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Abstract

This paper introduces AnyTrans, an001
all-encompassing framework for the task–002
Translate AnyText in the Image (TATI), which003
includes multilingual text translation and004
text fusion within images. Our framework005
leverages the strengths of large-scale models,006
such as Large Language Models (LLMs) and007
text-guided diffusion models, to incorporate008
contextual cues from both textual and visual009
elements during translation. The few-shot010
learning capability of LLMs allows for the011
translation of fragmented texts by considering012
the overall context. Meanwhile, the advanced013
inpainting and editing abilities of diffusion014
models make it possible to fuse translated015
text seamlessly into the original image while016
preserving its style and realism. Additionally,017
our framework can be constructed entirely018
using open-source models and requires no019
training, making it highly accessible and easily020
expandable. To encourage advancement in the021
TATI task, we have meticulously compiled a022
test dataset called MTIT6, which consists of023
multilingual text image translation data from024
six language pairs.025

1 Introduction026

Translating AnyText in the Image (TATI) has be-027

come an essential tool in our daily lives, transform-028

ing how we interact with the world. This capability029

extends to a wide range of applications, from facil-030

itating cross-cultural communication to supporting031

education, and playing a significant role in global032

business operations. Falling under the umbrella033

of multi-modal machine translation (MMT) (El-034

liott et al., 2016; Calixto et al., 2017; Elliott and035

Kádár, 2017; Libovický et al., 2018; Sulubacak036

et al., 2019), the process of translating text in im-037

ages is commonly known as Text Image Translation038

(TIT) (Ma et al., 2022; Lan et al., 2023). TIT aims039

to accurately convert text in source images into040

desired target languages.041
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Figure 1: Comparison between traditional image trans-
lation pipeline and our AnyTrans. Our AnyTrans com-
bines image information and context for more accurate
translation and generates more realistic text.

However, we argue that translated text alone is 042

insufficient. A seamless integration of text and 043

image is crucial for effectively conveying the in- 044

tended message. Thus, we believe that our pro- 045

posed task, Translate AnyText in the Image (TATI), 046

better aligns with practical needs. It not only aims 047

to translate textual content within an image but 048

also maintains the visual coherence and intrinsic 049

harmony of text and graphic elements, thereby en- 050

hancing the overall comprehensibility of texts in 051

images. 052

Current popular products, such as Google Image 053

Translation (Translate, b), Microsoft Image Trans- 054

lation (Translate, c), and Apple iOS Image Transla- 055

tion (Translate, a), have made significant progress 056

in translating text within images. However, as illus- 057

trated in Figure 1 (a), Microsoft Image Translation, 058

for instance, utilizes traditional machine translation 059

to translate text recognized by OCR models. It then 060

employs a simple rule to insert the translated text 061

back into the original image. Unfortunately, this 062

approach often overlooks the contextual relation- 063

ship between textual elements within images. This 064

oversight can result in inaccurate translations and 065

visual inconsistencies, thereby compromising the 066

authenticity of the newly generated image. 067
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To address the identified shortcomings, our068

framework illustrated in Figure 1 (b) significantly069

diverges from conventional text translation tasks070

in images. By leveraging the advanced contextual071

comprehension capabilities of LLMs, our approach072

achieves superior translation accuracy. Alterna-073

tively, the integration of a vision language model074

(VLM) may allow a dual consideration of both vi-075

sual and textual contexts within the source images,076

further enhancing translation quality.077

Our methodology unfolds in three consecutive078

steps. Initially, we utilize the latest PP-OCR (Du079

et al., 2020) to accurately locate the text within the080

image and decipher its content. This step is cru-081

cial for determining the exact area for text editing082

and translating the text content precisely. Secondly,083

once the text is identified, we employ a few-shot084

prompt learning strategy that enables (visual) lan-085

guage models to maintain the format during con-086

textual translation. This approach ensures that the087

translation is both contextually appropriate and lin-088

guistically accurate. Finally, we apply a modified089

AnyText (Tuo et al., 2023) to render the translated090

text back into the original image. In this phase,091

the translated text is fused into its original location,092

identified during the initial step. We propose re-093

sizing the anticipated text box by considering the094

length of the detected box, the original source text,095

and the translated target text. This modification096

maximizes the preservation of the original image’s097

style and produces a clean, new image. As shown098

in Figure 1 (b), our method does achieve superior099

translation quality and visual effects while preserv-100

ing the image’s legibility and aesthetic appeal. The101

new text seamlessly blends with the original visual102

context, maintaining both coherence and style.103

Our main contributions are as follows:104

(1) We present an integrated framework for the105

task–Translate AnyText in the Image (TATI), con-106

sisting of three key steps: source text detection and107

recognition, text image translation, and target text108

fusion.109

(2) Our method is training-free and can be built110

entirely on open-source models, yet it delivers re-111

sults that are comparable to or even surpass those112

of commercial, proprietary products.113

(3) We constructed a multilingual text image114

translation test dataset called MTIT6, which con-115

sists of translation data in six language pairs and116

is manually sequenced by humans, promoting the117

field of image translation. 118

2 Related Works 119

2.1 Text Image Translation and Multilingual 120

Translation 121

The field of multimodal machine translation 122

(MMT) (Caglayan et al., 2016; Huang et al., 2016; 123

Libovický and Helcl, 2017; Calixto et al., 2017; 124

Su et al., 2021) has witnessed remarkable advance- 125

ments in recent years, catalyzing a surge in schol- 126

arly and industry interest. The prevailing practical 127

demand for MMT is the translation of text within 128

images, known as text image translation (TIT) (Ma 129

et al., 2022; Mansimov et al., 2020; Jain et al.; Lan 130

et al., 2023). However, TIT leaves the image un- 131

changed, while integrating text translations directly 132

into images is essential for helping users under- 133

stand the meaning of both text and visuals. Tak- 134

ing these factors into account, we believe that our 135

proposed TATI task is more aligned with practical 136

requirements. 137

Meanwhile, Large Language Models (LLMs) 138

(Gao et al., 2024; Vilar et al., 2022; Zeng et al., 139

2023; Wu et al., 2021) have shown impressive mul- 140

tilingual translation proficiency. Integrating multi- 141

lingual translation (Dong et al., 2015; Firat et al., 142

2016; Neubig and Hu, 2018; Chen et al., 2017, 143

2022; Cheng, 2019) with image-to-image transla- 144

tion opens vast opportunities and has wide-ranging 145

applications, such as in cross-border e-commerce 146

platforms, among others. 147

2.2 Text Editing in Images 148

Recent advancements in image processing have 149

seen a burgeoning interest in text editing (Yang 150

et al., 2018b; Wu et al., 2019; He et al., 2023; Zhu 151

et al.; Ma et al., 2023; Chen et al., a, 2023; Coua- 152

iron et al., 2022; Tuo et al., 2023) within images. 153

Numerous methods leveraging Generative Adver- 154

sarial Networks (GANs) have emerged for scene 155

text editing, aiming to transform the text within 156

a scene image to a specified target while retain- 157

ing the authentic style. Despite their innovations, 158

GAN-based approaches (Wu et al., 2019; Goodfel- 159

low et al., 2017; Mirza and Osindero, 2014; Zhu 160

et al., 2017; Yang et al., 2018a; Azadi et al., 2018) 161

struggle to edit images featuring intricate scenes 162

or a multitude of diverse elements. The recent 163

development of diffusion models (Saharia et al., 164

2022; Rombach et al., 2022; Chung et al., 2022; 165

Zhang et al., 2023a; Nichol et al.; Avrahami et al., 166
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2022; Yang et al., 2022; Zhang et al., 2023b; Mou167

et al., 2023) allows for the generation of images of168

exceptional quality and diversity.169

Frameworks such as ControlNet (Zhang et al.,170

2023b) and T2IAdapter (Mou et al., 2023) have har-171

nessed auxiliary cues like color maps, and segmen-172

tation maps to steer the image generation process,173

achieving remarkable levels of control and image174

quality. Galvanized by these advances, a series of175

text-centric image editing techniques (Zhu et al.;176

Ma et al., 2023; Chen et al., a, 2023; Couairon et al.,177

2022; Tuo et al., 2023) have been introduced based178

on diffusion models. Among these, AnyText (Tuo179

et al., 2023) stands out for its proficient multilin-180

gual text editing capabilities, producing impressive181

results in text rendering and manipulation. The182

advancements of these technologies seamlessly en-183

able the realization of TATI task, facilitating a more184

intuitive and efficient process.185

3 Methodology186

In this section, we will detail each component of187

our AnyTrans. Following the module order shown188

in Figure 3, we begin by introducing the detection189

and recognition of text in the image. Following190

this, we introduce how to leverage (vision) LLMs191

for translation. Lastly, we describe the text editing192

process informed by the translation outcomes.193

3.1 Text Detection and Recognition194

As illustrated in the Text Detection & Recognition195

section of Figure 3, to accomplish our image-to-196

image translation task, we first need to detect the197

position of the text in the image and recognize its198

content. Essentially, this procedure involves text199

detection (He et al., 2021; Liao et al., 2020; Lyu200

et al., 2018; Ma et al., 2018; Zhou et al., 2017) and201

recognition (Bautista and Atienza, 2022; Li et al.,202

2021; Shi et al., 2017; Chen et al., b; Yu et al.,203

2023), which embodies a classic OCR endeavour.204

Although VLM also has a certain degree of OCR205

capability, its capability lags far behind traditional206

OCR models (Liu et al., 2023). So we harness the207

capabilities of the pre-trained OCR model, which208

excels in both text detection and recognition. Sub-209

sequently, the outcomes of OCR are fed into subse-210

quent modules for translation and text editing.211

3.2 Beyond Box-level Text Translation212

Building on the recognition outcomes obtained213

from the OCR module, our next step involves trans-214

lating the textual content into the desired target215

<box1>메리</box1><box2>크리스마스</box2>

<box1>圣诞节</box1><box2>快乐</box2>

1 2
2 1

Figure 2: A prompt example from Korean to Chinese. In
Chinese, the order of the two words should be switched.

language. It is important to note that the OCR 216

system processes and retrieves text content sequen- 217

tially, which means the extracted sequence may 218

not always reflect the true semantic order. This 219

presents significant challenges for traditional trans- 220

lation models, which often struggle to accurately 221

interpret the broader context and semantic con- 222

nections between individual text segments. For 223

instance, as illustrated in Figure 1 (a), the word 224

“SLOW” in an image should convey the meaning 225

“slow down for passing students”. However, tradi- 226

tional translation pipelines only translate the text 227

within each isolated box, failing to grasp the con- 228

text and leading to poor translations. 229

Fortunately, the landscape of translation has un- 230

dergone a seismic shift with the emergence of 231

large language models (LLMs), which exhibit a 232

markedly enhanced ability to understand context 233

and generate coherent translations. With their pow- 234

erful multilingual and instruction-following capa- 235

bilities, LLMs can be seamlessly integrated into 236

our multilingual image translation framework with- 237

out additional training. By employing a few-shot 238

prompt strategy, we can enable the translation of 239

multiple text segments in a more coherent manner. 240

Therefore, we integrated the LLM into the 241

core of our proposed framework. Particularly, 242

as shown in Figure 2, for texts within an im- 243

age identified by OCR, we concatenate them 244

into a long text sequence using HTML-style tags 245

<boxidx></boxidx> to retain the positional infor- 246

mation of the detected text. The translated sentence 247

should be organized in the same format, but with 248

the word order adjusted accordingly. In practice, 249

we use five-shot demonstrations for each language 250

pair in the instruction prompt to help the LLM un- 251

derstand our designed format. 252

Additionally, while multiple translation options 253

may exist for a given text, the entire text sequences 254

alone may not fully disambiguate the meaning. 255

Therefore, incorporating visual information from 256

images is also crucial. To address this, we have 257

explored the supportive role of using a vision LLM 258

in text translation. This method leverages the com- 259

prehensive visual information contained in images 260

to refine the quality of the translation. 261

3



Box Text

Tgt Text

Few-Shot Prompt:
Translate the following sentence from Korean into Chinese.
Korean: <box1>백호</box1>\nChinese: <box1>⽩⻁</box1>
Translate the following sentence from Korean into Chinese.
Korean:<box1>메리</box1><box2>크리스마스</box2>\n
Chinese:<box1>圣诞节</box1><box2>快乐</box2>
…
Translate the following sentence from Korean into Chinese.
Korean: Concatenated Text \n Chinese:

Concatenated Text:
<box1>아기자기한</box1>
<box2>가챠머신</box2>

Tgt Text:
<box1>可爱的</box1>
<box2>扭蛋机</box2>

Optional:
Because 可爱的 is much shorter than 아기자기한, so we should erase text in the original 
image and resize editing box.

Stroke-level Text 
Erasure

ViT

Attention

Src Image

Resize Box Erase Text

Tgt Image

Anticipated Box 
Resize

Tgt Image

아기자기한

가챠머신

Detected Box Recognized TextSrc Image

Src Image

Text Detection
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Text Image 
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Text Fusion
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Model

LLM
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Figure 3: An overview of AnyTrans. Our translation framework is built around three key components: firstly, Text
Detection and Recognition utilizing an offline OCR model; secondly, Text Image Translation using (vision) LLMs;
and finally, Text Fusion using the modified AnyText.

Without preprocess With preprocessOriginal image

Without preprocess With preprocessOriginal image

(a)

(b)

Figure 4: Preprocessing for AnyText is crucial for pro-
ducing accurate and authentic text, especially in scenar-
ios where there is a significant disparity in text length
before and after translation.

3.3 Text Fusion in Image262

The final module in our framework involves gen-263

erating a new image with the translated texts. To264

achieve a cohesive visual effect, we propose inte-265

grating the translated texts into the original image,266

placing them precisely where the original text ap-267

peared. This ensures that the translated text not268

only communicates the intended message but also269

harmonizes with the visual context of the image.270

Traditional rule-based algorithms for fusing text271

into images exhibit several significant drawbacks,272

including compromising the integrity of the im-273

age background, limiting outputs to a singular font274

style, and resulting in a final appearance that often 275

lacks realism. Instead, we adopt the technique of 276

diffusion model, which enables natural text editing 277

within images. Specifically, for our text editing pro- 278

cess, we propose a multilingual text editing method 279

built on Anytext (Tuo et al., 2023). 280

In the original Anytext, the areas designated 281

for editing are the detection boxes identified by 282

OCR, and the input text is the translated sentence. 283

However, Anytext is particularly sensitive to the 284

length of the input text designated for rendering. 285

As shown in Figure 4, the quality of the generated 286

text is significantly impacted by the length ratio 287

between the detected box and the input text. When 288

this ratio deviates too far from 1, the vacant area 289

tends to be filled with irrelevant content, signifi- 290

cantly compromising both the visual effect and the 291

translation quality. 292

Stroke-level Text Erasure To address this issue, 293

as illustrated in the Text Fusion section of Figure 3, 294

we first apply stroke-level text erasure (Li et al., 295

2023). Unlike the end-to-end text editing approach 296

used in Anytext, we decompose the process into 297

two sub-steps. The first step involves applying 298

a fine-grained inpainting method specifically de- 299

signed to remove the strokes of characters or letters 300

in the original texts. This method can successfully 301
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remove multi-line texts with minimal line spacing,302

resulting in a cleaner visual effect.303

Anticipated Box Resize To address the length304

ratio issue and further avoid conflicts between adja-305

cent lines, we propose an OCR box resizing prepro-306

cessing step for the anticipated target box. Specifi-307

cally, if the word count ratio between the pre and308

post-translation text exceeds 1.2 or is less than 0.8,309

we will adjust the length or width of the antici-310

pated box based on the ratio. This process requires311

some customization depending on the language312

pair. For example, in zh-en translations, we assume313

the length of a Chinese character to be 2.5 times314

that of an English letter, given the fact that larger315

size for a single Chinese character. In the end, the316

fusion of target text is applied to the erased area.317

4 Experiments318

4.1 Dataset319

Image Locations SourceTexts
Target

Translations Order
(121.0, 185.0), 
(380.0, 158.0),
(384.0, 203.0), 
(126.0, 231.0)
(106.0, 228.0),
(342.0, 221.0), 
(344.0, 271.0), 
(108.0, 278.0)
(110.0, 278.0), 
(419.0, 287.0),
(417.0, 341.0), 
(108.0, 332.0)

NEW 
MEXICO

LAND OF

ENCHAN
TMENT

新墨⻄哥

之地

魅⼒

1;3,2

新墨⻄哥;
魅⼒之地

Figure 5: An example of our MTIT6 dataset, which
contains position information of the text in the image,
corresponding translation information, and corrected
translation order.

We present MTIT6, a comprehensive multilin-320

gual text image translation test dataset, assem-321

bled from ICAR 19-MLT(Nayef et al., 2019),322

OCRMT30K(Lan et al., 2023), along with a se-323

lection of high-quality images curated by our324

team. Our dataset encompasses six language325

pairs: English-to-Chinese, Japanese-to-Chinese,326

Korean-to-Chinese, Chinese-to-English, Chinese-327

to-Japanese and Chinese-to-Korean, each pair fea-328

tures about 200 images. In creating this dataset, we329

employed the lightweight PP-OCR tool for initial330

OCR recognition, and then the OCR outputs were331

further refined and translated by language experts.332

Furthermore, considering differences in word order333

across different languages, our language experts334

meticulously annotated the sequences of text iden-335

tified by OCR within each image. This approach336

enabled us to maintain semantic integrity by rear-337

ranging the text into coherent sequences, based on338

their annotated order. Figure 5 presents an example339

of our MTIT6 dataset.340

4.2 Comparison Results 341

4.2.1 Quantitative Results 342

For evaluation, we choose the BLEU (Papineni 343

et al., 2001) and COMET (Rei et al., 2020) met- 344

rics. We evaluate the image-to-text (I2T) interme- 345

diate translation results and image-to-image (I2I) 346

final translation results. We have integrated a wide 347

range of models into our AnyTrans, which included 348

classic encoder-decoder models (Costa-jussà et al., 349

2022; Fan et al., 2021), widely accessible open- 350

source LLMs (qwen-chat1.5-7B,14B and 110B), 351

and commercially advanced close-source LLM 352

(qwen-max) and VLM (Bai et al., 2023) (qwen- 353

vl-max), affirming our approach’s comprehensive 354

reliability and easy scalability. We also validate the 355

model(Lan et al., 2023) specifically designed for 356

the TIT task in our test dataset. To more accurately 357

evaluate the translation quality of the final image, 358

we use the paid BaiduOCR1 to recognize the text 359

in the I2I stage. 360

As shown in Table 1 and Table 2, we observed 361

that the performance of the qwen-1.5 series mod- 362

els gradually improved with the increase of the 363

model’s parameters. We discovered that the en- 364

hancement in performance is attributed not only 365

to the improved quality of translations but also to 366

the bolstered ability to follow instructions. This 367

is particularly evident in the 7B model, which ini- 368

tially exhibited a weaker capacity for instruction 369

adherence. During qwen-7B model’s translation 370

process, there is around a 10% chance that the 371

<boxidx></boxidx> symbol, employed to demar- 372

cate positions, might be inaccurately translated. 373

Another interesting finding is that the performance 374

of qwen1.5-110B is very close to or even exceeds 375

qwen-max in multiple language pairs. This may be 376

because the qwen1.5 series used more new high- 377

quality corpora and adopted technologies such as 378

DPO(Rafailov et al.) and PPO(Schulman et al., 379

2017) during training. The results demonstrate 380

that while enlarging the model’s parameters signifi- 381

cantly boosts its capability to adhere to instructions, 382

honing the model’s translation skills may rely more 383

heavily on the quality of the corpus and the refine- 384

ment of training methodologies. Moreover, VLMs 385

improved translation performance, indicating that 386

integrating image data can further augment trans- 387

lation accuracy. This advancement confirms that 388

VLMs represent a key developmental trajectory for 389

future research endeavours in image translation. 390

1
https://cloud.baidu.com/product/ocr/general
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Methods
zh→ en zh→ ko zh→ ja

I2T I2I I2T I2I I2T I2I
BLEU COMET BLEU BLEU COMET BLEU BLEU COMET BLEU

nllb-200(3.3B) 29.7 66.3 22.2 20.1 72.5 11.4 24.9 77.20 13.1
m2m100(1.2B) 33.1 66.1 23.8 18.1 71.1 10.9 29.4 79.60 14.8

mc-tit 41.6 70.5
qwen1.5-7B-chat 37.4 73.4 26.5 11.4 70.4 5.5 31.2 80.9 20.6

qwen1.5-14B-chat 38.8 74.6 28.0 16.1 72.9 8.3 30.7 79.3 19.8
qwen1.5-110B-chat 43.8 76.3 30.6 17.1 74.3 9.3 35.4 83.1 21.9

qwen-max 44.0 77.2 31.2 23.5 75.1 15.1 33.5 81.3 20.9
qwen-vl-max 48.7 78.0 31.9 25.0 75.3 15.8 34.2 81.9 21.4

Table 1: Experiments on multilingual TATI task encompass translating Chinese into English, Korean, and Japanese.

Methods
en→ zh ko→ zh ja→ zh

I2T I2I I2T I2I I2T I2I
BLEU COMET BLEU BLEU COMET BLEU BLEU COMET BLEU

nllb-200(3.3B) 21.5 73.3 15.1 9.1 65.3 8.7 7.4 61.3 7.2
m2m100(1.2B) 24.2 76.9 18.9 14.8 67.8 13.1 24.3 74.5 22.7

qwen1.5-7B-chat 27.6 80.7 21.4 20.9 75.72 18.2 30.0 78.7 27.5
qwen1.5-14B-chat 34.5 81.3 26.8 27.7 77.8 23.6 38.4 81.3 28.6
qwen1.5-110B-chat 37.9 84.2 27.0 32.6 80.5 31.4 38.2 80.7 30.9

qwen-max 34.7 84.1 24.1 33.1 81.0 29.8 32.2 80.4 27.1
qwen-vl-max 36.3 84.3 27.8 35.4 81.7 31.6 54.2 83.8 44.3

Table 2: Experiments on multilingual TATI tasks encompass translating English, Korean, and Japanese into Chinese.

4.2.2 Qualitative Results391

To the best of our knowledge, this is the first pa-392

per to research the task of TATI, so there is no393

open-source model to compare with, so we can394

only compare with commercial closed-source im-395

age translation products, including Google Image396

Translation (Translate, b), Microsoft Image Trans-397

lation (Translate, c) and Apple IOS Image Trans-398

lation (Translate, a). As shown in the cases in399

Figure 8, Microsoft and Apple Image Translation400

generate translations in rectangular areas based on401

rules and then paste them back to the original im-402

age. However, these rectangular areas’ colours fail403

to match those of the original image. Consequently,404

directly integrating the text from these areas into405

the original image significantly disrupts its visual406

harmony. Google Image Translation exhibits some407

improvement. It first erases the original text and408

then returns the translated text to the original im-409

age. However, this process leaves noticeable era-410

sure marks, and the text, being rule-based, appears411

overly uniform and fails to harmonize with the orig-412

inal image’s aesthetics. In contrast, our AnyTrans413

seamlessly integrates the translated text into the414

original image and even manages to preserve the415

font colour and style to a notable degree. Therefore,416

it is clear that our AnyTrans significantly surpasses417

image translation products in maintaining visual418

continuity.419

4.2.3 Human and GPT Evaluation 420

To evaluate the authenticity and style consistency 421

of translated images, we randomly selected 50 im- 422

ages from six language pairs, totalling 300 im- 423

ages. We then assessed the translation results from 424

Google Image Translation, Microsoft Image Trans- 425

lation, Apple Image Translation, and AnyTrans. 426

Each image was scored based on our evaluation 427

criteria by three assessors and GPT4o, and the de- 428

tailed evaluation criteria can be found in the ap- 429

pendix. As shown in Figure 6, whether it is the 430

human evaluation or GPT4o automatic evaluation, 431

our method significantly outperforms Microsoft 432

and Apple Image Translation in terms of authentic- 433

ity and style consistency and achieves comparable 434

scores to Google. We also verify the correlation be- 435

tween GPT4o evaluation results and human prefer- 436

ence scores in Figure 7. By calculating Spearman’s 437

correlation coefficient for each language pair, we 438

observe a strong correlation between the two eval- 439

uation methods. The consistency further demon- 440

strates the superiority of our approach. 441

Upon analyzing the cases with lower scores than 442

Google, we found most instances are due to the 443

limited performance of AnyTrans in generating 444

text on small fonts. In contrast, Google Image 445

Translation, being based on rule-based generation 446

of text, has a clear advantage in translating texts 447

of small font sizes. Nevertheless, based on the 448
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Figure 6: Overall human evaluation and GPT4o results
of image translation performance for different methods.
Our method significantly outperforms Microsoft and
Apple and achieves comparable results to Google.

Methods Average
BLEU COMET

qwen1.5-7B-chat(box) 25.9 75.7
qwen1.5-7B-chat(context) 26.5 76.3
qwen1.5-14B-chat(box) 30.6 76.9

qwen1.5-14B-chat(context) 31.0 77.9
qwen1.5-110B-chat(box) 32.2 78.1

qwen1.5-110B-chat(context) 33.2 79.1

Table 3: Ablation experiments on translation strategies
and model categories on multilingual TIT tasks.

advantages of authenticity and style consistency,449

our AnyTrans still achieved scores comparable to450

Google Image Translation.451

4.3 Ablation Study452

We performed detailed ablation studies to explore453

the efficacy of two translation strategies: translat-454

ing the contents within detection boxes individu-455

ally versus translating all recognized text in the456

image as a whole. Specifically, for the latter trans-457

lation method, we concatenate recognized texts458

from an entire image using ‘<boxidx></boxidx>‘459

tags. These are then merged with few-shot prompts460

into a lengthy sentence, which is subsequently in-461

putted into LLMs for translation. We tested on the462
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Figure 7: Our experiments show that GPT4o evalua-
tions across all language pairs closely match human
perceptions. In each plot, a dot represents the human
preference evaluation score (horizontal axis) and GPT4o
evaluation score (vertical axis). We linearly fit a straight
line to visualize the correlation and calculate Spear-
man’s correlation coefficient (ρ) for each language pair.

Methods
zh→ en

I2T I2I
BLEU COMET BLEU

qwen1.5-110B-chat 43.8 76.27 30.6
Wo-resize 43.8 76.27 27.7(-2.9)

Table 4: Ablation experiment on resizing editing area.

qwen1.5-7B, 14B and 110B models and calculated 463

the average of the test results for all language pairs. 464

As depicted in Table 3, our strategy of translation 465

as a whole significantly improves translation perfor- 466

mance across all three parameter sizes of qwen1.5 467

models. This enhancement underscores the impor- 468

tance of LLM’s advanced contextual understanding 469

in boosting translation performance. We also con- 470

ducted an ablation experiment on the resize editing 471

area strategy. As shown in Table 4, in the zh2en 472

translation, without the OCR box resizing step, the 473

final I2I translation result dropped by 2.9 points, 474

proving the effectiveness of this strategy. 475

5 Discussions 476

As the first paper to introduce (vision) LLMs and 477

diffusion model into the Translate AnyText in the 478

Image (TATI) task, significant opportunities exist 479

for further improvement. Below, we enumerate sev- 480

eral potential directions for future advancements: 481

(1) Integration of OCR and Translation Processes: 482

Our current methodology bifurcates the process 483

into OCR text recognition and translation as dis- 484

tinct steps. While VLMs currently fail to achieve 485

the OCR accuracy of smaller models tailor-made 486

7
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Figure 8: Qualitative comparison of our framework with Google, Microsoft and Apple Image Translation results.
Our AnyTrans has obvious advantages in font style preservation and authenticity.

for OCR tasks, further development and OCR-487

targeted training could potentially elevate VLMs to488

achieve formidable OCR prowess. This evolution489

could potentially consolidate text recognition and490

translation into a seamless, singular step, enhanc-491

ing efficiency and accuracy.492

(2) Text editing model adapted to translation:493

Due to AnyText (Tuo et al., 2023) being trained494

on datasets where character size perfectly matches495

the image size, it needs the text length to be well-496

matched with the dimensions of the editing area.497

However, when translating, the length of the trans-498

lated text inevitably varies across different lan-499

guages, leading to challenges for Anytext to gen-500

erate translations that fit the original text area per-501

fectly. The Anticipated Box Resizment strategy502

helps mitigate the issue but does not fully resolve it.503

Future efforts could focus on training a text editing504

model capable of dynamically adjusting font sizes. 505

This would eliminate the necessity for altering the 506

editing area, allowing for modifications that pre- 507

serve the aesthetic appeal and structural harmony 508

of the original image more faithfully. 509

6 Conclusion 510

We introduce a novel framework named Any- 511

Trans designed for Translate AnyText in the Image 512

(TATI). Distinguished from existing closed-source 513

products, our AnyTrans can be built upon open- 514

source models and is training-free. Uniquely, we 515

integrate (vision) LLMs and diffusion models into 516

TATI task for the first time, achieving both accu- 517

rate translations and authentic translated images. 518

Furthermore, we have curated a multilingual text 519

image translation dataset MTIT6 to promote devel- 520

opment in this field. 521
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7 Limitations522

(1) Owing to inherent restrictions in Any-523

text (Tuo et al., 2023), it is unable to produce out-524

puts exceeding 20 letters or characters at a time.525

Consequently, this limitation extends to our Any-526

Trans, affecting its ability to effectively translate527

longer texts.528

(2) Given that Anytext’s text editing proficiency529

is confined to Chinese, English, Korean, and530

Japanese, it lacks the capability to generate text531

in other languages, such as Arabic. As a result,532

the range of languages that AnyTrans is capable of533

translating is similarly restricted.534
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A Appendix841

A.1 Dataset annotation details842

We engaged six professional translators for a week-843

long annotation task, with each translator tasked844

to annotate 30 images daily to mitigate fatigue.845

Upon being presented with an image containing846

source texts detected by PPOCR-v4, translators847

were tasked to render accurate and fluid transla-848

tions into the target language. Furthermore, they849

meticulously annotated the sequences of text rec-850

ognized by OCR within each image, reordering the851

text to ensure coherent sequences. For quality as-852

surance, we also employed a professional translator853

to sample and review the annotated instances. In854

total, we annotated 1,199 images, averaging around855

200 instances per language pair.856

A.2 Human and GPT evaluation details857

We meticulously selected a sample of 50 images858

for each of the six languages, summing up to a859

total of 300 images. To objectively and accurately860

assess the authenticity of translated images along861

with the maintenance of font styles, we utilize862

a combination of human evaluation and GPT-4o863

evaluation.864

For human evaluation, we enlisted the help of865

three annotators. For each image assessed, the866

annotators were provided with the original image867

alongside the translation outputs from Google, Mi-868

crosoft, Apple Image Translations, and our Any-869

Trans. They then scored each translation based on870

predetermined criteria, with the final score for each871

image being the average of the three annotators’872

scores.873

For the evaluation involving GPT-4o, to min-874

imize biases associated with the order in which875

translations are presented, the evaluation is con-876

ducted on a one-to-one basis: compare the source877

image with the translated image from one of the878

four different methods. This approach was adopted879

to impartially assess the effectiveness of the four880

image translation methodologies.881

For both human and GPT-4o powered evalua-882

tions, detailed results are provided in the supple-883

mentary materials, which include the specific im-884

ages evaluated and the resulting scores. The de-885

tailed evaluation criteria are outlined as follows:886

(1) 1 point Very low authenticity: The translated887

text looks completely unnatural and clearly distin-888

guished from the background of the image as if it889

was added randomly. Inconsistent style: Ignoring 890

the font, size, color and position of the original 891

text, the inconsistency in style makes the entire 892

translated image feel unreal or abrupt. 893

(2) 2 points Low authenticity: The translated text 894

is slightly stiff in the image and lacks a sense of 895

integration. It can be clearly seen that it was added 896

later. Partially coordinated style: The translated 897

text tries to imitate the original style to a certain 898

extent, but the overall effect is not good, and the 899

sense of style is more obvious. 900

(3) 3 points General authenticity: The translated 901

text is relatively natural and can be integrated into 902

the image to a certain extent, but there are still 903

recognizable inconsistencies. Partially coordinated 904

style: The translated text partially echoes the style 905

of the original image and contains the correct el- 906

ements (such as font, size, color), but still lacks 907

some overall harmony. 908

(4) 4 points High authenticity: The translated 909

text is well integrated into the image, giving peo- 910

ple a more natural feeling, and only small flaws 911

may be found when looking closely. Generally co- 912

ordinated style: The style of the text matches the 913

original image to a large extent. Small details can 914

be optimized, but the overall look and feel is close 915

to the same. 916

(5) 5 points High authenticity: The translated 917

text blends perfectly with the image background, 918

and it is almost impossible to tell that the text was 919

added later. Completely coordinated style: The 920

style is completely consistent with the original text, 921

including font, size, color, position and shadow 922

effects, and the overall effect is coordinated and 923

very professional. 924

In actual evaluation, these two aspects can be 925

considered comprehensively based on the overall 926

effect of the translated image on the score. 927
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