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ABSTRACT

Leveraging sparse networks to connect successive layers in deep neural networks
has recently been shown to provide benefits to large scale state-of-the-art models.
However, network connectivity also plays a significant role on the learning perfor-
mance of shallow networks, such as the classic Restricted Boltzmann Machines
(RBM). Efficiently finding sparse connectivity patterns that improve the learning
performance of shallow networks is a fundamental problem. While recent princi-
pled approaches explicitly include network connections as model parameters that
must be optimized, they often rely on explicit penalization or have network sparsity
as a hyperparameter. This work presents a method to find optimal connectivity
patterns for RBMs based on the idea of network gradients (NCG): computing the
gradient of every possible connection, given a specific connection pattern, and
using the gradient to drive a continuous connection strength parameter that in
turn is used to determine the connection pattern. Thus, learning RBM parameters
and learning network connections is truly jointly performed, albeit with different
learning rates, and without changes to the objective function. The method is applied
to the MNIST and other datasets showing that better RBM models are found for the
benchmark tasks of sample generation and input classification. Results also show
that NCG is robust to network initialization, both adding and removing network
connections while learning.

1 INTRODUCTION

While most neural network architectures adopt a fully connected network between units of successive
layers, it has been long recognized that network connectivity plays a fundamental role in the model,
not only reducing the number of parameters but also leading to a more accurate model or to faster
learning (Reed, 1993; Blalock et al., 2020). This finding has recently reemerged in the context of deep
neural networks, and while classic architectures such as ResNet (He et al., 2016) and BERT (Devlin
et al., 2019) have millions of parameters that must be learned, recent works indicate that only a
small fraction is necessary for the model to attain a similar performance under an equivalent training
effort (Blalock et al., 2020).

Most works on leveraging network connectivity to improve the model focus on deep neural networks
or large scale networks. However, connectivity patterns play a fundamental role even on simple two-
layer networks such as Restricted Boltzmann Machines (RBMs). While the reduction on the absolute
number of parameters may be small, recent works observe that an effective connectivity pattern can
still yield superior learning curves, learning faster and better (Mocanu et al., 2018; de Oliveira &
Figueiredo, 2022). In fact, the connectivity of an RBM can be interpreted as a hyperparameter that
influences its performance, just as the number of neurons (another hyperparameter) in its hidden
layer (Fischer & Igel, 2014; Côté & Larochelle, 2016).

Finding the best network connectivity for a given neural network is not a trivial problem, given its
dependence on the input (training data), the discrete nature of the connections, and the exponentially
large space of possible connection patterns (there are 2n

2

different networks between two layers with
n units each). A common approach to tackle this problem is to construct the connectivity pattern
while training the network, starting with a dense network and using some pruning strategy to remove
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connections in a sequence of rounds (train and prune) (Han et al., 2015; Frankle & Carbin, 2019).
A less explored yet more principled approach is to explicitly include the network connections as
parameters that must be optimized in the model (Savarese et al., 2020; Chen et al., 2021; Zhou
et al., 2021). Intuitively, the model should jointly learn the optimal network weights and network
connections during training.

However, the discrete nature of the network connections poses a challenge to widely used continuous
optimization frameworks such as (stochastic) gradient descent, since discrete connection parameters
have no derivatives (and thus, no gradient). To circumvent this problem, recent approaches adopt
continuous variables and functions to represent network connections. Moreover, in order to drive
the model towards sparse networks, many incorporate an explicit penalization term (representing the
number of connections) into the objective function. Also, the discrete network connectivity is often
only determined at the end of training (or a round), and does not evolve jointly with the optimization
of other parameters. In contrast, this work proposes a novel method tailored to RBMs based on the
notion of “network gradients”.

In a nutshell, the Network Connectivity Gradient (NCG) method computes the gradient for every
possible network connection for any given connectivity pattern. Moreover, NCG uses a continuous
parameter to represent the strength of every possible network connection which is updated according
to the gradient as any other model parameter. Finally, the network strength is thresholded to yield
a discrete connectivity pattern during optimization (i.e., at each training iteration) which in turn
determines how information (probabilities) and gradients flow on the model during training.

Intuitively, the network gradient indicates the relevance of each possible connection given the current
connection pattern. This gradient drives the connection strength parameter which in turn determines
if a connection should be present or absent, effectively adjusting the connection pattern as the model
is trained. Thus, if the initial connectivity pattern is too sparse or too dense, NCG will enable or
disable connections early during training, respectively. In essence, NCG truly learns the network
connectivity jointly with other RBM parameters, albeit with possibly different learning rates. Note
that no changes are required to the objective function of the RBM.

Beyond proposing NCG, this work evaluates the method using the MNIST data set on two orthogonal
tasks often used to assess RBMs: sample generation (average NLL is the performance metric) and
input classification (accuracy is the performance metric). For the classification task, two other data
sets from the UCI Evaluation Suite (Dua & Graff, 2017) are considered. In both tasks NCG shows
a superior learning curve, both learning faster and more accurately than a classic fully connected
RBM. The evaluation also shows that NCG removes and adds network connections during training,
indicating its effectiveness in searching for optimal network patterns and robustness to initialization.
Comparison with static patterns and the SET method (Mocanu et al., 2018) (also designed for
optimizing the network connectivity of RBMs) indicate the superiority of NCG, especially during the
early phases of training.

The remainder of this work is organized as follows: Section 2 has a cursory discussion of related
works; Section 3 imparts a brief explanation of the RBM; Section 4 presents the NCG method
proposed in this work; Section 5 shows the experimental results; and Section 6 has the concluding
remarks.

2 RELATED WORK

Recent developments in Neural Architecture Search (NAS) focus on the design of effective network
architectures for deep neural networks targeted to solve a given task. The design spaces often
consider the structure of layers through which information flows as well as the type of operation
(aggregation/activation) applied by each layer (Elsken et al., 2019). Optimization problems that
consider different design spaces for the network can be formulated and solved using different
techniques (Liu et al., 2019; Fang et al., 2020). However, the focus of such approaches is on the
macro scale organization of the network, and not on the fine connectivity pattern of consecutive layers
(other than a small set of pre-defined connectivity patterns, such as different convolutions).

Independently of NAS, the idea of removing (pruning) connections between two adjacent network
layers has recently reemerged in the context of deep neural networks. Pruning can improve the model’s
learning curve (learning faster or better) and drastically reduce the number of model parameters (Reed,

2



Under review as a conference paper at ICLR 2023

1993; Blalock et al., 2020; Liang et al., 2021). Finding the optimal connectivity pattern for two
adjacent layers is not a trivial task. Most approaches start with dense networks and iterate in rounds
of training the model parameters and using the parameter values (and the input samples) to prune
network connections. Pruning can also be performed before training starts (Lee et al., 2019; de Jorge
et al., 2021).

A more principled yet less explored approach explicitly includes the network connectivity as a
parameter of the model, making the network connectivity a part of the optimization problem. This
often requires increasing the number of parameters and modifying the objective function to induce
pruning. A prominent example is Continuous Sparsification (Savarese et al., 2020), that uses
continuous parameters and continuous functions to approximate the discrete nature of network
connections, and adds a penalization term to the objective function. The discrete network connectivity
is determined at the end of training rounds. UGS (Chen et al., 2021) deploys a similar approach
tailored to Graph Neural Networks (GNN). DNW (Wortsman et al., 2019) does not add penalization
to the objective function, and keeps k edges with the largest weight magnitude, discovering good
sparse subnetworks in predefined architectures. Another recent approach is SR-STE (Zhou et al.,
2021) where the (discrete) connectivity pattern is updated at each training iteration. However, the
method assumes that each input unit is connected to exactly k output units and thus sparsity is
predefined (k is a hyperparameter).

All prior works above focus on deep neural networks. However, network connectivity also plays a
fundamental role on simple two-layer networks, including the Restricted Boltzmann Machine (RBM),
a principled and probabilistic model that has been widely explored and applied in literature (Fischer
& Igel, 2014; Decelle & Furtlehner, 2021). RBMs’ hyperparameters have a significant impact on
the model’s performance which has prompted different methods to best choose them given a task
and input data (Hinton, 2012; Papa et al., 2015; Côté & Larochelle, 2016). A prominent example
is the infinite RBM (Côté & Larochelle, 2016), a variation where the number of hidden units (a
hyperparameter in the classic model) is an explicit model parameter that is determined during training.

The connectivity between layers have also been investigated in shallow networks. For example,
a recent work showed that manually crafted connectivity patterns can lead to significantly better
learning performance on RBMs (de Oliveira & Figueiredo, 2022). Moreover, the Sparse Boltzmann
Machines (SBM) is a model where the connectivity is a sparse two-layer tree-like network (Chen et al.,
2017). Different tree-like networks can be learned from data and then used as hyperparameters when
training the RBM, generating models that are less likely to overfit and that have better interpretability
with respect to the dense RBM. In a more recent work, the network connectivity of the RBM is
learned during training along with other model parameters. Their approach (called SET method)
removes connections with the smallest weights and adds the same number of randomly chosen new
connections at each training round Mocanu et al. (2018). Thus, network sparsity is predefined (a
hyperparameter). In contrast, NCG (to be presented) learns the connectivity and sparseness during
training using the gradients of the unmodified objective function of the model. This is the first method
of this kind specifically designed for RBMs, to the best of our knowledge.

3 THE RESTRICTED BOLTZMANN MACHINE

The Restricted Boltzmann Machine (RBM), first proposed under the name Harmonium (Smolensky,
1986), is an energy-based model for unsupervised learning. It is a classic neural network model that
has been applied to a number of different tasks. While initially designed for sample generation (Roux
et al., 2011; Decelle & Furtlehner, 2021; Tang et al., 2012), it has been used for classification
tasks (Tieleman, 2008; Larochelle et al., 2012) and also as preprocessing method for downstream
tasks (Midhun et al., 2014). Furthermore, RBMs are the building blocks of Deep Belief Networks
(DBN), which find numerous applications in modern problems (Salakhutdinov & Murray, 2008;
Qiang et al., 2020).

An RBM is a probabilistic model composed of two layers of binary units: one visible x of size X ,
representing the data, and one hidden (or latent) h of sizeH , that extracts characteristics and increases
learning ability. The two layers are fully connected through undirected weighted connections in a
bipartite network. Figure 1 shows the example of an RBM network with X = 4 and H = 5.
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Figure 1: The RBM network for 4 visible and 5 hidden units.

Each configuration (x,h) has the following associated energy: E(x,h) = −hTWx − xTd − hTb,
where W ∈ RH,X is the weight matrix of the layers’ connections (wij is the weight between visible
unit xj and hidden unit hi), d ∈ RX is the visible units’ bias vector (dj is the bias for xj) and
b ∈ RH is the hidden units’ bias vector (bi is the bias for hi). W, d and b are the model parameters,
subsequently denoted by θ = (W,d,b). The probability distribution of the RBM is defined as
Pθ(x,h) = Z−1e−E(x,h), with Z being the normalization constant (or partition function). Note that
this equation is in general not tractable due to the very large number of configurations (2X+H ).

3.1 TRAINING THE RESTRICTED BOLTZMANN MACHINE

The RBM is typically trained to minimize the Negative Log-Likelihood (NLL) of the available data
set, which is equivalent to maximizing the Log-Likelihood. In this case, the average NLL is often
adopted in order to simplify the learning procedure. Given a data set {x(t)}t=1,...,T with T samples,
the average NLL of the model is simply 1

T

∑T
t=1− lnPθ(x(t)).

The RBM is trained by applying Stochastic Gradient Descent (SGD) (Bottou, 2010). Due to
the intractability of the normalization constant, training methods such as Contrastive Divergence
(CD) (Hinton, 2002) approximate the gradient with the following expression:

1

|B|
∑
t∈B

Eh

[
∇θE(x,h)

∣∣∣x = x(t)
]
− 1

|B|
∑
t∈B

Eh

[
∇θE(x,h)

∣∣∣x = x̃(t)
]
, (1)

where B corresponds to a batch of samples randomly chosen from the data, a widely applied
heuristics (Hinton, 2012); and x̃(t) is a random sample of the RBM given its parameters. Note that
equation 1 requires generating a random sample from the RBM distribution for each data sample x(t),
which is done applying k steps of Gibbs Sampling on the model, starting from the data sample x(t).

Calculating the corresponding expectations for each model parameter wij , bi, dj , the resulting param-
eter update rules are given by:

W←W + α
1

|B|
∑
t∈B

(
ĥ(x(t))x(t)T

− ĥ(x̃(t))x̃(t)T
)

(2)

b← b + α
1

|B|
∑
t∈B

(
ĥ(x(t))− ĥ(x̃(t))

)
(3)

d← d + α
1

|B|
∑
t∈B

(
x(t) − x̃(t)

)
(4)

where α > 0 is the learning rate hyperparameter and ĥ (x) = σ(b + Wx), with σ(·) being the
element-wise operation of σ(y) = 1

1+e−y .

4 NETWORK CONNECTIVITY GRADIENT

The classic RBM considers a fully connected network between its input and hidden layers. However,
this is not necessarily the best connectivity pattern for learning a model for a particular task, prompting
the investigation of other patterns.

Let A ∈ BH,X denote a binary matrix that represents a given connectivity pattern for the RBM, in
the sense that aij = A[i, j] = 1 if hidden unit hi is connected to input unit xj , or aij = A[i, j] = 0
otherwise. Figure 2 shows examples of the adjacency matrix A for two connectivity patterns. Note
that it is generally intractable to enumerate them even in the case of small models (2HX possibilities
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of A). In order to incorporate A into the model, the weights in matrix W must be zero on entries
where a connection is not present. Thus, let C = W � A denote the acting weights of the model
where � is the element-wise matrix product such that cij = C[i, j] = wijaij . The classic model
parameters can be learned as before by using matrix C instead of W to compute the gradients.

A =

[
1 1
1 1
1 1

]
h1 h2 h3

x1 x2

(a) Dense Network

A =

[
1 0
0 1
1 1

]
h1 h2 h3

x1 x2

(b) Sparse Network

Figure 2: Two examples of adjacency matrices A and the corresponding RBM networks: the classic
fully connected network (a), and a model with the connections x1 − h2 and x2 − h1 suppressed (b).

The novelty of the proposed method lies on computing a gradient for each possible element (con-
nection) of A. This can be analytically derived as with the other RBM parameters, where θ in
equation 1 also includes A. Note that the gradient for a connection (i, j) can be non-zero even when
aij = 0. This is a key aspect in the methodology here proposed, since it provides a gradient for
absent connections and consequently the possibility for them to be enabled (or permanently disabled).

However aij is binary, and thus the usual continuous optimization framework that leverages the
gradient to update its value do not apply. To circumvent this limitation, a continuous parameter
denoting the connectivity strength is introduced in the model, and represented by A′ ∈ [0, 1]H,X such
that 0 ≤ a′ij = A′[i, j] ≤ 1. Thus, the connection strength can be updated using the corresponding
gradient (but saturating at 0 or 1), and the binary connection becomes a function of the connection
strength. In particular, a simple threshold (step) function is used to determine the presence or absence
of a connection. This idea leads to the following two-step update rule for the connection parameters:

a′ij ←a′ij +
αA
|B|
∑
t∈B

[
ĥi(x(t))wijx

(t)
j − ĥi(x̃

(t))wij x̃
(t)
j

]
aij ←1

[
a′ij ≥ γ

] (5)

where γ is the hyperparameter that denotes the threshold for enabling/disabling a connection based on
the connections strength, 1[·] corresponds to the indicator/step function, and αA to the connectivity
learning rate. The method is called Network Connectivity Gradient (NCG) and jointly learns the
connectivity pattern and classic model parameters for the RBM. Note that αA allows to decouple the
learning rate of model parameters from the connectivity pattern.

A fundamental aspect in continuous optimization frameworks such as SGD is the initialization of
the parameters that must be optimized. Being parameters, the connectivity pattern and connection
strength must also be initialized. A common initialization in the context of RBM (and other models)
is choosing random and small values for the parameters. Thus, each possible connection is initialized
as active (aij = 1) with probability p or inactive aij = 0) with probability 1 − p , in which p is a
hyperparameter.

Once the initial connection pattern has been determined, the connection strengths must also be
defined. While initializing a′ij = aij is a possible initialization, this leads to connection strengths
that are either 0 or 1 which may require too many iterations in order to cross the threshold to enable
or disable the connection, respectively. To avoid this cold start, connection strengths are randomly
initialized so that a′ij = U(0, γ)1 [aij = 0] + U(γ, 1)1 [aij = 1], where U(a, b) is the continuous
uniform random value in the interval [a, b]. Note that the random value of the connection strength
depends on the threshold γ for enabling/disabling the connection. Intuitively, a random value is
chosen in the segment corresponding to the connection being absent (range [0, γ]) or present (range
[γ, 1]).

5 EMPIRICAL EVALUATION

Two tasks will be considered to evaluate the learning performance of the RBM under the NCG
methodology: sample generation (average NLL is the performance metric) and image classification
(accuracy is the performance metric). The main data set used is MNIST 1, a frequently used benchmark

1 Data set available at http://yann.lecun.com/exdb/mnist/.
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in computer vision and the RBM literature (Fischer & Igel, 2014). Also, two data sets from the UCI
Evaluation Suite (Dua & Graff, 2017) are used: Mushrooms and Connect-4 2.

The MNIST data set consists of gray-scale square images of 28× 28 pixels. It has two separate sets
of data: a train set, with 60 k samples; and a test set, which has 10 k samples. The images were
converted into black and white in order to be directly used as input to the RBM. Each pixel was
assigned a black color with probability proportional to its darkness (gray-scale) in the original image,
a methodology commonly adopted (Salakhutdinov & Murray, 2008; Côté & Larochelle, 2016). Some
examples of the resulting data are shown in figure 3.

Figure 3: Examples of MNIST data set images after conversion to binary.

For MNIST, each image in the data set has 784 pixels, each of which corresponds to a visible unit
of the RBM. The experiments use 500 hidden units, and training was achieved using CD with 10
steps of Gibbs sampling (CD-10). The learning rate for the model parameters was set to α = 0.1 and
mini batches of 50 random samples. The connectivity learning rate was αA = 0.5. No momentum or
weight decay were used. The RBM weight parameters were initialized with null biases and small
random weights, uniformly distributed in the interval [−1, 1]. For the connection threshold in NCG,
γ = 0.5 was adopted as this is the midpoint value in the possible range for the connection strengths,
not favoring either a more sparse (γ > 0.5) or dense network (γ < 0.5). During training, one
epoch corresponds to one iteration over the entire training data set with the model’s parameters being
updated at every batch.

The Mushrooms data set contains characteristics of different types of mushrooms, subdivided into
edible and poisonous categories. There are 21 attributes, converted into 112 binary features, and 8124
samples (subdivided into 2 k for training the rest for testing). The Connect-4 data set contains board
situations for the game of connect-4, labeled by whether the first player wins, loses, or there is a draw.
There are 67557 samples (with 16 k separated for training), each with 42 board spaces, converted into
126 binary features. Experiments for these data sets used 100 hidden neurons, batch of 10 random
samples, α = 0.01 and αA = 0.05. Other hyperparameters were kept the same.

Although fine-tuning these parameters could improve the learning performance of the RBM, the goal
here is to compare NCG with other connectivity patterns, and not necessarily obtain the best model
across different hyperparameters.

5.1 GENERATIVE RESULTS

In the sample generation task, a classic generative RBM is trained as to generate random samples
similar to the input examples. The performance is assessed using the average NLL across the training
set. Since the exact average NLL cannot be computed due to intractability of the normalization con-
stant, the Annealed Importance Sampling (AIS) method is used as an approximation (Salakhutdinov
& Murray, 2008), with 100 runs and 14.5 k intermediate distributions.

Figure 4(a) shows the learning curve (evolution of the average NLL over the epochs) for the classic
fully connected RBM and three initializations of the NCG method. Clearly, the fully connected
network exhibits a significantly worse learning curve, both in terms of sample mean and variance.
Interestingly, the three different initializations for NCG exhibit a very similar performance (with the
exception of a few outliers for the case p = 1).3 While the mean performance for p = 0.1 could be
said to be slightly better, the overlapping quartiles show that the sparsity of the random initialization
is not particularly important in this scenario. Indeed, the similar learning curves indicate that NCG
can find effective networks independently of the (random) initial connectivity.

Despite the similar learning curves, the evolution of the network degrees is very different across
the different initializations. Figure 5 shows the evolution of the maximum, minimum and average

2 Data sets available at https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
3 While training NCG with p = 1, two of the 10 runs exhibited much higher than average NLL at epoch 120

and one of the 10 runs at epoch 200.
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Figure 4: (a) Average NLL over the training epochs – lines are the means and shades the quartile
uncertainty over 10 experiments; (b) Comparison between initial and final fraction of active connec-
tions for NCG training after 10 epochs – the dots are the mean over 25 experiments, the shades the
uncertainty (minimum and maximum values) and the orange line the linear fit.
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Figure 5: Degree statistics (minimum, average, maximum) of the hidden units over the NCG training
epochs – lines are the sample mean and shades the sample quartile over 10 experiments.

degree of the hidden units for the three initializations. For p = 1 a sharp decrease is observed in all
three statistics in the first 10 epochs, with the curves indicating a slight decay even aver 200 epochs,
while for p = 0.5 , the initial decrease is not as strong and the curves seem closer to convergence.
Interestingly, the case p = 0.1 shows an increase in all three statistics in the first 10 epochs and
convergence after 200 epochs. This shows that NCG can not only prune connections but also add
connections when the network is too sparse. The similar learning curves but different network patterns
indicate that the joint optimization of model parameters and network connectivity can compensate
for one another, leading to similar performance even when the connectivity pattern is different.

Further insight is provided by figure 4(b) which shows that NCG tends to increase the number of
connections when the initial network is too sparse (up to 30% of connections initially activated) and
decrease the number of connections when the initial network is too dense (40% or more connections).
Note that randomness of the final density (vertical bars) is much larger than that of initial density
(horizontal bars), as the final density depends on the optimization.

Despite the good performance, it is known that sparse networks can outperform their dense coun-
terparts. Indeed, even simple patterns such as the line pattern (connecting each hidden unit to v
consecutive visible units) can achieve better learning curves (de Oliveira & Figueiredo, 2022). Figure
6(a) shows the learning curves of NCG and both the line pattern and a random pattern (corresponding
to a bipartite Erdös-Rényi random graph). For fairness of comparison, RBMs with the same (average)
number of initial connections are created for all patterns: 50% and 10% densities. Note that NCG
shows better performance than any other pattern after 50 training epochs (for both initializations)
while also showing less noisy learning curves. Interestingly, all patterns outperformed the fully
connected RBM.

Lastly, Figure 6(b) shows a direct comparison between NCG and SET method, trained with 2500
hidden units, sparsity parameter ε = 11, fraction of removed edges ζ = 0.3, and learning rate of 0.1
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Figure 6: Average NLL over the training epochs – lines are the mean values over 10 experiments.
Comparison of NCG with the Line and Random patterns (a) and with the SET method (Mocanu et al.,
2018) (b).

(parameters reported in the original paper, using the publicly available code). A smaller learning rate
of 0.01 was also used in order to reduce the fluctuations during learning. However, note that SET did
not outperform the fully connected network (on this task), and was thus significantly outperformed
by NCG (see other comparisons in the appendix D).

5.2 CLASSIFICATION RESULTS

In the classification task, the RBM is trained to classify the given input (the digit in the image, for
MNIST). The RBM is expanded to have additional visible (input) units in order to encode the label
of the image during training (Fischer & Igel, 2014; Larochelle et al., 2012). There is one extra unit
per class, and only one is activated for each input sample, the one corresponding to the sample class
(the image digit, from 0 to 9, for MNIST). The connections between hidden units and the label units
are fixed and not subjected to optimization, as they are crucial for the classification task. Moreover,
the RBM is trained using Contrastive Divergence as in the generative task, and is not a priori aware
of the classification task (no changes to the objective function).

While the generative task relied on the approximate NLL to measure the learning performance of
the RBM, the classification task uses the accuracy as performance, given by the fraction of images
correctly classified. Classification is performed by presenting the image to the RBM, setting each
label units to 0.5, calculating the probabilities of each hidden unit being activated, and finally selecting
the label unit (digit) with the higher probability of being activated. This digit is the predicted label
for the image.

Figure 7 shows the evolution of the classification accuracy over the epochs for different NCG
initializations for the train and test sets. Note that all three initializations generate models that are
consistently better than the fully connected RBM in the early stages of training. Moreover, the
performance between training and test sets are qualitative and quantitatively similar, indicating there
is likely no overfitting.

Interestingly, Figure 7 shows that accuracy is inversely proportional to the initial density during the
first epochs of training: initializing the network with fewer connections yields superior accuracy in
early stages of training. However, as the number of epochs increase, the accuracy between the NCG
models becomes more similar. This indicates that NCG is capable of overcoming a poorly initialized
connectivity pattern by adjusting both the connections and model weights. Interestingly, the degrees
of hidden units of different initializations are very different after 10 epochs (see appendix A).

As with the generative task, NCG was also compared with the line and random patterns in the
classification task. Figure 8 shows the accuracy of these different models for the first 10 epochs of
training for both the MNIST data set as well as Mushrooms and Connect-4. For all datasets, the
results indicate that NCG has a superior performance, outperforming the dense network, in particular
during the beginning of training. The other patterns showed markedly worse performance, even when
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Figure 7: Classification accuracy over the training epochs for the train (a) and test (a) sets of the
MNIST data set; lines correspond to the sample mean and shade corresponds to the sample quartile
over 25 experimental runs.
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Figure 8: Test set classification accuracy for NCG, the classical RBM, and the Line and Random
patterns for the MNIST (a), Mushrooms (b) and Connect-4 (c) data sets; lines are the sample means
over 25 runs.

compared to the dense network. This illustrates that the connectivity pattern is more important than
network sparsity.

6 CONCLUSION

This work presented Network Connectivity Gradient (NCG), a method tailored to RBMs that learns
the optimal connectivity network jointly with other model parameters (weights and biases). NCG
computes gradients for each possible network connection given a connectivity pattern. The gradients
are used to drive the continuous connectivity strength parameter that in turn determines to maintain,
add or remove the connection in each training epoch. NCG requires no change in RBM’s objective
function nor its classic optimization framework. Evaluation of NCG on a generative and classification
task using the MNIST and other data sets demonstrated its effectiveness in learning better models
(learning faster and better) than the dense RBM, other static patterns, and the SET method, as well as
robustness with respect to its initialization.

However, recent works on pruning at initialization (Lee et al., 2019; de Jorge et al., 2021) might be
leverage to design more effective initial networks for NCG. Last, while NCG has been designed for
RBMs, future work will reveal if its core ideas can be applied to other neural network models.

REPRODUCIBILITY STATEMENT

The codes used to produce the experiments here portrayed will be made available for final submission.
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A CLASSIFICATION DEGREE STATISTICS FOR MNIST

Figure 9 portrays the degree statistics (minimum, average, and maximum) of the network’s hidden
units over the epochs for the NCG classification experiments in the MNIST data set (Figure 7 shows
the accuracy). Note that for p = 1 all degrees are 784 at time zero, and NCG significantly reduces
the degrees of the network; the average degree is reduced by 30% after 10 epochs. On the other hand,
for p = 0.1, NCG significantly increases the degrees of the network; the average degree is 2.5 times
larger after 10 epochs. Finally, for p = 0.5 NCG shows a relatively small change in the degrees.
Moreover, while the degrees change and converge over the epochs, the initialization density has a
strong influence: the average degree of the three models after 10 epochs reflects their initial density.

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(a) p = 1

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(b) p = 0.5

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(c) p = 0.1

Figure 9: Degree statistics (minimum, average, maximum) of the hidden units over the training
epochs – lines correspond to the sample mean and shades to the sample quartiles over 25 experimental
runs.

B QUARTILE FIGURES

Some plots in the main body had their uncertainties removed to avoid clutter. The plots with quartile
representing the uncertainty are shown here. Figure 10 shows the learning curves of NCG and the
classic RBM compared to the line and random patterns as well as the SET method for the generative
task, as in Figure 6.
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(a) Comparison with Line and Random patterns (as in
figure 6(a))
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Figure 10: (Regarding figure 6) Average NLL over the training epochs – lines are the mean values
and shades are the quatiles over 10 experiments. Comparison of NCG with the Line and Random
patterns (a) and with the SET method Mocanu et al. (2018) (b).

Meanwhile, Figure 11 presents the classification results for training of NCG compared with the fully
connected RBM, the line and the random patters, for data sets MNIST, Mushrooms and Connect-4,
as in Figure 8.
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(b) Mushrooms
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Figure 11: (Regarding figure 8) Test set classification accuracy for NCG, the classical RBM, and the
Line and Random patterns for the MNIST (a), Mushrooms (b) and Connect-4 (c) data sets; lines are
the sample means and shades are the quatiles over 25 runs.

C ABLATION STUDIES

C.1 LEARNING RATE ANALYSIS

Empirical experiments showed that the relatively higher connectivity learning rate αA = 0.5 plays
an important role in allowing the network connectivity to evolve fast in the early stages of training.
Intuitively, this allows NCG to quickly adjust for poor initial network patterns before other model
parameters start to converge.

To illustrate this, Figure 12 shows the accuracy when using a connectivity learning rate of αA = 0.1,
which is equal to the learning rate of other model parameters. Note the decrease in the accuracy for all
three initializations for all 10 epochs (in comparison to Figure 7). Interestingly, while the performance
for p = 0.1 is superior after 1 epoch of training (as with αA = 0.5), the model fails to continue
improving its accuracy and falls behind the other models, including the fully connected network.
Intuitively, the model cannot adjust its connection pattern fast enough and the connectivity gradient
becomes subdued by other model parameters. This example highlights the importance of decoupling
the learning rates when jointly optimizing network connectivity and other model parameters.
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Figure 12: Classification accuracy over the training epochs for the train (a) and test (b) sets of the
MNIST data set with αA = 0.1; lines correspond to the sample mean and shade corresponds to the
sample quartile over 25 experimental runs.

C.2 CONTRASTIVE DIVERGENCE APPROXIMATION

The experiments on this article applied Contrastive Divergence training using 10 steps of Gibbs
Sampling (CD-10). However, changing the number of steps (and the way of obtaining the sample x̃
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entirely) can deeply affect results. To exemplify this, some evaluations using CD-1 (only one step
of Gibbs Sampling) were performed. This creates a poorer gradient approximation, which usually
affects training negatively.

C.2.1 GENERATIVE RESULTS

Figure 13 portrays the learning curves for dense RBM and NCG, and Figure 14 the corresponding
degree statistics. It is clear that CD-1 causes a major performance drop for all models considered:
by the end of training the fully connected RBM has the average NLL around 290 in comparison to
the 150 seen in Figure 4(a), and the models trained with the NCG method reach at most 150, when
before the worse average did not surpass 120. The degree statistics for p = 1 and p = 0.5 appear to
show less change along the epochs than what was observed for CD-10, but the differences do not
appear to be significant.
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Figure 13: Average NLL over the training epochs for the MNIST dataset with CD-1 – lines
correspond to the sample mean and shades to the sample quartiles over 10 experimental runs.
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Figure 14: Degree statistics (minimum, average, maximum) of the hidden units over the training
epochs. Generative results on MNIST, trained using CD-1. Lines correspond to the sample mean and
shade corresponds to the sample quartiles over 10 experimental runs.

Interestingly, the NCG models’ NLL increase less than the classical RBM, for which the final NLL is
double the value when considering CD-10, and the relative increase in performance derived from
optimizing the connectivity (NCG) is much larger.

C.2.2 CLASSIFICATION RESULTS

While the goal in the classification task is to maximize accuracy, the objective function used during
training with aims to minimize the NLL, using CD as an approximation to the gradient. Therefore
NCG trains the connectivity network for a slightly inaccurate objective, as well as all the other
parameters that the traditional network trains. It stands to reason, therefore, that in worsening the
approximation for the gradients, its performance will suffer.
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Figure 15 shows the evolution of the accuracy over epochs for the dense RBM as well as three
initializations for the NCG model, for both the train and test sets. Figure 16 presents the corresponding
degree statistics evolution, giving an idea of how the connectivity changes with training. Once again,
the degree statistics do not show much difference from their CD-10 counterparts, except that they
suffer less change throughout training.
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Figure 15: Classification accuracy over the training epochs for the train (a) and test (b) sets of the
MNIST data set. Trained with CD-1. Lines correspond to the sample mean and shades to the sample
quartiles over 25 experimental runs.
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Figure 16: Degree statistics (minimum, average, maximum) of the hidden units over the training
epochs. Classification results on MNIST, trained with CD-1. Lines correspond to the sample mean
and shades to the sample quartiles over 25 experimental runs.

Although all RBMs have a worse accuracy when training with CD-1, it is clear from the results
that the relative performance between NCG and the fully connected model diminishes. In these
circumstances, only NCG initializing with all connections activated (p = 1) manages to surpass the
traditional RBM, and even then they have very close results. It is not clear that the difference is
statistically significant. The p = 0.1 training seems to suffer the most, not showing a better accuracy
even in the first epoch of training. Overall, the results indicate a very different scenario in comparison
to the one observed in the generative task, for which the addition of connectivity optimization resulted
only in positive results, regardless of the CD approximation used.

D SET TRAINING

As mentioned in Section 5.1, the learning curves reported for the SET method used the hyperparam-
eters mentioned by Mocanu et al. (2018). Figure 17 shows the comparison of NCG with SET, in
which SET was trained with the same parameters as the previous experiments. Note that the sparsity
parameter ε was chosen so as to create SET networks with nominal sparsity of 50% and 10% of all
possible connections activated, which corresponds to values used for NCG intialization.

This choice of hyperparameters for the SET method did not yield good performance, which shows
noisy learning curves without apparent convergence. Since this scenario did show good results for
SET, experiments with other hyperparameters were performed and reported in Figure 6(b). In any
case, NCG showed significantly superior and more robust performance (less noisy learning curves).
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Figure 17: Average NLL over the training epochs – lines are the mean values and shades are the
quatiles over 10 experiments. Comparison of NCG with the SET method.
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