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Abstract—Cellular electron cryo-tomography (cryo-ET) has
made possible the systematic 3D visualization of the near-native
structures and spatial-organizations of large macromolecules
(represented as subtomograms) and their interactions with or-
ganelles inside single cells. It has emerged as a major tool for
in situ structural biology. However, the systematic identification
of such macromolecules from cryo-ET images is very difficult
due to structural complexity and imaging limits. In particular,
conventional methods are too slow to process millions of highly
structurally heterogeneous macromolecules fastly imaged using
cryo-ET. Since 2017, supervised deep learning has become an
important tool for facilitating high-throughput analysis of cryo-
ET data. However, supervised learning based approaches depends
on manual data annotation by biologists, which is an extremely
time-consuming and burdensome process. Therefore, none of
these methods are practical to use. In order to facilitate deep
learning for practical identification of macromolecules from cryo-
ET images, in this paper, we demonstrate the pathway towards
unsupervised learning for fast and high-throughput identifica-
tion of macromolecules from cryo-ET images. To this end, we
demonstrate the use of three selected recent macromolecule
identification methods on several commonly used benchmark
cryo-ET datasets.

Index Terms—Bioimage informatics, Image classification,
Cryo-electron tomography, Unsupervised learning.

I. INTRODUCTION

Cryo-electron tomography (cryo-ET) is a revolutionary
3D imaging technology that enables in situ visualization of
macromolecular structures inside a single cell [1]. Without
hampering the cell, it can image the spatial organization of
macromolecules inside a cell in near native and near atomic
scale [2]. Unlike cryo-electron microscopy (cryo-EM), cryo-
ET does not purify the samples to be imaged and preserves
their native condition [3]. Cryo-ET first vitrifies the whole
cellular sample and then takes 2D projection images from
different view angles. The 3D view of the sample is then

reconstructed from these 2D projections [4]. Here, instead
of a single type of macromolecule, every structure inside
a single cell is reconstructed while preserving their spatial
organizations.

However, extracting information about macromolecular
structures from cryo-ET images is non-trivial and requires
extensive computational processing. Due to crowded cyto-
plasmic environment and imaging artefacts, cryo-ET images
are extremely noisy with a very low signal to noise ratio.
In addition, due to spatial anisotropy, the sample can not be
imaged from full ±180 tilt angle range. This limitation create
missing values in the cryo-ET images, which is known as
missing wedge effect [5]. Due to low SNR and missing wedge
effect, cryo-ET images are hard to analyze with traditional
image processing algorithms.

One of the crucial task in cryo-ET image analysis is identi-
fying macromolecules from cryo-ET reconstructed 3D tomo-
grams. A traditional approach for macromolecule identification
is template matching [6], [7]. Given a structural template of a
known macromolecule resolved by high-resolution techniques
such as single-particle cryo-EM or X-ray crystallography, all
possible orientations of the template is generated and scanned
through the tomograms. At each location, the highest corre-
lation among all orientations is taken to generate template-
matching score map. Then a cut-off is applied to determine the
locations of the target structure. However, the major drawback
of template matching is that it is extremely slow. In addition,
template matching is subject to template specific bias and can
only detect known structures with available templates.

Due to being an extremely slow process, template matching
is not practical to be used for high-throughput analysis of cryo-
ET data at large scale. To this end, supervised deep learning
based methods have become popular recently thanks to their

978-1-6654-2471-4/21/$31.00 © 2021 IEEE

20
21

 IE
EE

 A
pp

lie
d 

Im
ag

er
y 

Pa
tt

er
n 

Re
co

gn
iti

on
 W

or
ks

ho
p 

(A
IP

R)
 |

 9
78

-1
-6

65
4-

24
71

-4
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
AI

PR
52

63
0.

20
21

.9
76

22
09

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on September 10,2025 at 16:46:55 UTC from IEEE Xplore.  Restrictions apply. 



speed and accuracy. In these approaches, small subvolumes
of cryo-ET images each containing a macromolecule are
extracted using template-free DoG particle picking. These
small subvolumes are called subtomograms. Hence macro-
molecule identification essentially becomes a subtomogram
classification problem [5]. The supervised methods use subto-
mograms annotated by biologists to train deep subtomogram
classification methods and obtains high-throughput classifica-
tion results with high accuracies. However, the efficacy of
supervised learning methods is dependent on availability of
annotated training data, which is very hard to obtain in cryo-
ET image analysis. Annotating 3D cryo-ET images is tedious
and subject to biases. Moreover, supervised approaches can
only detect macromolecules with known structures. Therefore,
they can not leverage cryo-ET’s potential of detecting novel
macromolecules inside single cells, which is one of the major
advantages of cryo-ET imaging method.

To solve the above-mentioned problems, we have described
gradual efforts to practically efficient identification of macro-
molecules from cryo-ET subtomograms in a fully unsuper-
vised manner. To this end, we first describe a few-shot learning
based method [8], which is able to conduct subtomogram
classification on unseen macromolecules with few (or even
one) labeled subtomograms from each kind of these structures.
To achieve fully unsupervised classification, we first highlight
an autoencoder based method [9] where k-means cluster-
ing on intermediate latent space is used to identify macro-
molecules from subtomograms. However, the performance of
that method was very limited. Very recently, Zeng et al [10]
have developed a high-throughput deep iterative subtomogram
clustering approach (DISCA) [10] that can perform highly
accurate subtomogram classification in a fully unsupervised
way. However, these works have demonstrated results on their
different subtomogram datasets and a comparative analysis of
such methods against some common benchmark datasets is
still missing. In this paper, we have provided a comparative
analysis of the methods on several common experimental
and realistically simulated datasets. Our analysis demonstrate
the gradual path towards practical unsupervised identification
of macromolecules from subtomograms using deep learning
based methods and indicates some interesting future research
directions that can engage the community.

II. RELATED WORKS

Template Matching

Template matching/search has been the most widely used
method for identifying known macromolecules of interest from
a template. These methods calculate the structural correlation
between a subtomogram or a recovered structure with a
known structural template. The structural template is usually
obtained by expensive high resolution methods like X-ray
crystallography, NMR microscopy, or single particle cryo-EM.
The correlation score is obtained by correlation or convolution
operations. However, a simple correlation score cannot often
conclude the template matching fully as templates are subject
to reference dependent bias. To address this issue, rigorous

statistical tests need to be carried out. Wang et al. [6] recently
proposed a Monte Carlo sampling hypothesis testing frame-
work based on generative adversarial network modeling for
assessing template matching results. They create a generative
adversarial network by using known structures to generate
the structural distribution of macromolecules. First, the struc-
ture generator is trained to the extent that the discriminator
cannot distinguish between a known structure and a pseudo
one. Second, a large number of pseudo macromolecules are
generated from the learned structural distribution in a Monte
Carlo sampling fashion. Finally, the subtomogram or recovered
structure of interest is compared to the known structure
and pseudo structure to assess the statistical confidence of
template matching. This method computes not only a cor-
relation score of template matching but also the P-value of
whether the structure is significantly close to the template.
Such a statistical assessment provides rigorous evidence of
template matching and reduces its false-positive rate. Though
the robustness of template matching can be ensured by
these approaches, template matching remains unpractical to
be used for high-throughput classification of subtomograms
due to computational inefficiency. While template matching,
all possible orientation and shift of macromolecules need to
be generated, which is a long time-consuming process. For
instance, rotating a ribosome structural template at a 10◦

interval takes (360◦/10◦)3 ∗ 161s = 87 days on one CPU
[10]. Moreover, template matching can never identify novel or
unseen structures from cryo-ET subtomograms, and thus can
not utilize one of the major advantage provided by cryo-ET.

Supervised macromolecule detection methods

To cope up with the exponentially increasing accumulation
of cryo-ET images, high-throughput subtomogram classifi-
cation methods have become a necessity. To this end, a
plethora of supervised deep learning based methods [11]–[13]
to identify macromolecules from subtomograms have emerged.
Subtomogram classification and segmentation is held as an
individual contest in 3D Shape Retrieval Challenge [12] every
year. State of the art supervised subtomogram classification
method includes deep convolutional neural networks (CNN),
deep recurrent neural networks (RNN) and its variants, deep
attention based networks, etc. These deep models can perform
high-throughput and highly accurate classification of subtomo-
grams thanks to the efficacy of deep models. However, such
supervised methods suffer from a common drawback. Their
performance are highly dependent on the quality of annotated
data for training. In cryo-ET, good quality annotated data is
very difficult to obtain as the annotation process is highly
burdensome and time-consuming. Moreover, the annotation is
often subject to biases. A tentative solution for scarcity of
annotated data is to generate realistically simulated data to
train supervised deep models. However, it has been observed
that models trained on simulated data performs very poor
on real data due to domain shift existent between simulated
and real data [14]. To this end, some domain randomization
and adaption methods have been introduced [15], [16]. Nev-
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(a) Few-shot learning framework

(b)        Autoencoder  framework

(c)        Deep Iterative Clustering   framework

Fig. 1: Schematic diagram of the methods discussed in our paper. (a) shows the architecture of our few-shot learning method
[8] (b) shows the architecture of the autoencoding classifier method [9](c) depicts the schematic diagram of deep iterative
subtomogram clustering approach (DISCA) [10]

ertheless, these methods are usually very time consuming and
yet to ensure negligible domain shift between simulated and
real data. Though reducing domain shift is still an interesting
open research problem, this approach introduces several extra
step in subtomogram classification and makes it a very time
consuming task. Therefore, a more feasible solution is to
develop high-throughput and highly accurate unsupervised
subtomogram classification methods.

III. METHODS

A. Few-shot learning

First, we describe a few-shot learning based method devel-
oped by Li et. al. [8] to conduct subtomogram classification
on unseen macromolecular structures with few (or even one)
labeled subtomograms from each class of these structures. In
a few-shot learning task, there exists a training set consisting
of considerable amount of labeled data for providing prior
knowledge and a test set consisting of samples from new
classes of structures which do not appear in the training set.
The test set is further divided into two subsets: a support set
with a few labeled samples from each class and a query set
with unlabeled samples from the same class with the support
set. The task is to make predictions about unlabeled samples in
the query set based on few labeled samples in the support set
and knowledge gained from the training set. Therefore, an X-
way Y -shot classification task in few-shot learning indicates
taking X classes with Y labeled samples from each class in
the support set. The same sampling strategy is applied during

training as well, where the training set is randomly subsampled
as minibatches called episodes [17].

The few shot learning subtomogram classification approach
[8] focuses on learning an embedding for each class that
maintains essential features of the data and so that simple
classifiers like the nearest neighbor classifier can be applied
in the embedding space. Following this idea, one of the
major components in this approach emerges from prototypical
network (ProtoNet) [18]. The structure of ProtoNet is tailored
to propose ProtoNet3D method for cryo-ET data in this work.
In the embedding space learnt from ProtoNet, a prototype
for each class is computed and the nearest prototype to a
particular sample is the class that the sample belongs to.
However, the embedding obtained through this method is a
universal embedding learnt from the entirety of the training
data which is, basically, a task-agnostic embedding. To extract
useful information from the classification tasks, the embedding
should be more targeted. For that purpose, inspired by [19],
a transformation step with self-attention mechanism is added
in this approach, thus obtaining a task-specific embedding.
The proposed method by Li et. al [8], called ProtoNet-CE
(ProtoNet with Combined Embedding) method combines both
types of embedding for subtomogram classification (Figure 1
(a)).

Instance embedding based on ProtoNet3D: The archi-
tecture ProtoNet is based on a basic assumption that there
exists an embedding space where each sample cluster around a
class-specific prototype. Thus, in this embedding space, we can
find the nearest prototype and also the class for each sample
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Fig. 2: (a) Sample 2D central slice subtomogram images with corresponding noise-free isosurface representations and pdb
ids of macromolecules for simulated (SNR 0.1) dataset. Ten sample subtomograms per macromolecule class are visualized
similarly. (b) Sample 2D slice images of subtomograms with corresponding noise-free isosurface representations and pdb ids
of macromolecules for air-water interface noble single particle dataset. One sample subtomogram per macromolecule class is
visualized in such way.

through a nearest neighbor classifier [18]. Because the input
data are 3D gray scale images, we design a ProtoNet3D model
by replacing the 2D filters with 3D filters in the ProtoNet
model.

Embedding adaptation via transformer: The embedding
described in the previous section is simply obtained from all
training samples, regardless of the classification task in the
testing set. Inspired by FEAT [19], an adaptation step to extract
task-specific features via a transformer is added.

Combination of the two embeddings: In order to consider
the task-specific features together with the task-agnostic fea-
tures, the distances calculated in both embedding spaces are
combined as the final classification criteria.

Implementation details: The original embedding func-
tion is implemented through a convolutional neural network
(CNN) architecture and a 3D variant of the original Pro-
toNet is proposed for few-shot subtomogram classification
denoted as ProtoNet3D. It contains 4 ConvBlock modules
where a 3D convolutional layer with 64 parallel 3D filters
are combined along with batch normalization layers, ReLu
activation, and max pooling layers. The parallel 3D filters
are designed to extract different features from subtomograms
and the max pooling layer is used for feature selection and
dimension reduction. The ConvBlocks are followed by a
Flatten layer which ensures that features are integrated into a
one-dimensional embedding. The transformer is implemented
with an attention block concatenating three fully connected
layers as the learnable weight matrices, followed by a softmax
layer. Then another fully connected layer is designed to obtain
the weighted average of the outputs of the attention block
which is then added to the original embedding.

B. Autoencoder based fully unsupervised learning

The few-shot learning method shows great promise towards
a fully unsupervised subtomogram classification approach.
However, it still requires annotated data for training. As an
initial effort towards fully unsupervised subtomogram clas-
sification method, we next describe an auto-encoder based
method that can classify subtomograms with limited precision.
In this method, the input is converted into a lower dimensional

vector representation and reconstructed into another higher
dimensional representation in order to characterize image
features. The proposed method is termed ‘Autoencoder3D’,
which can be divided into 3 types for explanation. Encoder3D,
Decoder3D and EDSS3D Network.

The Encoder3D network encodes an small input subvolume
into a 32 dimensional vector. For example, a 3D subvolume is
represented as a 3D array of m × n × p size. It’s encoded
vector v is a vector of R32. The Encoder consists of two
3D convolutional layers and two max pooling layers with
layers and one fully connected layer for outputting a vector
of length 32. The Decoder3D network is a mirror reflection
of the encoder part. All hidden layers and the encoder’s fully
connected layers are equipped with Rectified Linear (Relu)
activation whereas the convolutional output of the decoder
part has linear activation. To improve the performance of
autoencoder, L1 norm regularization is used to encourage
sparsity in the encoded features.

The encoded feature vector is used in K-means clustering
algorithm to distribute the dataset into structurally heteroge-
neous groups of subvolumes. Before that, the learned vectors
are plotted and the user is asked to select a group of clusters of
interest. The selected clusters are referred as positive clusters
and later used as input for a 3D Encoder-Decoder Semantic
Segmentation (EDSS3D) network for subtomogram segmenta-
tion. Zeng et al [9] demonstrated that this simple strategy can
successfully cluster globule and surface subtomograms into
separate clusters.

C. Deep iterative Subtomogram clustering

Now, we discuss the most recent and successful unsuper-
vised subtomogram classification method developed by Zeng
et al [10], called Deep Iterative Subtomogram Clustering
Approach (DISCA). This is a high-throughput template-and-
label-free deep clustering approach based on a generalized
Expectation Maximization framework. The model is trained
to distinguish sets of homogeneous structures from the 3D
spatial features and their distribution.

a) Transformation-invariant and noise-robust feature
extraction: In order to ensure the maximum possible avail-
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ability of depth-wise information, the feature extraction in
DISCA is done using a special CNN based network named
YOPO (You Only Pool Once). The YOPO architecture model
consists of one Gaussian Dropout layer followed by a series
of Convolutional Neural Network (CNN) layers. A Global
Max Pooling layer is used againts the output of the CNN
layers. Further, a fully connected layer is added with softmax
activation to generate a class label as output. Max or average
pooling is not used in YOPO to avoid drastic information
losses. The global max pooling layer after the convolutional
layers preserve structural details of subtomograms very well.
Moreover, this pooling operation takes up feature information
of similar characteristics irrespective of the coordinates of the
area of interest. Therefore, it ensures translation invariance for
input subtomograms by YOPO.

To make YOPO rotation invariant, a randomly rotated copy
of the subtomogram was fed as input alongside the original
input subtomogram at each iteration. The empty space for the
rotated copy was filled up with gaussian white noise (0 mean,
1 standard deviation). To preserve the robustness to noise, a
Gaussian Dropout Layer was introduced, randomly silencing
50% nodes and introducing 1-Centered Gaussian noise with
standard deviation of 1. This strategy was introduced to apply
some denoising in the dataset, ensuring robustness to noise.

b) Statistical Modelling of Feature Space: Second order
statistics is much suitable for detecting differences of visual
features than generic clustering algorithms like K-means or
hierarchical clustering. So, to calculate the feature covariance
completely, the learnt feature vectors from YOPO are mod-
eled for each representative structural pattern as multivariate
Gaussian distributions in the feature space.

In short, if P is the dimensionality of feature space and
xn ∈ Rp is the extracted feature for a subtomogram sn, xn is
modeled as a mixture of K multivariate Gaussian distributions.
Then, the probability distribution function for xn is calculated
using the following equation,

fg(xn;φ, µ,Σ,K) =
K∑
k=1

φkg(xn;µk,Σk)

Here, φk is the prior probability of sampling xn from the kth

component, which is a multivariate Gaussian Distribution g
with mean µk and co-variance matrix Σk .So, the equation
for figuring out the posterior of sampling xn for the kth

component would be as follows:

ρk(xn) =
φkg(xn;µk,Σk)
K∑
i=1

φig(xn;µi,Σi)

. Solving the model for the first equation provides the prob-
ability ρk(xn). Consequently, k̂ = argmaxk∈[K] ρk(xn) is
regarded as the class label output for input subtomogram xn.

c) Automated Selection of K: A challenge in such
approach is to settle with a specific number of K. As this
is an unsupervised learning approach, the number cannot
be exactly determined beforehand. An automatic estimation

approach for solving this become necessary, which itself is a
hard and challenging problem. Nevertheless, the estimation
of K is significant in a sense that, neither a too small K
nor a too large K is expected because both of them would
lead to poor subtomogram averaging by either putting a lot of
heterogeneous structures in the same subset or causing over-
partition between subsets.

Some approaches for finding appropriate K would be pre-
dicting K or running the algorithm repeatedly using bagged
samples, or using measures like Silhoutte Coefficient [20].
However, these approaches have poor scalability and high time
complexity. To overcome these, DISCA partakes a statistical
model selection approach. The number of model parameters
increases with K, so this might increase likelihood as well
as create overfitting. DISCA balances likelihood and number
of parameters among a set of models with different Ks and
selects one among a set of fitted models. DISCA uses Bayesian
Information Criterion (BIC) [21]. At each iteration of DISCA,
the feature space for input subtomograms are fitted with
multivariate Gaussian distributions across a set of candidate
K values. The model with lowest BIC score is kept and the
corresponding class label output k̂ for each subtomogram is
regarded labels for next iteration.

d) Iterative Dynamic Labelling: At each EM iteration
in DISCA, pseudo-ground truth labels are generated for each
input subtomogram, which are used as training labels at
following iterations. The labels at first step is estimated by
random initialization of YOPO architecture and are used as
labels for second iteration. The whole process is revisited in
the next iterations until convergence.

However, with such approach, mislabeling might occur
during the initial iterations and can be propagated until con-
vergence. To address this issue, DISCA uses label smoothing
regularization technique by followed the equation, lls = (1−
α) × lhot + α

K , where K is the number of clusters in that
iteration, lhot is the one-hot encoding of the labels gained
from the previous iteration, and α is a smoothing factor. K is
also kept dynamic in different iterations in this process.

Another issue is that the number of labels (K) is not fixed
from the first iteration until convergence in DISCA. As a
solution, when a new K is found in the current iteration, the
last layer (classification layer) is replaced with a new one with
K number of nodes.

e) Matching Inter-step Clustering Labels: During
whole training phase, K stays the same most of the time.
Nevertheless, it could certainly happen that one group of sam-
ples get differently labelled in consecutive iterations despite
the number of labels (K) stay the same. To address this issue,
DISCA directly matches clustering labels between consecutive
steps by formulating this as a maximum weighted bipartite
graph matching problem. If the clusters of a solution are
considered as vertices of a graph, the vertices of the current
solution and the vertices of the previous solution creates two
disjoint sets. The edges represent that there are common
samples between two vertices from different clustering and
the edge weight is defined by the number of common samples
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shared between those clusters. DISCA uses Hungarian algo-
rithm [22] to determine a matching in this graph where no
two edges share a common vertex and the total edge weight
is maximized. Furthermore, DISCA rearranges the current
clustering labels according to the solution.

IV. RESULTS

A. Datasets

We have used five realistically simulated and two ex-
perimentally obtained real datasets to perform comparative
analysis of the above-mentioned methods. A brief description
of the datasets are as follows:

a) Simulated Datasets: We have used five realistically
simulated datasets with varying SNR and tilt angle range
±60 (Missing Wedge Angle 30◦). The dataset contains five
representative macromolecular complexes: spliceosome (PDB
ID: 5LQW), RNA polymerase-rifampicin complex (PDB ID:
1I6V), RNA polymerase II elongation complex (PDB ID:
6A5L), ribosome (PDB ID: 5T2C), and capped proteasome
(PDB ID: 5MPA). Each type of macromolecule are present
in 1000 subtomograms counting to 5000 subtomograms in
total. Among the five simulated datasets, one is relatively clean
(SNR 100) and four are with SNR close to the experimental
conditions (0.1, 0.05, 0.03, and 0.01). Each subtomogram is
of size 323 with voxel size 1.2 nm. 2D central slice images
of 10 sample subtomograms per macromolecule class along
with the corresponding noise-free isosurface representations
are provided in Figure 2 (a).

b) Experimental Air-water interface noble single particle
dataset: We used a single particle dataset from EMPIAR
that contains 2800 subtomograms of 7 distinct types of
macromolecular structures. Among these seven types, rabbit
musle aldolase (PDB ID: 1ZAJ) was collected from EMPIAR
10130 and 10131, glutamate dehydrogenase (PDB ID: 1B26)
were obtained from EMPIAR 10133, DNAB helicase-helicase
(PDB ID: 4M4W) from EMPIAR 10135, T20S proteasome
(PDB ID: 6BDF) from EMPIAR 10143, apoferritin (PDB ID:
3U90) from EMPIAR 10169, hemagglutinin (PDB ID: 2VIU)
from EMPIAR 10172 and insulin-bound insulin receptor (PDB
ID: 3W11) were collected from EMPIAR 10173. Each of
these types have 400 subtomograms in the entire dataset. The
subtomograms have a SNR of 0.5 and missing wedge angle
of 30◦. Each subtomogram is of size 283 with voxel size 0.94
nm. Stacked 2D slice images of one sample subtomogram per
macromolecule class along with the corresponding noise-free
isosurface representations are provided in Figure 2 (b).

c) Experimental rat neuron culture dataset: This dataset
contains 18419 subtomograms extracted from rat neuron cul-
ture tomogram by expert annotation and template matching
[23]. Among them 15167 subtomograms are false positive
and contains no macromolecule, 1095 subtomograms contain
ribosome, 1043 subtomograms contain double capped protea-
some, 386 subtomograms contain single capped proteasome,
460 contains membrane, and 268 subtomograms contain TriC
structures. Each subtomogram is of size 403 with voxel size

(a) (b)

Fig. 3: (a) tSNE embedding plot of simulated (SNR 0.1)
dataset. tSNE plots demonstrate the approximate ‘hardness’ of
the classification problem for the particular dataset. (b) tSNE
embedding plot of noble single particle experimental dataset

1.368 nm and −50◦ to +70◦ tilt angle range (30◦ missing
wedge). The subtomograms have a SNR of 0.01.

B. Experimental Design

1) Few-shot learning:
Classification on real datasets: Due to the smaller

number of available classes in the real datasets, we removed
the validation set and randomly divided them into training and
testing sets. For noble single particle dataset, 4 classes were
kept in training set and the remaining 3 classes were kept in
testing set. And for rat neuron dataset, 3 classes were kept in
training set and the remaining 3 classes were kept in testing
set. The best model for evaluating against testing set was, thus,
picked according to the performance on the training set. The
classification accuracy of the model was calculated through
100 episodes, each with randomly sampled 3 classes, for
obtaining the mean classification accuracy. For each randomly
sampled class in an episode, 5 samples were picked in support
set for 5-shot analysis and 1 sample was picked in support
set for 1-shot analysis along with 15 samples in query set in
both analyses. The experimentation was conducted with the
ProtoNet3D method. The results for real datasets are shown
in II.

Classification on simulated datasets: Due to small num-
ber of available classes in the simulated datasets, we removed
the validation set and randomly divided them into training
and testing sets. Among the available classes, 3 classes were
kept in training set and the remaining 2 classes were kept in
testing set. This division of classes remained consistent among
different SNR levels. The best model for evaluating against
testing set was, thus, picked according to the performance on
the training set. The classification accuracy of the model was
calculated through 100 episodes, each with randomly sampled
2 classes, for obtaining the mean classification accuracy.
For each randomly sampled class in an episode, 5 samples
were picked in support set for 5-shot analysis and 1 sample
was picked in support set for 1-shot analysis along with 15
samples in query set for both analyses. The experimentation
was conducted with the ProtoNet3D method. The results for
simulated datasets are shown in I.
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2) Autoencoder: As the autoencoder approach is fully
unsupervised, there was particularly no need for train-test
split. The model was trained with the entirety of the datasets.
Furthermore, since the labels were available with the datasets,
after clustering, accuracy was calculated by comparing the
clusters with the labels. While training the autoencoder, learn-
ing rate and learning rate decay were set to 0.001, 2 × 10-6

respectively based on cross-validation results. Finally, the
number of clusters, K, was set to the number of classes for
each dataset as it provided the optimum results.

3) DISCA: As DISCA is also a fully unsupervised method
like autoencoder, the entire dataset were used to train the
model. To do so, cross-validation was performed to tune the
hyperparameters and the learning rate, iteration, and reg cover
set to 1× 10-5, 20, and 1× 10-5 yielded the optimum results.
Furthermore, the number of clusters, K, was set to the number
of classes for each dataset. Increasing or decreasing K led to
a relatively higher DDBI, and therefore, was avoided. Finally,
the same hyperparameters were used to train all the datasets.

C. Results

Subtomogram classification results on the simulated datasets
for the discussed methods are demonstrated in Table I. Corre-
sponding results on the two experimental datasets are provided
in Table II.

We can observe that accuracy of all methods drops with
the decline of SNR in our simulated datasets. To provide
an estimate of the ‘difficulty’ of clustering, we provide a
2-dimensional tSNE (t-Distributed Stochastic Neighbor Em-
bedding [24]) scatter-plot of simulated SNR 0.1 dataset in
Figure 3 (a) and color the embedding based on macromolecule
identity. The tSNE plot testifies that separating out the macro-
molecules into separate homogeneous structure classes is a
not an easy task. However, the corresponding tSNE plot of
air-water interface dataset (Figure 3 (b)) shows a different
pattern and it can be inferred that subtomograms are more
easily separable in noble dataset compared to simulated SNR
0.1 dataset. Consequently, the accuracies for noble datasets
were higher on average.

In our evaluation of rat neuron dataset subtomogram clus-
tering, we assumed false positive subtomograms as a separate
class. Due to its high presence, the methods were able to
separate it easily from true positive subtomograms. Such
evaluation significantly uplifted the clustering accuracy of the
methods, however, the comparison among methods still remain
fair.

In almost all the datasets (except noble single-particle), 3-
way-5-shot few shot learning achieved the highest accuracy
followed by DISCA. Only in noble single particle dataset, 3-
way-1-shot accuracy is slightly higher than that of DISCA. The
highest accuracy of 3-way-5-shot in all scenarios is expected
as it includes 5 labeled sample per macromolecule class in
test set as support, which introduces label specific inductive
bias in the model. On the contrary, the fully unsupervised
methods- Autoencoder and DISCA does not use any label
associated information. Though Zeng et. al. [9] demonstrated

that applying k-means on autoencoder features can distinguish
between surface and globule subtomograms, it can not distin-
guish between finer details of macromolecule classes. This
fact is clearly evident from the autoencoder results against the
datasets.

Nevertheless, DISCA, the deep iterative clustering based
approach, can successfully separate macromolecules of differ-
ent classes into distinct clusters. In other words, DISCA can
classify subtomograms in completely unsupervised manners
with high accuracy; bypassing the need of exhaustive data
annotation and reference dependent templates.

TABLE I: Results on Simulated Dataset

Simulated Dataset Method Accuracy
SNR 100 Few Shot 0.963± 0.008 (2-way 5-shot)

0.892± 0.021(2-way 1-shot)
Autoencoder 0.215

DISCA 0.912
SNR 0.1 Few Shot 0.867± 0.014 (2-way 5-shot)

0.745± 0.023(2-way 1-shot)
Autoencoder 0.214

DISCA 0.814
SNR 0.05 Few Shot 0.798± 0.018 (2-way 5-shot)

0.657± 0.028(2-way 1-shot)
Autoencoder 0.212

DISCA 0.806
SNR 0.03 Few Shot 0.776± 0.015 (2-way 5-shot)

0.677± 0.022(2-way 1-shot)
Autoencoder 0.203

DISCA 0.781
SNR 0.01 Few Shot 0.570± 0.016 (2-way 5-shot)

0.525± 0.019(2-way 1-shot)
Autoencoder 0.20

DISCA 0.560

TABLE II: Results on Experimental Datasets

Dataset Method Accuracy
Air-water interface noble Few Shot 0.994± 0.002 (3-way 5-shot)

single particle 0.962± 0.012(3-way 1-shot)
Autoencoder 0.162

DISCA 0.86
Rat neuron culture Few Shot 0.992± 0.003 (3-way 5-shot)

0.892± 0.016(3-way 1-shot)
Autoencoder 0.441

DISCA 0.95

V. DISCUSSION AND FUTURE DIRECTIONS

The experimental results ensures the efficacy of unsu-
pervised approaches for macromolecule identification from
subtomograms, overcoming the hurdles caused by traditional
template matching and supervised approaches. However, there
is still a large room for improvements. For instance, in very
low SNR settings (SNR < 0.03), the classification is close
to random guess (50%). This can be mitigated with effort
towards joint denoising and classification of subtomograms.
Developing methods for learning noise-invariant features in
extremely low SNR conditions is also an interesting direction
to explore. Moreover, the classification accuracy difference
between fully unsupervised DISCA and few-shot learning with
very low supervision is higher in experimental datasets than
simulated ones. This can be due to many ‘extra’ complexities
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in experimental data that are not present in realistically simu-
lated data. Consequently, learning ‘good’ features is easier in
simulated data than real ones. As unsupervised methods solely
depend on encoded features to distinguish subtomograms, the
feature quality and complexity largely affects the performance.
Therefore, developing methods to learn ‘better’ features that
are less sensitive to the ‘extra’ complexities present in ex-
perimental data is also a direction to investigate in future.
Nonetheless, unsupervised subtomogram clustering methods
can overcome many issues caused by traditional supervised
approaches and can lead to ground-breaking advantage of
cryo-ET image analysis domain.

VI. CONCLUSION

Cryo-electron tomography (cryo-ET) is a revolutionary
imaging technology that enables in situ identification of
macromolecules in 3D images of cellular samples. With the
growing accumulation of cryo-ET images, fast and high-
throughput methods that accurately identifies macromolecules
from such images has become a necessity. The traditional
template matching based approaches are extremely slow and
low-throughput and the fast supervised learning approaches are
dependent on extremely time consuming annotation process,
which is subject to biases. In this work, we have described a
pathway towards fully unusupervised identification of macro-
molecules from cryo-ET subtomograms as a solution to such
problems. We have performed a comparative evaluation of
three subtomogram classification methods against common
benchmark datasets, which shows the promise of unsupervised
learning for bias-free high-throughput identification of macro-
molecules from subtomograms. However, we also indicated
that the methods are still far from perfect, specially in very low
SNR settings. To this end, we have discussed some interesting
directions that the corresponding research community may
explore in future.
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