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ABSTRACT

Understanding how populations of individual neurons interact to shape the over-
all dynamics of neural activity is a central question in computational and systems
neuroscience. Recent work has shown that neural ordinary differential equation
(NODE) models are able to model neural activity dynamics with high accuracy
and interpretability of the underlying dynamics. However, existing NODE mod-
els treat all neurons as part of a homogenous group, preventing understanding how
underlying neural populations (e.g. cell types) contribute to the overall dynamics.
Here, we introduce Cell-Type NODE (CT-NODE) models. These models A) de-
compose the overall dynamics into components specific to each population, allow-
ing understanding each population’s interactions with one another; and B) provide
biological constraints on the contributions of excitatory and inhibitory populations
towards the dynamics, using a variant of monotonic neural networks. Using both
synthetic and recorded neural activity data during a naturalistic climbing task,
we show that CT-NODE models can provide equivalent, or greater, accuracy of
dynamics modeling compared to standard NODE models, while enabling a new-
found biologically-constrained understanding of neural populations’ interactions
and roles in the underlying dynamics.

1 INTRODUCTION

Recent advances in large-scale neural recordings reveal rich, high-dimensional population activity
that invites dynamical systems explanations (Jun et al., 2017; Stirman et al., 2016; Ahrens et al.,
2013; Sauerbrei et al., 2020; Itokazu et al., 2018). Latent dynamical models capture these data
via low-dimensional states whose temporal evolution generates observed activity, achieving strong
denoising and alignment with behavior (Macke et al., 2011; Petreska et al., 2011; Pandarinath et al.,
2018).

Neural ordinary differential equation models (Neural ODEs, or NODEs), which model the change
of dynamics over time with flexible neural networks, have recently emerged as a promising ap-
proach towards modeling the latent dynamics of neural population activity. NODEs have been
shown to have excellent accuracy, predicting neural activity data more accurately than recurrent
neural network (RNN) models (Kim et al., 2021). They have also demonstrated accurate model-
ing of low-dimensional dynamics within a low-dimensional space, whereas RNN models require a
greater dimensionality (due to their less flexible dynamics) to accurately capture low-dimensional
dynamics (Sedler et al., 2023). NODEs also can provide a particularly interpretable view of the
underlying dynamics, as flow fields can easily be drawn in the low-dimensional space demonstrat-
ing how neural activity evolves over time, as was recently done to discover neural underpinnings of
decision commitment (Luo et al., 2025).

Despite great promise, there are two fundamental limitations of existing NODE models, especially
relating to modeling widely emerging datasets with multiple recorded neural populations (e.g. brain
regions and cell types). First, there has been great interest in understanding and modeling the roles
of, and interactions between, different neural populations (Keeley et al., 2020; Perich et al., 2020;
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Liu et al., 2025; Dowling & Savin; Cunningham & Yu, 2014; Li et al., 2024; Koukuntla et al., 2024;
Jha et al., 2025; Gokcen et al., 2022; 2023). This is evidenced by recent work within other dynamics
architectures, for example linear (Semedo et al., 2014), switching linear (Glaser et al., 2020), and
switching nonlinear dynamical systems (Karniol-Tambour et al., 2022), to decompose the overall
latent dynamics into the sum of the influences of different populations. It is not possible within
current NODE models to understand how populations interact to drive the overall neural dynamics
of the system. Second, biological neural circuits comprise distinct excitatory (E) and inhibitory (I)
cell populations with sign-constrained interactions (Dale’s law). Unlike dynamics architectures like
RNNs (Song et al., 2016) and linear dynamical systems (Jha et al., 2024), current NODE models
don’t enable incorporating these biological constraints. This omission prevents constraining the
dynamics of models (which are often poorly constrained (Prinz et al., 2004; Das & Fiete, 2020;
Beiran & Litwin-Kumar, 2024) toward biological solutions, and obscures how distinct cell classes
contribute to circuit computations.

To tackle these challenges, we developed cell-type-aware neural ordinary differential equation (CT-
NODE) model dynamics. CT-NODE assigns separate latent subspaces to E and I populations and
constrains cross-population influences in this latent space to respect Dale’s law so that E (and I) neu-
rons only excite (and inhibit). To do so, we develop a dynamics parameterization that builds upon
monotonic neural networks (Daniels & Velikova, 2010), which enables the dynamics to retain the
flexibility inherent to NODE models, while now respecting biological constraints. After formulat-
ing the model (Section 2), we evaluate our model on synthetic data generated from a winner-take all
decision-making circuit (Section 3), and naturalistic mouse climbing data recorded in primary (M1)
and secondary (M2) motor areas (Section 4). We demonstrate how CT-NODE models enable inter-
preting how individual populations contribute to the overall dynamics (e.g. within flow fields), and
how they interact with each other over time, which is not possible within standard NODE models.
Crucially, this added biological interpretability does not come at the cost of prediction performance
versus competing models. Together, our findings suggest a path toward simple, accurate, and bio-
logically grounded latent dynamics that elucidate computation in neural circuits.
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Figure 1: CT-NODE Schematic. (Left) Raster plots of neural firing rates over time for three example
populations. (Right) A schematic of our CT-NODE model is trained to infer population interactions
from neural activity for both E and I populations, with positive (dot), negative (line), and uncon-
strained (dashed arrow) interactions.

2 CELL-TYPE NEURAL ORDINARY DIFFERENTIAL EQUATIONS (CT-NODE)

2.1 BACKGROUND: NEURAL ORDINARY DIFFERENTIAL EQUATIONS (NODES)

NODEs model the dynamics of a variable z at time t are learned according to:

zt = zt−1 +

∫ t

t−1

fθ
(
zt−1

)
dt (1)

where fθ is a neural network parameterizing the latent dynamics vector field, and can be interpreted
as the rate of change of z over time (its derivative). Critically, this formulation provides a skip
connection from the previous state, zt−1, focusing fθ’s full expressivity towards dynamics.

2.2 BACKGROUND: NODE-BASED SEQUENTIAL AUTOENCODERS

Here, as in past work, (Sedler et al., 2023), we model the high-dimensional neural activity as having
a lower-dimensional latent representation, and the NODE dynamics occur within this latent state.
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This framework has been referred to as a NODE-based sequential autoencoder (Sedler et al., 2023),
although we will here just refer to these models as NODEs for brevity.

Let xt ∈ RN denote the observed binned spike counts of N neurons at time t. Predicted firing rates
ŷt are mapped from D latents zt ∈ RD with weights W dec and biases bdec, according to:

ŷt = exp
(
W dec zt + bdec

)
, x̂t ∈ RN> 0. (2)

Neural dynamics evolve in this lower dimensional state according to the dynamics specific in equa-
tion 1. The dynamics evolve in a deterministic matter from a learned initial latent state (the initial
condition), z0. For each sequence (e.g. trial) of data that is modeled, a separate initial condition is
learned. We learn initial conditions by passing the high-dimensional neural activity through a Gated
Recurrent Unit (GRU)-based encoder. More precisely, spike counts x over time Tenc are input into
a GRU with learned weights ϕ, and whose hidden state h is linearly mapped to the initial latent z0
using encoder weights Wenc and biases benc.

h = GRUϕ

(
x1:Tenc

)
, z0 = Wenc h + benc (3)

2.3 THE CT-NODE MODEL

To disentangle the roles of distinct cell types in a population, we modify the standard NODE model
in two ways: (1) we define a distinct set of latent variables for the activity of each cell class; and (2)
we constrain the dynamics to obey functional properties of these cell types. We refer to the resulting
models as Cell-Type Neural Ordinary Differential Equations (CT-NODE) models.

2.3.1 CONSIDERING SINGLE POPULATIONS OF EXCITATORY AND INHIBITORY NEURONS

Let’s first assume we have a single E and single I population. We use distinct sets of latents for E
(zE) and I (zI ), where each population can have multiple latents, DE and DI respectively. We can
thus write out the entire latent state as:

z =

[
zE

zI

]
, zE ∈ RDE , zI ∈ RDI , DE +DI = D (4)

We model the change in dynamics (i.e., the latent vector field) as the sum of a term capturing
population interactions plus a nonlinear self-term. The E population changes over time due to its
intrinsic dynamics fEE(z

E) and its interactions with the I population fEI(z
I). Similarly, the I

population changes over time due to its intrinsic dynamics fII(z
I) and its interactions with the E

population fIE(z
E).

zEt = zEt−1 +

∫ t

t−1

fEE(z
E
t−1) + fEI(z

I
t−1) dt,

zIt = zIt−1 +

∫ t

t−1

fII(z
I
t−1) + fIE(z

E
t−1) dt

(5)

We take two steps to impose Dale’s law constraints on the latent interactions for fIE and fEI – that
is, to ensure that the influence from I latents is negative and E latents is positive. We’ll initially
describe this for E latents. First, for these functions, we use feedforward monotonic neural networks
(Daniels & Velikova, 2010), where all the weights within the network are constrained to be nonneg-
ative. Thus, an increasing input to fIE leads to an increasing output. This can be thought of as a
nonlinear equivalent of a nonnegative weight in a linear mapping. Still, this alone does not provide
ultimate interpretability, as if the E latent itself has a negative value, the output can also be negative
(which is also a current limitation of applying Dale’s law within linear dynamical systems). Thus,
second, we pass the output of our monotonic neural network through a softplus function to ensure
the output is positive. When modeling the I outputs, we simply take the negative of this approach,
ensuring a monotonically decreasing function with negative output:

fIE = softplus
(
f̃IE

)
, fEI = − softplus

(
f̃EI

)
(6)

where f̃ are monotonic neural networks. Overall, this approach allows learning flexible nonlinear
dynamics, as in classic NODE models, but while retaining relevant E/I constraints.
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The intrinsic self-terms fII and fEE are left as unconstrained feedforward neural networks, similar
to how diagonal terms have been left unconstrained in E/I constrained linear dynamical systems (Jha
et al., 2024). This is important for allowing populations’ activities to ’leak’ back to a baseline level.

2.3.2 CONSIDERING MULTIPLE POPULATIONS OF EXCITATORY AND INHIBITORY NEURONS

We now extend our above framework to the more general scenario of multiple E and I popula-
tions. For example, if there are E and I populations from multiple brain regions, our objective is to
characterize how all these populations interact within and across regions. In the general case, the
dynamics of each population is the sum of the ’influences’ from all other populations, along with its
own intrinsic dynamics. For K simultaneously recorded populations, we assign population-specific
dynamics functions for the jth population with learned population interactions, fjk, and intrinsic
dynamics, fjj , as:

z =

z
1

...
zj

 , zj ∈ RDj , (7)

zjt = zjt−1 +

∫ t

t−1

fjj(z
j
t−1) +

K∑
k ̸=j

fjk(z
k
t−1))dt (8)

The dynamics functions fjk are parameterized as in equation 6 to follow Dale’s law, where source
E influences are positive and monotonically increasing, and source I influences are negative and
monotonically decreasing, while the self-term is unconstrained.

2.3.3 MAPPING TO THE HIGH-DIMENSIONAL NEURAL SPACE

So that latent groups can be interpreted as corresponding to prespecified neural populations, we have
specified latent groups (e.g., zE vs. zI ) be constrained to map onto their corresponding pre-specified
neuron subsets (e.g. known E and I neurons). We can thus write the readout as:

X̂t = exp
(
W dec zt + bdec

)
W ← W ⊙Mpop (9)

where Mpop is a block-diagonal binary mask mapping latents to their corresponding neurons. We
note that in some experiments below, we relax this mask to test the ability of the model to learn
neuron types without prespecifying them all.

To ensure that the Dale’s law constraints remain present in the high-dimensional neural activity
space - e.g. all E neurons (not just E latents) have positive influences, we constrain all weights of
Wdec to be nonnegative, as in past work (Jha et al., 2024).

We also note that we tested more flexible nonlinear readouts within our initial experiments on sim-
ulated data below, and saw similar performance - thus, we use a linear readout for simplicity.

2.4 MODEL TRAINING

We minimize the negative log-likelihood (NLL) over T time steps and N neurons between predicted
rates Ŷ = [ŷ1...ŷN ]T , and observed firing activity X = [x1...xN ]T :

Lθ(X, Ŷ ) = − 1

TN

T∑
t=1

N∑
n=1

log Poisson
(
xt,n | ŷt,n

)
We initially trained two types of models - those that used the continuous integral version of the
model, as specified in equation 1, and also a discretized version where time steps are predicted
discretely from the previous time step. When using this continuous version, we computed NODE
trajectories using a Runge-Kutta solver (Tsitouras, 2011). As we saw equivalent performance be-
tween discrete and continuous versions while replicating the findings of Sedler et al. (2023), the
results below are shown for the discretized version of the models (with ∆t = 0.1), which has faster
training.
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zt = zt−1 +∆t ∗ fθ(zt−1) (10)

Models were optimized using backpropagation through time, with further details particular to ex-
periments (e.g. batch size, learning rate, and architecture hyperparameters) described in Appendix
A. Lastly, model training and hyperparameter sweeps were run both locally and on SLURM CPU
clusters using the Python library Hydra (Tristram & Bradshaw, 2009).

2.5 MODEL COMPARISONS

To serve as comparisons for our CT-NODE model, we additionally compared to several approaches
of modeling the dynamics: 1) standard nonlinear NODE dynamics, for the purpose of determin-
ing whether the cell-type-based dynamical constraints that facilitate interpretability are at the cost
of performance accuracy; 2) unconstrained linear dynamics and 3) cell-type constrained linear dy-
namics within the NODE framework, with the purpose of determining the importance of nonlinear
dynamics, as cell-type constraints have previously been implemented within linear models (Jha et al.,
2024) (although not this NODE formulation); 4) standard RNN dynamics, as cell-type constraints
have previously been implemented within RNNs (Song et al., 2016). Details of these models are
described in Appendix A.

3 APPLICATION TO SIMULATED NEURAL DATA

To demonstrate the feasibility of our method, we first validated its ability to recover known circuit
dynamics on synthetic data from a canonical decision-making circuit (Wang, 2002). Briefly, this
dataset consists of two E populations (E1 and E2), each containing 240 neurons, and one I population
containing 400 neurons. Together, these populations form a decision-making model that achieves
winner-take all competition between the two E populations based on feedback from the I population
(Fig. 2A). This is a biophysically realistic network model that produces spiking activity across these
three populations based on their interactions.

3.1 MODEL FITTING DETAILS

In this task, models were trained to reconstruct spiking activity from two-second trials where either
population E1 or E2 would exhibit a sustained increase in spiking activity (Winner-Take All; ex-
amples in Fig. 2A). A total of 80 trials were generated from the simulation and randomly split into
a training and validation set, with 80% of the trials used for training and 20% for validation. For
each trial, the spiking activity was binned into 20 millisecond (ms) bins, creating a trial sequence
length of 100 bins. Each 100-bin trial was input into each model to obtain the initial latent condition
before rolling out the dynamics and aiming to reconstruct the original sequence of neural activity.
The latents were partitioned by population with one latent per population (two E latents and one I
latent).

3.2 RESULTS: PREDICTION ACCURACY

We found that our CT-NODE model could make accurate predictions of the trajectories of neural
activity over time (Fig. 2C and 2D). We quantitatively compared the CT-NODE dynamics model
to several approaches of dynamics modeling (Fig. 2B; motivated and described in section 2.5 and
Appendix A). The CT-NODE slightly outperformed the NODE model, validating that introducing
dynamical constraints does not hinder reconstruction performance while also adding the benefit of
interpretability. In fact, the further constraints slightly helped predictions on held-out data. The
CT-NODE model also outperformed the Linear CT-NODE and Linear NODE models, which we
expected given that the winner-take all mechanism uses nonlinear dynamics. We also found that all
NODE models outperformed the RNN baseline, most likely due to the long prediction horizon of
this task.
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Synthetic Data Simulation
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Figure 2: Synthetic data predictions. A) Schematic of the synthetic dataset Wang (2002), including
two E populations and one I population. B) Future prediction accuracy is compared across model
types. On top, the R2 of the population averages. On bottom, the median pseudo-R2 of individual
neurons’ spike count predictions. C) Trial-average predictions against ground truth firing rates for
each population average. D) Example single-trial predictions for population averages.

3.3 RESULTS: DYNAMICS INTERPRETABILITY

The CT-NODE model recovered the dynamics of the winner-take-all system, including approximat-
ing the two distinct fixed-point attractors that correspond to the circuit’s stable decision states (Fig.
3A). Critically, the model’s interpretable structure allowed us to decompose the learned dynamics
into the influences from each population at a given time (the terms of the decomposition in equa-
tion 8; Fig. 3). This analysis confirmed that the stable states emerged from a balance of strong
self-excitation within the winning population and targeted inhibition from the shared I pool, where
individual population influence arrows cancel out at fixed points (Fig. 3A bottom, colored arrows;
Fig. 3B at the end of the trial). The early increase in activity is primarily driven by self-excitation,
prior to the I population increasing enough to balance out this excitation (Fig. 3A top, colored ar-
rows; Fig. 3B early in the trial). These results serve as a successful proof-of-concept, validating that
our framework can accurately learn and expose the underlying mechanisms of a nonlinear neural
dynamical system.

3.4 RESULTS: RELAXING MODEL CONSTRAINTS

In actual experiments, cell types of each recorded neuron are not always known. We thus tested
the ability of our model to infer the cell type labels when only a fraction of the neurons’ cell types
were known. We modified the readout mask (Mpop in equation 9) to have a block-diagonal structure
with only two blocks, one for both E populations (E1 and E2) and one for the I population. This
is because a researcher may only know E versus I, rather than knowing E1 or E2 ahead of time, as
we previously assumed. We then unmasked the off-diagonal sections of the readout mask at various
levels: 25%, 50%, and 75% (dashed boxes in Fig. 4) before training the CT-NODE model with an L1
penalty of 1e−4 on the unmasked readout weights. Using this approach, we find that the CT-NODE
model can accurately infer the cell-type identities of most of the unlabeled neurons. Additionally,
the CT-NODE model learns to separate the E latents into E1 and E2 latents (versus using both E
latents as a distributed code) without explicit instructions to do so (Fig. 4). When unlabeling half

6
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Figure 3: Synthetic data dynamics interpretability. A) Vector flow fields learned by CT-NODE of
E1 vs. E2 latents at two different values of I, corresponding to average I values at two different
time points early (top) and late (bottom) in the trial. Overlaid are two example trials where E1 and
E2 ’win’ (trajectories to lower left and upper right, respecively). In colored arrows, we plot the
contributions of individual populations towards the vector field at the listed times. Influence arrows
at time 200 ms show strong, non-zero self-influence from the winning population. Influence arrows
at 1800 ms show near fixed-point cancellation between the winning E and I population. B) The
extent to which each latent population drives the flow field dynamics (’influences’) of E1 (top row)
and E2 (bottom row) latents. Columns separate trial averages by trial type.

of the E or I neurons, the model can identify the cell-types of these unidentified neurons with an
accuracy of 98.0%. Even when only 25% are known, the model achieves an accuracy of 92.7%.
This provides a proof of principle for the ability to apply CT-NODE models when not all cell classes
are known, and additionally, to discover these unknown cell class identities.
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Figure 4: Learning unlabeled cell types. CT-NODE readout weights are shown across varying levels
of constraints. Each row (neuron) is normalized to have a maximum value of 1 - thus, the color of
each cell in a row denotes the relative amount each latent is used to predict a given neurons activity.
Here, we only constrained a portion of the readout, under the assumption that only a portion of
neurons’ cell types were known. Within the dashed lines, the readout was forced to be 0, and all
other values were learned (e.g. for the 50% constrained scenario, we enforced that 50% of the
excitatory neurons could not map to the inhibitory latent, and that 50% of the inhibitory neurons
could not map to the excitatory latents. Cell classes were generally inferred correctly by CT-NODE
when using partial readout masks.
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4 APPLICATION TO NEURAL RECORDINGS DURING NATURALISTIC
CLIMBING

We next modeled datasets in which motor regions primary motor cortex (M1) and secondary motor
cortex (M2) are simultaneously recorded in mice with Neuropixels probes, while they performed a
naturalistic, self-paced climbing task (Kristl et al., 2025) (Fig. 5A).

4.1 MODEL FITTING DETAILS

We fit models to binned spiking activity of 189 neurons across regions M1 and M2 of a single mouse.
Consistent with prior work, we classified neurons into I and E classes based on their waveform. With
a threshold width of 13 ms, neurons above this threshold were classified as E and neurons below were
classified as I (Kristl et al., 2025).

In total, our dataset contained four populations of neurons: M1-E (45 neurons), M1-I (19), M2-E
(109), and M2-I (16). All spiking activity was binned into 20 ms bins and neurons with a firing
rate less than 0.5 Hz across all trials were labeled as ”silent” and removed. Models were trained
and evaluated on a total of 227 trials of varying durations when the mouse was actively climbing.
We randomly split the data by climbing trials, with 80% of the trials used for training and 20%
for validation, making sure the split accounted for total climbing time (the training and validation
set contained 80% and 20% of the total climbing time, respectively). To deal with the inconsistent
trial lengths, each trial was split into 260 ms windows (13 bins) with 240 ms of overlap (12 bins).
When inputting the windows into each model, we considered a context window of 200 ms (10
bins) for the initial condition encoder to causally predict a subsequent 60 ms (3 bins) horizon. We
removed the GRU encoder’s bidirectional property to reduce model complexity for causal training
and evaluation. Population latent dimensionalities were sized to reflect the respective number of
neurons in each neural population (15 for E and 6 for I populations, resulting in 42 latents total).

4.2 RESULTS: PREDICTION ACCURACY

As in the synthetic dataset, we compared the accuracy of our model with several other architec-
tures (Fig. 5B). CT-NODE slightly outperformed a standard NODE, again demonstrating that the
constrained dynamics architecture does not harm performance, and may even slightly benefit per-
formance on held-out data. Interestingly, CT-NODE here had comparable performance to a NODE
model with purely linear dynamics. We expect this may be due to the short decoding horizon that we
used, which was important for making predictions in this naturalistic task with fairly inconsistent
dynamics across climbing trials. CT-NODE also outperformed a model with RNN dynamics. In
general, CT-NODE fared comparably or better than the performance of these other baselines.

4.3 RESULTS: DYNAMICS INTERPRETABILITY

The CT-NODE model architecture allows us to interpret the functional interactions between neural
populations across regions. We compared how these functional interactions changed across two
different types of behavioral epochs, those where the mouse was climbing, and those where the
mouse was not (and was primarily still). Separate CT-NODE models were fit to these different
behaviors, and we computed the average influence of each population on each other across time
(Fig. 5C). As expected, we found that functional interactions were substantially stronger during
climbing than non-climbing periods. Interestingly, during climbing, we found that the I influence
from M1 to M2 was stronger than M2 to M1. (We emphasize that these are purely functional
influences, as there are not anatomical I projections across regions). This modeling result could help
to explain past surprising experimental results during climbing in which inactivating M2 led to a
smaller effect in M1, relative to inactivating M1’s influence on M2 (Kristl et al., 2025) (which is
flipped from classical hierarchical descriptions of M2 impacting M1).

5 DISCUSSION

Here, we introduced Cell-type neural ordinary differential equation (CT-NODE) models, that en-
able modeling the interactions between E and I populations within a flexible nonlinear dynamical
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Figure 5: Naturalistic Climbing Task Setup, Model Performance, and Interpretability. A) Schematic
describing mouse task. Probes inserted into M1 and M2 recorded neural activity during self-paced
climbing. B) Future prediction accuracy is compared across model types. On top, the R2 of the
population averages. On bottom, the median pseudo-R2 of individual neurons’ spike count predic-
tions. C) The average (over time) extent to which each population drives the others’ dynamics (their
’influence’), for CT-NODE models trained on climbing and non-climbing data.

system. In synthetic and recorded Neuropixels probe datasets, we demonstrated how they retain the
prediction accuracy of standard NODE models, while providing a newfound interpretability of how
constituent populations drive the overall dynamics of a system.

A model limitation is assuming that we know the cell type identities of all neurons. Classifying
neurons as E or I based on waveform characteristics, as we did with the recorded neural data, is
an imperfect heuristic. While we showed initial results that we could learn cell types with partial
knowledge - in particular if a portion of the neurons had known cell classes, it would be valuable
for future work to extend this line of inquiry. For instance, to model the scenario where we are
unsure about many cell types (e.g. due to imperfect waveform classification), we could couple L1
regularization for sparsity, with Tikhonov regularization to penalize readout weights inversely to the
confidence we have about the classification.

Another central limitation of our current work is that the NODEs are fully deterministic in their dy-
namics and do not model noise in the underlying dynamics. Thus, the way that the model accounts
for single-trial noise and variability is fully through the learned initial condition. The ’ground-truth’
in the synthetic data is that the initial conditions for trials in which the two different E populations
end up winning are actually almost identical - rather, a combination of input noise early on, coupled
with the E/I dynamics, drives the model towards one solution. Using deterministic NODEs to best
model this system, the models rather learned two separate locations of initial conditions for the tri-
als in which the two E populations won. Thus, it would be valuable in future work to extend our
CT-NODE framework to neural stochastic differential equations (NSDEs), which have successfully
modeled neural activity (Kim et al., 2023). The dynamics architecture we developed should be read-
ily interchangeable for standard NODE dynamics within NSDEs. In fact, our proposed dynamics
architecture could more generally offer a path towards understanding cell-type-constrained interac-
tions within a broad range of architectures of nonlinear dynamical systems modeling (Hernandez
et al., 2018; Karniol-Tambour et al., 2022; Liu et al., 2025).
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6 REPRODUCIBILITY STATEMENT

Details of all datasets and preprocessing steps are outlined in sections 3 and 4. The CT-Node details
are outlined in section 2.3 and comparison model details are outlined in Appendix A. Anonymous
source code is provided in the supplementary materials of the submission, and upon acceptance, the
code and datasets will be publicly shared.
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A COMPARISON MODELS

As stated in section 2.5, multiple dynamics models were trained to serve as comparison points to
the CT-NODE model. The GRU-based encoder and linear mapping from hidden state h to initial
latent z0 outlined in 3 was held constant across all model types. All models also contained a dropout
layer with probability p after the GRU encoder and before the linear mapping to the latents. Training
hyperparameters were also kept constant between models, however specific hyperparameter values
varied across tasks. All models were optimized with an Adam optimizer with a specified weight de-
cay. The table below summarizes the hyperparameter differences across the simulated and climbing
tasks the models were applied to.

Hyperparameter Differences across Datasets
Hyperparameter Simulated Task Climbing Task
epochs 3000 200
learning rate 0.001 0.0003
batch size 16 256
weight decay 0.0 1e-5
dropout (p) 0.05 0.3

The sections below outline any important differences between the model dynamics and/or readouts.

A.1 LINEAR CT-NODE

As the name implies, the Linear CT-NODE is the linear version of the CT-NODE model. The dy-
namics of this model are described by 8, however the dynamics functions, f̃jk, do not contain a
nonlinear activation function and their outputs are not wrapped in a softplus activation. The readout
is identical to the standard CT-NODE described by 9. The hidden dimensionalities of each mono-
tonic neural network are the same as in the CT-NODE model with a dimensionality of 32 for the
simulated task and 64 for the climbing task.

A.2 UNCONSTRAINED NONLINEAR AND LINEAR NODES

The dynamics of both the unconstrained nonlinear and linear NODEs are described by 1, where fθ
is parameterized by a two-layer neural network:

fθ(zt−1) = W2ϕ(W1zt−1 + b1) + b2, (11)

The activation function, ϕ, is the tanh nonlinear activation function for the Nonlinear NODE and
the Identity function for the Linear NODE. Weight matrices W1 and W2 are not constrained to be
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monotonic, as in the CT-NODE models. The two-layer neural network has a hidden dimensionality,
h, set to 128 for both the simulated and climbing tasks. The readout of this model is described by 9,
however, Wdec is not constrained to be monotonic.

A.3 STANDARD RNN

The dynamics of this model are described by 1, where fθ is a standard RNN with no input.

fθ(zt−1) = tanh(Wrnnzt−1 + brnn) (12)

Again, the weight matrix Wrnn and the readout weight matrix, Wdec described by 9, are not con-
strained to be monotonic.

B METRICS

B.1 AVERAGE R2 SCORE

The first metric to evaluate model reconstruction performance is the average R2 score. This metric
describes the goodness of fit between the average observed spikes and average predicted rates (as
shown in Fig. 2C). It is computed by calculating the standard R2 score between the mean spiking
activity and mean predicted rates across all neurons within each population for each individual trial.
The reported average R2 scores in the Results sections are the mean scores across all trials and
across all neural populations.

B.2 PSEUDO R2 SCORE

The Pseudo R2 score is a goodness-of-fit metric that generalizes the standard R2 to models with
non-Gaussian response variables, such as the Poisson distribution commonly used for neural spike
counts. It quantifies the model’s performance by comparing the log-likelihood of its predictions to
that of the mean spike count across an entire trial. We did this for individual neurons, for each trial,
then averaged across neurons, giving us the average single-trial neuron pseudo-R2.
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