

000
001
002
003
004
005
006
007
008 **CELL-TYPE NEURAL ORDINARY DIFFERENTIAL**
009 **EQUATION MODELS FOR PARSING BIOLOGICALLY-**
010 **CONSTRAINED CONTRIBUTIONS TO NEURAL**
011 **DYNAMICS**

012
013 **Anonymous authors**

014 Paper under double-blind review

015 **ABSTRACT**

016 Understanding how populations of individual neurons interact to shape the over-
017 all dynamics of neural activity is a central question in computational and systems
018 neuroscience. Recent work has shown that neural ordinary differential equation
019 (NODE) models are able to model neural activity dynamics with high accuracy
020 and interpretability of the underlying dynamics. However, existing NODE mod-
021 els treat all neurons as part of a homogenous group, preventing understanding how
022 underlying neural populations (e.g. cell types) contribute to the overall dynamics.
023 Here, we introduce Cell-Type NODE (CT-NODE) models. These models A) de-
024 compose the overall dynamics into components specific to each population, allow-
025 ing understanding each population’s interactions with one another; and B) provide
026 biological constraints on the contributions of excitatory and inhibitory populations
027 towards the dynamics, using a variant of monotonic neural networks. Using both
028 synthetic and recorded neural activity data during a naturalistic climbing task,
029 we show that CT-NODE models can provide equivalent, or greater, accuracy of
030 dynamics modeling compared to standard NODE models, while enabling a new-
031 found biologically-constrained understanding of neural populations’ interactions
032 and roles in the underlying dynamics.

033 **1 INTRODUCTION**

034 Recent advances in large-scale neural recordings reveal rich, high-dimensional population activity
035 that invites dynamical systems explanations (Jun et al., 2017; Stirman et al., 2016; Ahrens et al.,
036 2013; Sauerbrei et al., 2020; Itokazu et al., 2018). Latent dynamical models capture these data
037 via low-dimensional states whose temporal evolution generates observed activity, achieving strong
038 denoising and alignment with behavior (Macke et al., 2011; Petreska et al., 2011; Pandarinath et al.,
039 2018).

040 Neural ordinary differential equation models (Neural ODEs, or NODEs), which model the change
041 of dynamics over time with flexible neural networks, have recently emerged as a promising ap-
042 proach towards modeling the latent dynamics of neural population activity. NODEs have been
043 shown to have excellent accuracy, predicting neural activity data more accurately than recurrent
044 neural network (RNN) models (Kim et al., 2021). They have also demonstrated accurate model-
045 ing of low-dimensional dynamics within a low-dimensional space, whereas RNN models require a
046 greater dimensionality (due to their less flexible dynamics) to accurately capture low-dimensional
047 dynamics (Sedler et al., 2023). NODEs also can provide a particularly interpretable view of the
048 underlying dynamics, as flow fields can easily be drawn in the low-dimensional space demon-
049 strating how neural activity evolves over time, as was recently done to discover neural underpinnings of
050 decision commitment (Luo et al., 2025).

051 Despite great promise, there are two fundamental limitations of existing NODE models, especially
052 relating to modeling widely emerging datasets with multiple recorded neural populations (e.g. brain
053 regions and cell types). First, there has been great interest in understanding and modeling the roles
054 of, and interactions between, different neural populations (Keeley et al., 2020; Perich et al., 2020;

Liu et al., 2025; Dowling & Savin; Cunningham & Yu, 2014; Li et al., 2024; Koukuntla et al., 2024; Jha et al., 2025; Gokcen et al., 2022; 2023). This is evidenced by recent work within other dynamics architectures, for example linear (Semedo et al., 2014), switching linear (Glaser et al., 2020), and switching nonlinear dynamical systems (Karniol-Tambour et al., 2022), to decompose the overall latent dynamics into the sum of the influences of different populations. It is not possible within current NODE models to understand how populations interact to drive the overall neural dynamics of the system. Second, biological neural circuits comprise distinct excitatory (E) and inhibitory (I) cell populations with sign-constrained interactions (Dale’s law). Unlike dynamics architectures like RNNs (Song et al., 2016) and linear dynamical systems (Jha et al., 2024), current NODE models don’t enable incorporating these biological constraints. This omission prevents constraining the dynamics of models (which are often poorly constrained (Prinz et al., 2004; Das & Fiete, 2020; Beiran & Litwin-Kumar, 2024) toward biological solutions, and obscures how distinct cell classes contribute to circuit computations.

To tackle these challenges, we developed cell-type-aware neural ordinary differential equation (CT-NODE) model dynamics. CT-NODE assigns separate latent subspaces to E and I populations and constrains cross-population influences in this latent space to respect Dale’s law so that E (and I) neurons only excite (and inhibit). To do so, we develop a dynamics parameterization that builds upon monotonic neural networks (Daniels & Velikova, 2010), which enables the dynamics to retain the flexibility inherent to NODE models, while now respecting biological constraints. After formulating the model (Section 2), we evaluate our model on synthetic data generated from a winner-take all decision-making circuit (Section 3), and naturalistic mouse climbing data recorded in primary (M1) and secondary (M2) motor areas (Section 4). We demonstrate how CT-NODE models enable interpreting how individual populations contribute to the overall dynamics (e.g. within flow fields), and how they interact with each other over time, which is not possible within standard NODE models. Crucially, this added biological interpretability does not come at the cost of prediction performance versus competing models. Together, our findings suggest a path toward simple, accurate, and biologically grounded latent dynamics that elucidate computation in neural circuits.

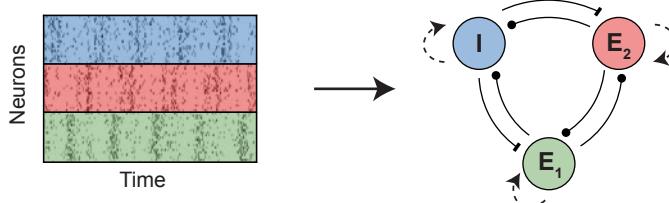


Figure 1: *CT-NODE Schematic*. (Left) Raster plots of neural firing rates over time for three example populations. (Right) A schematic of our CT-NODE model is trained to infer population interactions from neural activity for both E and I populations, with positive (dot), negative (line), and unconstrained (dashed arrow) interactions.

2 CELL-TYPE NEURAL ORDINARY DIFFERENTIAL EQUATIONS (CT-NODE)

2.1 BACKGROUND: NEURAL ORDINARY DIFFERENTIAL EQUATIONS (NODEs)

NODEs model the dynamics of a variable z at time t are learned according to:

$$z_t = z_{t-1} + \int_{t-1}^t f_\theta(z_{t-1}) dt \quad (1)$$

where f_θ is a neural network parameterizing the latent dynamics vector field, and can be interpreted as the rate of change of z over time (its derivative). Critically, this formulation provides a skip connection from the previous state, z_{t-1} , focusing f_θ ’s full expressivity towards dynamics.

2.2 BACKGROUND: NODE-BASED SEQUENTIAL AUTOENCODERS

Here, as in past work, (Sedler et al., 2023), we model the high-dimensional neural activity as having a lower-dimensional latent representation, and the NODE dynamics occur within this latent state.

108 This framework has been referred to as a NODE-based sequential autoencoder (Sedler et al., 2023),
 109 although we will here just refer to these models as NODEs for brevity.
 110

111 Let $x_t \in \mathbb{R}^N$ denote the observed binned spike counts of N neurons at time t . Predicted firing rates
 112 \hat{y}_t are mapped from D latents $z_t \in \mathbb{R}^D$ with weights W_{dec} and biases b_{dec} , according to:
 113

$$\hat{y}_t = \exp(W_{\text{dec}} z_t + b_{\text{dec}}), \quad \hat{x}_t \in \mathbb{R}^N > 0. \quad (2)$$

115 Neural dynamics evolve in this lower dimensional state according to the dynamics specific in equation
 116 1. The dynamics evolve in a deterministic manner from a learned initial latent state (the initial
 117 condition), z_0 . For each sequence (e.g. trial) of data that is modeled, a separate initial condition is
 118 learned. We learn initial conditions by passing the high-dimensional neural activity through a Gated
 119 Recurrent Unit (GRU)-based encoder. More precisely, spike counts x over time T_{enc} are input into
 120 a GRU with learned weights ϕ , and whose hidden state h is linearly mapped to the initial latent z_0
 121 using encoder weights W_{enc} and biases b_{enc} .
 122

$$h = \text{GRU}_\phi(x_{1:T_{\text{enc}}}), \quad z_0 = W_{\text{enc}} h + b_{\text{enc}} \quad (3)$$

124 2.3 THE CT-NODE MODEL

126 To disentangle the roles of distinct cell types in a population, we modify the standard NODE model
 127 in two ways: (1) we define a distinct set of latent variables for the activity of each cell class; and (2)
 128 we constrain the dynamics to obey functional properties of these cell types. We refer to the resulting
 129 models as Cell-Type Neural Ordinary Differential Equations (CT-NODE) models.
 130

131 2.3.1 CONSIDERING SINGLE POPULATIONS OF EXCITATORY AND INHIBITORY NEURONS

132 Let's first assume we have a single E and single I population. We use distinct sets of latents for E
 133 (z^E) and I (z^I), where each population can have multiple latents, D_E and D_I respectively. We can
 134 thus write out the entire latent state as:
 135

$$z = \begin{bmatrix} z^E \\ z^I \end{bmatrix}, \quad z^E \in \mathbb{R}^{D_E}, \quad z^I \in \mathbb{R}^{D_I}, \quad D_E + D_I = D \quad (4)$$

138 We model the change in dynamics (i.e., the latent vector field) as the sum of a term capturing
 139 population interactions plus a nonlinear self-term. The E population changes over time due to its
 140 intrinsic dynamics $f_{EE}(z^E)$ and its interactions with the I population $f_{EI}(z^I)$. Similarly, the I
 141 population changes over time due to its intrinsic dynamics $f_{II}(z^I)$ and its interactions with the E
 142 population $f_{IE}(z^E)$.
 143

$$\begin{aligned} z_t^E &= z_{t-1}^E + \int_{t-1}^t f_{EE}(z_{t-1}^E) + f_{EI}(z_{t-1}^I) dt, \\ z_t^I &= z_{t-1}^I + \int_{t-1}^t f_{II}(z_{t-1}^I) + f_{IE}(z_{t-1}^E) dt \end{aligned} \quad (5)$$

148 We take two steps to impose Dale's law constraints on the latent interactions for f_{IE} and f_{EI} – that
 149 is, to ensure that the influence from I latents is negative and E latents is positive. We'll initially
 150 describe this for E latents. First, for these functions, we use feedforward monotonic neural networks
 151 (Daniels & Velikova, 2010), where all the weights within the network are constrained to be nonneg-
 152 ative. Thus, an increasing input to f_{IE} leads to an increasing output. This can be thought of as a
 153 nonlinear equivalent of a nonnegative weight in a linear mapping. Still, this alone does not provide
 154 ultimate interpretability, as if the E latent itself has a negative value, the output can also be negative
 155 (which is also a current limitation of applying Dale's law within linear dynamical systems). Thus,
 156 second, we pass the output of our monotonic neural network through a softplus function to ensure
 157 the output is positive. When modeling the I outputs, we simply take the negative of this approach,
 158 ensuring a monotonically decreasing function with negative output:
 159

$$f_{IE} = \text{softplus}(\tilde{f}_{IE}), \quad f_{EI} = -\text{softplus}(\tilde{f}_{EI}) \quad (6)$$

160 where \tilde{f} are monotonic neural networks. Overall, this approach allows learning flexible nonlinear
 161 dynamics, as in classic NODE models, but while retaining relevant E/I constraints.
 162

162 The intrinsic self-terms f_{II} and f_{EE} are left as unconstrained feedforward neural networks, similar
 163 to how diagonal terms have been left unconstrained in E/I constrained linear dynamical systems (Jha
 164 et al., 2024). This is important for allowing populations' activities to 'leak' back to a baseline level.
 165

166 2.3.2 CONSIDERING MULTIPLE POPULATIONS OF EXCITATORY AND INHIBITORY NEURONS

168 We now extend our above framework to the more general scenario of multiple E and I popula-
 169 tions. For example, if there are E and I populations from multiple brain regions, our objective is to
 170 characterize how all these populations interact within and across regions. In the general case, the
 171 dynamics of each population is the sum of the 'influences' from all other populations, along with its
 172 own intrinsic dynamics. For K simultaneously recorded populations, we assign population-specific
 173 dynamics functions for the j^{th} population with learned population interactions, f_{jk} , and intrinsic
 174 dynamics, f_{jj} , as:

$$175 \quad z = \begin{bmatrix} z^1 \\ \vdots \\ z^j \\ \vdots \\ z^K \end{bmatrix}, \quad z^j \in \mathbb{R}^{D_j}, \quad (7)$$

$$179 \quad z_t^j = z_{t-1}^j + \int_{t-1}^t f_{jj}(z_{t-1}^j) + \sum_{k \neq j}^K f_{jk}(z_{t-1}^k) dt \quad (8)$$

181 The dynamics functions f_{jk} are parameterized as in equation 6 to follow Dale's law, where source
 182 E influences are positive and monotonically increasing, and source I influences are negative and
 183 monotonically decreasing, while the self-term is unconstrained.
 184

185 2.3.3 MAPPING TO THE HIGH-DIMENSIONAL NEURAL SPACE

187 So that latent groups can be interpreted as corresponding to prespecified neural populations, we have
 188 specified latent groups (e.g., z^E vs. z^I) be constrained to map onto their corresponding pre-specified
 189 neuron subsets (e.g. known E and I neurons). We can thus write the readout as:

$$190 \quad \hat{X}_t = \exp(W_{\text{dec}} z_t + b_{\text{dec}}) \quad W \leftarrow W \odot M_{\text{pop}} \quad (9)$$

192 where M_{pop} is a block-diagonal binary mask mapping latents to their corresponding neurons. We
 193 note that in some experiments below, we relax this mask to test the ability of the model to learn
 194 neuron types without prespecifying them all.

195 To ensure that the Dale's law constraints remain present in the high-dimensional neural activity
 196 space - e.g. all E neurons (not just E latents) have positive influences, we constrain all weights of
 197 W_{dec} to be nonnegative, as in past work (Jha et al., 2024).

199 We also note that we tested more flexible nonlinear readouts within our initial experiments on sim-
 200 ultated data below, and saw similar performance - thus, we use a linear readout for simplicity.

201 2.4 MODEL TRAINING

203 We minimize the negative log-likelihood (NLL) over T time steps and N neurons between predicted
 204 rates $\hat{Y} = [\hat{y}_1 \dots \hat{y}_N]^T$, and observed firing activity $X = [x_1 \dots x_N]^T$:

$$207 \quad \mathcal{L}_{\theta}(X, \hat{Y}) = -\frac{1}{TN} \sum_{t=1}^T \sum_{n=1}^N \log \text{Poisson}(x_{t,n} | \hat{y}_{t,n})$$

210 We initially trained two types of models - those that used the continuous integral version of the
 211 model, as specified in equation 1, and also a discretized version where time steps are predicted
 212 discretely from the previous time step. When using this continuous version, we computed NODE
 213 trajectories using a Runge-Kutta solver (Tsitouras, 2011). As we saw equivalent performance be-
 214 tween discrete and continuous versions while replicating the findings of Sedler et al. (2023), the
 215 results below are shown for the discretized version of the models (with $\Delta t = 0.1$), which has faster
 training.

216

217

218

$$z_t = z_{t-1} + \Delta t * f_{\theta}(z_{t-1}) \quad (10)$$

219

220 Models were optimized using backpropagation through time, with further details particular to ex-
 221 periments (e.g. batch size, learning rate, and architecture hyperparameters) described in Appendix
 222 A. Lastly, model training and hyperparameter sweeps were run both locally and on SLURM CPU
 223 clusters using the Python library Hydra (Tristram & Bradshaw, 2009).

224

225

2.5 MODEL COMPARISONS

226

227

To serve as comparisons for our CT-NODE model, we additionally compared to several approaches of modeling the dynamics: 1) standard nonlinear NODE dynamics, for the purpose of determining whether the cell-type-based dynamical constraints that facilitate interpretability are at the cost of performance accuracy; 2) unconstrained linear dynamics and 3) cell-type constrained linear dynamics within the NODE framework, with the purpose of determining the importance of nonlinear dynamics, as cell-type constraints have previously been implemented within linear models (Jha et al., 2024) (although not this NODE formulation); 4) standard RNN dynamics, as cell-type constraints have previously been implemented within RNNs (Song et al., 2016). Details of these models are described in Appendix A.

228

229

3 APPLICATION TO SIMULATED NEURAL DATA

230

231

To demonstrate the feasibility of our method, we first validated its ability to recover known circuit dynamics on synthetic data from a canonical decision-making circuit (Wang, 2002). Briefly, this dataset consists of two E populations (E1 and E2), each containing 240 neurons, and one I population containing 400 neurons. Together, these populations form a decision-making model that achieves winner-take all competition between the two E populations based on feedback from the I population (Fig. 2A). This is a biophysically realistic network model that produces spiking activity across these three populations based on their interactions.

232

233

3.1 MODEL FITTING DETAILS

234

235

In this task, models were trained to reconstruct spiking activity from two-second trials where either population E1 or E2 would exhibit a sustained increase in spiking activity (Winner-Take All; examples in Fig. 2A). A total of 80 trials were generated from the simulation and randomly split into a training and validation set, with 80% of the trials used for training and 20% for validation. For each trial, the spiking activity was binned into 20 millisecond (ms) bins, creating a trial sequence length of 100 bins. Each 100-bin trial was input into each model to obtain the initial latent condition before rolling out the dynamics and aiming to reconstruct the original sequence of neural activity. The latents were partitioned by population with one latent per population (two E latents and one I latent).

236

237

3.2 RESULTS: PREDICTION ACCURACY

238

239

We found that our CT-NODE model could make accurate predictions of the trajectories of neural activity over time (Fig. 2C and 2D). We quantitatively compared the CT-NODE dynamics model to several approaches of dynamics modeling (Fig. 2B; motivated and described in section 2.5 and Appendix A). The CT-NODE slightly outperformed the NODE model, validating that introducing dynamical constraints does not hinder reconstruction performance while also adding the benefit of interpretability. In fact, the further constraints slightly helped predictions on held-out data. The CT-NODE model also outperformed the Linear CT-NODE and Linear NODE models, which we expected given that the winner-take all mechanism uses nonlinear dynamics. We also found that all NODE models outperformed the RNN baseline, most likely due to the long prediction horizon of this task.

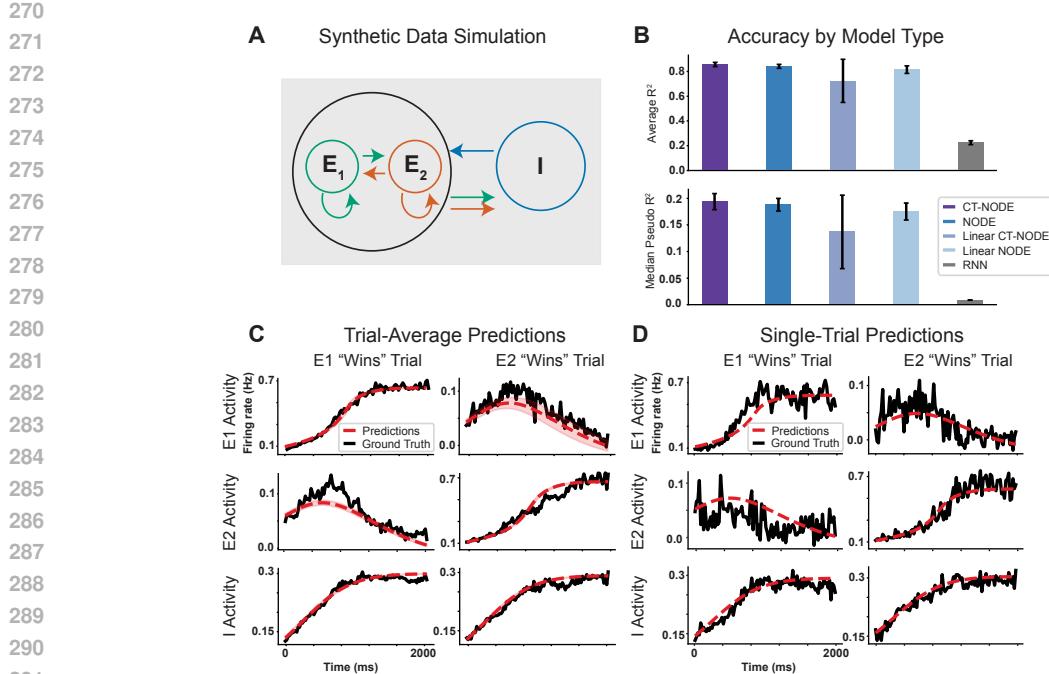


Figure 2: *Synthetic data predictions*. **A**) Schematic of the synthetic dataset Wang (2002), including two E populations and one I population. **B**) Future prediction accuracy is compared across model types. On top, the R^2 of the population averages. On bottom, the median pseudo- R^2 of individual neurons’ spike count predictions. **C**) Trial-average predictions against ground truth firing rates for each population average. **D**) Example single-trial predictions for population averages.

3.3 RESULTS: DYNAMICS INTERPRETABILITY

The CT-NODE model recovered the dynamics of the winner-take-all system, including approximating the two distinct fixed-point attractors that correspond to the circuit’s stable decision states (Fig. 3A). Critically, the model’s interpretable structure allowed us to decompose the learned dynamics into the influences from each population at a given time (the terms of the decomposition in equation 8; Fig. 3). This analysis confirmed that the stable states emerged from a balance of strong self-excitation within the winning population and targeted inhibition from the shared I pool, where individual population influence arrows cancel out at fixed points (Fig. 3A bottom, colored arrows; Fig. 3B at the end of the trial). The early increase in activity is primarily driven by self-excitation, prior to the I population increasing enough to balance out this excitation (Fig. 3A top, colored arrows; Fig. 3B early in the trial). These results serve as a successful proof-of-concept, validating that our framework can accurately learn and expose the underlying mechanisms of a nonlinear neural dynamical system.

3.4 RESULTS: RELAXING MODEL CONSTRAINTS

In actual experiments, cell types of each recorded neuron are not always known. We thus tested the ability of our model to infer the cell type labels when only a fraction of the neurons’ cell types were known. We modified the readout mask (M_{pop} in equation 9) to have a block-diagonal structure with only two blocks, one for both E populations (E1 and E2) and one for the I population. This is because a researcher may only know E versus I, rather than knowing E1 or E2 ahead of time, as we previously assumed. We then unmasked the off-diagonal sections of the readout mask at various levels: 25%, 50%, and 75% (dashed boxes in Fig. 4) before training the CT-NODE model with an L1 penalty of $1e-4$ on the unmasked readout weights. Using this approach, we find that the CT-NODE model can accurately infer the cell-type identities of most of the unlabeled neurons. Additionally, the CT-NODE model learns to separate the E latents into E1 and E2 latents (versus using both E latents as a distributed code) without explicit instructions to do so (Fig. 4). When unlabeled half

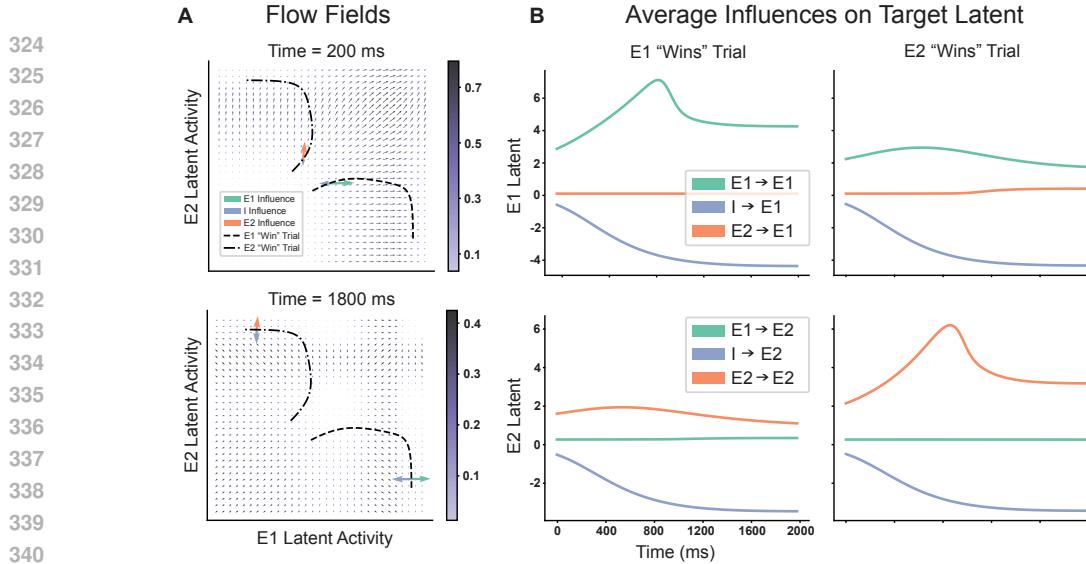


Figure 3: *Synthetic data dynamics interpretability.* **A)** Vector flow fields learned by CT-NODE of E1 vs. E2 latents at two different values of I , corresponding to average I values at two different time points early (top) and late (bottom) in the trial. Overlaid are two example trials where E1 and E2 'win' (trajectories to lower left and upper right, respectively). In colored arrows, we plot the contributions of individual populations towards the vector field at the listed times. Influence arrows at time 200 ms show strong, non-zero self-influence from the winning population. Influence arrows at 1800 ms show near fixed-point cancellation between the winning E and I population. **B)** The extent to which each latent population drives the flow field dynamics ('influences') of E1 (top row) and E2 (bottom row) latents. Columns separate trial averages by trial type.

of the E or I neurons, the model can identify the cell-types of these unidentified neurons with an accuracy of 98.0%. Even when only 25% are known, the model achieves an accuracy of 92.7%. This provides a proof of principle for the ability to apply CT-NODE models when not all cell classes are known, and additionally, to discover these unknown cell class identities.

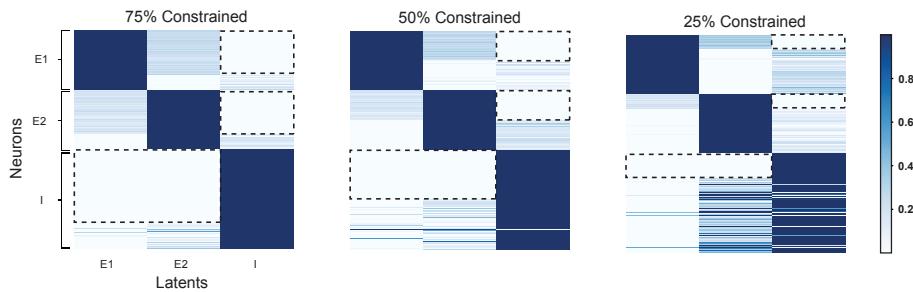


Figure 4: *Learning unlabeled cell types.* CT-NODE readout weights are shown across varying levels of constraints. Each row (neuron) is normalized to have a maximum value of 1 - thus, the color of each cell in a row denotes the relative amount each latent is used to predict a given neurons activity. Here, we only constrained a portion of the readout, under the assumption that only a portion of neurons' cell types were known. Within the dashed lines, the readout was forced to be 0, and all other values were learned (e.g. for the 50% constrained scenario, we enforced that 50% of the excitatory neurons could not map to the inhibitory latent, and that 50% of the inhibitory neurons could not map to the excitatory latents. Cell classes were generally inferred correctly by CT-NODE when using partial readout masks.

378 **4 APPLICATION TO NEURAL RECORDINGS DURING NATURALISTIC**
 379 **CLIMBING**
 380

381 We next modeled datasets in which motor regions primary motor cortex (M1) and secondary motor
 382 cortex (M2) are simultaneously recorded in mice with Neuropixels probes, while they performed a
 383 naturalistic, self-paced climbing task (Kristl et al., 2025) (Fig. 5A).

384 **4.1 MODEL FITTING DETAILS**
 385

386 We fit models to binned spiking activity of 189 neurons across regions M1 and M2 of a single mouse.
 387 Consistent with prior work, we classified neurons into I and E classes based on their waveform. With
 388 a threshold width of 13 ms, neurons above this threshold were classified as E and neurons below were
 389 classified as I (Kristl et al., 2025).

390 In total, our dataset contained four populations of neurons: M1-E (45 neurons), M1-I (19), M2-E
 391 (109), and M2-I (16). All spiking activity was binned into 20 ms bins and neurons with a firing
 392 rate less than 0.5 Hz across all trials were labeled as "silent" and removed. Models were trained
 393 and evaluated on a total of 227 trials of varying durations when the mouse was actively climbing.
 394 We randomly split the data by climbing trials, with 80% of the trials used for training and 20%
 395 for validation, making sure the split accounted for total climbing time (the training and validation
 396 set contained 80% and 20% of the total climbing time, respectively). To deal with the inconsistent
 397 trial lengths, each trial was split into 260 ms windows (13 bins) with 240 ms of overlap (12 bins).
 398 When inputting the windows into each model, we considered a context window of 200 ms (10
 399 bins) for the initial condition encoder to causally predict a subsequent 60 ms (3 bins) horizon. We
 400 removed the GRU encoder's bidirectional property to reduce model complexity for causal training
 401 and evaluation. Population latent dimensionalities were sized to reflect the respective number of
 402 neurons in each neural population (15 for E and 6 for I populations, resulting in 42 latents total).

403
 404 **4.2 RESULTS: PREDICTION ACCURACY**
 405

406 As in the synthetic dataset, we compared the accuracy of our model with several other architec-
 407 tures (Fig. 5B). CT-NODE slightly outperformed a standard NODE, again demonstrating that the
 408 constrained dynamics architecture does not harm performance, and may even slightly benefit per-
 409 formance on held-out data. Interestingly, CT-NODE here had comparable performance to a NODE
 410 model with purely linear dynamics. We expect this may be due to the short decoding horizon that we
 411 used, which was important for making predictions in this naturalistic task with fairly inconsistent
 412 dynamics across climbing trials. CT-NODE also outperformed a model with RNN dynamics. In
 413 general, CT-NODE fared comparably or better than the performance of these other baselines.

414
 415 **4.3 RESULTS: DYNAMICS INTERPRETABILITY**

416 The CT-NODE model architecture allows us to interpret the functional interactions between neural
 417 populations across regions. We compared how these functional interactions changed across two
 418 different types of behavioral epochs, those where the mouse was climbing, and those where the
 419 mouse was not (and was primarily still). Separate CT-NODE models were fit to these different
 420 behaviors, and we computed the average influence of each population on each other across time
 421 (Fig. 5C). As expected, we found that functional interactions were substantially stronger during
 422 climbing than non-climbing periods. Interestingly, during climbing, we found that the I influence
 423 from M1 to M2 was stronger than M2 to M1. (We emphasize that these are purely functional
 424 influences, as there are not anatomical I projections across regions). This modeling result could help
 425 to explain past surprising experimental results during climbing in which inactivating M2 led to a
 426 smaller effect in M1, relative to inactivating M1's influence on M2 (Kristl et al., 2025) (which is
 427 flipped from classical hierarchical descriptions of M2 impacting M1).

428
 429 **5 DISCUSSION**
 430

431 Here, we introduced Cell-type neural ordinary differential equation (CT-NODE) models, that en-
 able modeling the interactions between E and I populations within a flexible nonlinear dynamical

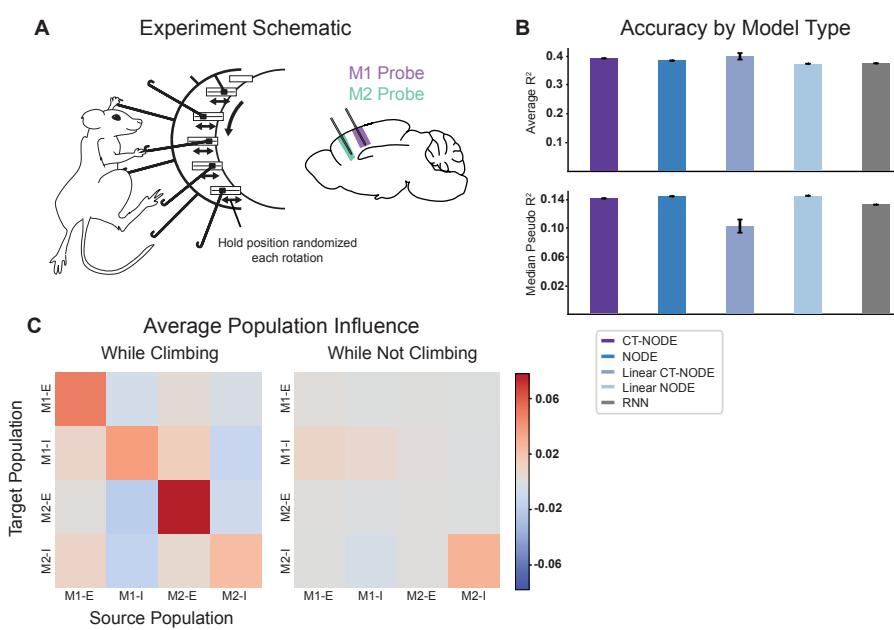


Figure 5: *Naturalistic Climbing Task Setup, Model Performance, and Interpretability*. **A)** Schematic describing mouse task. Probes inserted into M1 and M2 recorded neural activity during self-paced climbing. **B)** Future prediction accuracy is compared across model types. On top, the R^2 of the population averages. On bottom, the median pseudo- R^2 of individual neurons' spike count predictions. **C)** The average (over time) extent to which each population drives the others' dynamics (their 'influence'), for CT-NODE models trained on climbing and non-climbing data.

system. In synthetic and recorded Neuropixels probe datasets, we demonstrated how they retain the prediction accuracy of standard NODE models, while providing a newfound interpretability of how constituent populations drive the overall dynamics of a system.

A model limitation is assuming that we know the cell type identities of all neurons. Classifying neurons as E or I based on waveform characteristics, as we did with the recorded neural data, is an imperfect heuristic. While we showed initial results that we could learn cell types with partial knowledge - in particular if a portion of the neurons had known cell classes, it would be valuable for future work to extend this line of inquiry. For instance, to model the scenario where we are unsure about many cell types (e.g. due to imperfect waveform classification), we could couple L1 regularization for sparsity, with Tikhonov regularization to penalize readout weights inversely to the confidence we have about the classification.

Another central limitation of our current work is that the NODEs are fully deterministic in their dynamics and do not model noise in the underlying dynamics. Thus, the way that the model accounts for single-trial noise and variability is fully through the learned initial condition. The 'ground-truth' in the synthetic data is that the initial conditions for trials in which the two different E populations end up winning are actually almost identical - rather, a combination of input noise early on, coupled with the E/I dynamics, drives the model towards one solution. Using deterministic NODEs to best model this system, the models rather learned two separate locations of initial conditions for the trials in which the two E populations won. Thus, it would be valuable in future work to extend our CT-NODE framework to neural stochastic differential equations (NSDEs), which have successfully modeled neural activity (Kim et al., 2023). The dynamics architecture we developed should be readily interchangeable for standard NODE dynamics within NSDEs. In fact, our proposed dynamics architecture could more generally offer a path towards understanding cell-type-constrained interactions within a broad range of architectures of nonlinear dynamical systems modeling (Hernandez et al., 2018; Karniol-Tambour et al., 2022; Liu et al., 2025).

486

6 REPRODUCIBILITY STATEMENT

488 Details of all datasets and preprocessing steps are outlined in sections 3 and 4. The CT-Node details
 489 are outlined in section 2.3 and comparison model details are outlined in Appendix A. Anonymous
 490 source code is provided in the supplementary materials of the submission, and upon acceptance, the
 491 code and datasets will be publicly shared.

493

REFERENCES

495 Misha B Ahrens, Michael B Orger, Drew N Robson, Jennifer M Li, and Philipp J Keller. Whole-
 496 brain functional imaging at cellular resolution using light-sheet microscopy. *Nature methods*, 10
 497 (5):413–420, 2013.

498 Manuel Beiran and Ashok Litwin-Kumar. Prediction of neural activity in connectome-constrained
 499 recurrent networks. *bioRxiv*, 2024.

501 John P Cunningham and Byron M Yu. Dimensionality reduction for large-scale neural recordings.
 502 *Nature neuroscience*, 17(11):1500–1509, 2014.

504 Hennie Daniels and Marina Velikova. Monotone and partially monotone neural networks. *IEEE
 505 Transactions on Neural Networks*, 21(6):906–917, 2010.

506 Abhranil Das and Ila R Fiete. Systematic errors in connectivity inferred from activity in strongly
 507 recurrent networks. *Nature Neuroscience*, 23(10):1286–1296, 2020.

509 Matthew Dowling and Cristina Savin. Nonlinear multiregion neural dynamics with parametric im-
 510 pulse response communication channels. In *The Thirteenth International Conference on Learning
 511 Representations*.

513 Joshua Glaser, Matthew Whiteway, John P Cunningham, Liam Paninski, and Scott Linderman. Re-
 514 current switching dynamical systems models for multiple interacting neural populations. *Ad-
 515 vances in neural information processing systems*, 33:14867–14878, 2020.

516 Evren Gokcen, Anna I Jasper, João D Semedo, Amin Zandvakili, Adam Kohn, Christian K Machens,
 517 and Byron M Yu. Disentangling the flow of signals between populations of neurons. *Nature
 518 Computational Science*, 2(8):512–525, 2022.

520 Evren Gokcen, Anna Jasper, Alison Xu, Adam Kohn, Christian K Machens, and Byron M Yu.
 521 Uncovering motifs of concurrent signaling across multiple neuronal populations. *Advances in
 522 Neural Information Processing Systems*, 36:34711–34722, 2023.

523 Daniel Hernandez, Antonio Khalil Moretti, Ziqiang Wei, Shreya Saxena, John Cunningham, and
 524 Liam Paninski. Nonlinear evolution via spatially-dependent linear dynamics for electrophysi-
 525 ology and calcium data. *arXiv preprint arXiv:1811.02459*, 2018.

527 Takahide Itokazu, Masashi Hasegawa, Rui Kimura, Hironobu Osaki, Urban-Raphael Albrecht,
 528 Kazuhiro Sohya, Shubhodeep Chakrabarti, Hideaki Itoh, Tetsufumi Ito, Tatsuo K Sato, et al.
 529 Streamlined sensory motor communication through cortical reciprocal connectivity in a visually
 530 guided eye movement task. *Nature communications*, 9(1):1–14, 2018.

531 Aditi Jha, Diksha Gupta, Carlos Brody, and Jonathan W Pillow. Disentangling the roles of dis-
 532 tinct cell classes with cell-type dynamical systems. *Advances in Neural Information Processing
 533 Systems*, 37:33668–33690, 2024.

535 Trisha Jha, Omid G Sani, Bijan Pesaran, and Maryam M Shanechi. Prioritized learning of cross-
 536 population neural dynamics. *Journal of Neural Engineering*, 2025.

538 James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Marius Bauza, Brian Barbar-
 539 its, Albert K Lee, Costas A Anastassiou, Alexandru Andrei, Çağatay Aydin, et al. Fully integrated
 silicon probes for high-density recording of neural activity. *Nature*, 551(7679):232–236, 2017.

- 540 Orren Karniol-Tambour, David M Zoltowski, E Mika Diamanti, Lucas Pinto, David W Tank, Car-
 541 los D Brody, and Jonathan W Pillow. Modeling communication and switching nonlinear dynamics
 542 in multi-region neural activity. *bioRxiv*, pp. 2022–09, 2022.
- 543
- 544 Stephen L Keeley, David M Zoltowski, Mikio C Aoi, and Jonathan W Pillow. Modeling statistical
 545 dependencies in multi-region spike train data. *Current opinion in neurobiology*, 65:194–202,
 546 2020.
- 547 Timothy D Kim, Thomas Z Luo, Jonathan W Pillow, and Carlos D Brody. Inferring latent dy-
 548 namics underlying neural population activity via neural differential equations. In *International
 549 Conference on Machine Learning*, pp. 5551–5561. PMLR, 2021.
- 550
- 551 Timothy Doyeon Kim, Thomas Zhihao Luo, Tankut Can, Kamesh Krishnamurthy, Jonathan W Pil-
 552 low, and Carlos D Brody. Flow-field inference from neural data using deep recurrent networks.
 553 *bioRxiv*, 2023.
- 554 Sai Koukuntla, Joshua B Julian, Jesse C Kaminsky, Manuel Schottendorf, David W Tank, Carlos D
 555 Brody, and Adam S Charles. Unsupervised discovery of the shared and private geometry in multi-
 556 view data. *arXiv preprint arXiv:2408.12091*, 2024.
- 557
- 558 Amy Kristl, Natalie Koh, Mark Agrios, Sajishnu Savya, Zhengyu Ma, Diya Basrai, Sarah Hsu, and
 559 Andrew Miri. Interactions between motor cortical forelimb regions and their influence on muscles
 560 reorganize across behaviors. *bioRxiv*, pp. 2025–01, 2025.
- 561 Weihua Li, Chengrui Li, Yule Wang, and Anqi Wu. Multi-region markovian gaussian process: An
 562 efficient method to discover directional communications across multiple brain regions. *Proced-
 563 ings of machine learning research*, 235:28112, 2024.
- 564 Belle Liu, Jacob Sacks, and Matthew D Golub. Accurate identification of communication between
 565 multiple interacting neural populations. *arXiv preprint arXiv:2506.19094*, 2025.
- 566
- 567 Thomas Zhihao Luo, Timothy Doyeon Kim, Diksha Gupta, Adrian G Bondy, Charles D Kopec,
 568 Verity A Elliott, Brian DePasquale, and Carlos D Brody. Transitions in dynamical regime and
 569 neural mode during perceptual decisions. *Nature*, pp. 1–11, 2025.
- 570 Jakob H Macke, Lars Buesing, John P Cunningham, Byron M Yu, Krishna V Shenoy, and Maneesh
 571 Sahani. Empirical models of spiking in neural populations. *Advances in neural information
 572 processing systems*, 24, 2011.
- 573
- 574 Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
 575 Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg,
 576 et al. Inferring single-trial neural population dynamics using sequential auto-encoders. *Nature
 577 methods*, 15(10):805–815, 2018.
- 578 Matthew G Perich, Charlotte Arlt, Sofia Soares, Megan E Young, Clayton P Mosher, Juri Minxha,
 579 Eugene Carter, Ueli Rutishauser, Peter H Rudebeck, Christopher D Harvey, et al. Inferring brain-
 580 wide interactions using data-constrained recurrent neural network models. *BioRxiv*, pp. 2020–12,
 581 2020.
- 582 Biljana Petreska, Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen Ryu, Krishna V
 583 Shenoy, and Maneesh Sahani. Dynamical segmentation of single trials from population neural
 584 data. *Advances in neural information processing systems*, 24, 2011.
- 585
- 586 Astrid A Prinz, Dirk Bucher, and Eve Marder. Similar network activity from disparate circuit pa-
 587 rameters. *Nature neuroscience*, 7(12):1345–1352, 2004.
- 588
- 589 Britton A Sauerbrei, Jian-Zhong Guo, Jeremy D Cohen, Matteo Mischiati, Wendy Guo, Mayank
 590 Kabra, Nakul Verma, Brett Mensh, Kristin Branson, and Adam W Hantman. Cortical pattern
 591 generation during dexterous movement is input-driven. *Nature*, 577(7790):386–391, 2020.
- 592
- 593 Andrew R Sedler, Christopher Versteeg, and Chethan Pandarinath. Expressive architectures enhance
 594 interpretability of dynamics-based neural population models. *Neurons, behavior, data analysis,
 595 and theory*, 2023:10–51628, 2023.

- 594 Joao D Semedo, Amin Zandvakili, Adam Kohn, Christian K Machens, and Byron M Yu. Extracting
 595 latent structure from multiple interacting neural populations. *Advances in neural information*
 596 *processing systems*, 27, 2014.
- 597 H Francis Song, Guangyu R Yang, and Xiao-Jing Wang. Training excitatory-inhibitory recurrent
 598 neural networks for cognitive tasks: a simple and flexible framework. *PLoS computational biology*,
 599 12(2):e1004792, 2016.
- 600 Jeffrey N Stirman, Ikuko T Smith, Michael W Kudenov, and Spencer L Smith. Wide field-of-
 601 view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. *Nature*
 602 *biotechnology*, 34(8):857–862, 2016.
- 603 Waide B Tristram and Karen L Bradshaw. Hydra: A python framework for parallel computing. In
 604 *Communicating Process Architectures 2009*, pp. 311–324. IOS Press, 2009.
- 605 Ch Tsitouras. Runge–kutta pairs of order 5 (4) satisfying only the first column simplifying assumption.
 606 *Computers & mathematics with applications*, 62(2):770–775, 2011.
- 607 Xiao-Jing Wang. Probabilistic decision making by slow reverberation in cortical circuits. *Neuron*,
 608 36(5):955–968, 2002.

612 A COMPARISON MODELS

613 As stated in section 2.5, multiple dynamics models were trained to serve as comparison points to
 614 the CT-NODE model. The GRU-based encoder and linear mapping from hidden state h to initial
 615 latent z_0 outlined in 3 was held constant across all model types. All models also contained a dropout
 616 layer with probability p after the GRU encoder and before the linear mapping to the latents. Training
 617 hyperparameters were also kept constant between models, however specific hyperparameter values
 618 varied across tasks. All models were optimized with an Adam optimizer with a specified weight de-
 619 cay. The table below summarizes the hyperparameter differences across the simulated and climbing
 620 tasks the models were applied to.

623 Hyperparameter Differences across Datasets		
624 Hyperparameter	625 Simulated Task	626 Climbing Task
627 epochs	3000	200
628 learning rate	0.001	0.0003
batch size	16	256
weight decay	0.0	1e-5
dropout (p)	0.05	0.3

630 The sections below outline any important differences between the model dynamics and/or readouts.

632 A.1 LINEAR CT-NODE

633 As the name implies, the Linear CT-NODE is the linear version of the CT-NODE model. The dy-
 634 namics of this model are described by 8, however the dynamics functions, \tilde{f}_{jk} , do not contain a
 635 nonlinear activation function and their outputs are not wrapped in a softplus activation. The readout
 636 is identical to the standard CT-NODE described by 9. The hidden dimensionalities of each mono-
 637 tonic neural network are the same as in the CT-NODE model with a dimensionality of 32 for the
 638 simulated task and 64 for the climbing task.

641 A.2 UNCONSTRAINED NONLINEAR AND LINEAR NODES

642 The dynamics of both the unconstrained nonlinear and linear NODEs are described by 1, where f_θ
 643 is parameterized by a two-layer neural network:

$$644 f_\theta(z_{t-1}) = W_2\phi(W_1z_{t-1} + b_1) + b_2, \quad (11)$$

645 The activation function, ϕ , is the *tanh* nonlinear activation function for the Nonlinear NODE and
 646 the Identity function for the Linear NODE. Weight matrices W_1 and W_2 are not constrained to be

648 monotonic, as in the CT-NODE models. The two-layer neural network has a hidden dimensionality,
 649 h , set to 128 for both the simulated and climbing tasks. The readout of this model is described by 9,
 650 however, W_{dec} is not constrained to be monotonic.
 651

652 **A.3 STANDARD RNN**
 653

654 The dynamics of this model are described by 1, where f_θ is a standard RNN with no input.
 655

656
$$f_\theta(z_{t-1}) = \tanh(W_{rnn}z_{t-1} + b_{rnn}) \quad (12)$$

 657

658 Again, the weight matrix W_{rnn} and the readout weight matrix, W_{dec} described by 9, are not con-
 659 strained to be monotonic.
 660

661 **B METRICS**
 662

663 **B.1 AVERAGE R^2 SCORE**
 664

665 The first metric to evaluate model reconstruction performance is the average R^2 score. This metric
 666 describes the goodness of fit between the average observed spikes and average predicted rates (as
 667 shown in Fig. 2C). It is computed by calculating the standard R^2 score between the mean spiking
 668 activity and mean predicted rates across all neurons within each population for each individual trial.
 669 The reported average R^2 scores in the Results sections are the mean scores across all trials and
 670 across all neural populations.
 671

672 **B.2 PSEUDO R^2 SCORE**
 673

674 The Pseudo R^2 score is a goodness-of-fit metric that generalizes the standard R^2 to models with
 675 non-Gaussian response variables, such as the Poisson distribution commonly used for neural spike
 676 counts. It quantifies the model’s performance by comparing the log-likelihood of its predictions to
 677 that of the mean spike count across an entire trial. We did this for individual neurons, for each trial,
 678 then averaged across neurons, giving us the average single-trial neuron pseudo- R^2 .
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701