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ABSTRACT

Vision Language Models (VLMs) show strong potential for visual planning but
struggle with precise spatial and long-horizon reasoning. In contrast, Planning
Domain Definition Language (PDDL) planners excel at long-horizon formal plan-
ning, but cannot interpret visual inputs. Recent works combine these complemen-
tary advantages by enabling VLMs to turn visual planning problems into PDDL
files for formal planning. However, while VLMs can generate PDDL problem files
satisfactorily, they struggle to accurately generate the PDDL domain files, which
describe all the planning rules. As a result, prior methods rely on human experts
to predefine domain files or on constant environment access for refinement. We
propose VLMFP, a Dual-VLM-guided framework that can autonomously gener-
ate both PDDL problem and domain files for formal visual planning. VLMFP
introduces two VLMs to ensure reliable PDDL file generation: A SimVLM that
simulates action consequences based on input rule descriptions, and a GenVLM
that generates and iteratively refines PDDL files by comparing the PDDL and
SimVLM execution results. VLMFP unleashes multiple levels of generalizabil-
ity: The same generated PDDL domain file works for all the different instances
under the same problem, and VLMs generalize to different problems with var-
ied appearances and rules. We evaluate VLMFP with 6 grid-world domains and
test its generalization to unseen instances, appearance, and game rules. On aver-
age, SimVLM accurately describes 95.5%, 82.6% of scenarios, simulates 85.5%,
87.8% of action sequence, and judges 82.4%, 85.6% goal reaching for seen and
unseen appearances, respectively. With the guidance of SimVLM, VLMFP can
generate PDDL files to reach 70.0%, 54.1% valid plans for unseen instances in
seen and unseen appearances, respectively.

1 INTRODUCTION

Although Large Language Models (LLMs) have shown strong performance in solving text-based
planning problems (Wei et al., 2022; Yao et al., 2022; Raman et al., 2022; Yao et al., 2024), many
real-world planning tasks, such as robot assembly, drone navigation, and autonomous driving, are
inherently visual, making the reliance on carefully engineered text inputs impractical and limiting.
This gap motivates the shift toward VLM-based planning, where visual inputs provide a more di-
rect and intuitive basis for reasoning. However, current VLMs lack precise spatial understanding
and long-horizon reasoning, which constrains their ability to address complex, multi-step planning
problems that involve intricate spatial relationships among multiple objects (Wu et al., 2024).

On the other hand, Planning Domain Definition Language (PDDL) (McDermott, 2000) is a formal
language designed to describe planning problems and domains in a structured, machine-interpretable
way. PDDL has enabled numerous automated planners to derive long-horizon solutions. However,
although PDDL-based planners excel at reasoning over structured domains, they depend on correctly
structured PDDL domain and problem files and cannot directly interpret visual inputs. Constructing
accurate PDDL definitions is non-trivial and requires expert knowledge, which is often inaccessible
to non-expert users, limiting the broader adoption of PDDL planners in real-world scenarios.

Recent works have explored combining the advantages of language models and PDDL planners
through various approaches. (Liu et al., 2023; Xie et al., 2023) employ LLMs as translators to
convert natural language scenario descriptions into PDDL problem files. (Mahdavi et al., 2024)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

SimVLM

Domain Description

Initial States 
Description

PDDL validator

Rating & Feedback

Random 
Actions

Execution Result 
& Feedback

Execution Result

Similarity  compare

Updating
PDDL Planner

Plan

Problem PDDL

Domain PDDL

Problem PDDL

Domain PDDL
Problem PDDL

Domain PDDL

Goal Reached?

Image Observation

GenVLM

Prescreening

Figure 1: An overview of VLMFP. Sections in orange are the inputs. Sections in green represents
SimVLM and its outputs. Sections in blue denotes the GenVLM and its outputs. Sections in gray
are provided. VLMFP takes in the image and domain description, describe the scenario, generate
and validate PDDL files, compare their execution results with SimVLM, and update the PDDL files.

leverages environment interactions to enable file generation for both problem and domain. How-
ever, these methods require either textual scenario descriptions, environment access, or pre-defined
PDDL files, which cannot be directly achieved through visual inputs. More recently, vision-language
models (VLMs) have been used to extract scenario information from visual inputs and generate cor-
responding PDDL problem files(Shirai et al., 2024; Dang et al., 2025). However, since current
VLMs lack the ability to accurately generate the domain PDDL, these approaches also assume ac-
cess to ground truth domain PDDL files, without which PDDL planners cannot produce any results.

In this paper, we address the challenge of visual long-horizon planning by introducing a novel
framework, VLM-Guided Formal Planning (VLMFP, illustrated in Fig. 1), a Dual-VLM-guided
framework that autonomously generates both problem and domain PDDL files for visual planning.
VLMFP integrates two specialized VLMs: a fine-tuned SimVLM that perceives the scenario from
visual inputs and simulates action outcomes, and a large GenVLM that generates and iteratively re-
fines PDDL files by aligning their execution with SimVLM’s simulations. Generating both problem
and domain PDDL from visual inputs requires object recognition, spatial understanding, reasoning,
and PDDL knowledge. We fine-tune a small VLM as SimVLM to strengthen its spatial reasoning,
while using a large model as GenVLM for general reasoning and extensive PDDL knowledge.

Importantly, VLMFP achieves multiple levels of generalizability. A generated domain PDDL can be
reused across all instances of the same domain, while problem PDDL files can be adapted efficiently
for new instances as in-context examples. The framework also transfers well to unseen appearances
and even altered environment rules. We evaluate VLMFP on six grid world domains, showing that
SimVLM reliably describes scenarios, simulates actions, and determines goal achievement, while
GenVLM, guided by SimVLM feedback, generates valid PDDL files that enable planners to solve
both seen and unseen problems.

In summary, our key contributions are:

• We construct a large-scale dataset of 430k action sequence simulations with reasoning and feed-
back across 6 grid-world domains of different map sizes, appearances, and game rules. We fine-
tune Qwen2-VL-7B with the dataset, and our finetuned model demonstrates strong generalization
to unseen instances, appearances, and game rules.

• We propose VLMFP, a Dual-VLM-guided framework that autonomously generates PDDL domain
and problem files for visual planning, which, to our knowledge, is the first framework to leverage
visual inputs to generate both PDDL files without human feedback or direct environment access.

• By combining SimVLM (for perception and action simulation) with GenVLM (for symbolic rea-
soning and file refinement), VLMFP achieves robust, reusable domain generation and efficient
problem instantiation. VLMFP notably achieves 70.0% and 54.1% success rates with GPT-4o as
the GenVLM, outperforming the best baseline CodePDDLGPT-4O by 39.3% and 21.8% for unseen
instances in seen and unseen appearances, respectively.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

LLM and VLM Planning Although Large Language Models (LLMs) have achieved impressive
performance on text-based planning tasks (Wei et al., 2022; Yao et al., 2022; Raman et al., 2022;
Yao et al., 2024), many real-world planning problems are inherently visual. Relying solely on
carefully constructed text inputs is often impractical and cannot capture the rich spatial details in
visual environments. This limitation has motivated a growing interest in VLM-based planning,
where visual observations provide a more direct and intuitive foundation for reasoning (Driess et al.,
2023; Huang et al., 2023; Zhang et al., 2023; Nasiriany et al., 2024). However, current VLMs still
fall short in precise spatial understanding (Wu et al., 2024), which restricts their effectiveness on
complex planning tasks involving multiple objects and intricate spatial relationships. Some recent
works explore Visual Chain-of-Thought (Li et al., 2025; Zhao et al., 2025), which use images as part
of the reasoning process while generating the plan. However, this process introduces computational
overhead and is hard to apply to long-horizon planning tasks. In this work, we fine-tune SimVLM to
enhance its visual–spatial understanding and reasoning, enabling it to guide the generation of PDDL
files for solving long-horizon planning problems.

LLM and VLM + PDDL Since existing LLMs lack the ability to reliably perform long-horizon
reasoning in complex tasks (Achiam et al., 2023a; Valmeekam et al., 2022; 2023; Kambhampati
et al., 2024), recent works have explored combining LLMs with external solvers to augment their
reasoning and planning capabilities (Wu et al., 2022; He-Yueya et al., 2023; Pan et al., 2023; Ye
et al., 2024; Li et al., 2023; 2024; Hao et al., 2024a;b). Among such solvers, combining LLMs with
PDDL-based planners is a powerful option (Silver et al., 2022; Liu et al., 2023; Stein & Koller, 2023;
Xie et al., 2023; Stein & Koller, 2023; Guan et al., 2023; Oswald et al., 2024; Mahdavi et al., 2024),
as PDDL is designed for precise symbolic reasoning over long-horizon problems. However, these
works either require predefined PDDL domain files, human corrections, or environment access to
provide feedback while generating PDDL files. In addition, to further enable visual interpretation,
many works combine VLMs with PDDL planners (Shirai et al., 2024; Dang et al., 2025) by gen-
erating PDDL Problem files based on image observation. However, similarly, as generating PDDL
domain files is complicated, these works assume access to predefined domain files. In our work,
we use a Dual-VLM-guided framework to autonomously generate both PDDL problem and domain
files, without human guidance or environment access.

3 VLMFP

3.1 PROBLEM FORMULATION AND CHALLENGES

In our setting, a visual planning problem is defined by two pieces of information: ❶ A domain de-
scription nd, which is a natural language description of the general rules, domain settings, available
actions, and the planning objective of the problem; and ❷ a problem setup image ip, which is an
image showing the layouts, initial states of the problem instance.

Figure 2 top left shows an example domain description and problem setup image of the planning
problem FrozenLake. As can be observed, the domain description elaborates the rules of the game
(e.g., no stepping onto an ice hole) and available actions of the player (i.e., moving up, down,
left, and right). The problem setup image is a map showing the initial positions of the player, the
destination, and frozen likes.

The goal of VLMFP is, given the problem definition pair (nd, ip), to come up with an action se-
quence to achieve the goal. Considering the complementary advantages of VLMs in image per-
ception and natural language understanding, and PPDL in formal planning, VLMFP follows the
two-step pipeline, where VLMs are adopted to translate problem definition into PDDL files, and
then a PDDL planner is invoked to solve the problem.

However, an unresolved challenge of such a pipeline is that the translation into PDDL files using
VLMs is an error-prone process. Specifically, PDDL provides a standardized framework for repre-
senting automated planning problems, which involves two files: ❶ A PDDL domain file fd, which
formally encodes the rules and domain descriptions by defining a set of predicates, actions with
preconditions and effects; and ❷ a PDDL problem file fp, which formally specifies objects, initial
state, and goal conditions for a concrete problem instance. fd and fp can be roughly understood as
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Domain Description
The grid world consists of 
cells that are either ground
or ice holes. The player 
starts at one cell and must 
reach the goal cell by 
moving up, down, left, or 
right, without stepping 
onto an ice hole.
SimVLM generated scenario description:
Initially:
- The size of the grid world is 4x4
- The agent is at pos-1-1.
- The goal is at pos-4-4.
- The ice holes are at pos-1-2, pos-1-4, pos-2-4, pos-
3-1, pos-3-3, pos-3-4.

Your goal is to achieve the following configuration:
- The agent is at pos-4-4

Problem PDDL:
(define (problem FL)

…
(:objects 

pos-1-1 pos-1-2 …
)
(:init

(at pos-1-1)
(ice-hole pos-1-2)
…
(right pos-1-1 pos-1-2)
…

)
(:goal 

(at pos-4-4)
)

…

Domain PDDL:
(define (domain FL)

…
(:predicates 

(at ?x)  (ice-hole ?x)
…

(:action move-right
:parameters (?from ?to)
:precondition (and 

(at ?from)    
(right ?from ?to))

:effect (and 
(at ?to) 
(not (at ?from)))

)
…

)

Both Problem and Domain PDDLs are valid PDDL 
files, prescreening passed. 
Start Rating & Feedback

Random Action Sequence 1: move down, move right

SimVLM Execution Result & Feedback
Step 1 - Action move down:
Execution Reasoning: 
The agent tries to move down from pos-1-1. Since 
there is no ice hole in cell pos-2-1, it successfully 
moves to pos-2-1.

Execution Result: Successful.

Step 2 – Action move right…

Generated PDDL Execution Result
The actions are executable in generated environment

Random Action Sequence 2: move right

SimVLM Execution Result & Feedback
Step 1 - Action move right:
Execution Reasoning: 
The agent tries to move right from pos-1-1 to pos-1-
2. Since there is an ice hole in cell pos-1-2, the agent 
falls into the ice hole, so the game ends and the 
execution is unsuccessful.

Execution Result: Unsuccessful. 

Generated PDDL Execution Result
The actions are executable in generated environment

Execution discrepancy exists (score < 1)
Update PDDL files

Rating & Feedback: Round 1

Updated Domain PDDL:
…

(:action move-down
:parameters (?from ?to)
:precondition (and 

(at ?from)    
(down ?from ?to))
(not (ice-hole ?from)

:effect (and 
(at ?to) 
(not (at ?from)))

…

GenVLM Updates:
Update Reasoning:
…
The precondition of 
move-right action is 
insufficient. Since the 
agent is not allowed to 
step onto ice holes, (not 
(ice-hole ?from) should 
be added in domain
PDDL file.
…

PDDL files updated, starting a new round of rating

All random action executions have same results, 
score = 1

Searching for plan using PDDL planner … 
Plan Found:
(move-down pos-1-1 pos2-1)
(move-right pos-2-1 pos2-2)
(move-down pos-2-2 pos3-2)
(move-down pos-3-2 pos4-2)
(move-right pos-4-2 pos4-3)
(move-right pos-4-3 pos4-4)

Checking for plan validness…

SimVLM Execution Result
Goal Reaching: Successful. 

The plan is valid

The updated Problem and Domain PDDL files are 
returned as the output

Rating & Feedback: Round 2
...

Action sequence is executable in both environmentsGenVLM generated PDDL Files:

Figure 2: An example of how VLMFP tackle a Frozenlake instance.

the formal translation of the domain description nd and problem setup image ip, respectively. Please
refer to Appendix A.7 for example PDDL files.

The translations of these two files using VLMs come with their respective challenges. On one hand,
translating the problem setup from the image ip to the PDDL problem file fp requires a precise
understanding of the spatial relationship in the image, but existing VLMs tend to make mistakes in
spatial perception tasks such as counting rows/columns, measuring distance etc (Wu et al., 2024).
On the other hand, the PDDL domain file fd should be general enough to work for all problem
instances under the same task (e.g., different maps of the same FrozenLake game), but generating
the PDDL domain file using VLM alone, without human input or constant access to the environment,
can easily fail to accurately model all constraints and dynamics(e.g., to move left, the goal cell must
not be ice hole, and must be at left of the origin cell).

3.2 VLMFP OVERVIEW

To tackle the aforementioned challenges, VLMFP introduces a dual-VLM framework, consisting
of a SimVLM (Simulation VLM) and a GenVLM (Generation VLM). SimVLM takes the domain
description nd, the problem setup image ip, and a list of action π = [a1:T ] (e.g., move left in
the FrozenLake game), and performs three tasks: ❶ Describing the spatial relationship in the ip in
natural language, denoted as np, ❷ reasoning and predicting the consequence of the proposal actions
(e.g. whether the player hits a wall/ice hole), and ❸ determining whether executing π successfully
achieves the problem goal. GenVLM generates both PDDL files with the help of SimVLM.

The two VLMs should have different comparative advantages. SimVLM should be stronger at pre-
cisely understanding the spatial relationship in images, and have a superior capability in simulating
action consequences. GenVLM should possess stronger general reasoning and question-answering
capabilities, and have richer knowledge in PDDL.

With these comparative advantages, SimVLM is designed to support GenVLM in two ways. First,
SimVLM’s generated description of the spatial relationships in the problem setup image ip is fed
to GenVLM, therefore compensating the latter’s weakness in understanding spatial relationships.
Second, and more importantly, SimVLM can verify the correctness of the PDDL files by comparing
simulation results. Specifically, in VLMFP, there are two ways to predict the consequence of an
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action. The first is directly by SimVLM; the second is by execution based on the generated PDDL
files. If the two results disagree, it indicates a greater probability of incorrect PDDL files, so the
disagreement is provided to the GenVLM as feedback to refine the PDDL file generation.

Based on these rationales, VLMFP generates PDDL files via the following four steps:

Step 1: Candidate PDDL files generation. Given the domain descriptions and problem setup
image, (nd, ip), the SimVLM first generates a description of the spatial relationships (np) in the
problem setup image, which is then fed to the GenVLM to generate candidate PDDL files, namely

np = VS(nd, ip), f
(0)
d , f (0)

p = VG(nd, ip, np), (1)

where VS and VG represent the forward passes of SimVLM and GenVLM, respectively.

Step 2: Prescreening. The generated PDDL files are checked against syntactic correctness and
semantic consistency.

Step 3: Simulation consistency checking. Random action sequences are executed in the PDDL
environment based on the generated PDDL files, whose results are compared against the simulation
results by SimVLM. Inconsistencies are summarized as feedback, denoted as s.

Step 4: PDDL files updating. GenVLM refines the generated PDDL files based on the feedback:

f
(t)
d , f (t)

p = VG

(
nd, ip, np; s, f

(t−1)
d , f (t−1)

p

)
. (2)

VLMFP iterates over steps 2-4 until consistency is achieved and a plan is found by the PDDL
planner. Figure 2 gives an example of this process. In the following, Section 3.3 will discuss the
implementation details of the two VLMs; Section 3.4 will provide further details of the above steps.

3.3 VLM IMPLEMENTATION DETAILS

SimVLM. As discussed in Section 3.2, SimVLM is tasked with precisely describing the problem
setup image ip and predicting action consequences. Since existing VLMs are generally weak in
spatial relationship reasoning, we fine-tune Qwen2-VL-7B to accomplish these tasks. Specifically,
we collected six grid world domains of varying complexity. For each domain, we collect data across
map sizes ranging from 3 to 8 with varying obstacle probabilities, and create 5–6 distinct visual
appearances. In total, this yields a dataset of 430k datapoints.

The fine-tuning process enables SimVLM to better align visual observations with spatially grounded
reasoning. In particular, SimVLM learns to generate concise natural language narratives of the ini-
tial scenario and to simulate the outcomes of action sequences within these domains. By grounding
visual inputs in structured textual descriptions and action simulations, SimVLM serves as a reliable
intermediate model that bridges raw perception and the formal representation required for PDDL
generation. We show examples of open-source large VLMs’ failure to accurately describe the sce-
nario and simulate actions in Appendix A.4.1.

GenVLM. While SimVLM is tailored for perception and structured simulation, the generation of
PDDL domain and problem files requires advanced reasoning to capture action dynamics and a
precise understanding of PDDL syntax and conventions to ensure valid domain specifications. To
address this, we leverage a large VLM API, GPT-4o (Achiam et al., 2023b), referred to as Gen-
VLM, which has broader reasoning capacity and linguistic knowledge needed for reliable PDDL
construction. Guided by the scenario descriptions and simulated outcomes provided by SimVLM,
GenVLM generates initial PDDL files and iteratively refines them to resolve inconsistencies. In
this way, GenVLM complements SimVLM by bridging high-level reasoning with formal symbolic
representation.

3.4 ALGORITHMIC DETAILS

Prescreening. In this step, VLMFP generates and verifies whether the generated initial PDDL
problem and domain files are structurally valid before moving on to further evaluation. A PDDL
domain or problem is valid if it is syntactically correct and semantically consistent, meaning the
domain’s actions, predicates, and types are well-defined and the problem’s objects, initial state, and
goals align with that domain.
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For example, as shown in Fig. 2, in the FrozenLake domain, the problem PDDL defines ice hole
positions using predicate ice-hole, but if the Domain PDDL does not define ice-hole under
the (:predicates section, these two files would be identified as invalid and cannot pass the
prescreening. We set the maximum rounds of file regeneration to be 5. This stage is crucial because
it filters out syntactic or structural errors at an early step, thereby ensuring that only valid PDDL
files progress to the consistency checking process and that subsequent comparisons are meaningful.

Simulation consistency checking. In this step, VLMFP evaluates the fidelity of the generated
PDDL files by comparing their execution results with those of SimVLM. Random executable action
sequences are sampled in both environments and executed in the other environment: SimVLM sim-
ulates the outcomes and provides reasoning step by step, and the PDDL environment checks action
executability under the generated domain.

For a walk length T , let Psim,T be a distribution over SimVLM-executable T -step action sequences,
where Efd,fp(q) ∈ {0, 1} indicates whether q is executable in the generated PDDL environment
(fd, fp). Similarly, let Pfd,fp,T be a distribution over T -step walks executable in (fd, fp), and let
Esim(q) ∈ {0, 1} indicate SimVLM executability. Following (Mahdavi et al., 2024), we define the
Exploration Walk (EW) score as:

mEW(d̂, p̂) = 2

(( 1

Tmax

Tmax∑
T=1

Eq∼Psim,T
[Efd,fp(q)]

)−1

+
( 1

Tmax

Tmax∑
T=1

Eq∼Pfd,fp,T
[Esim(q)]

)−1
)−1

(3)
The EW score compares bi-directional similarity. A higher EW score indicates stronger align-
ment between the generated and reference environments. For example, in the FrozenLake domain,
SimVLM predicts that moving right from pos-1-1 to pos-1-2 should fail due to an ice hole, whereas
the generated PDDL environment instead allows the move. This discrepancy lowers the EW score
and signals GenVLM to refine the domain file. Importantly, this stage not only enables VLMFP to
detect execution mismatches and rate generated files using the EW score, but also produces natural
language feedback on the incorrect actions to guide further file updates.

PDDL files updating. In this step, VLMFP refines the generated PDDL files based on the discrepan-
cies identified in the last step. Using the feedback that describes the incorrect action and its expected
outcome, GenVLM systematically inspects all critical components by listing and reasoning whether
the objects, object types, init states, goal states, predicates, actions are valid and coherent, identifies
which file(s) are erroneous, and applies targeted modifications, such as adding missing objects or
correcting action preconditions, to regenerate updated PDDL specifications.

4 EXPERIMENTAL RESULTS

4.1 DOMAINS

Frozenlake Maze Sokoban Package Printer Overcooked

Seen

Unseen

Figure 3: Visualizations of some seen and an unseen appearances for six grid world domains.

We finetune SimVLM and test on six grid world domains: Frozenlake, Maze, Sokoban, Package,
Printer, and Overcooked (Towers et al., 2024; Silver & Chitnis, 2020; Jin et al., 2023; Wu et al.,
2021). For each domain, we collect data across map sizes ranging from 3 to 8 with varying obstacle
probabilities, and create 5–6 distinct visual appearances. In total, this yields a dataset of 430k
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datapoints. By default, we use this dataset for SimVLM fine-tuning, which is used to evaluate
framework VLMFP. Task descriptions, visualizations of different scenario appearances, and dataset
statistics are included in Appendix A.2, A.3, and A.4.3.

4.2 SIMVLM PERFORMANCE AND APPEARANCE GENERALIZATION

We fine-tune a Qwen2-VL-7B model as SimVLM on datasets from six grid world domains. Given
a domain description, an image, and an action sequence, SimVLM outputs (1) a natural language
problem description, (2) step-by-step reasoning and outcomes, and (3) a judgment on goal achieve-
ment. Appendix A.4 provides fine-tuning details and sample inputs and outputs. Before integrating
SimVLM into VLMFP, we evaluate its performance on these tasks individually. Since each dat-
apoint has a fixed-format output, we measure performance by exact string matching between the
model’s predictions and the ground-truth outputs. The four outputs are referred to as Task Descrip-
tion, Execution Reason, Execution Result, and Goal Reach.

To assess SimVLM’s generalization ability, we consider two settings: Seen (S) and Unseen (U)
appearance. S evaluates images with visual styles present in training, while U evaluates novel ap-
pearances under the same rules. This measures how well SimVLM fits the training distribution and
how robustly it transfers to new visual variations of the same task. For each domain, we evaluate on
1000 random datapoints for both S and U, and report the average string matching rate.

Table 1: String matching rate (%) for 4 SimVLM output types on 6 grid world domains.

Output Frozenlake Maze Sokoban Package Printer Overcooked Average

S U S U S U S U S U S U S U

Task Descrip. 100 92.3 99.1 89.8 74.9 51.6 100 99.7 99.9 96.3 99.2 65.6 95.5 82.6
Exec. Reason 96.3 96.0 85.3 97.1 76.6 84.6 89.8 88.4 87.4 86.8 78.9 75.9 85.7 88.1
Exec. Result 96.2 95.9 85.3 96.8 75.2 83.4 89.8 88.4 87.4 86.8 78.8 75.7 85.5 87.8
Goal Reach 94.0 93.7 80.3 94.7 74.2 83.2 87.8 86.0 84.1 84.6 73.9 71.2 82.4 85.6

Average 96.6 94.5 87.5 94.6 75.2 75.7 91.9 90.6 89.7 88.6 82.7 72.1 87.3 86.0

Results and Analysis. We summarize SimVLM’s performance on six grid-world domains under
both seen (S) and unseen (U) appearance settings in Table 1. There are three key takeaways:

First, SimVLM achieves strong accuracy across tasks on seen visual appearances. On average, it
reaches 95.5%, 85.7%, 85.5%, 82.4% in the seen setting across all domains for the four outputs,
respectively. This highlights the effectiveness and reliability of SimVLM.

Second, SimVLM generalizes well to unseen visual appearances. On average, it reaches 82.6%,
88.1%, 87.8%, 85.6% in the unseen setting across all domains for the four outputs, respectively. The
gap between S and U is minimal (average drop of 1.3% across all domains and outputs), showing
that the fine-tuned model is not overfitting to training appearances and can transfer to new visual
styles while maintaining stable output quality. This robustness is crucial for scaling to real-world
environments where visual variation is common.

Third, errors in the Task Description do not necessarily affect action simulation. While the Task
Description output under U drops by 12.9% on average compared to S, the execution simulation
outputs remain equally accurate. This suggests that failures in Task Description typically involve
only a small subset of objects, which often do not impact the sampled action sequences. For in-
stance, the Sokoban task contains multiple types of objects: box, goal, wall, agent, floor, and the
appearances of these objects are all changed. When the appearances of the objects in a domain
change, since SimVLM is not familiar with the new look of objects, it could fail to recognize or
localize some objects. However, when the misidentified objects are not directly involved in the sam-
pled action sequence, execution reasoning and results remain correct. This separation highlights that
SimVLM is robust in reasoning about action dynamics, even when its initial object recognition is
imperfect.

Together, these results validate that SimVLM can produce reliable structured outputs from visual
inputs and maintain strong generalization to new appearances, making it a suitable foundation for
guiding PDDL generation in VLMFP.
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4.3 VLMFP PERFORMANCE

We evaluate VLMFP on six domains using GPT-4o (Achiam et al., 2023b). Each problem instance
comes with a domain description and an image observation, from which VLMFP generates both
PDDL problem and domain files. The problem file is then used as an in-context example to prompt
GenVLM to generate PDDL problem files for 100 new instances, with the PDDL Planner validating
the plans. We repeat this process for 15 different input instances and calculate the average success
rate of finding correct plans, that is, the average success rate of 1500 trials. We follow the same
procedure for unseen appearances. Appendix A.5 provides all prompts and failure-case analysis.

Baselines We compare VLMFP against 1) Direct: VLM direct plan generation with an in-context
example, 2) CoT: chain-of-thought prompting (Wei et al., 2022) with an in-context example by
asking LLMs to reason before generating the final answer, 3) CodePDDL: prompts LLM to generate
PDDL files, given problem descriptions generated by SimVLM. For all baselines, we use GPT-4o
and also include Direct and CoT baselines with GPT-5 (OpenAI, 2025). All baselines have the same
domain description and instance image observation as inputs. For Direct and CoT, since they do not
generate PDDL files, we directly apply them to generate plans for the 100 problem instances.

Table 2: Success rate (%) comparison of VLMFP with baselines on 6 grid world domains.

Method Frozenlake Maze Sokoban Package Printer Overcooked Average

S U S U S U S U S U S U S U

DirectGPT-4O 7.0 8.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.7
DirectGPT-5 30.0 24.0 10.0 15.0 15.0 9.0 5.0 3.0 11.0 9.0 0.0 0.0 11.8 10.0
CoTGPT-4O 9.0 10.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 2.0
CoTGPT-5 36.0 28.0 14.0 16.0 14.0 13.0 2.0 3.0 10.0 12.0 0.0 0.0 12.7 12.0
CodePDDLGPT-4O 88.1 77.1 87.5 74.9 0.0 0.4 0.0 19.0 7.2 22.1 1.1 0.0 30.7 32.3
VLMFP GPT-4O 95.2 81.1 88.7 82.8 55.8 25.1 75.2 53.4 58.7 61.0 46.2 21.3 70.0 54.1

Results and Analysis We present VLMFP performance in Table 2. There are three key takeaways:

First, VLMFP achieves strong performance, significantly outperforms all baselines. Across six do-
mains, VLMFP achieves an average success rate of 70.0% (S) and 54.1% (U), while the strongest
baseline (CodePDDLGPT-4O) reaches 30.7% (S) and 32.3% (U). Note that CodePDDLGPT-4O has
access to the SimVLM generated scenario descriptions, which substantially aid the problem gener-
ation. Direct plan generation and chain-of-thought prompting perform very poorly, confirming that
without explicit PDDL grounding, LLMs struggle to maintain consistency in long-horizon plan-
ning. These results highlight the advantage of plan generation with formal PDDL files guided by
SimVLM. Importantly, the results demonstrate that, after seeing one problem instance in the do-
main, VLMFP can reliably aid the planning of all problem instances not seen by VLMFP. This
clearly proves VLMFP to be an effective, generalizable, and efficient framework.

Second, VLMFP generalizes well to unseen appearances. On average, VLMFP can solve 54.1%
of the unseen problem instances in unseen appearances, which still substantially outperforms the
baselines. This demonstrates that the strong perception capability of SimVLM is well adapted by
VLMFP, enabling VLMFP to generalize better across different visual styles.

Third, domain complexity influences the relative gains of VLMFP. In simpler domains such as
Frozenlake and Maze, both VLMFP and CodePDDL achieve high success rates, though VLMFP
still maintains a clear margin. In complex domains like Sokoban and Printer where reasoning about
different object types and multiple complicated actions is required, VLMFP delivers a strong perfor-
mance gain over CodePDDL: 55.8% vs. 0.0% (U) in Sokoban, and 58.7% vs. 7.2% (U) in Printer.
This shows that the rating and updating processes are crucial for capturing complex domains.

Together, these findings validate that VLMFP is not only effective and efficient in solving unseen
problem instances, but also robust to variations in visual appearances and domain complexity.

4.4 VLMFP EFFECTIVENESS OF VLMFP COMPONENTS

We validate each stage of LLMFP with ablations on 6 domains. We examine the effectiveness of Pre-
screening, Feedback, and Update by removing them from VLMFP one at a time. Similarly, VLMFP
generate PDDL files based on one problem instance and test with 100 other problem instances.
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Table 3: Success rate (%) when removing key components of VLMFP on 6 grid world domains.

Method Frozenlake Maze Sokoban Package Printer Overcooked Average

No Prescreening 94.3 62.5 23.9 56.9 37.3 10.3 47.5
No Feedback 95.5 84.9 38.0 58.9 53.4 35.9 61.1
No Update 88.1 87.5 0.0 0.0 7.2 1.1 30.7
VLMFP 95.2 88.7 55.8 75.2 58.7 46.2 70.0

We report ablation results in Table 3. Removing any of the three components negatively impacts per-
formance across domains. While prescreening and feedback contribute to steady improvements, the
updating stage is essential. Success rates reduce to near zero in complex domains without updating.
These demonstrate the effectiveness of all three stages for VLMFP to achieve robust performance.

4.5 GENERALIZATION ON GAME RULES

In previous sections, we evaluate how SimVLM and VLMFP generalize to unseen problem instances
and appearances. Beyond these, we also explore whether the framework can adapt to changes in the
underlying game rules. In FrozenLake, we created 15 rule variants by modifying core mechanics,
such as ice hole behavior or movement dynamics (see Appendix A.6 for all rule descriptions). We
fine-tune a SimVLM model with these variations and test it on 5 unseen rules. We test 100 problem
instances to examine if SimVLM can provide correct Execution Reason and Result for the steps
involving unseen rules: 1) Rule1: Since ice is wet, stepping on an ice hole causes the agent to step
forward two steps in the same direction. 2) Rule2: Ice holes are teleports to pos-2-2; 3) Rule3: If
you step on an ice hole, you have to execute the same actions three times to actually execute it; 4)
Rule4: Stepping on an ice hole unlocks a lucky rocket, where you can step forward three steps in
the same direction; 5) Rule5: If you step on an ice hole, you freeze and your next action is skipped.

Table 4: Success rate (%) when testing SimVLM on unseen rules for Frozenlake.

Output Rule1 Rule2 Rule3 Rule4 Rule5

Exec. Reason & Result 94.2 99.0 76.1 59.2 71.1 / 0

The complexity of the five unseen rules increases gradually from Rule1 to Rule5. Rule 1 has the
same effects as a training rule (R7 in Appendix A.6), with entirely different wording and explanation.
Rule2 changes the teleport destination; the effect is resolved in a single action. Rule3 increases the
repeat count from two to three, influencing later actions and requiring multi-step reasoning. Rule4
extends the rocket mechanic to three steps; since the final position is not explicit, it needs extra
spatial inference. Results from Rules 1–4 show that SimVLM handles unseen rules in varied formats
and altered dynamics with impressive accuracies of 94.2%, 99.0%, 76.1%, and 59.2%.

Rule 5 introduces a completely novel freezing mechanic never observed in training, and here our
method fails to generalize. Interestingly, SimVLM correctly states the reasoning as “The agent
stepped on ice hole, next action is skipped” but fails to apply it in the next step, yielding 71.1% suc-
cess in reasoning but 0% in execution. This indicates that while execution on entirely new dynamics
remains challenging, SimVLM demonstrates a promising ability to understand and articulate novel
rules, suggesting potential to adapt to entirely unseen rules in the future.

5 CONCLUSION

In this work, we introduced VLMFP, a Dual-VLM-guided framework that autonomously generates
PDDL domain and problem files from visual observations. By combining a fine-tuned SimVLM
for visual understanding and action simulation with a large GenVLM for symbolic reasoning and
iterative refinement, VLMFP removes the need for pre-defined domain files, human supervision, or
environment access. Experiments on six grid-world domains show that SimVLM reliably produces
scenario descriptions, action simulations, and goal judgments, while VLMFP consistently generates
valid PDDL files that enable planners to solve diverse tasks. Results demonstrate strong gener-
alization to unseen instances, appearances, and game rules, underscoring the value of integrating
perception and symbolic reasoning for scaling formal planning to complex, real-world domains.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

Our study uses only synthetic grid-world environments and does not involve human subjects, pri-
vate information, or sensitive data. As such, there are no associated risks related to privacy, security,
or legal compliance. While our framework advances automated planning by combining vision and
symbolic reasoning, we acknowledge the potential misuse of planning systems in harmful applica-
tions. To mitigate such risks, our experiments are confined to safe benchmark domains, and we will
release all code, models, and datasets to support transparency and reproducibility.

7 REPRODUCIBILITY STATEMENT

For reproducibility, we provide detailed domain descriptions in Appendix A.2, dataset statistics in
Appendix A.4.3, fine-tuning parameters in Appendix A.4, and the details and prompts of VLMFP
in Appendix A.5. The code is included in the Supplementary Material. Upon acceptance, we will
release our code, model, and dataset publicly under an open-source license.
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A APPENDIX

A.1 LARGE LANGUAGE MODEL USAGE FOR WRITING

In this paper, we employed large language models—specifically ChatGPT—solely as writing aids.
Draft passages were submitted to the model to improve grammar and refine structure, and the results
were carefully reviewed and edited by the authors. The use of the tool was strictly limited to text
polishing; it was never applied to generate original content or references.

A.2 DOMAINS DESCRIPTIONS

We test on six grid world planning domains, Frozenlake, Maze, Sokoban, Package, Printer, and
Overcooked (Towers et al., 2024; Silver & Chitnis, 2020; Jin et al., 2023; Wu et al., 2021):

• Frozenlake In the scenario, you have a girdworld, where each cell can be either normal ground
or ice holes. The player starts at a cell, and there is a goal position in a cell. The goal is to move
the player to the goal position. You can move up, down, left, right, but you cannot move into the
border, and stepping into the ice hole will fail the game.

• Maze In the scenario, you have a maze gridworld with walls and goal positions. The player can
move up, down, left, or right. If the player hits a wall or performs an invalid action, the action
fails. The goal is to reach the goal cell.

• Sokoban In the scenario, you have a gridworld with walls, boxes, and goal positions. The player
can move, push the box to goal, and push the box to other position. The player can only push the
box forward, not toward other directions. If the player hits a wall or performs an invalid action,
the action fails. The goal is to push all boxes to reach the goal cells.

• Package In the scenario, you have a gridworld with some closed packages in it. The player can
turn-left, turn-right, move, pick-up, drop-down, open, or close the packages. If the player hits
border or performs an invalid action, the action fails. The goal is to open all packages.

• Printer In the scenario, you have a gridworld with a desk region and a printer. The player can
turn-left, turn-right, move, pick-up, drop-down, toggle-on, or toggle-off the printer. The player
cannot move into the desk region. If the player hits border, desk, or performs an invalid action,
the action fails. The goal is to pickup and drop the printer in desk region and toggle it on.

• Overcooked In the scenario, you have a gridworld cooking game with counters, ingredients, chop-
ping boards, and a goal position for delivery. The players can move, chop, pick, drop, merge-
ingredient, put-plate, deliver. If the player moves into the counter or performs an invalid action,
the action fails. The goal is to cook the salad my merging chopped ingredients, put merged ingre-
dients into plate, and put the plate to the delivery position.
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A.3 SCENARIO APPEARANCE VISUALIZATIONS

We create six different scenario appearances for Frozenlake, Maze, Sokoban, Package, Printer,
and five scenario appearances for Overcooked. We include the visualizations of different appear-
ances in Fig. 4. For Frozenlake, Maze, Sokoban, we change the appearances for every object in
the scenario, such as the frozen ice hole, the box, the wall, the agent, etc.. The change objects have
various looks. For example, the agent can have the look of a person, a car, or a bike. And the goal
can also have the look of a present, a home, a target, or a bag of money. For Package and Printer,
we change the color of the background and the desk. For Overcooked, we not only change the
color of the background, look of the agents and objects, but also change the ingredients from lettuce
and tomato to tomato and onions. The differences in appearances not only bring challenges for the
SimVLM to recognize unseen objects, but also to understand the game rule and reason about the
objects in the scenario(lettuce or onion?).

Seen Unseen
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e
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r

O
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oo
ke
d

Figure 4: Full visualizations of various appearances for 6 grid world domains.
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A.4 SIMVLM DETAILS

In this section, we will list the dataset statistics, describe the fine-tuning implementation, and show
the input and output examples of SimVLM.

A.4.1 FAILURE CASE FOR GPT-5 TO ACCOMPLISH THE SAME TASK

For the following image observation as input, we show the GPT-5 generated task description and
action execution results for the sequence [move left, move down, move down, move up, move up,
move right]. From the output, we can observe that GPT-5 fails to recognize the locations of ice

Figure 5: The input image to GPT-5 as the image observation of problem instance.

holes. In addition, since it mistakenly thinks pos-2-1 is an ice hole, the action execution also fails.
The agent should successfully move to pos-2-1 on Step 2, while GPT-5 marks it as moving into
the ice hole, which results in game failure. We include the correct output for this instance from
SimVLM in Appendix A.4.4.� �
From the image we can observe the: Initial State Description:
Initially:
- The size of the gridworld is 4x4.
- The agent is at (pos-1-1).
- The goal is at (pos-4-4).
- The ice holes are at (pos-1-2), (pos-1-3), (pos-2-1), (pos-2-2), (pos

-3-2), (pos-3-3).

Your goal is to achieve the following configuration:
- The agent is at (pos-4-4)

Step 1 - Action move left:
Execution Reasoning: The agent tries to move left from pos-1-1. This

action is not valid because it would move into the border, so the
agent stays at pos-1-1.

Execution result: Unsuccessful.
Step 2 - Action move down:
Execution Reasoning: The agent tries to move down from pos-1-1 to pos

-2-1. Cell pos-2-1 is an ice hole, so the agent falls in and the game
ends.

Execution result: Unsuccessful.
Step 3 - Action move down:
Execution Reasoning: The agent has already failed the game, so this

execution is invalid.
Execution result: Invalid.
Step 4 - Action move up:
Execution Reasoning: The agent has already failed the game, so this

execution is invalid.
Execution result: Invalid.
Step 5 - Action move up:
Execution Reasoning: The agent has already failed the game, so this

execution is invalid.
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Execution result: Invalid.
Step 6 - Action move right:
Execution Reasoning: The agent has already failed the game, so this

execution is invalid.
Execution result: Invalid.
Goal reaching: Unsuccessful.� �
A.4.2 DATASET STATISTICS

Table 5: Dataset and Task statistics for six grid world domains.
Task FrozenLake Maze Sokoban Package Printer Overcooked

Grid Sizes 3–8 5–8 5–8 4–8 4–8 5–8
#Appearances (S/U) 5/1 5/1 5/1 5/1 5/1 4/1
Action Types 4 4 3 7 7 7
# Data per Appearances 20000 20000 20000 5000 5000 19739

A.4.3 FINE-TUNING IMPLEMENTATIONS

We utilize four H100 80GB GPUs for full-parameter fine-tuning of the Qwen2-VL-7B model. The
model is trained for 3 epochs in the SFT stage. The learning rate is set to 1× 10−5. We use a batch
size of 2 for training. We use 10% of the training data for validation, and we select the model with
the lowest validation loss. We perform the inference of SimVLM using a single H100 80GB GPU.

A.4.4 INPUT AND OUTPUT EXAMPLES

Example Input of the Frozenlake domain:� �
<image>Given a sequence of actions and an image observation of the

initial setup of a scenario, your goal is to decide the execution
result after executing given actions. To achieve this task, you will
first describe the setup you observe from the image, give the
reasoning that explains how the player moves and the success or
failure reason for each single action, then rate whether the overall
execution is successful, and eventually describe whether the actions
achieves the task’s goal.

Task Description: In the scenario, you have a girdworld, where each cell
can be either normal ground or ice holes. The left upper corner is (
pos-1-1) for (row, column) representation. The player starts at a
cell, and there is a goal position in a cell. The goal is to move the
player to the goal position. You can move up, down, left, right, but
you cannot move into the border, and stepping into the ice hole will
fail the game.

Action Sequence:
1: move left
2: move down
3: move down
4: move up
5: move up
6: move right� �
Example Output of the Frozenlake domain:� �
From the image we can observe the: Initial State Description:
Initially:
- The size of the gridworld is 4x4.
- The agent is at (pos-1-1).
- The goal is at (pos-4-4).
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- The ice holes are at (pos-1-2), (pos-1-4), (pos-2-4), (pos-3-1), (pos
-3-3), (pos-3-4), (pos-4-1).

Your goal is to achieve the following configuration:
- The agent is at (pos-4-4)

Step 1 - Action move left:
Execution Reasoning: The agent tries to move left from pos-1-1. This

action is not valid as it is moving into the border. So the execution
is unsuccessful and the agent stays at the original location.

Execution result: Unsuccessful.
----------------------------------------------
Step 2 - Action move down:
Execution Reasoning: The agent tries to move down from pos-1-1, so it

will move to pos-2-1. There is no ice hole in cell pos-2-1 and the
agent is not moving to the border, so no invalid action is executed
and the agent successfully moves to pos-2-1.

Execution result: Successful.
----------------------------------------------
Step 3 - Action move down:
Execution Reasoning: The agent tries to move down from pos-2-1, so it

will move to pos-3-1. Since there is an ice hole in cell pos-3-1, the
agent will fall into the ice hole, so the game ended and the

execution is unsuccessful.
Execution result: Unsuccessful.
----------------------------------------------
Step 4 - Action move up:
Execution Reasoning: The agent has already failed the game, so this

execution is invalid. Execution result: Invalid.
----------------------------------------------
Step 5 - Action move up:
Execution Reasoning: The agent has already failed the game, so this

execution is invalid. Execution result: Invalid.
----------------------------------------------
Step 6 - Action move right:
Execution Reasoning: The agent has already failed the game, so this

execution is invalid. Execution result: Invalid.
----------------------------------------------
Goal reaching: Unsuccessful� �
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A.5 VLMFP DETAILS

A.5.1 DIRECT AND COT MAJOR FAILURE CASES

For all domains, one major failure case for Direct and CoT is because the failure to correctly recog-
nize and locate the objects in the scenario due to insufficient image recognition and spatial reasoning
capability. In addition to this, some other failures result from the misunderstanding of actions. For
example, in the Package, Printer, and Overcooked domain, when the agent stands in a cell, it can
perform actions, such as open and close, to objects in adjacent cells. But the VLMs often think
the agent should stand in the same cell as the object to operate it. Including in-context examples is
beneficial, but could not stop all failures like this.

A.5.2 VLMFP MAJOR FAILURE CASES

For failure in generating correct PDDL problem files, one major failure case for all domains is that it
fails to generate all states that describe directional relationships between cells. For example, ‘move-
dir pos-1-1 pos-1-2 right’ defines ‘pos-1-2 is at right to pos-1-1’. Although the problem description
is correct, the GenVLM sometimes fails to include all available directional relationships, so that
some actions cannot be performed. In addition to this type of failure, for complex domains, there
are often different types of objects. Sometimes, GenVLM fails to assign types for all objects.

For failure in generating correct Domain problem files, the major failure case is failure to describe
correct action preconditions and effects. For example, in the Package domain, the agent can only
open the package it faces. The definition for the open action is:� �

(:action open
:parameters (?pkg - package ?pos - position ?pkgpos - position ?dir -

direction)
:precondition (and
(at ?pos)
(package-at ?pkg ?pkgpos)
(package-closed ?pkg)
(facing ?dir)
(move-dir ?pos ?pkgpos ?dir)

)
:effect (and
(not (package-closed ?pkg))
(package-open ?pkg)

)
)� �

This ‘facing ?dir’ precondition and the ‘(move-dir ?pos ?pkgpos ?dir)’ are easy to neglect.

For CodePDDL, it has similar failure cases as VLMFP. Without the updating process, the failures
cannot be corrected.

A.5.3 VLMFP IMPLEMENTATION DETAILS AND PROMPTS

Prescreening During prescreening, GenVLM first generates the problem PDDL file based on the
domain description, problem description, and image observation. The descriptions include the prob-
lem and domain PDDL template, which only includes the available object types, action names, and
action variable names. In the prompt, a non-task-specific example is included. The example is a 3x3
grid world with no obstacles. The prompt is:� �
Given a natural language description of a planning problem and an image

observation of the initial scenario, your task is to generate a
complete PDDL problem instance that is equivalent to its natural
language description and image observation, contain all necessary
predicates as described in the description, and is thorough and
complete. Consider all predicates that are relevant and neccesary.

Example:
Domain Description:
{domain_nl_wrapped}

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Domain PDDL Template:
‘‘‘pddl
(define (domain grid)

(:requirements :strips)
(:predicates)

(:action move-up
:parameters (?from ?to)
:precondition ()
:effect ()

)

(:action move-down
:parameters (?from ?to)
:precondition ()
:effect ()

)

(:action move-left
:parameters (?from ?to)
:precondition ()
:effect ()

)

(:action move-right
:parameters (?from ?to)
:precondition ()
:effect ()

)
)
‘‘‘
Problem Description:
‘‘‘markdown
You are tasked with manipulating an agent to reach the goal without

colliding into the wall. The position representation is (row, column)
representation. For example, (pos-4-3) represents the position in

fourth row and third column. The left upper corner is (pos-1-1). You
can perform four actions: move-up, move-down, move-left, and move-
right.

Initially:
- The agent is at (pos-2-1).
- The goal is at (pos-3-3).

Your goal is to achieve the following configuration:
- The agent is at (pos-3-3)
‘‘‘

Problem PDDL Template:
‘‘‘pddl
(define (problem grid)

(:domain grid)
(:objects )
(:init )
(:goal (and ))

)
‘‘‘
Problem PDDL:
‘‘‘markdown

(define (problem grid) (:domain grid)
(:objects

pos-1-1 - position
pos-1-2 - position
pos-1-3 - position
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pos-2-1 - position
pos-2-2 - position
pos-2-3 - position
pos-3-1 - position
pos-3-2 - position
pos-3-3 - position

)
(:init

(at pos-2-1)
(is-goal pos-3-3)
(move-dir-left pos-1-2 pos-1-1)
(move-dir-left pos-1-3 pos-1-2)
(move-dir-left pos-2-2 pos-2-1)
(move-dir-left pos-2-3 pos-2-2)
(move-dir-left pos-3-2 pos-3-1)
(move-dir-left pos-3-3 pos-3-2)
(move-dir-right pos-1-1 pos-1-2)
(move-dir-right pos-1-2 pos-1-3)
(move-dir-right pos-2-1 pos-2-2)
(move-dir-right pos-2-2 pos-2-3)
(move-dir-right pos-3-1 pos-3-2)
(move-dir-right pos-3-2 pos-3-3)
(move-dir-up pos-2-1 pos-1-1)
(move-dir-up pos-2-2 pos-1-2)
(move-dir-up pos-2-3 pos-1-3)
(move-dir-up pos-3-1 pos-2-1)
(move-dir-up pos-3-2 pos-2-2)
(move-dir-up pos-3-3 pos-2-3)
(move-dir-down pos-1-1 pos-2-1)
(move-dir-down pos-1-2 pos-2-2)
(move-dir-down pos-1-3 pos-2-3)
(move-dir-down pos-2-1 pos-3-1)
(move-dir-down pos-2-2 pos-3-2)
(move-dir-down pos-2-3 pos-3-3)

)
(:goal (at pos-3-2))

)
‘‘‘
Domain Description:
{target_domain_nl}
Domain PDDL Template:
{target_domain_template_pddl}

Problem Description:
{target_problem_nl}

Problem PDDL Template:
{target_problem_template_pddl}� �
After generating the problem file, GenVLM continues to generate the domain file based on the ex-
ample of the grid, domain, and problem descriptions, image observation, and the generated problem
file. The prompt for this is:� �
You are given a natural language description of a planning problem in the

domain {target_domain_name} along with one problem instance in PDDL
format and an image observation of the initial setup. Your task is to
generate a PDDL domain for the target domain {target_domain_name}

that is equivalent to its natural language description and is
compatible with the provided problem instance.

Starting from a PDDL domain template, you are allowed to modify the
template using the following two python function interfaces:

‘‘‘python
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add_or_update_predicates(predicates: List[str])
modify_action(action_name: str, new_preconditions: List[str], new_effects

: List[str])
‘‘‘

An example of above functions applied to an example PDDL domain template
is as follows:

Example Domain Description:
‘‘‘markdown
The robot has four actions: move-up, move-down, move-left, and move-right

. This domain models an agent navigating in a grid world. The goal is
to reach a target location. The world consists of a set of discrete

positions (e.g., grid cells). The position representation is (row,
column) representation. For example, (pos-4-3) represents the
position in fourth row and third column, and (pos-4-4) is at right of
(pos-4-3). Between each two positions, the directional links between
them design how they can move between each other. For example, the

agent can move-left from pos-3-2 to pos-3-1 because pos-3-1 is at
left to pos-3-2, but cannot move-left from pos-3-2 to pos-3-3.

‘‘‘

Example Problem PDDL:
‘‘‘pddl

(define (problem maze) (:domain maze)
(:objects

pos-1-1 - position
pos-1-2 - position
pos-1-3 - position
pos-2-1 - position
pos-2-2 - position
pos-2-3 - position
pos-3-1 - position
pos-3-2 - position
pos-3-3 - position

)
(:init

(at pos-2-1)
(is-goal pos-3-3)
(move-dir-left pos-1-2 pos-1-1)
(move-dir-left pos-1-3 pos-1-2)
(move-dir-left pos-2-2 pos-2-1)
(move-dir-left pos-2-3 pos-2-2)
(move-dir-left pos-3-2 pos-3-1)
(move-dir-left pos-3-3 pos-3-2)
(move-dir-right pos-1-1 pos-1-2)
(move-dir-right pos-1-2 pos-1-3)
(move-dir-right pos-2-1 pos-2-2)
(move-dir-right pos-2-2 pos-2-3)
(move-dir-right pos-3-1 pos-3-2)
(move-dir-right pos-3-2 pos-3-3)
(move-dir-up pos-2-1 pos-1-1)
(move-dir-up pos-2-2 pos-1-2)
(move-dir-up pos-2-3 pos-1-3)
(move-dir-up pos-3-1 pos-2-1)
(move-dir-up pos-3-2 pos-2-2)
(move-dir-up pos-3-3 pos-2-3)
(move-dir-down pos-1-1 pos-2-1)
(move-dir-down pos-1-2 pos-2-2)
(move-dir-down pos-1-3 pos-2-3)
(move-dir-down pos-2-1 pos-3-1)
(move-dir-down pos-2-2 pos-3-2)
(move-dir-down pos-2-3 pos-3-3)

)
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(:goal (at pos-3-2))
)
‘‘‘

Example PDDL Template:
‘‘‘pddl
(define (problem maze)

(:domain maze)
(:objects )
(:init )
(:goal (and ))

)
‘‘‘

Example Completion:
‘‘‘python
add_or_update_predicates([

’(move-dir-up ?x ?y)’,
’(move-dir-down ?x ?y)’,
’(move-dir-left ?x ?y)’,
’(move-dir-right ?x ?y)’,
’(at ?x)’,
’(is-goal ?x)’

])
modify_action(’move-up’, [

"(at ?from)",
"(move-dir-up ?from ?to)"

], [
"(not (at ?from))",
"(not (clear ?to))",
"(at ?to)",

])

modify_action(’move-down’, [
"(at ?from)",
"(move-dir-down ?from ?to)"

], [
"(not (at ?from))",
"(at ?to)",

])

modify_action(’move-left’, [
"(at ?from)",
"(move-dir-left ?from ?to)"

], [
"(not (at ?from))",
"(at ?to)",

])

modify_action(’move-right’, [
"(at ?from)",
"(move-dir-right ?from ?to)"

], [
"(not (at ?from))",
"(at ?to)",

])
‘‘‘

Target Domain Description:
{target_domain_nl}

Target Problem PDDL:
{target_problem_pddl}
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Now, your task is to complete the following PDDL template by generating
necessary predicates and action preconditions and effects:

Target PDDL Template:
{target_domain_template_pddl}

You must never modify action parameters, and you are only allowed to use
the following two function interfaces to modify the template.� �

PDDL files updating During updating, GenVLM takes in the descriptions, image observation, pre-
viously generated problem and domain PDDL files, and execution inconsistency feedback. Gen-
VLM is prompted to reason about which part of the files is problematic and then update the file(s).
The prompt for this is:� �
Here are your generated PDDL problem and domain. Please reason about the

issue with your generated problem file or generated code for domain
generation.

Problem Description:
{target_problem_nl}

Domain Description:
{target_domain_nl}

Domain PDDL Template:
{target_domain_template}

Generated Problem PDDL:
{problem_pddl}

Generated Domain PDDL:
{domain_pddl}

Execution Feedback:
{execution_feedback}

In your response, please
1. reason about if you want to update your problem file and domain file

to fix the issue by answering
Q1: List all predicates. Describe how they are related to objects and

actions and how they should be updated.
Q2: List all actions in domain. Describe, explain, and compare action’s

definition in given natural language description with its inputs,
preconditions, and effects in domain file one by one. No two actions
should have same preconditions and effects. If not, please correct in
domain file.

Q3: List all objects in problem.
Q4: Check the :objects section. If fixed ’typing’ exists, list the type

of each object and if it is EXPLICITLY written as format [object_name
- type] in problem file. Explicit typing means the exact string - <

type> must appear after each object name. Do not assume implicit
typing. If any object is listed without a type, then the problem file
is incorrect and must be modified.

Q5: List all init states in problem. Predicates used in domain should be
initialized in problem file. And they should describe every aspect of
the problem, and be enough to execute actions. When defining

directional links of a grid, the init states should exhaustively
enumerate all adjacent positions for every applicable cell in this
grid, from first row and column to last row and column, no matter it
is valid movement or contains obstacles or not. If not, please
correct in problem file.

Q6: List all goals in problem.
Q7: Based on previous answers, summarize the errors one by one, and

explain which file(s) should be updated and which parts of them
should be updated in detail.
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2. update the problem file to be correct and complete according to your
analysis, if needed (Your modified PDDL will be directly used, so
return only complete and valid PDDL: no comments, TODOs, placeholders
, or omissions);

3. generate the new code for domain generation according to your analysis
, if needed.

If you want to modify the new domain file, you are only allowed to use
the following two function interfaces to modify the template.

‘‘‘python
add_or_update_predicates(predicates: List[str])
modify_action(action_name: str, new_preconditions: List[str], new_effects

: List[str])
‘‘‘

An example of above functions is as follows:

‘‘‘python
add_or_update_predicates([’(is-robot ?x)’])
modify_action(’move’, [’(is-robot ?x)’], [’(is-robot ?y)’])
‘‘‘

Please give your answer strictly in the following format:

Problem file and Domain file update reasoning: []
New problem file: [fill in N/A if not needed]
New domain file: [fill in N/A if not needed]"
"""� �
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A.6 GENELIZATION TO GAME RULES

A.6.1 GAME RULE VARIATION DESCRIPTIONS

We designed 15 new rules and collected data for these rules under the default Frozenlake appearance,
with size 3-8, and different ice hole probabilities. For each rule, we collect 20k data. Here’s the
detailed rule descriptions for the new rules.

• R1: Ice holes do not result in failure. Instead, the agent must step on one ice hole once as a
precondition for game completion.

• R2: Variant of R1. The agent must step on two ice holes as a precondition for game completion.
• R3: Ice holes function as teleports. There are two ice holes in the scenario that allow teleportation

between each other.
• R4: Ice holes function as teleports. Any ice hole allows the agent to teleport back to the origin

position.
• R5: If the agent steps on an ice hole, it must execute the same action twice to actually execute it.
• R6: The agent has two lives. It does not fail when stepping on the first ice hole, but fails the game

when stepping on the second one.
• R7: Stepping on an ice hole unlocks a lucky rocket, allowing the agent to step forward two steps

in the same direction.
• R8: Ice is slippery. If the agent steps on ice and the next cell in the same direction is also ice, the

agent slips to the second ice position, continuing to slip until reaching a non-ice position.
• R9: The agent can only step into an ice hole if entering from above. Stepping in from other

directions is invalid.
• R10: After stepping on an ice hole, the agent must always execute actions twice to actually execute

them.
• R11: Variant of R10. The agent must execute actions three times instead of twice.
• R12: If the agent steps onto ice, it slides in that direction until hitting a wall.
• R13: Variant of R12. The agent bounces back until reaching a wall instead of sliding forward.
• R14: Stepping on an ice hole swaps the goal and origin positions.
• R15: The agent can only move up or down when on ice holes.
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A.7 GROUND TRUTH PDDL FILES EXAMPLES

Here we show ground truth PDDL Problem and Domain file examples for the Frozenlake and Pack-
age domain. They represent very different sets of actions in grid world domains. In Frozenlake, the
agent does not have orientations; that is, it can freely move to any adjacent cell. However, in the
Package domain, the agent has orientation and can only move in the direction it faces. Thus, the
move action definition is different, and the turn action is also required in the Package domain. In
addition, the Package domain also shows some manipulation actions, which are common in complex
grid world domains.

Frozenlake Sample PDDL Problem File:� �
(define (problem FL-rand)

(:domain frozenlake)
(:objects pos-1-1 pos-1-2 pos-1-3 pos-1-4 pos-2-1 pos-2-2 pos-2-3 pos

-2-4 pos-3-1 pos-3-2 pos-3-3 pos-3-4 pos-4-1 pos-4-2 pos-4-3 pos
-4-4)

(:init
(at pos-1-1)
(ice-hole pos-1-3)
(ice-hole pos-1-4)
(ice-hole pos-2-2)
(ice-hole pos-3-3)
(ice-hole pos-3-4)
(ice-hole pos-4-1)
(up_direction pos-2-1 pos-1-1)
(up_direction pos-2-2 pos-1-2)
(up_direction pos-2-3 pos-1-3)
(up_direction pos-2-4 pos-1-4)
(up_direction pos-3-1 pos-2-1)
(up_direction pos-3-2 pos-2-2)
(up_direction pos-3-3 pos-2-3)
(up_direction pos-3-4 pos-2-4)
(up_direction pos-4-1 pos-3-1)
(up_direction pos-4-2 pos-3-2)
(up_direction pos-4-3 pos-3-3)
(up_direction pos-4-4 pos-3-4)
(down_direction pos-1-1 pos-2-1)
(down_direction pos-1-2 pos-2-2)
(down_direction pos-1-3 pos-2-3)
(down_direction pos-1-4 pos-2-4)
(down_direction pos-2-1 pos-3-1)
(down_direction pos-2-2 pos-3-2)
(down_direction pos-2-3 pos-3-3)
(down_direction pos-2-4 pos-3-4)
(down_direction pos-3-1 pos-4-1)
(down_direction pos-3-2 pos-4-2)
(down_direction pos-3-3 pos-4-3)
(down_direction pos-3-4 pos-4-4)
(left_direction pos-1-2 pos-1-1)
(left_direction pos-1-3 pos-1-2)
(left_direction pos-1-4 pos-1-3)
(left_direction pos-2-2 pos-2-1)
(left_direction pos-2-3 pos-2-2)
(left_direction pos-2-4 pos-2-3)
(left_direction pos-3-2 pos-3-1)
(left_direction pos-3-3 pos-3-2)
(left_direction pos-3-4 pos-3-3)
(left_direction pos-4-2 pos-4-1)
(left_direction pos-4-3 pos-4-2)
(left_direction pos-4-4 pos-4-3)
(right_direction pos-1-1 pos-1-2)
(right_direction pos-1-2 pos-1-3)
(right_direction pos-1-3 pos-1-4)
(right_direction pos-2-1 pos-2-2)
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(right_direction pos-2-2 pos-2-3)
(right_direction pos-2-3 pos-2-4)
(right_direction pos-3-1 pos-3-2)
(right_direction pos-3-2 pos-3-3)
(right_direction pos-3-3 pos-3-4)
(right_direction pos-4-1 pos-4-2)
(right_direction pos-4-2 pos-4-3)
(right_direction pos-4-3 pos-4-4)
)
(:goal
(and

(at pos-4-4)
)

)
)� �
Frozenlake PDDL Domain File:� �
(define (domain frozenlake)

(:requirements :strips)
(:predicates (at ?x) (down_direction ?from ?to) (ice-hole ?x) (

left_direction ?from ?to) (right_direction ?from ?to) (
up_direction ?from ?to))

(:action move-down
:parameters (?from ?to)
:precondition (and (at ?from) (down_direction ?from ?to) (not (

ice-hole ?from)))
:effect (and (at ?to) (not (at ?from)))

)
(:action move-left

:parameters (?from ?to)
:precondition (and (at ?from) (left_direction ?from ?to) (not (

ice-hole ?from)))
:effect (and (at ?to) (not (at ?from)))

)
(:action move-right

:parameters (?from ?to)
:precondition (and (at ?from) (right_direction ?from ?to) (not (

ice-hole ?from)))
:effect (and (at ?to) (not (at ?from)))

)
(:action move-up

:parameters (?from ?to)
:precondition (and (at ?from) (up_direction ?from ?to) (not (ice-

hole ?from)))
:effect (and (at ?to) (not (at ?from)))

)

)� �
Package Sample PDDL Problem File:� �
(define (problem package)

(:domain package)

(:objects
; Positions in 4x4 grid
pos-1-1 pos-1-2 pos-1-3 pos-1-4 pos-2-1 pos-2-2 pos-2-3 pos-2-4 pos

-3-1 pos-3-2 pos-3-3 pos-3-4 pos-4-1 pos-4-2 pos-4-3 pos-4-4 -
position

; Packages
pkg-1 pkg-2 - package
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; Directions
up down left right - direction

)

(:init
; Agent initial position and orientation
(at pos-3-3)
(facing up)

; Package locations and states
(package-at pkg-1 pos-1-3)
(package-closed pkg-1)
(package-at pkg-2 pos-4-1)
(package-closed pkg-2)

; Turn relations
(left-turn up left)
(left-turn left down)
(left-turn down right)
(left-turn right up)

(right-turn up right)
(right-turn right down)
(right-turn down left)
(right-turn left up)

; Grid adjacency relationships
(move-dir pos-1-1 pos-1-2 right) (move-dir pos-1-2 pos-1-1 left)
(move-dir pos-1-2 pos-1-3 right) (move-dir pos-1-3 pos-1-2 left)
(move-dir pos-1-3 pos-1-4 right) (move-dir pos-1-4 pos-1-3 left)
(move-dir pos-2-1 pos-2-2 right) (move-dir pos-2-2 pos-2-1 left)
(move-dir pos-2-2 pos-2-3 right) (move-dir pos-2-3 pos-2-2 left)
(move-dir pos-2-3 pos-2-4 right) (move-dir pos-2-4 pos-2-3 left)
(move-dir pos-3-1 pos-3-2 right) (move-dir pos-3-2 pos-3-1 left)
(move-dir pos-3-2 pos-3-3 right) (move-dir pos-3-3 pos-3-2 left)
(move-dir pos-3-3 pos-3-4 right) (move-dir pos-3-4 pos-3-3 left)
(move-dir pos-4-1 pos-4-2 right) (move-dir pos-4-2 pos-4-1 left)
(move-dir pos-4-2 pos-4-3 right) (move-dir pos-4-3 pos-4-2 left)
(move-dir pos-4-3 pos-4-4 right) (move-dir pos-4-4 pos-4-3 left)
(move-dir pos-1-1 pos-2-1 down) (move-dir pos-2-1 pos-1-1 up)
(move-dir pos-1-2 pos-2-2 down) (move-dir pos-2-2 pos-1-2 up)
(move-dir pos-1-3 pos-2-3 down) (move-dir pos-2-3 pos-1-3 up)
(move-dir pos-1-4 pos-2-4 down) (move-dir pos-2-4 pos-1-4 up)
(move-dir pos-2-1 pos-3-1 down) (move-dir pos-3-1 pos-2-1 up)
(move-dir pos-2-2 pos-3-2 down) (move-dir pos-3-2 pos-2-2 up)
(move-dir pos-2-3 pos-3-3 down) (move-dir pos-3-3 pos-2-3 up)
(move-dir pos-2-4 pos-3-4 down) (move-dir pos-3-4 pos-2-4 up)
(move-dir pos-3-1 pos-4-1 down) (move-dir pos-4-1 pos-3-1 up)
(move-dir pos-3-2 pos-4-2 down) (move-dir pos-4-2 pos-3-2 up)
(move-dir pos-3-3 pos-4-3 down) (move-dir pos-4-3 pos-3-3 up)
(move-dir pos-3-4 pos-4-4 down) (move-dir pos-4-4 pos-3-4 up)

)

(:goal
(and
(package-open pkg-1)
(package-open pkg-2)

)
)

)� �
Package PDDL Domain File:� �
(define (domain package)
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(:requirements :strips :typing)

(:types
position package direction

)

(:predicates
(at ?pos - position) ; agent is at position
(package-at ?pkg - package ?pos - position) ; package is at position
(package-open ?pkg - package) ; package is open
(package-closed ?pkg - package) ; package is closed
(facing ?dir - direction) ; agent is facing direction
(left-turn ?from - direction ?to - direction)
(right-turn ?from - direction ?to - direction)
(move-dir ?pos1 - position ?pos2 - position ?dir - direction) ;

positions are move-dir in direction
)

(:action turn-left
:parameters (?current-dir - direction ?new-dir - direction)
:precondition (and
(facing ?current-dir)
(left-turn ?current-dir ?new-dir)

)
:effect (and
(not (facing ?current-dir))
(facing ?new-dir)

)
)

(:action turn-right
:parameters (?current-dir - direction ?new-dir - direction)
:precondition (and
(facing ?current-dir)
(right-turn ?current-dir ?new-dir)

)
:effect (and
(not (facing ?current-dir))
(facing ?new-dir)

)
)

(:action move
:parameters (?from - position ?to - position ?dir - direction)
:precondition (and
(at ?from)
(facing ?dir)
(move-dir ?from ?to ?dir)

)
:effect (and
(not (at ?from))
(at ?to)

)
)

(:action open
:parameters (?pkg - package ?pos - position ?pkgpos - position ?dir -

direction)
:precondition (and
(at ?pos)
(package-at ?pkg ?pkgpos)
(package-closed ?pkg)
(facing ?dir)
(move-dir ?pos ?pkgpos ?dir)

)
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:effect (and
(not (package-closed ?pkg))
(package-open ?pkg)

)
)

(:action close
:parameters (?pkg - package ?pos - position ?pkgpos - position ?dir -

direction)
:precondition (and
(at ?pos)
(package-at ?pkg ?pkgpos)
(package-open ?pkg)
(facing ?dir)
(move-dir ?pos ?pkgpos ?dir)

)
:effect (and
(not (package-open ?pkg))
(package-closed ?pkg)

)
)

)� �
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