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ABSTRACT

Tabular data is one of the most common data-types in machine learning, however,
deep neural networks have not yet convincingly outperformed classical baselines
on such datasets. In this paper, we first investigate the theoretical connection be-
tween neural network and factorization machine techniques, and present fieldwise
factorized neural networks (F2NN), a neural network architecture framework that
is aimed for tabular classification. Our framework learns high-dimensional field
representations by a low-rank factorization, and handles both categorical and nu-
merical fields. Furthermore, we show that simply by changing our penultimate
activation function, the framework recovers a range of popular tabular classifica-
tion methods. We evaluate our method against state-of-the-art tabular baselines,
including tree-based and deep neural network methods, on a range of tasks. Our
findings suggest that our theoretically grounded but simple and shallow neural net-
work architecture achieves as strong or better results than more complex methods.

1 INTRODUCTION

Deep learning methods have recently made extraordinary progress by using architectures that uti-
lize the regular structure of visual or linguistic data. However, one of the most common type of
data consists of tables with arbitrarily ordered fields (columns). Such tabular data are unable to
exploit neural architectures with strong structural inductive biases. In fact, deep learning methods
have not been able to convincingly outperform classical baselines on such datasets. As such, tradi-
tional machine learning methods, such as Gradient-Boosted Decision Trees (Friedman (2000)) and
Factorization Machines (Rendle (2010); Zhang et al. (2018); Pan et al. (2018); Sun et al. (2021)),
still dominate even against recently proposed, specialized neural architectures (Arik & Pfister, 2021;
Yoon et al., 2020).

In this paper, we first investigate the connection between shallow neural networks and factorization
machine techniques, which are a dominant approach for solving benchmark tabular classification
tasks, such as click-through-rate (CTR) prediction and user-movie recommendations. Based on this
theoretical connection, we propose a neural network-based framework: fieldwise factorized neural
networks (F2NN). Our framework is general, and is aimed for tabular classification. By changing a
single activation layer in F2NN, our framework transforms between being a factorization machine, a
shallow ReLU network or a wide-and-deep model. Our framework consists of a set of fieldwise wide
yet shallow neural networks, which are aggregated by summation and passed through non-linearity
and classification layers. Differently from typical factorization machine methods, our framework
can handle numeric and categorical data as well as multiclass outputs.

Our framework is characterized by two main components: i) learning a high-dimensional representa-
tion per-field by factorized networks, ii) an adaptive activation layer acting on the representation ag-
gregated from all fieldwise networks. Although the theoretical analysis shows that high-dimensional
fieldwise embeddings are desired, mapping the high-dimensional features to them requires huge lin-
ear layers. Factorizing these layers using low-dimensional layers makes training such fieldwise
networks feasible. We also show that for these fieldwise factorized networks, width is preferable to
depth. Another key insight is that frameworks with different post-aggregation activation functions
can be suitable for different types of tasks. While quadratic activations are optimal for user-product
recommendations, ReLU networks are sometimes better for fully-numeric tasks. We thus seek a
post-aggregation activation that can enjoy the best of both worlds, and demonstrate that GELU
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(Hendrycks & Gimpel, 2016) satisfies these requirements. Our theoretical analysis shows that the
GELU activation behaves as either quadratic and ReLU activations at different input scales and is
thus suitable across the full range of tabular tasks. Consequently, GELU can be used as an efficient
alternative for exhaustive search over the optimal activation or an ensemble approach.

We present an extensive experimental analysis, evaluating our framework on a wide range of popular
numeric and categorical tabular classification tasks as well as CTR prediction. We find that our
simple method performs comparably or better than tree-based methods and recent complex deep
learning method on general classification, and outperforms strong baselines on CTR prediction. Our
results show that the network width and activation play a bigger role than depth or attention for
tabular data.

Our contributions include: (1) Establishing a connection between factorization machines and shal-
low neural networks. (2) Presentation of a general, theoretically grounded framework for tabular
data classification. Our method can express many popular methods by simply modifying its activa-
tion function. It also makes learning high-dimensional fieldwise representations feasible by low-rank
factorization. (3) Extensive evaluation on a range of tabular classification tasks and demonstrating
above or comparable to state-of-the-art performance.

1.1 RELATED WORK

Tree-based models: Ensembles of decision trees, such as GBDT (Gradient Boosting Decision Tree)
(Friedman, 2001), are typically the top-choice for tabular data classification . At the moment, there
are several established GBDT libraries, such as XGBoost (Chen & Guestrin (2016)), LightGBM
(Ke et al. (2017)), CatBoost (Prokhorenkova et al. (2018)), which are widely used by both machine
learning researchers and practitioners. Tree-based methods have some limitations that are addressed
by other methods such as neural networks: requirement for feature engineering, poor scaling to high
input cardinality, reduced representation transferability and GPU acceleration.

FM-based models: Click-through rate (CTR) prediction plays a key role in recommendation sys-
tems and online advertising. Factorization machine models are a popular family of methods for
CTR prediction, including: matrix factorization (Koren (2008)), factorization machine (FM, Rendle
(2010)), Field-aware Factorization Machines (FFM, Zhang et al. (2018)), Field-weighted Factoriza-
tion Machine (FwFM, Pan et al. (2018)) and Field-matrixed Factorization Machines (FmFM, Sun
et al. (2021)). We will give a more in-depth introduction to FM-based methods in Sec. 2. As a step
toward combining deep neural network for this task, Wide & Deep (Cheng et al. (2016)) proposed to
train a joint network that combines a linear model and a deep neural network. DeepFM (Guo et al.
(2017)) suggest to learn a low-order feature interactions through the FM component instead of the
linear model. Since then, various embedding-based neural networks have been proposed to improve
the performance (Deng et al. (2021); He & Chua (2017); Wang et al. (2017); Lian et al. (2018)).
Unlike He & Chua (2017), our framework is able to learn higher dimensional representations, as
well as leveraging non-linear embeddings for the numerical fields. It is also more general, as it able
to recover range of tabular models by changing the activation.

Fieldwise models: Li et al. (2020) present a model for categorical data, that utilizes linear models
with variance and low-rank constraints, and is also interpretable in a field-wise manner. Although
we share the ideas of fieldswise low-rank factorization, our framework allows non-linearity, as well
as handles both numerical and categorical fields. Luo et al. (2020) propose NON to take advantage
of intra-field information and non-linear interactions. However, our components are much simpler
yet effective. Our fieldwise networks rely on low-rank factorization of wider networks and our non-
linearity is based on an adaptive activation, while NON utilize only ReLU activation and ensembles
multiple heavy aggregation mechanisms, such as attention and deep neural networks.

Deep models for general tabular data: While classical methods are still the industry favorite,
some recent work propose to use deep learning for tabular data. For example, TabNet (Arik & Pfister
(2021)) uses neural networks to mimic decision trees by placing importance on only a few features at
each layer, using modified attention layers. Yoon et al. (2020) propose VIME, which employs MLPs
in a technique for pre-training based on denoising. Transformer models for more general tabular data
include TabTransformer (Huang et al. (2020)), which uses a transformer encoder to learn contextual
embeddings only on categorical features. The main issue with this model is that numerical data do
not go through the self-attention block, but are only fed to an MLP. SAINT (Somepalli et al. (2021))
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address that issue by projecting numerical features to the higher dimensional embedding space and
passing them, together with the categorical embeddings, through the transformer blocks. In addition,
SAINT propose using attention in the rows level, to explicitly allow data points to attend each other.

Critiques of deep neural networks for tabular data: Recently, several works criticized the pro-
posed deep models for tabular data. For example, several works criticize MLP since it is unsuit-
able for modeling multiplicative interactions between features (Rendle et al. (2020)). In addition,
Shwartz-Ziv & Armon (2020) criticize deep tabular data models on claiming to outperform XG-
Boost, while their study shows that XGBoost outperforms these deep models across the datasets.

Deep learning on unordered sets: Qi et al. (2017) suggest a unified architecture for handling point
cloud data. From a data structure point of view, both point cloud and tabular data are an unordered set
of vectors. The basic architecture of their network is surprisingly simple as in the initial stages each
point is processed identically and independently. In addition, key to this approach is the use of max
pooling for aggregating informative points of the point cloud. Our framework architecture shares
similar architecture ideas, by the independent processing of each field, followed by aggregation.
However, we use a different network for every field while they share the same network to all points
(due to the symmetric of point cloud data).

2 THE THEORETICAL CONNECTION BETWEEN FACTORIZATION MACHINES
AND FIELDWISE NEURAL NETWORKS

In this section, we will briefly overview factorization machine approaches. We will then demonstrate
a theoretical connection between them and shallow neural networks. This will form the basis for our
final, generalized framework in Sec. 3.

2.1 BACKGROUND

In this section we describe a common approach for classification of tabular data. For ease of explana-
tion, we detail the case of binary classification of multi-field categorical data. However, there is no
loss of generality, our final approach applies for categorical and numerical as well as for multi-class
tabular datasets.

Preliminaries: A training dataset consists of S labelled samples
{(x(1), y(1)), (x(2), y(2))..(x(S), y(S))} , where x and y are a sample and label respectively.
Each sample x is specified by C categorical features f1, ..fC and J different fields F1, ...FJ . Each
field may contain multiple features, while each feature belongs to only one field. An example of
fields are ”Country” or ”City”, whereas features could be ”Japan” or ”Rome”. To simplify the
notation, we use index i to represent the feature fi and F (i) to represent the field which fi belongs
to. SF denotes the set of features belonging to field f and JF (i) represents their number. We denote
x
(s)
i = 1 if feature i is active for this instance, otherwise x

(s)
i = 0. We denote the one-hot vector

of features per-field xF = concat{xi ∈ SF }. We denote the embedding of feature i as ei ∈ RK ,
where K is the (usually small) feature embedding dimension. We denote by EF ∈ RK×JF (i) the
field embedding matrix whose rows are the embeddings ei of the features SF belonging to the field
f .

Logistic Regression (LR) is probably the most widely used model for this task. However, linear
models lack the capability to represent feature interactions as cross features are often significant
(Chapelle et al. (2014)). Degree-2 Polynomials (Poly2) (Chang et al. (2010)) model a general way
to address this problem. Such models learn a dedicated weight, Wij , for each feature conjunction
resulting in a field interaction matrix W ∈ RC×C .

Factorization Machine Models: Estimating W is hard due to its huge dimensionality and miss-
ing values. Factorization-machine models propose to learn the effect of feature conjunctions by
low-rank factorization of the interaction matrix W . Factorization machine methods approximate
the feature interaction strength as the scalar product of their embeddings weighted by a matrix
MF (i),F (j) ∈ RK×K , that depends on the fields of the two features: Wi,j ≈ eTi MF (i),F (j)ej .
Different factorization machine methods are distinguished by their particular choice of matrix
MF (i),F (j). We present the choices of MF (i),F (j) taken by four representative factorization ma-
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chine methods in Eq. 1: FM (Koren, 2008), FFM (Zhang et al., 2018), FwFM (Pan et al., 2018),
FmFM (Sun et al., 2021):

MF (i),F (j) =


IK ΦFM

PT
F (j)PF (i) ΦFFM

IK · rF (i),F (j) ΦFwFM

Entire Matrix ΦFmFM

(1)

Where IK is the identity matrix, PF (i) is a per-field sparse binary projection matrix, rF (i),F (j) is
a scalar value learned for every pair of fields (F (i), F (j)). For FM and FFM, M is not learned,
while for FwFM a scalar per pair of fields is learned, and for FmFM the entire matrix is learned. See
Appendix B for detailed formulation of M for each FM-based model.

2.2 FACTORIZATION-BASED MODELS AS A FIELDWISE FACTORIZED NEURAL NETWORK

In this section, we show that factorization machines are a special case of shallow neural networks.

Let us denote the second order interaction term as q2 =
∑

i

∑
j xixj · eTi MF (i),F (j)ej . We demon-

strated above that the crux of factorization machine methods is in the representation of the interac-
tion matrix MF (i),F (j). Let M be the matrix that consists of the matrices MF (i),F (j) for all pairs of
fields. Since there is no order between the fields, for each pair only one matrix is learned, meaning
MFiFj == MFjFi, while the diagonal block matrices are zeros. See Appendix B for a detailed
formulation of M. We observe that M is symmetric matrix, and therefore an eigen-decomposition
can be applied to it: M = UTΛU . Here we propose to utilize a reduced-rank factorization of M
resulting in a field-wise factorization: MF (i),F (j) = UT

F (i)ΛUF (j), where UF (i) ∈ Rd×K . Note that
the full rank dimension of M is equal to the number of fields multiplied by the number of dimensions
per-embedding. Using this factorization the feature interaction term q2 can now be written:

q2 =
∑
i

∑
j

(xiUF (i)ei)
TΛ(xjUF (j)ej) (2)

We rewrite the sums, as the sum over the field f and the sum over the per-field indices i ∈ SF :

q2 =
∑
F

∑
F ′

(
∑
i∈SF

xiei)
TUT

F ΛUF ′(
∑

j∈SF ′

xjej) (3)

Note that as xF is one-hot (only a single element has a non-zero value), the product EFxF =∑
j∈SF ′ xjej can be efficiently computed using an embedding layer EFxF :

q2 = (
∑
F

UFEFxF )
TΛ(

∑
F ′

UF ′EF ′xF ′) (4)

As the right-hand left-hand vectors are equal, it yields the simple expression:

q2 = diag(Λ) · (
∑
F

UFEF xF )
2 (5)

Where the above square is elementwise. As an intuitive explanation, the second order interactions
are modelled by several steps: i) embedding of the one-hot per-field feature using linear layer EF . ii)
projection of the feature embedding to a higher dimension using the per-field projection matrix UF .
iii) summation over the projected embeddings of all fields. iv) computing the scalar product of their
square with the diagonal of the matrix Λ. Note that this can be expressed by a shallow neural network
that first learns a per-field representation, then aggregates the representations by summation, passes
the result through a non-linearity, and then a linear layer. Factorization machines are a particular
instantiation of this neural network, when the activation function is a quadratic function. This will
be generalized in the next section.

3 FIELDWISE FACTORIZED NETWORKS FOR TABULAR CLASSIFICATION

We propose fieldwise-factorized neural-networks, a general framework for tabular classification.
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3.1 GENERAL FRAMEWORK

In this section, we overview our proposed framework: fieldwise-factorized neural-networks (F2NN),
while detailing its components in the following sections. We learn a dedicated neural network ϕF

for each field that takes as input the values of the field xF (one-hot for categorical fields, scalar
for numeric fields) and returns a high-dimensional embedding ϕF (xF ). The architecture of the
fieldwise neural network will be described in Sec. 3.2. The aggregated high-dimensional feature is
obtained by summing over the fields

∑
F ϕf (xF ). It is then passed through an activation function σ.

Our activation σ allows different activation functions for different dimensions. The post-activation
results are finally multiplied by output linear layer Wout, mapping it to the output logits zout:

zout = Woutσ(
∑
F

ϕF (xF )) (6)

Note that differently from factorization machine, but similarly to other neural networks, our frame-
work is able to handle both binary and multiclass classification tasks.

The framework is characterized by two main components: per-field representation by factorized
networks ϕF , and an adaptive activation σ on the aggregated representations of all fields. We will
describe them in detail in the next sections.

3.2 FIELDWISE FACTORIZED NETWORKS

The theoretical basis in Sec. 2 suggests that the learned field embeddings should be of high-
dimension to factorize a full-rank MF (i),F (j), but that these representations should be low-rank
factorized. The motivation behind these design choices is to reduce sample complexity. Modeling
field interactions requires a high-dimension while there may not be a sufficient number of samples
per-feature for estimating it. Complexity is reduced: i) by learning a per-field representation that
does not take other features into account ii) by using low-rank factorization inside these fieldwise
networks. Since we are able to use other activation than just than quadratic, d is allowed to be even
larger than the full rank dimension. Our framework is able to handle both categorical and numeric
fields:

Categorical fields: Following Sec. 2.2, we learn fieldwise networks ϕcat
F (xF ) = UFEFxF . We

choose the per-feature embedding (output of EF ) to be low-dimensional as there are often many
features and limited data per-feature, while matrix UF projects this to high-dimension.

Numeric fields: Differently from categorical fields, numeric fields are ordered which enables learn-
ing more complex functions. We choose to learn a factorized one-hidden layer for each field. Our
network first projects the scalar value to a high-dimension tF = vF xF + bF (where vt, bF ∈ Rl).
The results are passed through a ReLU network, and mapped to the per-field embedding. We found
that a high dimensional tF is important for achieving strong performance. However, as tF and the
output field-embedding ϕF have a high-dimension, the second linear layer becomes very large. In-
stead, we choose to low-rank factorize the second layer. The post-activation ReLU(tF ) is projected
to a low-dimension, by linear layer EF and is then projected using linear layer UF to the high-
dimensional field embedding ϕF . Note that as both EF and UF are linear, with no intermediate
non-linearity - they are equivalent to a single (low-rank) linear layer. The entire network is therefore
a factorized one-hidden layer neural network.

In summary, the fieldwise factorized networks for categorical and numeric variables are given by:

ϕ(xF ) =

{
UFEFxF Categorical

UFEFReLU(vF xF + bF ) Numeric
(7)

Note that although SAINT (Somepalli et al. (2021) also use a one-hidden layer network for numeric
values, its formulation does not use the low-rank factorization and therefore cannot handle high
width, which we show is key to the performance of our method. Also note that our formulation can
easily handle deeper fieldwise architectures, but we did not observe benefits from deeper networks.

3.3 OUR FRAMEWORK CAN EXPRESS POPULAR TABULAR CLASSIFICATION METHODS

Despite the simplicity of our framework, it is very general. By changing the fieldwise factorized
network ϕF and activation σ, it can express several popular tabular classification methods:
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Factorization machine methods: When choosing a quadratic activation σ(x) = x2 and the fieldwise
network ϕF (xF ) = UFEFxF our framework becomes a factorization machine-based model. This
proof was detailed in Sec. 2.2. Therefore, factorization machine models are expressible by our
framework.

One-hidden Layer ReLU Networks: When choosing the activation σ(x) = ReLU(x) and the field-
wise networks as simple linear layers ϕF (x) = UFx, our framework becomes a one-hidden layer
neural network. Although more layers can be easily added to our framework after the activation
layer σ, we did not find this beneficial in practice. We will present empirical results in Sec. 4.2 for
showing this.

Wide-and-Deep: When selecting a fraction of dimensions of σ to have quadratic activations, while
the rest are selected to have ReLU activation, our framework becomes a wide-and-deep model (as
it is the sum of a ReLU network and a factorization machine). Although the original wide-and-
deep method used full rank for the feature interaction Wij , later methods (e.g. Guo et al. (2017))
use different factorization machine varieties. By modifying the choice of dimensionality of the per-
feature embedding ei and per-field projection d, all the above methods are expressible by our model.
One caveat is that the deep part of our framework only has a single hidden layer, but as mentioned
previously, adding further layers has not improved results in our experiments.

3.4 ADAPTIVE NON-LINEARITY

In Sec. 3.3 we established that by choosing different activation function σ, our framework can ex-
press a range of popular tabular classification methods. We will show in Sec. 4.3, that in different
classification problems, either σ(x) = ReLU(x) or σ(x) = x2 yields significantly better perfor-
mance. By the analysis in Sec. 3.3 these are cases where either ReLU neural networks or factoriza-
tion machine achieve better results. By selecting σ a concatenation of ReLU and quadratic functions,
we may be able to deal with all cases. However this may not be an efficient solution as it doubles
the number of parameters. It would naturally be attractive to use a non-linearity that may be able to
automatically adapt to the setting most beneficial to a particular dataset. Here we suggest using the
GELU activation function (Hendrycks & Gimpel, 2016) as a bridge between the two paradigms. At
the limits, GELU(x) has the following attractive properties:

GELU(x) ≈

{
0.5x+

√
1
2πx

2 ∥x∥ << 1

ReLU(x) ∥x∥ → ∞
(8)

Therefore, by varying the magnitude of the input, and utilizing the GELU activation, our framework
is able to switch between factorization machine and ReLU network behavior. The adaptive behavior
will be demonstrated empirically in Sec. 4.3. GELU can be used as an efficient alternative for
exhaustive search over the optimal activation function or an ensemble approach (wide-and-deep).

3.5 PRACTICAL CONSIDERATIONS: THE DEVIL IS IN THE DETAILS

The field of deep learning has made significant steps forward by increasing the depth of neural
networks and by using attention-based architectures such as transformers. It might be expected that
increasing network depth or using transformers might be beneficial for tabular data. Unfortunately,
in our experiments, we did not find evidence to support this. We do not claim that it is impossible
to gain by using the two mechanisms, but this is not trivial. More optimistically, in our experiments
we found that there are lower hanging fruit. Specifically, we obtained significant gains by choosing
suitable width d, l and activation σ, as well as tuning the regularization strength (either dropout or
weight decay). We suggest GELU and full rank projections UF (d = J ·K) as robust default values.
Although tuning the embedding dimension K can also help, we kept it in-line with the baselines.
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4 EXPERIMENTS

4.1 PERFORMANCE COMPARISON

4.1.1 GENERAL TABULAR CLASSIFICATION

Evaluation protocol We evaluated our method on the same datasets as SAINT 1 (Somepalli et al.
(2021)). The datasets include 14 binary classification tasks and 2 multiclass classification tasks.
We did not include Arcene and Arrythmia datasets from the reported results as they are very small
datasets and their results have high variance (Arrhythmia contains 452 samples and Arcene con-
tains 200 samples). In addition, we use exactly the same pre-processing as in the official SAINT
implementation. Details of these datasets and the pre-processing are provided in Appendix C.

Hyperparameters: Our optimization hyper-parameters follow SAINT. We run a grid search on the
hyperparameters presented in Table 5 with seed=1, and selected the best model by the validation set.
For fair comparison, we used the same EF dimensionality as SAINT defaults.

Baselines We compare against the baselines reported in SAINT. They include traditional methods
such as logistic regression and random forests, as well as powerful boosting libraries XGBoost (Chen
& Guestrin (2016)), LightGBM (Ke et al. (2017)), and CatBoost (Prokhorenkova et al. (2018)).
They also compare against deep learning methods, like multi-layer perceptrons, VIME (Yoon et al.
(2020)), TabNet (Arik & Pfister (2021)), and TabTransformer (Huang et al. (2020)). The numbers
were copied from the SAINT paper. In order to compare the performance on the same exact seeds,
we re-run the SAINT models on 10 different seeds (1-10). For a fair comparison, we trained SAINT
with our best numerical embedding hidden dimension l and their default selection (100), and re-
ported the best of the two settings.

Results The averaged performance for all methods is reported in Table 1, the results per dataset are
detailed in Table 9. We reported ROC-AUC for binary classification, and class prediction accuracy
or multi-class classification. Our results are slightly better or comparable to SAINT variations,
except from on multiclass tasks, where SAINT-s achieves poor performance. Our method also
outperforms all of SAINT’s baselines on average. SAINT-s and our framework use exactly the same
learning setting (optimization hyper-parameters, datasets). The difference between the architectures
is the post-EF architecture. While we use a set of linear projections that are only summed and
passed through activation and classification layers, SAINT-s uses a massive six layer Transformer.
This highlights that for robust and accurate neural models for tabular data, it does not appear that
complex methods have an edge over well-tuned simple models such as ours.

4.1.2 CTR PREDICTION

CTR prediction is a fundamental tabular binary classification task. FM-based models are the most
common approach for tackling it. As our framework generalizes FM-based models, we also exam-
ined if CTR prediction can benefit from our framework.

Datasets We used Avazu and Criteo which are common CTR prediction benchmarks.

Baselines We compared the framework implementation against FmFM, which is the shallow state-
of-the-art of FM-models, and two deep variations - DeepFwFM and DeepFmFM. We implemented
our framework on the FmFM public code-base 2, and used their data processing and baselines im-
plementation. We split the data as described in FmFM paper, and applied the same splits for all the
models. We conducted a hyper-parameter search for both our method and FmFM, and found the
optimal hyperparameters for both were the same. We thus applied the same hyperparameters for the
deep baselines. Other implementation details are provided in Appendix C.

Results The ROC-AUC results are reported in Table 1. We reported the results of using the papers
hyperparameters and using our tuned hyperparameters, as well as quoted the reported results from
the paper. We can observe that even after improving the baselines by a better tuning, our framework
outperforms all other baselines.

1https://github.com/somepago/saint
2https://github.com/yahoo/FmFM
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Table 1: Performance comparison. Left: general tabular data classification (Average over all
datasets). Above line - results taken from SAINT paper evaluated on unknown seeds. Below line
- mean and standard deviation of SAINT results computed using the authors’ code averaged over
seeds 1-10, and of our method evaluated on exactly the same data. Right: CTR prediction (ROC-
AUC %). I results reported by authors, II results of running the model on our data split with paper’s
hyperparameters, III result of running the model on our data split with our tuning for the model.
DeepFwFM results are without a pruning mechanism.

All
Logistic Regression 86.822
Random Forest 89.086
XGBoost 91.038
LightGBM 89.658
CatBoost 90.197
MLP 84.106
VIME 78.482
TabNet 86.515
Tab Transformer 88.654
SAINT 91.884
SAINT-i 91.716
SAINT-s 90.669

SAINT 91.596 ±0.108
SAINT-i 91.286 ±0.142
SAINT-s 89.821 ±0.230
Ours 91.635 ±0.158

Criteo
Model I II III
FmFM 81.09 81.11 81.166
DeepFmFM - - 81.175
DeepFwFM 81.16 81.105 81.130
Ours - - 81.245

Avazu
Model I II III
FmFM 77.63 77.343 78.635
DeepFmFM - - 78.647
DeepFwFM 78.93 78.519 78.596
Ours - - 78.701

4.2 ABLATION STUDIES

In this section we will explore the effect of the framework components on its performance. The
experiments in the following section were conducted using SAINT evaluation datasets and process.
From resources constraints, we run the experiments on seed=1 only. The results are reported in
Table 2, averaged over the datasets, more details are found in Tables 10-11.

Per-field Projections: To examine the importance of the per-field networks, we evaluated sharing
the projection matrix UF across fields. We can observe that all datasets (besides HTRU2), gain from
the fieldwise projections. In multi-class datasets, the difference is much significant.

Low rank projections: In this experiment we reduced the dimension of the projection matrix UF

to that of the output of EF . Overall, we can observe, that the factorized high-dimensional represen-
tation is crucial, especially in Forest, Volkert and MNIST.

Numeric fieldwise networks: We tested the following alternatives: (i) a K-dimensional linear
layer for each field, (ii) applying non-linearity, without a high-dimensional projection, meaning vF

dimension is equal to EF dimension, (iii) projecting to high-dimensional space and reduce to K-
dimensional, without a non-linearity. The averaged results over the datasets that contain continuous
fields are reported in Table 2 (Right). We can observe that the non-linearity is an important aspect,
and boost the performance. In addition, by controlling the width for the high-dimensional space, we
gain a further improvement over the low-dimensional non-linear network.

Deeper model: We added 2 extra layers after the activation σ with equal width as field embedding,
ϕ(xF ), and matching the model activation and dropout. Since quadratic activation performs poorly
when deepening the network, we tested all activations for the datasets that selected a quadratic in
their shallow variation, and report the best. While we observed improvement on specific datasets,
such as Volkert and Forest, in most of the datasets the results were comparable of even worse than
our shallow model with the linear classification head.

The activation after aggregating the fieldwise representations In the original selected models,
the selected activations are divided as follow: 6 datasets with a quadratic activation, 4 datasets with
ReLU activation, and 4 with GELU activation. In order to explore the effect of the activation, we
vary the activation for each dataset, while keeping the other hyperparameters fixed. The averaged
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Table 2: Averaged ablation studies. Left: General framework architecture ablations. Right: Nu-
meric fieldwise networks ablations.

Variation Binary Multiclass All
(ROC-AUC) (Accuracy)

Full method 93.16 84.02 91.85

Shared field matrix 92.55 70.47 89.40
Deep 92.89 82.57 91.41
Low rank 92.64 78.97 90.69

Quadratic 92.70 82.31 91.21
ReLU 93.05 82.58 91.55
GELU 93.00 82.61 91.51

Variation Num. DS
Full method 91.40

(i) UFEFxF 90.74
(ii) l = K 91.17
(iii) UFEF (vF xF + bF ) 90.80

Table 3: GELU as adapted activation - HR@10 on Movielens dataset
Emb. size ReLU GELU Quad. MF
16 0.6876 0.6972 0.6974 0.6937
192 0.7164 0.7217 0.7280 0.7278

results are reported in Table 2. In many datasets the particular activation was immaterial. However,
in some datasets, activation has made a significant difference, so it should be carefully chosen.

4.3 GELU AS AN AUTOMATICALLY ADAPTED ACTIVATION

We conducted an empirical study on the advantage of using GELU activation, by examining two
cases - a case where quadratic activations are preferred over ReLU, and a case where ReLU ac-
tivations are preferred. We demonstrate that by using GELU, we can get the closest result to the
preferred activation.

Quadratic is better than ReLU: Rendle (2010) showed that a simple matrix factorization model
performs better than MLP and NeuMF models (Zhao et al. (2021)) for collaborative filtering. We
applied our method on the authors’ dataset and settings. We tested the effect of different choices
of σ on the ability of our framework to express a dot product between fields. Dedicated choices
of initialization and regularization were used, see details in Appendix C. We report the results for
embedding sizes K = 16 and K = 192, the minimal and maximal embedding sizes that were tested
in Rendle (2010). Note that the reported result for matrix factorization of Rendle (2010) is 0.7294
(on embedding size of 192). As expected, we can observe that for each embedding size, quadratic
activation performs the best, while ReLU performs poorly. However, GELU achieves similar results
to the quadratic performance, demonstrating its robustness and adaptive behaviour.

ReLU is better than Quadratic: On the other hand, from our experiments on forest dataset, we
observed that a quadratic activation performs dramatically worse than ReLU ( 94.84% and 99.4%,
respectively). However, GELU obtains 99.47% which is in line with ReLU.

5 DISCUSSION AND CONCLUSIONS

In this paper, we presented a theoretically grounded, general framework for handling tabular data
classification. Our framework can be extended in many ways. Two promising ideas are custom
activations and representation transfer:

Activation for tabular tasks. We highlighted the importance of the activation σ and demonstrated
both theoretically and empirically, that GELU activation is suitable across the full range of tabular
tasks. This suggests that developing an activation function for tabular classification is very promis-
ing.

Exploring the learned representations. As a by-product of tabular data classification, our framework
learns fieldwise representations. Future work should examine if the representations are useful for
transfer learning for related tasks.
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Olivier Chapelle, Eren Manavoglu, and Rómer Rosales. Simple and scalable response prediction for
display advertising. ACM Trans. Intell. Syst. Technol., 2014.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In KDD, 2016.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan
Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender
systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,
DLRS@RecSys 2016, Boston, MA, USA, September 15, 2016, 2016.

Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang Lin. Deeplight: Deep
lightweight feature interactions for accelerating CTR predictions in ad serving. In WSDM, 2021.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 2000.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: A factorization-
machine based neural network for CTR prediction. In IJCAI, 2017.

Xiangnan He and Tat-Seng Chua. Neural factorization machines for sparse predictive analytics. In
SIGIR, 2017.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. CoRR, 2016.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar S. Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. CoRR, 2020.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In NIPS, 2017.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model.
In KDD, 2008.

Zhibin Li, Jian Zhang, Yongshun Gong, Yazhou Yao, and Qiang Wu. Field-wise learning for multi-
field categorical data. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
7078971350bcefbc6ec2779c9b84a9bd-Abstract.html.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In
KDD, 2018.

Yuanfei Luo, Hao Zhou, Wei-Wei Tu, Yuqiang Chen, Wenyuan Dai, and Qiang Yang. Network on
network for tabular data classification in real-world applications. In Jimmy Huang, Yi Chang,
Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (eds.), Proceedings
of the 43rd International ACM SIGIR conference on research and development in Information
Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, pp. 2317–2326. ACM, 2020. doi:
10.1145/3397271.3401437. URL https://doi.org/10.1145/3397271.3401437.

Junwei Pan, Jian Xu, Alfonso Lobos Ruiz, Wenliang Zhao, Shengjun Pan, Yu Sun, and Quan Lu.
Field-weighted factorization machines for click-through rate prediction in display advertising. In
WWW, 2018.

10

https://proceedings.neurips.cc/paper/2020/hash/7078971350bcefbc6ec2779c9b84a9bd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/7078971350bcefbc6ec2779c9b84a9bd-Abstract.html
https://doi.org/10.1145/3397271.3401437


Under review as a conference paper at ICLR 2022

Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush,
and Andrey Gulin. Catboost: unbiased boosting with categorical features. In NeurIPS, 2018.

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In CVPR, 2017.

Steffen Rendle. Factorization machines. In ICDM, 2010.

Steffen Rendle, Walid Krichene, Li Zhang, and John R. Anderson. Neural collaborative filtering vs.
matrix factorization revisited. In RecSys, 2020.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. CoRR,
2020.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, and Tom Goldstein.
SAINT: improved neural networks for tabular data via row attention and contrastive pre-training.
CoRR, 2021.

Yang Sun, Junwei Pan, Alex Zhang, and Aaron Flores. FM2: field-matrixed factorization machines
for recommender systems. In WWW, pp. 2828–2837, 2021.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In ADKDD, 2017.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela van der Schaar. VIME: extending the success
of self- and semi-supervised learning to tabular domain. In NeurIPS, 2020.

Zhiyuan Zhang, Yun Liu, and Zhenjiang Zhang. Field-aware matrix factorization for recommender
systems. IEEE Access, 2018.

Xinke Zhao, Wei Zeng, and Yixin He. Collaborative filtering via factorized neural networks. Appl.
Soft Comput., 2021.

A APPENDIX - F2NN FRAMEWORK ILLUSTRATION

An illustration of our framework can be found in Figure 5.

B APPENDIX - FM-BASED MODELS FORMULATIONS

Embedding form: FM, FwFM and FmFM, learn C vectors, one for each feature, ei ∈ RK .

FFM learns (J−1) vectors for each feature, eF (j)
i ∈ R

K
J , overall C ·(J−1) vectors. Note that they

select much higher K than all other approaches, therefore K
J > 1. ei ∈ RK places these (J − 1)

vectors in the relevant indices, while 0K
J

in its field indices. For example, e1 = [0K
J
, e21, ..., e

J
1 ],

e2 = [e12,0K , ..., eJ2 ]. Then, PF (j) ∈ RK×K (RJ·KJ ×K) extracts the embedding e
F (j)
i . For

example, P2 is of the form: P2 =



0K
J

IK
J

0K
J

.

.
0K

J


Interaction matrix form: In general, for every FM-based model, M takes the following form:
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Figure 1: Fieldwise factorized neural networks (F2NN) architecture. Toy example of binary clas-
sification: Fields 3 and 4 are numerical, while fields 1 and 2 are categorical, with six and four
categories, respectively.

M =
1

2
·


0K M1,2 M1,3 ... M1,J

M1,2 0K M2,3 ... M2,J

. . . ... .

. . . ... .

. . . ... .
M1,J M2,J M3,J ... 0K

 (9)

C APPENDIX - EXPERIMENTAL SETTINGS AND IMPLEMENTATION DETAILS

C.1 PERFORMANCE EVALUATION

C.1.1 GENERAL TABULAR DATA

Datasets Detailed information on the evaluated datasets is reported in table 4. It can be seen that
the evaluated datasets are diverse, in terms of their size and the amount of fields, and contains both
categorical and numerical features. Each of these datasets is publicly available from either UCI 3 or
AutoML 4. We use the exact processing as is SAINT implementation, i.e. all the continuous features
are Z-normalized, and all categorical features are label-encoded before the data is passed on to the
embedding layer.

Implemetation details We implemented our framework in the SAINT public code-base 5. Linear
and Embedding layers were initialized using the PyTorch default. We used dropout before UF

and after the activation, and a bias for UF and for the numerical EF and tF . As in factorization

3http://archive.ics.uci.edu/ml/datasets.php
4https://automl.chalearn.org/data
5https://github.com/somepago/saint
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Table 4: General tabular datasets
Dataset Task #Fields #Categ. #Numer. Size #Positives #Negatives % of positives

Income Binary 14 8 6 32,561 7,841 24,720 24.08
Bank Binary 16 9 7 45,211 5,289 39,922 11.7
BlastChar Binary 20 17 3 7,043 1,869 5,174 26.54
Credit Binary 29 0 29 284,807 492 284,315 0.17
Forest Binary 49 0 49 495,141 283,301 211,840 57.22
HTRU2 Binary 8 0 8 17,898 1,639 16,259 9.16
KDD99 Binary 39 3 36 494,021 97,278 396,743 19.69
Shoppers Binary 17 2 15 12,330 1,908 10,422 15.47
Philippine Binary 308 0 308 5,832 2,916 2,916 50
QSAR Bio Binary 41 0 41 1,055 356 699 33.74
Shrutime Binary 11 3 8 10,000 2,037 7,963 20.37
Spambase Binary 57 0 57 4,601 1,813 2,788 39.4
Volkert Multiclass(10) 147 0 147 58,310 - - -
MNIST Multiclass(10) 784 784 0 60,000 - - -

Table 5: Saint datasets - Architecture hyperparameters search. dfactor and lfactor stands for factors
of the full rank dimensionality of EF and tF respectively.

Parameter Values

dfactor {0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5}
lfactor {1, 2, 3, 4}
Activation {ReLU, Quadratic, GELU}
Dropout {0, 0.1, 0.25, 0.5, 0.75}

machine methods, we observe minor benefits from adding linear per-field terms to the final logits.
We implemented this by adding to the per-field final layer WF , an identity matrix with the same
dimension as the output of EF . The activation sigma for the resulting dimension was chosen to be
identity σ(x) = x.

Training Our optimization hyper-parameters follow SAINT. We used the AdamW optimizer with
β1 = 0.9, β2 = 0.999, decay = 0.01, and with a learning rate of 0.0001 with batches of size 256
(except for MNIST, which they use a batch size of 32). We trained for 100 epochs. We split the data
into 65%, 15%, and 25% for training, validation, and test splits, respectively.

Hyperpararmter search: We performed architecture search on the hyperparameters presented in
Table 5 with seed=1. We selected the best model by the validation set. Our experiments employed a
fixed embedding and projection sizes to all of the fields (although tuning this might improve results).

C.1.2 CTR PREDICTION

Datasets: The first one is the Criteo CTR data set, it is a well-known benchmark dataset which used
for the Criteo Display Advertising Challenge. There are 45 million samples and each sample has
13 numerical fields and 26 categorical fields. The second data set is the Avazu CTR data set, it was
used in the Avazu CTR prediction competition, which predicts whether a mobile ad will be clicked.
There are 40 million samples and each sample has 23 categorical fields.

Implementation details We implemented our framework on FmFM public code-base 6, and used
their data processing and baselines implementation. We split the data as described in FmFM pa-
per, and applied the same splits for all the models. For our implementation, we adopted FmFM
model implementation, and changed the main component to a Tensorflow linear layers, an activa-
tion between them, and bias for the per-field projection layer. For the weights initialization, FmFM
implementation uses weights that are sampled from a normal distribution. For the reported frame-

6https://github.com/yahoo/FmFM
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Table 6: CTR prediction baselines hyperparameters: learning rate(γ), regularization strength (λ),
standard deviation of the weights normal initialization (σ), batch size (bs). I results reported by
authors, II results of running the model on our data split with paper’s hyperparameters, III result of
running the model on our data split with our tuning for the model.

Criteo
Model I II III
FmFM γ = 1e−4, λ = 1e−5, γ = 1e−4, λ = 1e−5, γ = 1e−4, λ = 1e−5,

σ = 0.01, bs = 1024 σ = 0.01, bs = 1024 σ = 0.2, bs = 2000

DeepFmFM - - γ = 1e−4, λ = 1e−5,
σ = 0.2, bs = 2000

DeepFwFM γ = 1e−3, λ = 3e−7, γ = 1e−4, λ = 1e−5, γ = 1e−4, λ = 1e−5,
σ = 0.01, bs = 2048 σ = 0.01, bs = 2048 σ = 0.2, bs = 2000

Ours - - γ = 1e−4, λ = 1e−5,
σ = 0.2, bs = 2000

Avazu
Model I II III
FmFM γ = 1e−4, λ = 1e−5, γ = 1e−4, λ = 1e−5, γ = 1e−3, λ = 2e−6,

σ = 0.01, bs = 1024 σ = 0.01, bs = 1024 σ = 0.2, bs = 5000

DeepFmFM - - γ = 1e−3, λ = 2e−6,
σ = 0.2, bs = 5000

DeepFwFM γ = 1e−3, λ = 6e−7, γ = 1e−4, λ = 1e−5, γ = 1e−3, λ = 2e−6,
σ = 0.01, bs = 2048 σ = 0.01, bs = 2048 σ = 0.2, bs = 5000

Ours - - γ = 1e−3, λ = 2e−6,
σ = 0.2, bs = 5000

work instance performance, in Criteo we used ReLU activation and a full rank per-field projection
layer, and for Avazu we used GELU activation and factor of 5 of the full rank dimension. In this
settings, we did not use a dropout between the layers. Note that since the numerical fields in Criteo
datasets are discrete, we used the same numerical data processing as in the baselines and consider
them as categorical.

Hyperparameters search We found that the hyperparameters in this task are crucial, included the
standard deviation of the weights initialization. Therefore, we performed an hyperparameters search
both for our framework and for FmFM, though obtained that they should use the same hyperparam-
eters. Thus, we applied this hyperparameters for the deep baselines too. For the hyperparameters
search, we implemented our framework by a GELU activation and a full rank per-field projection
layer. The exact hyperparameters of each baseline is reported in Table 6.

C.1.3 ACTIVATION STUDY

Rendle (2010) public code is optimized for simplicity and not for efficiency, therefore we have
implemented an efficient keras version of it, using Dot layer, and adjusted the hyperparamters to fit
their reported results. We used Adam optimizer, batch size of 10k and L2 regularization strength of
2.5e−7, while kept the negative sampling on 8, and a learning rate of 0.002.

Next, since matrix factorization is a special case of our framework, we implemented it by our frame-

work, using quadratic activation and the eigen vectors and values of 0.5 ·
[
0K IK
IK 0K

]
for the per-field

projections and for the final classification layer, respectively. The eigenvectors were partitioned with
respect to the fields. When freezing these weights, we get an exact implementation of a dot product,
which also reflected by a replication of the performance between both of the implementations.
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Table 7: GELU as adapted activation - regularization strength of the reported results
MF initialization & regularization

Emb. size ReLU GELU Quad.
16 λ = 1e−5 λ = 1e−5 λ = 1
192 λ = 5e−3 λ = 5e−4 λ = 1

In order to explore the ability of other activation to approximate the results of a dot product based
model, we used the eigen decomposition as an initialization and regularization, and searched the
best regularization strength for each activation. The regularization strength of the reported results
are reported in Table 7.

We reported this experiments results on embedding sizes of 16 and 192, the minimal and maximal
embedding sizes that were tested in Rendle (2010).

D APPENDIX - RESULTS PER DATASET

Performance comparison: The performance comparison per dataset are reported in Table 9. The
results are averaged over seeds 1-10. We reported also the standard deviation.

Ablation studies: Tables 10-11 report the results of the ablation studies per dataset

E APPENDIX - INFERENCE TIME COMPARISON

We also examined the runtime between our framework and SAINT. We computed the average infer-
ence time over all batches of size 256. The results on three datasets are reported in Table 8. We can
observe that using a transformer slows inference without an improvement to the performance.

Table 8: Inference time comparison (milliseconds per batch on average). F2NN is faster than SAINT
variations.

Income Forest Bank

SAINT-s 6.890 7.621 5.764
SAINT-i 1.502 3.327 1.348
SAINT 2.449 4.480 2.107
F2NN 0.660 0.933 0.575
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