Learn-
ing. The MIT Press, second edition edition, 2020. ISBN
978-0-262-03924-6.

Szarski, M. and Chauhan, S. Instant flow distribution
network optimization in liquid composite molding us-
ing deep reinforcement learning. Journal of Intelligent
Manufacturing, 34(1):197–218, 2023. doi: 10.1007/
s10845-022-01990-5.

Tortorelli, A., Imran, M., Delli Priscoli, F., and Liberati,
F. A parallel deep reinforcement learning framework for
controlling industrial assembly lines. Electronics, 11(4),
2022. doi: 10.3390/electronics11040539. URL https:
//www.mdpi.com/2079-9292/11/4/539.

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., Cola,
G. D., Deleu, T., Goulão, M., Kallinteris, A., Krimmel,
M., KG, A., Perez-Vicente, R., Pierré, A., Schulhoff,
S., Tai, J. J., Tan, H., and Younis, O. G. Gymnasium:
A standard interface for reinforcement learning envi-
ronments, 2024. URL https://arxiv.org/abs/
2407.17032.

Viharos, Z. J. and Jakab, R. Reinforcement learning for sta-
tistical process control in manufacturing. Measurement,
182, 2021. doi: 10.1016/j.measurement.2021.109616.
URL https://www.sciencedirect.com/
science/article/pii/S0263224121005881.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019. doi: 10.1038/s41586-019-1724-z.

Wang, X., Wang, H., and Qi, C. Multi-agent reinforce-
ment learning based maintenance policy for a resource
constrained flow line system. Journal of Intelligent
Manufacturing, 27(2):325–333, 2016. doi: 10.1007/
s10845-013-0864-5.

Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman (eds.),
Proceedings of the 9th Python in Science Conference, pp.
56 – 61, 2010. doi: 10.25080/Majora-92bf1922-00a.

Wu, P., Escontrela, A., Hafner, D., Abbeel, P., and
Goldberg, K. Daydreamer: World models for phys-
ical robot learning. In Liu, K., Kulic, D., and Ich-
nowski, J. (eds.), Proceedings of The 6th Conference on
Robot Learning, volume 205 of Proceedings of Machine
Learning Research, pp. 2226–2240. PMLR, 14–18 Dec
2023. URL https://proceedings.mlr.press/
v205/wu23c.html.

Zou, Y. and Lan, R. An end-to-end calibration method
for welding robot laser vision systems with deep rein-
forcement learning. IEEE Transactions on Instrumen-
tation and Measurement, 69(7):4270–4280, 2020. doi:
10.1109/TIM.2019.2942533.

12

https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html
http://jmlr.org/papers/v24/23-0112.html
http://jmlr.org/papers/v24/23-0112.html
https://www.sciencedirect.com/science/article/pii/S036083521830130X
https://www.sciencedirect.com/science/article/pii/S036083521830130X
https://simpy.readthedocs.io/en/latest/
https://simpy.readthedocs.io/en/latest/
https://www.mdpi.com/2079-9292/11/4/539
https://www.mdpi.com/2079-9292/11/4/539
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032
https://www.sciencedirect.com/science/article/pii/S0263224121005881
https://www.sciencedirect.com/science/article/pii/S0263224121005881
https://proceedings.mlr.press/v205/wu23c.html
https://proceedings.mlr.press/v205/wu23c.html


LineFlow: A Framework to Learn Active Control of Production Lines

A. An Example Use Case in LineFlow
To demonstrate how LineFlow can be used to model and simulate production lines, and let an agent interact with it, we
provide a step-by-step implementation of a simple production line.

A.1. Implementing the Layout

In LineFlow, a production line is represented by a class that extends the Line class. Inside the Line.build method,
we define and connect the various stations, setting their processing times and capacities. Below is an example of a small
production line, which consists of two source stations, one supplying the main component and the other providing an
additional component required for assembly. These components are fed into an assembly station, which combines them into
a single unit. The assembled product then passes through a process station. After processing, a switch directs the product to
one of two possible output paths, each leading to a sink station that collects the finished items.

from lineflow.simulation import Line, Source, Sink, Assembly, Process, Switch

class ShowCase(Line):

def build(self):

source_main = Source(
'Source1',
processing_time=5,
carrier_capacity=2,
actionable_waiting_time=True,

)
source_comp = Source(

'Source2',
processing_time=5,
part_specs=[{"assembly_condition": 100}],
actionable_waiting_time=True,

)
assembly = Assembly('Assembly', processing_time=40, NOK_part_error_time=5)

process = Process('Process', processing_time=15)
switch = Switch('Switch', processing_time=1)
sink_1 = Sink('Sink1', processing_time=70)
sink_2 = Sink('Sink2', processing_time=70)

assembly.connect_to_component_input(station=source_comp, capacity=2, transition_time=5)
assembly.connect_to_input(source_main, capacity=3, transition_time=5)
process.connect_to_input(assembly, capacity=2, transition_time=2)
switch.connect_to_input(process, capacity=2, transition_time=2)
sink_1.connect_to_input(switch, capacity=3, transition_time=2)
sink_2.connect_to_input(switch, capacity=3, transition_time=2)

A.2. Interaction with Agents

In LineFlow, agents interact with the production line by receiving observations from the environment and taking actions to
optimize the system’s performance. The state space includes features such as buffer fill levels, processing times, and the
number of workers assigned to a station. Based on these observations, the agent can adjust parameters like switch routing
decisions, worker assignments, or waiting times at sources. Agents can of course be trained, but also defined as a function.
The following agent dynamically adjusts the output buffer selection at the switch based on the minimum buffer fill level.

def agent(state, env):
fills = np.array([state[f'Buffer_Switch_to_Sink{i}']['fill'].value for i in [1, 2]])
return {

"Switch": {"index_buffer_out": fills.argmin()}
"Source1": {"waiting_time": 5},
"Source2": {"waiting_time": 2},

}

13



LineFlow: A Framework to Learn Active Control of Production Lines

To observe the simulation in action, we enable visualization by setting realtime=True. This ensures that the system
updates in real-time, allowing for a clear understanding of how products move through the production line. The simulation
speed can be adjusted using the factor parameter, which controls the scaling of time units. For instance, setting
factor=0.1 speeds up the process by a factor of ten, making it easier to analyze system behavior over extended periods

line = ShowCase(realtime=True, factor=0.1)
line.run(simulation_end=150, agent=agent, visualize=True)

A.3. Analysing the Data

The user can get all the simulation data in form of a pandas dataframe, consisting of the states of all lineobjects
using line.get observations(). LineFlow also provides preinstall analysis for basic performance indicators like
line.get n parts produced() and line.get n scrap parts(). A sample visualization is shown in Figure 9.

0 100 200 300 400
failing

waiting

working
Source1_mode

0 100 200 300 400

40

45

50
Source1_waiting_time

0 100 200 300 400
failing

waiting

working
Source2_mode

0 100 200 300 400
0

5

10

Source2_waiting_time

0 100 200 300 400
failing

waiting

working
Assembly_mode

0 100 200 300 400
0

2

4
Assembly_n_scrap_parts

0 100 200 300 400
10

11

12
Assembly_processing_time

0 100 200 300 400
failing

waiting

working
Process_mode

0 100 200 300 400

16

18

Process_processing_time

0 100 200 300 400
failing

waiting

working
Switch_mode

0 100 200 300 400
0.05

0.00

0.05
Switch_index_buffer_in

0 100 200 300 400
0.0

0.5

1.0
Switch_index_buffer_out

0 100 200 300 400
failing

waiting

working
Sink1_mode

0 100 200 300 400
0

2

Sink1_n_parts_produced

0 100 200 300 400
failing

waiting

working
Sink2_mode

0 100 200 300 400
0

1

2
Sink2_n_parts_produced

0 100 200 300 400
0.0

0.5

1.0
Buffer_Source2_to_Assembly_fill

0 100 200 300 400
0.0

0.2

Buffer_Source1_to_Assembly_fill

0 100 200 300 400
0.0

0.2

0.4

Buffer_Assembly_to_Process_fill

0 100 200 300 400
0.0

0.2

0.4

Buffer_Process_to_Switch_fill

Figure 9. Selection of features extracted from the line displayed in Figure 2 visualized over time.

A.4. Training RL Agents

To train reinforcement learning (RL) agents, we implemented the LineSimulation(gym.Env) class, which takes
a Line object and a simulation duration as initialization parameters. This environment integrates seamlessly with
stable baselines3 (Raffin et al., 2021), allowing RL models to interact with the simulation by specifying it via the
env parameter. The following example demonstrates how to train an RL agent using PPO:

from stable_baselines3 import PPO

line = ShowCase()
env = LineSimulation(line, simulation_time=4000)
model = PPO("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=100_000)

A.5. General Overview

LineFlow is implemented in an object-oriented fashion. The central object is the Line object, which is decomposed
of multiple LineObjects (Section A.6). A LineObject can either be stationary, like an assembly, or movable,

14



LineFlow: A Framework to Learn Active Control of Production Lines

like a carrier. Each LineObject has a ObjectState representing parameters of the system a parameter. Each
ObjectState consists of atomic states where each can be actionable or non-actionable and observable or non-observable
(see Section A.7). The states of all objects in a line are accumulated in the LineState which provides a centralized
interface for Agents interacting with the Line during simulation.

A.6. Different Types of line objects available in LineFlow.

Typical properties when instantiating stationary objects are T and S that define their processing time T = T +ExpS as well
as a rework probability, which models rework by letting a process run multiple times in a row. Any stationary object must
be connected to other objects. This is typically done via one or multiple Buffer objects. For instance, a Switch can have
arbitrarily many incoming and outgoing buffers where an Assembly must have exactly one incoming and one outgoing for
the main carrier and arbitrarily many incoming for components that need to be joined with the carrier from the main track.

Name Type Description

Process stationary A station that simulates a processing step on the part. The processing
step can be set to repeat due to a simulated human error, which doubles
the processing time. This leads to a doubled processing time.

Sink stationary Removes components from a carrier. Carriers arrived here are marked
as OK. Empty carrier either removed or returned to a Magazine or
Source using a separate out-buffer depending on the layout. This way,
the station can be used in both linear and circular lines.

Source stationary Places parts onto carriers. Can set individual properties, called
PartSpec, to every part set up, like the assembly condition TAC. Car-
riers are either created, taken from a Magazine, or fetched separate
incoming buffer.

Assembly stationary A Station for simulating assembly activities on the line. Individual parts
and components are delivered with individual carriers, assembled with
a simulated processing time and forwarded to the downstream station.
Can be connected to a WorkerPool that can assign Worker objects
to it modifying its processing time.

WorkerPool stationary Holds a predefined set of Worker objects and is attached to a fixed
number of stations. Multiple pools can coexist for a production line
allowing to modelling different skills or experience of workers.

Magazine stationary Magazine station is used to manage the carriers. The total number of
carriers available to the line can be controlled via this station. The
capacity of the carriers, i.e. the possible number of components that can
be added at the assembly station, is also determined by this station. If
the number of carriers is not of interest, the source can place the parts
directly on carriers and no magazine is required.

Switch stationary The Switch distributes carriers to different stations, enabling parallel
structures within the line.

Buffer stationary The Buffer transports carriers from one station to another. Time needed
to push and get carriers to and from can be specified as well as its
capacity and time a carrier needs to traverse the buffer.

Carrier movable Is set up at a Source station or a Magazine and holds a predefined
number of Part objects.

15



LineFlow: A Framework to Learn Active Control of Production Lines

Part movable Single unit which is initially created at a Source. Holds a PartSpec
each station handling it can access and individually adapt to.

Worker movable Belongs to a WorkerPool and can be assigned to a station. Traversal
time can be configured.

Table 2: Different types of LineObjects.

A.7. Different Types of States

This section provides an overview over the elementary states implemented in LineFlow. Every state is associated to at least
one LineObject and the mapping of selected objects to states is given in Table 5. In general, a state can be actionable or
non-actionable meaning that agents can set them to other values within their value range via runtime. Per default, every state
is observable, meaning that they are part of the observational space agents have access to. However, to facilitate ablation
studies or simulate sensor failures, any state can be selectively masked as non-observable. Many states are consequences of
events taking place at the line, like how many carriers are on a buffer, and cannot be influenced directly. All states kept
updated constantly and represent at any time the current situation. Some states, however, are lagged in the sense that their
update happens once an certain event is triggered. For instance, the state holding the processing time of a station is updated
once the process is over with the value of the last process.

The states can be categorized into two main categories: discrete and numeric. Discrete States on the one side, handle
categorical items such as station modes. Internally, the values of a discrete state are labeled encoded to integer numbers. A
subclass are count states that represent integer numbers, like the number of scrap parts at a station. Numeric states, on the
other side, hold continuous numerical values, like processing times or buffer fill levels. Their value range may be restricted
by upper and lower tolerances. Table 3 provides a list of states implemented in LineFlow. All states are mapped to the
respective states of gymnasium (Towers et al., 2024). At any simulation step t, the states of all LineObjects are fetched
and put into an agent, which returns new values for the list of actionable features to be updated accordingly.

Name Type Actionable Description

Mode discrete non-actionable The mode a station is currently in. Is either working,
failing, or waiting.

Processing time numeric non-actionable The processing time of the last process.

Waiting time numeric actionable Value used to wait till two parts produced.

Station-Assignment discrete actionable Discrete value denoting to which station a worker is as-
signed to. Must be one of the predefined stations attached
to the worker pool the worker belongs to.

#Workers count non-actionable Number of workers assigned to a station. Aggregated fea-
ture computed from the station-assignment of all workers

#OKs and #NOKs count non-actionable Number of OK and NOK parts the station has produced
so far.

Buffer-Indices discrete actionable The incoming and outgoing index of a stationary object,
like a Switch, it should get and push components to.

Buffer-Fill numeric non-actionable Relative number of carriers on a buffer.

Table 3: Examples of states.

16



LineFlow: A Framework to Learn Active Control of Production Lines

Processing
time

Current
mode

Number of
workers

nok Waiting
time

In and out
buffer

Assembly O, N-A O, N-A O, A O, N-A - -

Process O, N-A O, N-A O, A O, N-A - -

Source O, N-A O, N-A - O, N-A O, A -

Switch O, N-A O, N-A - - - O, A

Table 5. Default mapping of selected stationary objects to states. Letters O and A stand for observable and actionable respectively, where
N marks non-observable and non-actionable.

A.8. Visualization

Once a layout is implemented in LineFlow, an object of the respective Line object allows to set visualize=True
during a simulation run, which renders the current state in pygame. Figure 10. As layouts are implemented in custom line
classes, users have control over how these lines are instantiated and can use the power of the programming language of
python, i.e., parametrizing the number of sinks or assemblies via constructor arguments or using for-loops to set them up.

Figure 10. Some layouts implemented in LineFlow.

B. Optimality Proofs for Case Studies
In this section, we give proofs for optimal control policies for the scenarios WT and WTJ in Section B.1, PD in Section B.2,
and WA in Section B.3. In Section B.4, we state a heuristic for CL yielding near-optimal reward.

B.1. Waiting Time

Let TSC
and TA be the process time distributions of SC and A respectively and denote by Tp and Tg the time distributions to

push and get a component to and from a buffer respectively. First, we state a formula for the optimal waiting time at SC .
Essentially, the waiting time has to fill the gap between the times A and SC need to handle and process their parts, which
are TA + 2 · Tg + Tp and TSC

+ Tp. Thus, the optimal waiting time can be globally determined as the expected value of
their difference

T ∗
W = E[TA + 2 · Tg − TSC

]. (3)

Particularly, it suffices in WT to learn a static waiting time. See also Figure 11 for how the waiting time at SC affects the
reward. To calculate the maximum number of parts that can be produced, we have to consider the time that it take for the
assembly to start processing as well as the time the last part produced in Tsim needs to be finished by the sink. Let TSC

, TSM
,

TA, and TS be the process time distributions of SC , SM , A, and the sink S respectively. Moreover, let TSC→A, TSM→A,
and TA→S be the times a part needs to traverse on the buffers between SC and A, SM and A, and A and the sink S. The
assembly can start its processing once a part from SM and SC has arrived, that is

T→A := max{TSC
+ Tp + TSC→A, TSM

+ Tp + TSM→A}

17



LineFlow: A Framework to Learn Active Control of Production Lines

where Tp and Tg denote the times to push and get a component to and from a buffer respectively. As the first part also needs
to transfer to the sink S and has to be processed it, the expected value of the maximal parts produced from 0 to Tsim is:

E
[
Tsim − T→A − TA→S − Tg − TS

TA + 2 · Tg + Tp

]
. (4)

10 15 20 25 30
Waiting time

80

100

120

140

160

Reward
Produced parts
Expected part maximum
Optimal waiting time T *

W

Figure 11. Visualisation of the setting in WT with optimal waiting time T ∗
W = 18.5 as in Equation (3) and the maximal number of

expected parts as computed in Equation (4).

Next, we explain the construction of f and Tjump of WTJ with a jumping processing time of the assembly A. Following
Equation (4) and ignoring the ramp-up and jumps of the assembly station, the expected number of parts N produced in Tsim

is

N =
Tsim

E[TA + 2Tg + Tp]
=

Tsim

T + S + E

with E = E[2Tg + Tp]. When the assembly processing with f · T + ExpS instead of T + ExpS for a period of Tjump, the
number of expected parts is:

Tsim − Tjump

T + S + E
+

Tjump

fT + S + E

Clearly, if f > 1, the expected number of produced parts must be smaller than N . Thus, we want to construct f from a
sampled Tjump such that the expected number of produced parts is R ·N for a fixed constant 0 < R < 1. Then, for a for a
sampled Tjump, we look for f such that the expected parts satisfies:

Tsim − Tjump

T + S + E
+

Tjump

fT + S + E
= R ·N

It is not hard to see that this is the case for

f =
1

T

(
Tjump · (T + S + E)

(R− 1) · Tsim + Tjump
− S − E

)
.

To verify that the maximal number of produced parts is in fact R ·N , we run simulations in LineFlow using varying values
of R and a fixed waiting time of 0 at the source to keep the assembly constantly loaded. As this would lead to scrap, which
in turn blocks the assembly time for a certain amount of time, we additionally set a very large assembly condition TAC .
Figure 12 shows the empirical frequency of the number of parts produced for WTJ for different R values as well as R ·N
with N the expected value of WT showing that f and Tjump are constructed as desired.

18



LineFlow: A Framework to Learn Active Control of Production Lines

0.65 0.7 0.75 0.8 0.85 0.9
R

100

110

120

130

140

Pr
od

uc
ed

 p
ar

ts

Figure 12. Number of parts produced for WTJ and WT with large assembly condition TAC and no waiting at SC for varying R.

To get an optimal policy for WTJ, we estimate E[TA + 2 · Tg − TSC
] from Equation (3) by regressing on E[TA] with the

processing times reported from A. Essentially, we take a rolling mean of the last l processing times observations from A.
Clearly, the larger l, the better the estimate for E[TA] in a time period where the mean does not jump. However, the larger l,
the worse the new estimate of the waiting time adjusts to a new level. By varying l and testing the agent for WTJ (see
Figure 13), we found that l = 1 gives the best reward. This reward is used as optimal value in Section 5.

1 2 3 4 5 6 7 8 9
Look-back l

100

105

110

115

120

Re
wa

rd

Figure 13. Reward for agent for varying look-back l.

B.2. Part Distribution

In Section 4.2, we showed that the maximal number of parts that can be produced in PDk is

E[N ] :=

k∑
i=1

Tsim

(1 + Si) · Ti
(5)

Particularly, the fraction of all parts produced by Pi is

ρi = E
[
Ni

N

]
=

1∑k
j=1

Ti

Tj

(6)

and consequently, the optimal distribution policy for the switch also needs to deliver that number to Pi to reach the maximal
number of parts. Put differently, the optimal policy sends a part with probability ρi to Pi. We have implemented in LineFlow
an agent that greedily controls the switches: A carrier is pushed on a buffer having lowest fill and fetched from a buffer with
highest fill. This greedy policy have been evaluated for k ∈ {3, 4, 5} and its part distribution is compared to the optimal
distribution (ρ1, . . . , ρk) from Equation (6). The result is shown in Figure 14.

19



LineFlow: A Framework to Learn Active Control of Production Lines

15
0

20
0

25
0

Pa
rts

 p
ro

du
ce

d

n 1
=

0
n 2

=
0

n 3
=

9
n 1

=
0

n 2
=

1
n 3

=
8

n 1
=

0
n 2

=
2

n 3
=

7
n 1

=
0

n 2
=

3
n 3

=
6

n 1
=

0
n 2

=
4

n 3
=

5
n 1

=
1

n 2
=

1
n 3

=
7

n 1
=

1
n 2

=
2

n 3
=

6
n 1

=
1

n 2
=

3
n 3

=
5

n 1
=

1
n 2

=
4

n 3
=

4
n 1

=
2

n 2
=

2
n 3

=
5

n 1
=

2
n 2

=
3

n 3
=

4
n 1

=
3

n 2
=

3
n 3

=
3

partition

0
5

10
15

20
Ti

m
e 

of
 sl

ow
es

t p
ro

ce
ss

(a) WA3,9
15

0
20

0
25

0
Pa

rts
 p

ro
du

ce
d

n 1
=

0
n 2

=
0

n 3
=

0
n 4

=
12

n 1
=

0
n 2

=
0

n 3
=

1
n 4

=
11

n 1
=

0
n 2

=
0

n 3
=

2
n 4

=
10

n 1
=

0
n 2

=
0

n 3
=

3
n 4

=
9

n 1
=

0
n 2

=
0

n 3
=

4
n 4

=
8

n 1
=

0
n 2

=
0

n 3
=

5
n 4

=
7

n 1
=

0
n 2

=
0

n 3
=

6
n 4

=
6

n 1
=

0
n 2

=
1

n 3
=

1
n 4

=
10

n 1
=

0
n 2

=
1

n 3
=

2
n 4

=
9

n 1
=

0
n 2

=
1

n 3
=

3
n 4

=
8

n 1
=

0
n 2

=
1

n 3
=

4
n 4

=
7

n 1
=

0
n 2

=
1

n 3
=

5
n 4

=
6

n 1
=

0
n 2

=
2

n 3
=

2
n 4

=
8

n 1
=

0
n 2

=
2

n 3
=

3
n 4

=
7

n 1
=

0
n 2

=
2

n 3
=

4
n 4

=
6

n 1
=

0
n 2

=
2

n 3
=

5
n 4

=
5

n 1
=

0
n 2

=
3

n 3
=

3
n 4

=
6

n 1
=

0
n 2

=
3

n 3
=

4
n 4

=
5

n 1
=

0
n 2

=
4

n 3
=

4
n 4

=
4

n 1
=

1
n 2

=
1

n 3
=

1
n 4

=
9

n 1
=

1
n 2

=
1

n 3
=

2
n 4

=
8

n 1
=

1
n 2

=
1

n 3
=

3
n 4

=
7

n 1
=

1
n 2

=
1

n 3
=

4
n 4

=
6

n 1
=

1
n 2

=
1

n 3
=

5
n 4

=
5

n 1
=

1
n 2

=
2

n 3
=

2
n 4

=
7

n 1
=

1
n 2

=
2

n 3
=

3
n 4

=
6

n 1
=

1
n 2

=
2

n 3
=

4
n 4

=
5

n 1
=

1
n 2

=
3

n 3
=

3
n 4

=
5

n 1
=

1
n 2

=
3

n 3
=

4
n 4

=
4

n 1
=

2
n 2

=
2

n 3
=

2
n 4

=
6

n 1
=

2
n 2

=
2

n 3
=

3
n 4

=
5

n 1
=

2
n 2

=
2

n 3
=

4
n 4

=
4

n 1
=

2
n 2

=
3

n 3
=

3
n 4

=
4

n 1
=

3
n 2

=
3

n 3
=

3
n 4

=
3

partition

0
10

20
Ti

m
e 

of
 sl

ow
es

t p
ro

ce
ss

(b) WA4,12

15
0

20
0

Pa
rts

 p
ro

du
ce

d

n 1
=

0
n 2

=
0

n 3
=

0
n 4

=
0

n 5
=

15
n 1

=
0

n 2
=

0
n 3

=
0

n 4
=

1
n 5

=
14

n 1
=

0
n 2

=
0

n 3
=

0
n 4

=
2

n 5
=

13
n 1

=
0

n 2
=

0
n 3

=
0

n 4
=

3
n 5

=
12

n 1
=

0
n 2

=
0

n 3
=

0
n 4

=
4

n 5
=

11
n 1

=
0

n 2
=

0
n 3

=
0

n 4
=

5
n 5

=
10

n 1
=

0
n 2

=
0

n 3
=

0
n 4

=
6

n 5
=

9
n 1

=
0

n 2
=

0
n 3

=
0

n 4
=

7
n 5

=
8

n 1
=

0
n 2

=
0

n 3
=

1
n 4

=
1

n 5
=

13
n 1

=
0

n 2
=

0
n 3

=
1

n 4
=

2
n 5

=
12

n 1
=

0
n 2

=
0

n 3
=

1
n 4

=
3

n 5
=

11
n 1

=
0

n 2
=

0
n 3

=
1

n 4
=

4
n 5

=
10

n 1
=

0
n 2

=
0

n 3
=

1
n 4

=
5

n 5
=

9
n 1

=
0

n 2
=

0
n 3

=
1

n 4
=

6
n 5

=
8

n 1
=

0
n 2

=
0

n 3
=

1
n 4

=
7

n 5
=

7
n 1

=
0

n 2
=

0
n 3

=
2

n 4
=

2
n 5

=
11

n 1
=

0
n 2

=
0

n 3
=

2
n 4

=
3

n 5
=

10
n 1

=
0

n 2
=

0
n 3

=
2

n 4
=

4
n 5

=
9

n 1
=

0
n 2

=
0

n 3
=

2
n 4

=
5

n 5
=

8
n 1

=
0

n 2
=

0
n 3

=
2

n 4
=

6
n 5

=
7

n 1
=

0
n 2

=
0

n 3
=

3
n 4

=
3

n 5
=

9
n 1

=
0

n 2
=

0
n 3

=
3

n 4
=

4
n 5

=
8

n 1
=

0
n 2

=
0

n 3
=

3
n 4

=
5

n 5
=

7
n 1

=
0

n 2
=

0
n 3

=
3

n 4
=

6
n 5

=
6

n 1
=

0
n 2

=
0

n 3
=

4
n 4

=
4

n 5
=

7
n 1

=
0

n 2
=

0
n 3

=
4

n 4
=

5
n 5

=
6

n 1
=

0
n 2

=
0

n 3
=

5
n 4

=
5

n 5
=

5
n 1

=
0

n 2
=

1
n 3

=
1

n 4
=

1
n 5

=
12

n 1
=

0
n 2

=
1

n 3
=

1
n 4

=
2

n 5
=

11
n 1

=
0

n 2
=

1
n 3

=
1

n 4
=

3
n 5

=
10

n 1
=

0
n 2

=
1

n 3
=

1
n 4

=
4

n 5
=

9
n 1

=
0

n 2
=

1
n 3

=
1

n 4
=

5
n 5

=
8

n 1
=

0
n 2

=
1

n 3
=

1
n 4

=
6

n 5
=

7
n 1

=
0

n 2
=

1
n 3

=
2

n 4
=

2
n 5

=
10

n 1
=

0
n 2

=
1

n 3
=

2
n 4

=
3

n 5
=

9
n 1

=
0

n 2
=

1
n 3

=
2

n 4
=

4
n 5

=
8

n 1
=

0
n 2

=
1

n 3
=

2
n 4

=
5

n 5
=

7
n 1

=
0

n 2
=

1
n 3

=
2

n 4
=

6
n 5

=
6

n 1
=

0
n 2

=
1

n 3
=

3
n 4

=
3

n 5
=

8
n 1

=
0

n 2
=

1
n 3

=
3

n 4
=

4
n 5

=
7

n 1
=

0
n 2

=
1

n 3
=

3
n 4

=
5

n 5
=

6
n 1

=
0

n 2
=

1
n 3

=
4

n 4
=

4
n 5

=
6

n 1
=

0
n 2

=
1

n 3
=

4
n 4

=
5

n 5
=

5
n 1

=
0

n 2
=

2
n 3

=
2

n 4
=

2
n 5

=
9

n 1
=

0
n 2

=
2

n 3
=

2
n 4

=
3

n 5
=

8
n 1

=
0

n 2
=

2
n 3

=
2

n 4
=

4
n 5

=
7

n 1
=

0
n 2

=
2

n 3
=

2
n 4

=
5

n 5
=

6
n 1

=
0

n 2
=

2
n 3

=
3

n 4
=

3
n 5

=
7

n 1
=

0
n 2

=
2

n 3
=

3
n 4

=
4

n 5
=

6
n 1

=
0

n 2
=

2
n 3

=
3

n 4
=

5
n 5

=
5

n 1
=

0
n 2

=
2

n 3
=

4
n 4

=
4

n 5
=

5
n 1

=
0

n 2
=

3
n 3

=
3

n 4
=

3
n 5

=
6

n 1
=

0
n 2

=
3

n 3
=

3
n 4

=
4

n 5
=

5
n 1

=
0

n 2
=

3
n 3

=
4

n 4
=

4
n 5

=
4

n 1
=

1
n 2

=
1

n 3
=

1
n 4

=
1

n 5
=

11
n 1

=
1

n 2
=

1
n 3

=
1

n 4
=

2
n 5

=
10

n 1
=

1
n 2

=
1

n 3
=

1
n 4

=
3

n 5
=

9
n 1

=
1

n 2
=

1
n 3

=
1

n 4
=

4
n 5

=
8

n 1
=

1
n 2

=
1

n 3
=

1
n 4

=
5

n 5
=

7
n 1

=
1

n 2
=

1
n 3

=
1

n 4
=

6
n 5

=
6

n 1
=

1
n 2

=
1

n 3
=

2
n 4

=
2

n 5
=

9
n 1

=
1

n 2
=

1
n 3

=
2

n 4
=

3
n 5

=
8

n 1
=

1
n 2

=
1

n 3
=

2
n 4

=
4

n 5
=

7
n 1

=
1

n 2
=

1
n 3

=
2

n 4
=

5
n 5

=
6

n 1
=

1
n 2

=
1

n 3
=

3
n 4

=
3

n 5
=

7
n 1

=
1

n 2
=

1
n 3

=
3

n 4
=

4
n 5

=
6

n 1
=

1
n 2

=
1

n 3
=

3
n 4

=
5

n 5
=

5
n 1

=
1

n 2
=

1
n 3

=
4

n 4
=

4
n 5

=
5

n 1
=

1
n 2

=
2

n 3
=

2
n 4

=
2

n 5
=

8
n 1

=
1

n 2
=

2
n 3

=
2

n 4
=

3
n 5

=
7

n 1
=

1
n 2

=
2

n 3
=

2
n 4

=
4

n 5
=

6
n 1

=
1

n 2
=

2
n 3

=
2

n 4
=

5
n 5

=
5

n 1
=

1
n 2

=
2

n 3
=

3
n 4

=
3

n 5
=

6
n 1

=
1

n 2
=

2
n 3

=
3

n 4
=

4
n 5

=
5

n 1
=

1
n 2

=
2

n 3
=

4
n 4

=
4

n 5
=

4
n 1

=
1

n 2
=

3
n 3

=
3

n 4
=

3
n 5

=
5

n 1
=

1
n 2

=
3

n 3
=

3
n 4

=
4

n 5
=

4
n 1

=
2

n 2
=

2
n 3

=
2

n 4
=

2
n 5

=
7

n 1
=

2
n 2

=
2

n 3
=

2
n 4

=
3

n 5
=

6
n 1

=
2

n 2
=

2
n 3

=
2

n 4
=

4
n 5

=
5

n 1
=

2
n 2

=
2

n 3
=

3
n 4

=
3

n 5
=

5
n 1

=
2

n 2
=

2
n 3

=
3

n 4
=

4
n 5

=
4

n 1
=

2
n 2

=
3

n 3
=

3
n 4

=
3

n 5
=

4
n 1

=
3

n 2
=

3
n 3

=
3

n 4
=

3
n 5

=
3

partition

0
10

20
30

Ti
m

e 
of

 sl
ow

es
t p

ro
ce

ss

(c) WA5,15

Figure 15. Performance of all possible monotone partitions for Ti = (16 + i · 4), and c = 0.3 for a simulation length of 2000 in the
worker distribution example.

0.0 0.1 0.2 0.3 0.4 0.5
P1
P2
P3 Part distributions

greedy
optimum 

0.0 0.1 0.2 0.3 0.4
P1
P2
P3
P4 Part distributions

greedy
optimum 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P1
P2
P3
P4
P5 Part distributions

greedy
optimum 

Figure 14. Part distributions of the greedy policy compared with optimal distribution for k ∈ {3, 4, 5}.

B.3. Worker Assignments

In this section, we formulate

T ∗
C = min

(n1,...,nk)∈NN,k

max
i∈[k]

E[TTi,Si,ni
]

as given in Equation (2) as integer optimization problem. Recall that E[TTi,Si,ni ] = Ti · (pc(ni) + Si). We equivalently
reformulate the minimization problem by introducing a real-valued auxiliary variable m as follows:

min
n1,...,nk,m

m

subject to m ≥ Ti · (pc(ni) + Si) ∀i ∈ [k]

k∑
i=1

ni = N

ni ∈ N≥0 ∀i ∈ [k]

m ∈ R≥0

(7)

In our benchmarks, we used Ti = (16 + i · 4) and c = 0.3 for varying k and N = 3 · k. We implemented this optimization
problem in gekko (Beal et al., 2018). Solving Equation (7) yields (2, 3, 4) for k = 3, (2, 3, 3, 4) for k = 4, and (2, 2, 3, 4, 4)
for k = 5. To evaluate the correctness of LineFlow, we enumerated and evaluated all monotonic worker assignment, that is
ni ≤ nj for i ≤ j, for k ∈ {3, 4, 5} for multiple runs with simulation length 2000 (see Figure 15). We found the optimal
assignment obtained empirically matches the exact optimum obtained by using Equation 7.

20



LineFlow: A Framework to Learn Active Control of Production Lines

Name Value

Simulation time Tsim 4,000
Step size Tstep 1
Rollout steps 1,000
Discount factor γ 0.99
Number of environments (vectorized) 5
Number of stacked observations 1
Advantage normalization (only PPO) False
Batch size in update 1,000
Number of epochs in update 5
Clip range (only PPO and A2C) 0.2
Maximal gradient norm (only PPO) 0.5
Policy (stable-baselines3) MlpPolicy (MlpLstmPolicy for recurrent PPO)

Table 7. General hyperparameters used for all algorithms.

B.4. Complex Line

We encountered several challenges when designing an effective control policy for the complex line. Due to the small
buffer capacities between assembly stages, the line is prone to blockages, leading to scrap parts and a significant drop in
reward. Maintaining a steady production flow proved to be crucial. To resolve potential jams as efficiently as possible,
we implemented a switch distribution policy that prioritizes later assembly stations. While this approach helped mitigate
blockages, it also introduced new challenges, such as imbalanced utilization of early-stage buffers, which could lead to
delays in part availability. Regarding worker distribution, our analysis showed that keeping a fixed distribution throughout
the episode consistently outperformed any of our redistribution strategies. We attribute this effect to the time required for
worker redistribution, which likely disrupts the system’s stability. Additionally, frequent reassignments may introduce
inefficiencies due to the time needed for workers to relocate and adapt to new tasks. We also explored adaptive worker
allocation strategies that dynamically reassign workers based on buffer fill levels. However, these approaches often led to
oscillatory behavior, where workers continuously moved between stations without improving throughput. This suggests that
the overhead of frequent redistribution outweighs its potential benefits in our setup.

C. Benchmarking Details
In our experiments, we used stable-baselines3 (Version 2.3.2). In total, 22 models have been trained and evaluated for every
scenario, each model using three different random seeds resulting in 66 trained models for each scenario. The runtimes vary:
Roughly 14 hours for PD5 are required to train a single model, whereas only 7 hours for WTJ and 2 hours for WT. To
train a stacked and recurrent version of PPO for scenario CL NVIDIA H100 GPUs were used. A single stacked PPO model
trains roughly 20 hours, where the recurrent models train for almost 6 days.

21



LineFlow: A Framework to Learn Active Control of Production Lines

C.1. Waiting Time

144 146 148 150 152 154 156 158
Best rewards

A2C (lr=0.0005, ent_c=0.0)
A2C (lr=0.0005, ent_c=0.001)

A2C (lr=0.001, ent_c=0.0)
A2C (lr=0.001, ent_c=0.001)

A2C (lr=0.01, ent_c=0.0)
A2C (lr=0.01, ent_c=0.001)
PPO (lr=0.0001, ent_c=0.0)

PPO (lr=0.0001, ent_c=0.01)
PPO (lr=0.0001, ent_c=0.1)
PPO (lr=0.001, ent_c=0.0)

PPO (lr=0.001, ent_c=0.01)
PPO (lr=0.001, ent_c=0.1)
PPO (lr=0.01, ent_c=0.0)

PPO (lr=0.01, ent_c=0.01)
PPO (lr=0.01, ent_c=0.1)

RecurrentPPO (lr=0.0001, ent_c=0.0)
RecurrentPPO (lr=0.0001, ent_c=0.01)

RecurrentPPO (lr=0.001, ent_c=0.0)
RecurrentPPO (lr=0.001, ent_c=0.01)

TRPO (lr=0.0001)
TRPO (lr=0.001)
TRPO (lr=0.01)

A2C
PPO

RecurrentPPO
TRPO

(a) WT

70 80 90 100 110
Best rewards

A2C (lr=0.0005, ent_c=0.0)
A2C (lr=0.0005, ent_c=0.001)

A2C (lr=0.001, ent_c=0.0)
A2C (lr=0.001, ent_c=0.001)

A2C (lr=0.01, ent_c=0.0)
A2C (lr=0.01, ent_c=0.001)
PPO (lr=0.0001, ent_c=0.0)

PPO (lr=0.0001, ent_c=0.01)
PPO (lr=0.0001, ent_c=0.1)
PPO (lr=0.001, ent_c=0.0)

PPO (lr=0.001, ent_c=0.01)
PPO (lr=0.001, ent_c=0.1)
PPO (lr=0.01, ent_c=0.0)

PPO (lr=0.01, ent_c=0.01)
PPO (lr=0.01, ent_c=0.1)

RecurrentPPO (lr=0.0001, ent_c=0.0)
RecurrentPPO (lr=0.0001, ent_c=0.01)

RecurrentPPO (lr=0.001, ent_c=0.0)
RecurrentPPO (lr=0.001, ent_c=0.01)

TRPO (lr=0.0001)
TRPO (lr=0.001)
TRPO (lr=0.01)

A2C
PPO

RecurrentPPO
TRPO

(b) WTJ

Figure 16. Best performance of algorithms on evaluation environments for WT and WTJ.

50000 100000 150000 200000 250000 300000 350000 400000
Global step

50

0

50

100

150

Re
wa

rd

A2C
PPO

RecurrentPPO
TRPO

(a) WT

0.2 0.4 0.6 0.8 1.0
Global step 1e7

75

50

25

0

25

50

75

100

Re
wa

rd

A2C
PPO

RecurrentPPO
TRPO

(b) WTJ

Figure 17. Reward over steps for WT and WTJ.

C.2. Part Distribution

100 200 300 400 500 600
Best rewards

A2C (lr=0.0005, ent_c=0.0)
A2C (lr=0.0005, ent_c=0.001)

A2C (lr=0.001, ent_c=0.0)
A2C (lr=0.001, ent_c=0.001)

A2C (lr=0.01, ent_c=0.0)
A2C (lr=0.01, ent_c=0.001)
PPO (lr=0.0001, ent_c=0.0)

PPO (lr=0.0001, ent_c=0.01)
PPO (lr=0.0001, ent_c=0.1)
PPO (lr=0.001, ent_c=0.0)

PPO (lr=0.001, ent_c=0.01)
PPO (lr=0.001, ent_c=0.1)
PPO (lr=0.01, ent_c=0.0)

PPO (lr=0.01, ent_c=0.01)
PPO (lr=0.01, ent_c=0.1)

RecurrentPPO (lr=0.0001, ent_c=0.0)
RecurrentPPO (lr=0.0001, ent_c=0.01)

RecurrentPPO (lr=0.001, ent_c=0.0)
RecurrentPPO (lr=0.001, ent_c=0.01)

TRPO (lr=0.0001)
TRPO (lr=0.001)
TRPO (lr=0.01)

A2C
PPO

RecurrentPPO
TRPO

(a) k = 3

100 200 300 400 500 600
Best rewards

A2C (lr=0.0005, ent_c=0.0)
A2C (lr=0.0005, ent_c=0.001)

A2C (lr=0.001, ent_c=0.0)
A2C (lr=0.001, ent_c=0.001)

A2C (lr=0.01, ent_c=0.0)
A2C (lr=0.01, ent_c=0.001)
PPO (lr=0.0001, ent_c=0.0)

PPO (lr=0.0001, ent_c=0.01)
PPO (lr=0.0001, ent_c=0.1)
PPO (lr=0.001, ent_c=0.0)

PPO (lr=0.001, ent_c=0.01)
PPO (lr=0.001, ent_c=0.1)
PPO (lr=0.01, ent_c=0.0)

PPO (lr=0.01, ent_c=0.01)
PPO (lr=0.01, ent_c=0.1)

RecurrentPPO (lr=0.0001, ent_c=0.0)
RecurrentPPO (lr=0.0001, ent_c=0.01)

RecurrentPPO (lr=0.001, ent_c=0.0)
RecurrentPPO (lr=0.001, ent_c=0.01)

TRPO (lr=0.0001)
TRPO (lr=0.001)
TRPO (lr=0.01)

A2C
PPO

RecurrentPPO
TRPO

(b) k = 4

300 400 500 600 700
Best rewards

A2C (lr=0.0005, ent_c=0.0)
A2C (lr=0.0005, ent_c=0.001)

A2C (lr=0.001, ent_c=0.0)
A2C (lr=0.001, ent_c=0.001)

A2C (lr=0.01, ent_c=0.0)
A2C (lr=0.01, ent_c=0.001)
PPO (lr=0.0001, ent_c=0.0)

PPO (lr=0.0001, ent_c=0.01)
PPO (lr=0.0001, ent_c=0.1)
PPO (lr=0.001, ent_c=0.0)

PPO (lr=0.001, ent_c=0.01)
PPO (lr=0.001, ent_c=0.1)
PPO (lr=0.01, ent_c=0.0)

PPO (lr=0.01, ent_c=0.01)
PPO (lr=0.01, ent_c=0.1)

RecurrentPPO (lr=0.0001, ent_c=0.0)
RecurrentPPO (lr=0.0001, ent_c=0.01)

RecurrentPPO (lr=0.001, ent_c=0.0)
RecurrentPPO (lr=0.001, ent_c=0.01)

TRPO (lr=0.0001)
TRPO (lr=0.001)
TRPO (lr=0.01)

A2C
PPO

RecurrentPPO
TRPO

(c) k = 5

Figure 18. Best performance of algorithms on evaluation environments for PDk.

0.2 0.4 0.6 0.8 1.0
Global step 1e6

200

300

400

500

Re
wa

rd

A2C
PPO

RecurrentPPO
TRPO

(a) k = 3

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Global step 1e6

200

300

400

500

600

Re
wa

rd

A2C
PPO

RecurrentPPO
TRPO

(b) k = 4

0.2 0.4 0.6 0.8 1.0
Global step 1e7

200

300

400

500

600

700

Re
wa

rd

A2C
PPO

RecurrentPPO
TRPO

(c) k = 5

Figure 19. Reward over steps for PDk.

22



LineFlow: A Framework to Learn Active Control of Production Lines

C.3. Worker Assignment

210 220 230 240 250 260 270 280 290
Best rewards

A2C (lr=0.0005, ent_c=0.0)
A2C (lr=0.0005, ent_c=0.001)

A2C (lr=0.001, ent_c=0.0)
A2C (lr=0.001, ent_c=0.001)

A2C (lr=0.01, ent_c=0.0)
A2C (lr=0.01, ent_c=0.001)
PPO (lr=0.0001, ent_c=0.0)

PPO (lr=0.0001, ent_c=0.01)
PPO (lr=0.0001, ent_c=0.1)
PPO (lr=0.001, ent_c=0.0)

PPO (lr=0.001, ent_c=0.01)
PPO (lr=0.001, ent_c=0.1)
PPO (lr=0.01, ent_c=0.0)

PPO (lr=0.01, ent_c=0.01)
PPO (lr=0.01, ent_c=0.1)

RecurrentPPO (lr=0.0001, ent_c=0.0)
RecurrentPPO (lr=0.0001, ent_c=0.01)

RecurrentPPO (lr=0.001, ent_c=0.0)
RecurrentPPO (lr=0.001, ent_c=0.01)

TRPO (lr=0.0001)
TRPO (lr=0.001)
TRPO (lr=0.01)

A2C
PPO

RecurrentPPO
TRPO

(a) k = 3

180 190 200 210 220 230 240 250
Best rewards

A2C (lr=0.0005, ent_c=0.0)
A2C (lr=0.0005, ent_c=0.001)

A2C (lr=0.001, ent_c=0.0)
A2C (lr=0.001, ent_c=0.001)

A2C (lr=0.01, ent_c=0.0)
A2C (lr=0.01, ent_c=0.001)
PPO (lr=0.0001, ent_c=0.0)

PPO (lr=0.0001, ent_c=0.01)
PPO (lr=0.0001, ent_c=0.1)
PPO (lr=0.001, ent_c=0.0)

PPO (lr=0.001, ent_c=0.01)
PPO (lr=0.001, ent_c=0.1)
PPO (lr=0.01, ent_c=0.0)

PPO (lr=0.01, ent_c=0.01)
PPO (lr=0.01, ent_c=0.1)

RecurrentPPO (lr=0.0001, ent_c=0.0)
RecurrentPPO (lr=0.0001, ent_c=0.01)

RecurrentPPO (lr=0.001, ent_c=0.0)
RecurrentPPO (lr=0.001, ent_c=0.01)

TRPO (lr=0.0001)
TRPO (lr=0.001)
TRPO (lr=0.01)

A2C
PPO

RecurrentPPO
TRPO

(b) k = 4

140 160 180 200 220 240
Best rewards

A2C (lr=0.0005, ent_c=0.0)
A2C (lr=0.0005, ent_c=0.001)

A2C (lr=0.001, ent_c=0.0)
A2C (lr=0.001, ent_c=0.001)

A2C (lr=0.01, ent_c=0.0)
A2C (lr=0.01, ent_c=0.001)
PPO (lr=0.0001, ent_c=0.0)

PPO (lr=0.0001, ent_c=0.01)
PPO (lr=0.0001, ent_c=0.1)
PPO (lr=0.001, ent_c=0.0)

PPO (lr=0.001, ent_c=0.01)
PPO (lr=0.001, ent_c=0.1)
PPO (lr=0.01, ent_c=0.0)

PPO (lr=0.01, ent_c=0.01)
PPO (lr=0.01, ent_c=0.1)

RecurrentPPO (lr=0.0001, ent_c=0.0)
RecurrentPPO (lr=0.0001, ent_c=0.01)

RecurrentPPO (lr=0.001, ent_c=0.0)
RecurrentPPO (lr=0.001, ent_c=0.01)

TRPO (lr=0.0001)
TRPO (lr=0.001)
TRPO (lr=0.01)

A2C
PPO

RecurrentPPO
TRPO

(c) k = 5

Figure 20. Best performance of algorithms on evaluation environments for WAk,3k.

50000 100000 150000 200000 250000 300000 350000 400000
Global step

100

125

150

175

200

225

250

275

Re
wa

rd

A2C
PPO

RecurrentPPO
TRPO

(a) k = 3

100000 200000 300000 400000 500000
Global step

100

120

140

160

180

200

220

240

260

Re
wa

rd

A2C
PPO

RecurrentPPO
TRPO

(b) k = 4

50000 100000 150000 200000 250000 300000 350000 400000
Global step

100

120

140

160

180

200

220

240

Re
wa

rd

A2C
PPO

RecurrentPPO
TRPO

(c) k = 5

Figure 21. Reward over steps for WAk,3k.

D. Validation on Real Production Data
In this section, we evaluate the sim-to-real gap of LineFlow using the publicly available production line dataset from (Risdal
et al., 2016). In this dataset, each row corresponds to a produced part, and the columns record timestamped feature activations
at various stations. Based on this information, we reverse-engineered the production layout, which consists of two parallel
pre-assembly lines with 12 stations each (see Figure 23), both feeding into a shared subsequent line. For our analysis, we
focused on the pre-assembly line responsible for the majority of component production.

We first analyzed the distribution of processing times at each station and found that they closely follow exponential
distributions, which supports the modeling assumptions used in LineFlow (see Figure 22). The limited resolution of the
provided timestamps required a pooling of the processing times of successive parts. Specifically, because individual job
durations could not be precisely resolved, we applied a rolling, non-overlapping window over the production sequence and
computed the average processing time across 100 consecutive parts. This smoothing technique allowed us to approximate
the underlying processing time distribution while mitigating the effects of timestamp granularity.

25 50 75 100 125
10 4

10 3

10 2

Fr
eq

ue
nc

y

S0

25 50 75 100 125
10 4

10 3

10 2

Fr
eq

ue
nc

y

S1

50 100 150 200 250 300

10 4

10 3

10 2

Fr
eq

ue
nc

y

S2

100 200 300
10 5

10 4

10 3

10 2

Fr
eq

ue
nc

y

S3

100 200 300
10 5

10 4

10 3

10 2

Fr
eq

ue
nc

y

S4

50 100 150 200 250 300
10 5

10 4

10 3

10 2

Fr
eq

ue
nc

y

S5

50 100 150 200 250 300
10 5

10 4

10 3

10 2

Fr
eq

ue
nc

y

S6

100 200 300
10 5

10 4

10 3

10 2

Fr
eq

ue
nc

y

S7

25 50 75 100 125
10 4

10 3

10 2

Fr
eq

ue
nc

y

S8

100 200 300 400
10 5

10 4

10 3

10 2

Fr
eq

ue
nc

y

S9

100 200 300 400

10 5

10 4

10 3

10 2

Fr
eq

ue
nc

y

S10

100 200 300 400

10 5

10 4

10 3

10 2

Fr
eq

ue
nc

y

S11

Figure 22. Histograms of the averaged processing times in a log scale together with a fitted exponential distribution in red.

Next, we implemented the reconstructed layout in LineFlow and with the aim to compare the number of parts produced
in the simulation with those observed in the real system. Since the dataset does not provide information about traversal

23



LineFlow: A Framework to Learn Active Control of Production Lines

times or the number of slots in the connecting buffer, we made the simplifying assumption that traversal times are negligible
compared to station processing times. Additionally, we assumed that the switches before and after the stations distribute
parts in a round-robin fashion. The results showed a close match (see Figure 23): The number of parts produced by our
simulation matches the number of parts produced by the real system, providing empirical evidence that it accurately models
real-world production dynamics.

0 20000 40000 60000 80000 100000 120000
Production time

0

500

1000

1500

2000

2500

3000

3500

4000

Pa
rts

 p
ro

du
ce

d 
at

 si
nk

s

LineFlow data
Real data

Figure 23. The implemented layout in LineFlow (left) and its simulated output compared with the output of the real production line (right).

24


