Collab-Overcooked: Benchmarking and Evaluating
Large Language Models as Collaborative Agents

Anonymous ACL submission

Abstract

Large language models (LLMs) based agent
systems have made great strides in real-
world applications beyond traditional NLP
tasks. This paper proposes a new LLM-
powered Multi-Agent System (LLM-MAS)
benchmark, Collab-Overcooked, built on the
popular Overcooked-Al game with more appli-
cable and challenging tasks in interactive envi-
ronments. Collab-Overcooked extends existing
benchmarks from two novel perspectives. First,
it provides a multi-agent framework supporting
diverse tasks and objectives and encourages
collaboration through natural language com-
munication. Second, it introduces a spectrum
of process-oriented evaluation metrics to as-
sess the fine-grained collaboration capabilities
of different LLM agents, a dimension often
overlooked in prior work. We conduct exten-
sive experiments over 10 popular LLMs and
show that, while the LLMs present a strong
ability in goal interpretation, there is a signif-
icant discrepancy in active collaboration and
continuous adaption that are critical for effi-
ciently fulfilling complicated tasks. Notably,
we highlight the strengths and weaknesses in
LLM-MAS and provide insights for improv-
ing and evaluating LLM-MAS on a unified and
open-sourced benchmark. Environments, 30
open-ended tasks, and an integrated evaluation
package will be publicly released.

1 Introduction

Leveraging the remarkable zero-shot and few-shot
learning ability of Large Language Models (LLMs),
LLM-based agents are demonstrating their poten-
tial in complex task decomposition and planning
(Wang et al., 2023a,c; Li et al., 2024). Inspired by
human collaborative behaviors in social activities,
recent research reveals that multi-agent systems
can significantly enhance task efficiency and tackle
challenges surpassing single-agent capabilities (Li
et al., 2023; Hong et al., 2023; Zhang et al., 2023).

To effectively address complex real-world tasks,
LLM-powered Multi-Agent Systems (LLM-MAS)
require three essential collaboration capabilities
beyond goal interpretation: (a) Competence bound-
ary awareness: the ability to analyze task flows
and environmental states to determine feasible ac-
tions, recognize limitations, and identify when ex-
ternal assistance is needed; (b) Communication:
proficiency in utilizing standardized protocols for
transmitting task-critical information and resource
requests; and (¢) Dynamic adaptation: responsive-
ness to collaboration requests and dynamically ad-
justing their action sequences accordingly.

Given these fundamental requirements, establish-
ing evaluation frameworks becomes crucial for as-
sessing LLM-MAS collaboration effectiveness. Re-
searchers have developed specialized benchmarks
to quantify collaborative agents in specific envi-
ronments. Representative platforms like (Agashe
et al., 2023), RocoBench (Mandi et al., 2024) and
LLMARENA (Chen et al., 2024) create virtual
scenarios requiring collaborative problem-solving
through intricate workflows. These frameworks
are complemented by novel metrics, such as Col-
laboration Score (CoS) (Gong et al., 2023), which
evaluates end-to-end collaboration capability.

Despite recent progress in evaluating LLM-MAS
collaboration capability, existing approaches ex-
hibit three critical limitations. First, they priori-
tize task completion efficiency without imposing
strict collaboration requirements, allowing individ-
ual agents to accomplish tasks that are nominally
“collaborative” independently. This design flaw in-
troduces assessment biases by obscuring the role
of collaboration in performance gains, which con-
trasts with real-world applications where collab-
oration is often essential for task success. Sec-
ond, existing benchmarks conflate collaboration
capability with end-to-end metrics, such as task
completion rates, which are frequently used as
proxies for collaboration effectiveness in platforms

Virtual Environment Various Task Scalability Collaboration Forced Collaboration
Complexities Definition Collaboration Evaluation

RocoBench(Mandi et al.’s (2024)) NA/6 X NA Partial E2E
VillagerBench(Dong et al.’s (2024)) 3/9 X E2E X E2E
LLMARENA(Chen et al.’s (2024)) NA/7 X PO X E2E
CivRealm(Qi et al.’s (2024)) NA/100k v NA X E2E
BattleAgentBench(Wang et al.’s (2024)) 3/3 X E2E X E2E
TDW-MAT(Zhang et al.’s (2023)) NA/2 X E2E X E2E
CuisineWorld(Gong et al.’s (2023)) 13/39 v E2E X E2E
Collab-Overcooked(ours) 6/30 v PO Ve E2E&PO

Table 1: Existing statistics on benchmarks for evaluating LLM-MAS collaboration capability. If no data is available,
it is marked as “NA”. Statistics in “Various Task Complexities” are presented in the format “Level Num / Task
Num”. “E2E” refers to end-to-end, while “PO” refers to process-oriented.

like CuisineWorld (Gong et al., 2023) and Vil-
lagerBench (Dong et al., 2024). However, this
approach overlooks two critical issues: divergent
definitions of “success” across environments un-
dermine comparability, and the absence of process-
oriented metrics obscures actionable insights for
optimizing collaborative strategies. Third, the lack
of a fine-grained evaluation prevents a comprehen-
sive, multi-perspective analysis of LLM agents’
capabilities, making it difficult to interpret their
strengths and limitations effectively, thus falling
short of insightful research suggestions.

To address the limitations of existing LLM-MAS
benchmarks, we propose the Collab-Overcooked
Benchmark, designed to provide a fine-grained
analysis of collaborative interactions. Unlike prior
benchmarks that focus primarily on task comple-
tion, our benchmarks evaluate the capability of
initiating and responding to collaboration during
the collaboration process. Specifically, the Collab-
Overcooked extends Overcooked-Al (Carroll et al.,
2019) to a chef-and-assistant collaborating environ-
ment and introduces 30 sequential process-specific
tasks across 6 complexity levels. Each agent oper-
ates in an isolated environment with distinct action
spaces so that successful task completion depends
on effective communication and resource exchange,
therefore collaboration is strictly required. Further-
more, we propose the Trajectory Efficiency Score
(TES) and Incremental Trajectory Efficiency Score
(ITES) functions to assess the collaboration capabil-
ities from both coarse and fine-grained perspectives.
Through comprehensive experiments on 10 LLMs
of varying sizes, including both open-source and
closed-source models, we reveal significant per-
formance gaps in collaboration capabilities across
different LLMs. We identify the key bottleneck as
maintaining consistent collaboration performance

both within a single task and across tasks of varying
complexity. These findings highlight the fundamen-
tal challenges of LLM-MAS and provide valuable
insights for future research.

To summarize, our contributions are as follows:

o We develop and open-source a lightweight and
extensible LLM-MAS benchmark, Collab-
Overcooked, which features 30 tasks across
6 complexity levels that encourage collabora-
tion, thus facilitating the evaluation of MAS
collaboration in a unified environment with
diverse, complex tasks.

e We define collaboration capability in LLM-
MAS as comprising both initiating collabora-
tion and responding collaboration. We intro-
duce 3 trajectory efficiency related metrics to
evaluate collaboration capabilities from both
coarse and fine-grained perspectives.

o We conduct a comprehensive evaluation of a
wide range of popular LLM agents, revealing
collaboration and adaptation bottlenecks as
task complexity varies, and identifying key
limitations of LLM-MAS.

2 Related Work

LLM-Powered Multi-Agent System LLM-
MAS enables agents to collaboratively engage in
planning, discussing, and decision-making. Col-
laboration is a pivotal capability in task-oriented
LLM-MAS, as it not only enhances task comple-
tion efficiency (Zhang et al., 2024b; Tao et al.,
2024) but also enables the pursuit of complex goals
beyond the reach of single agent (Park et al., 2023;
Hong et al., 2023). Recent methods for improving
collaboration can be broadly categorized into (a)
Structural optimization (e.g., DyLAN’s (Liu et al.,
2023) dynamic framework), (b) Role specialization

(e.g., AutoGen’s (Wu et al., 2023) personas and
AgentVerse’s (Chen et al., 2023) role assignments),
and (c) Communication paradigm (e.g., MetaGPT’s
(Hong et al., 2023) message pool). Despite these
advancements, the inherent complexity and diver-
sity of multi-agent tasks make it difficult to com-
pare methods directly, driving the emergence of
standardized benchmarks that enable quantitative
evaluations under unified conditions.

LLM-MAS Benchmark and Evaluation
Benchmark testing in virtual environments is
the primary method for evaluating multi-agent
collaboration capability. As shown in Table
1, existing studies establish diverse tasks and
commonly use End-to-End (E2E) metrics to assess
LLM-MAS collaboration capability, with some
benchmarks offering environmental scalability.
However, several limitations persist. A key issue is
the lack of a formal collaboration definition in most
benchmarks, leading to ambiguous assessments
and inconsistent comparisons across different
benchmarks. Furthermore, the absence of enforced
collaboration mechanisms allows agents to achieve
objectives independently (e.g., in CuisineWorld,
where many tasks can be completed by a single
agent), undermining the true assessment of
collaboration. Finally, the predominant focus on
outcome-based metrics such as E2E performance
overlooks the critical role of process-driven
dynamics. Approaches like (Song et al., 2024),
LTC (Wang et al., 2023b), and EvoMAC (Hu et al.,
2024) suggest refining LLMs through process
behaviors to enhance adaptation and collaboration,
indicating that incorporating process-oriented
metrics could offer more comprehensive insights.

3 Task-Oriented Collaboration

3.1 Collaboration Capability

A task in LLM-MAS can be formulated as a 4-tuple:
T =(G,E,P,R), where G is a natural language
description of the task goal, such as “make a dish
of tomato soup”; E is a description of the environ-
ment, which can be either the layout of a simulated
scenario or the visual input of real-world surround-
ings; P is optional natural language guidance, pro-
viding recipes, helpful hints, or task constraints;
and R is a Referential Action Trajectory (RAT)
that leads to the successful completion of the task
and is used to assess the agents’ performance. It is
worth noting that there are often multiple RAT's for
a task, especially in dynamic environments.

Collaboration often involves agents relying on
each other to solve tasks. As shown in Figure 1
Part I, we define collaboration capability as com-
prising two essential components: the capability to
initiate collaboration, where agents, upon realizing
that their competence boundary prevents them from
completing the task according to G and P at envi-
ronmental state s; € F at time ¢, generate a request
for collaborative actions @, to solicit assistance
from other agents; and the capability to respond to
collaboration, where agents, upon receiving @4
from another agent, adjust their action sequence
based on their own s; and generate collaborative
actions @yesp.

3.2 TES and ITES

3.2.1 TES

Trajectory Efficiency Score (TES) is designed to
compare the difference between two trajectories
and is defined as:

my, + 32ny

2pI (h.
TES () _mjax{(1+6)Dg““(h’“g@} (1)

where T, = U, al, = {a1,a9,...,a,,} is the
historical action sequence up to timestep 7" of agent
k, g, = {9:};i2% € R is j-th RAT of agent £k,
{3 is the hyper-parameter balancing the weight of
task progress and redundancy, and D (hy, G2,
computes the length of the longest order-preserving
subsequence in hy, that matches gi:

Dgna:r:mg’x{d|v:[§il<"'<id§nku

Stoai = 91,0, = g2,...,0;;, =gk} (2)

Unlike other existing sequence alignment scores
(such as ROUGE-L (Lin, 2004)), TES takes into ac-
count sequence order and redundancy punishment
simultaneously, therefore suitable for assessing a
rationally planned action sequence (detailed in Ap-
pendix B.1).

3.2.2 ITES

Incremental Trajectory Efficiency Score (ITES) in-
troduces an incremental assessment to quantify the
task-progress contribution of an individual collab-
orative action. Formally, given a historical action
sequence hy, of agent k and newly executed actions
a (either a request @y.¢q O TESPONSE Gyesp), the ITES
is computed as:

Part Il. Overcooked-Collaboration Benchmark

Part I. Collaboration Example

Collaboration
Capability {
in LLM-MAS

Task & Description G, P

Initiating Collaboration
(G,P,s) > a,,

Responding to Collaboration
(S req) = Gresp

Environment State s,

Dispenser
o
Chopping Borad } |

Environment Task: Baked Potato Slices
1. Slice a potato

Task
2. Bake the potato

Description
3. Deliver the potato —

Agent Bob have: Step 1: Get [resource]

Executing Action

B - Task:
L - [resource], ...
Y Make a ¥

0g i 2 [goal dish] Step 2: Boil
— | G [resource] with [resource]
) [resource], ...

1 am Bob, based on [s,, G, P]. - _Initiating

.
I need [resource]. Could you help me (7,.,] el '

I am Alice, | received your [@,,]. In my [s]] Respondingto |

I have [resource]. | will help you by [7,,] Combeste ¢

E Since | can’t get potato, | should 1
ask Alice to slice the potato.

1% " 2. request(place & o)
Hello Alice! Could you first '
pickup and slice a potato? B < CEapEsiEn ‘ on I

. Bob request | slice the potato, it |, '
i can be done in my environment. || !

respt
______________________ p | 1. pickup @ from .

Certainly! | 'Iltt tat : 2 place‘O

ertainly! | will take a potato : Vil

first and then slice it.

| AgentBob @,,,:
1. request(pickup € from) ;

Agent Alice @,

Figure 1: Part I presents the collaboration process, which are divided into initiating collaboration and responding
to collaboration, along with a general example. Part II outlines the design of the Collab-Overcooked Benchmark,
emphasizing its characteristics of resource isolation and asymmetric task knowledge, and provides an example of

agent collaboration in task completion.

ITES(@, hi) = TES(h, Ua@) — TES(hi) (3)

This differential formulation measures the
marginal utility of action @ by evaluating its im-
pact on trajectory alignment with the RATs. It can
be established that: ITES(@, hy) > 0 indicates @
advances task progress, ITES(@, h;,) < 0 suggests
a fails to advance task progress (i.e., @ is redundant

/ premature action or incorrect response).

3.3 Evaluation Metrics

Progress Completeness (PC) Built upon the
TES which quantifies a piece of trajectory, PC mea-
sures the task progress of all involved agents while
penalizing redundancy as a whole, and is defined
as:

1
== > TES(h) (4)
k=1

where K is the number of agents, hy, = |J,%* al,

denotes the historical action sequence of agent k at
time 77,4, which occurs either upon task comple-
tion or when the maximum time limit is reached.
The PC offers a finer-grained assessment of task
completion efficiency compared to boolean success
label or success rate.

Initiating Capability (IC) IC evaluates the cor-
rectness of the LLM agent’s collaboration initiation.
IC is defined as:

N
1

=331 <ITES(Q) hy) > 0))

i=1
where N is the number of required col-
laborations, I() is the indicator function.
I (ITES(E,(%,E]-) > O) determines whether the
1-th initiating collaboration request aﬁi?q advances
the task progress, thereby indicating whether the

initiation is correct.

Responding Capability (RC) Similarly, RC as-
sesses the correctness of the LLM agent’s response
to a collaboration request:

N
1
RC =<1 <ITES(W hy) > o) G
=1
4 Benchmark

4.1 Collab-Overcooked Benchmark

The proposed Collab-Overcooked benchmark
builds upon the open-source Overcooked-Al (Car-
roll et al., 2019) and ProAgent (Zhang et al.,
2024a), introducing two key upgrades: (1) The
environment is divided into two parts, featuring
resource isolation and asymmetric task knowledge
for Agent Bob and Agent Alice respectively. This
contrasts with Overcooked-Al, where all agents
share a single environment with the same set
of items!; (2) The benchmark encourages col-

"Four out of the five scenarios in the Overcooked-Al suite
use this configuration.

laboration through natural language interactions,
with some cases enforcing collaboration as a re-
quirement for task success. Additionally, Collab-
Overcooked provides APIs to configure new tasks
and environmental settings, enabling the enhance-
ment of LLM-MAS through scenario adaptation.

4.1.1 Environment

Our simulation environment is a grid-based kitchen
simulation designed as a comprehensive testbed for
analyzing collaboration behaviors in LLM-MAS.
The environment comprises agents and config-
urable interactive elements. The interactive ele-
ments are dispensers, utensils, counters, and deliv-
ery location. Agents can freely retrieve raw ma-
terials from dispensers, place them into utensils
for processing, and finally transfer the processed
materials to other agents via counters or submit
the required order through the delivery location.
Notably, utensils process materials according to
customizable synthesis tables, with each utensil
having its distinct synthesis table. Agents can inter-
act with these elements through predefined action
primitives formatted as “func(args)”. For example,
“pickup(apple, ingredient_dispenser)” clarifies ac-
tion type, target material, and interactive element.
Detailed information is provided in the Appendix
A.l.

The environment executes agents’ actions se-
quentially and broadcasts the global state at each
timestep, encompassing agents’ positions and the
status of interactive elements. We have developed
a comprehensive rule-based identification method
for different types of invalid actions. The action
validator evaluates the feasibility of actions, de-
tecting issues such as mismatches between actions
and the environment or incorrect action parameters.
Upon rule violations, the validator issues error mes-
sages, prompting the agent to identify the error and
regenerate the action accordingly.

4.1.2 Tasks Construction

Sequential process-specific tasks are commonly en-
countered in real-world scenarios, where a series
of interdependent actions must be completed in
a specific order to achieve a goal. We curate 30
process-specific tasks stratified into 6 complexity
levels, requiring two agents to complete collabo-
ratively. The task complexity level is determined
by the minimum number of collaborative actions
required, increasing linearly with difficulty. To
mitigate LLLM biases toward specific ingredients,

tasks at the same complexity level follow identical
workflows but vary in ingredient selection. A time
constraint is imposed on the task, determined by
the optimal completion time multiplied by a task
time limit factor ~.

Each task is accompanied by a natural language
structured process description and RAT's for evalu-
ation. Given that the tasks are process-specific and
have straightforward success criteria, the RAT's of
a given task are exhaustively definable and conve-
niently traversed, making them suitable for eval-
uation. We manually annotated the RATSs corre-
sponding to all 30 tasks. Detailed task list, task
descriptions, and RAT examples are provided in
the Appendix A.2.

4.1.3 Collaboration Designs

Collab-Overcooked benchmark imposes strict col-
laboration among agents. For this, we have two spe-
cial designs: (a) Resource Isolation: agents operate
in resource-isolated sub-environments, necessitat-
ing resource exchange via a shared “counter”. This
enforces collaborative dependency. (b) Asymmet-
ric Task Knowledge: only one agent knows how to
complete the task. Agents must communicate to
synchronize task information.

4.2 Baseline

To evaluate the performance of LLM-MAS driven
by different LLMs on our benchmark, we provide
an in-context learning baseline. The baseline incor-
porates both memory and reflection mechanisms,
enabling agents to communicate and collaborate
freely using natural language while also incorpo-
rating error-handling capabilities. Additionally,
we provide prompts in detail, which include the
game rules, communication formats, and action
space definitions, as well as error correction and
reflection procedures. Figure 1 Part II illustrates
an example of how agents advance task progress
through collaborative communication in our bench-
mark. Detailed information regarding the baseline
can be found in Appendix A.3 and Figure 7.

5 Experiment and Analysis

5.1 Benchmark Overview

Figure 2 presents key statistics of our benchmark,
summarizing the minimum completion timesteps
and collaborative actions across 6 complexity lev-
els, which show monotonically increasing trends
with task complexity. Two agents perform 8 and

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

SR PC SR PC SR PC SR PC SR PC SR PC

Closed GPT-le 94.00 8592 86.00 84.96 68.00 76.61 34.00 4442 2.00 29.13 4.00 22.45
Source ol-mini 70.00 74.18 2.00 36.36 0.00 33.60 0.00 24.80 0.00 20.28 0.00 13.07
GPT-3.5 42.00 6820 8.00 4342 0.00 36.44 0.00 2474 0.00 1521 0.00 12.03
DeepSeek-V3 88.00 77.74 76.00 7190 56.00 66.61 22.00 50.01 4.00 30.41 6.00 33.44
Qwen2.5-72B-Instruct 78.00 76.84 64.00 68.00 14.00 46.88 8.00 30.80 0.00 22.67 0.00 18.45

Open Qwen2.5-32B-Instruct 64.00 73.36 44.00 62.02 14.00 40.08 4.00 33.78 2.18 22.16 0.00 18.93
Source Qwen2.5-14B-Instruct 32.00 50.36 4.00 26.66 0.00 2441 0.00 19.00 0.00 14.14 0.00 14.27
Qwen2.5-7B-Instruct 8.00 4479 0.00 13.00 0.00 929 000 835 0.00 557 0.00 451
Llama3.1-70B-Instruct 70.00 75.42 42.00 63.15 22.00 54.58 6.18 45.04 0.00 29.77 0.00 17.69
Llama3.1-8B-Instruct 4,00 33.03 000 1549 0.00 1233 0.00 1124 0.00 9.05 0.00 745

Table 2: Performance of 10 representative LLMs with parameter sizes ranging from 7B to 671B+ across 6 task
complexity levels, evaluated using Success Rate (SR) and Progress Completeness (PC) as metrics.

20

~
o

Min Collaboration Action Num
16 Min Time

<)
=}

Min Collaboration Timestep

12

S
a

Count

8

w
=}

4

(&)

0 Level 1

o

Level 2 Level 3 Level 4 Level 5 Level 6

Figure 2: The statistics for tasks of varying complexity
levels. “Min Collaborative Action Num” denotes the
minimum number of collaborative actions performed
by the responding agent. “Min Time” represents the
shortest timesteps to complete a task at a given level.

6 actions respectively. The environment layout in-
dicates asymmetric interactivity, with two agents
accessing 4 and 5 interactive elements, respectively,
while sharing observation. Additional statistics are
provided in Appendix A.1.

5.2 Experiment Setting

We leverage 10 representative LLMs with parame-
ter sizes ranging from 7B to over 671B+ as the foun-
dation models for LLM-MAS. The open-source
models include DeepSeek-V3 (Liu et al., 2024),
different parameter versions of Qwen2.5 (7B, 14B,
32B, 72B) (Yang et al., 2024) and Llama3.1 (8B,
70B) (Dubey et al., 2024), all with instruction-
tuned configurations. The closed-source models
include: GPT-40-1120, ol-mini, and GPT-3.5-
turbo-0125. For the open-source models except
for DeepSeek-V3, inference is performed using
vLLM (Kwon et al., 2023) with temperature of 0.7
and top-p of 1. For each task, the task time limit
factor is set to v = 1.5%, and each task is evaluated
through 10 repetitions. The hyper-parameter 3 in
TES is set to 0.95.

Experiments for different ~ are in Appendix C.1.

5.3 Results and Analysis

5.3.1 Task Completion Efficiency

Table 2 presents the Success Rate (SR) and PC of
10 LLMs across 6 task complexity levels. From
these results, we derive three key insights: (1)
Smaller LLMs (8B parameters or fewer) struggle
with simple tasks, whereas increasing model size
significantly enhances performance. This indicates
the existence of a clear emergent scaling threshold
for this task. (2) Scaling up LLMs effectively im-
proves task completion efficiency for lower-level
tasks but fails to enhance performance on high-
complexity tasks. This suggests that current per-
formance gains primarily stem from pattern memo-
rization rather than cognitive reasoning. (3) When
task complexity surpasses a critical threshold (level
4+), both closed and open-source models experi-
ence a performance collapse. This highlights the
current limitations of LLMs in modeling long rea-
soning chains and capturing the complex, dynamic
logic between tasks and environments.

5.3.2 Process-Oriented Evaluation

Figure 3 shows the process-oriented evaluation of
LLM-MAS. Among closed-source models, GPT-40
demonstrates the strongest collaboration capability,
while DeepSeek-V3 performs comparably to other
open-source models. We derived three key insights
from the experimental results. First, most mod-
els (14B+) exhibit higher RC than IC, indicating
that LLMs are better at responding to collabora-
tion than initiating collaboration. This is a result
of their strong instruction-following capabilities,
which make initiating collaboration the primary
bottleneck for most LLMs. Second, the collabora-
tion capability of all LLMs declines with increasing
task complexity. Moreover, the decline rate is sim-
ilar across all models, indicating that their ability

Closed-Source Models

70 70
Models

60 Qe ® GPT-4o 60
&, 0 T @, @ ot-mini
N, GPT-35
50 S __ 50
® . 9
= Y S~o Metrics <
§ 40 ~ S § 40
5 - AN we RGOS
5 30 N B T s %
£ . Neeedy, e, b
Q e \\'. o
20 s = 20
b il R S
T

Task Difficulty Level

32B+ Open-Source Models

Task Difficulty Level

7B-14B Open-Source Models

Models Models
DeepSeek-V3 60 Qwen2.5-148
Qwen2.5-728 Qwen2.5-78
Qwen2.5-328 Llama3.1-88
Llama3.1-708 50

<%

Metrics
—_—-IC
wes RC

Metrics
40 —_iC

«as RC

Performance (%)

Task Difficulty Level

Figure 3: The performance of 10 representative LLMs, with parameter sizes ranging from 7B to 671B+, was

evaluated across 6 task levels using the IC, and RC.

100
& 75
@
Q
g 50 f
g |
S |
3 2 ‘ I |
" | | -
Level 1 Level2 Level3 Level4 Level5 Level6
M sR PC IC RC

Figure 4: Comparison of human performance (repre-
sented by the lighter, more transparent bars) and GPT-40
performance (represented by the solid, more saturated
bars) across 6 task complexity levels in our benchmark.

to maintain collaboration capability performance is
similar. Despite the scale-up of the models, there
is no corresponding improvement in their ability
to sustain collaboration capability. Third, com-
pared to GPT-3.5, the CoT-trained model o1-mini
demonstrates superior collaboration performance
on simpler tasks. Despite the inability to main-
tain collaboration capability performance as task
complexity increases, the improved performance
on simpler tasks underscores the potential for fur-
ther exploration of the CoT-training paradigm in
the context of agent collaboration.

5.3.3 Human Performance Evaluation

To establish a performance ceiling, we experi-
mented with 10 human participants completing
tasks across 6 complexity levels. We designed
a human-computer interaction interface to enable
human participants to simulate agent interactions
within the environment. Detailed experimental de-
sign can be found in Appendix C.2.

As shown in Figure 4, human participants
achieved near-perfect and stable performance
across all complexity levels, while GPT-4o0, the
state-of-the-art model in our benchmark, showed
a decline in collaboration capability as task com-

plexity increased. This highlights the limitations
of LLM-MAS in completing sequential, process-
specific tasks in a zero-shot setting, where simply
scaling up the LLM is insufficient to improve col-
laboration performance to human-like levels. The
model’s reliance on pre-trained knowledge does
not fully enable it to adapt to the dynamic and col-
laborative environment of complex tasks, empha-
sizing the need for more advanced mechanisms or
parameter fine-tuning to enhance its collaborative
capabilities to human-like levels.

5.3.4 Failure Analysis

Failure Modes in Collaboration Capabilities
Degradation To investigate the temporal dynam-
ics of initiating and responding to collaboration, we
selected 4 LLMs and tested them on 5 collaborative
actions from level 3 tasks. Using environmental
states and memory fragments from interaction tra-
jectories, we constructed prompts to elicit both ini-
tiation and response behaviors, evaluated using the
ITES function. As shown in Figure 5(a), all models
perform well on the first collaborative action, but
performance declines in subsequent actions. Re-
garding initiating collaboration capability, agents
fail to identify the appropriate actions needed to
advance the task in later steps, revealing a mis-
alignment between environmental states and task
flow (further analysis in Appendix C.3.1). The
confusion matrix shows a correlation between initi-
ating collaboration and responding to collaboration,
indicating that response accuracy depends on the
correctness of initiation, confirming that initiating
collaboration capability is the primary bottleneck.

Impact of Task Decomposition Ability We iso-
late the influence of task decomposition by re-
designing the recipes with explicit step-to-action
mappings, where each step corresponds to a single

=]
8
=]
8

~
2]
~
o

n
]

Accuracy (%)
8

H

= 0
ol-mini Llama3.1-70B Qwen2.5-32B

H

0 - 0
GPT-40 o1-mini Llama3.1-70B Qwen2.5-32B

o

=]
8
2
38

~
o

o
3

g
>
3
g
H
8
<

Responding
Collaboration
Accuracy (%)

c
o

£2
58
S5
8a
o8
c3

n
&
n
]

GPT-40

Action 4 M Action 5
o1-mini

M Action 1 [Action2 M Action 3
GPT-40

4.54

T
T

F Initiate -
Initiate
Initiate

3
E

T F
Respond

T Respond F T Respond F

Llama3.1-70B

Llama3.1-70B

Qwen2.5-32B

11.69

T
T

Initiate

F Initiate T

F
E

T Respond "

T Respond F T Respond F

(a)

o1-mini

o1-mini

M Action1 I Action2 M Action3
GPT-40

GPT-40

100
98
I I 96

Llama3.1-70B Qwen2.5-32B

[l

94

92

-90

Steps
Step5 Step4 Step3 Step2 Stepl
i

89 87 87 88 86
-88
- 87 84 85 89 86 86
Llama3.1-70B Qwen2.5-32B

Action4 M Action 5 ' ' ' | ' -84

o1-mini Action 1 Action 2 Action 3 Action 4 Action 5

Actions
Llama3.1-70B

T

95

Initiate

90

F

7.65
80
42.98
60

T F
Respond

85

80

Percent

Qwen2.5-32B

-40
-75

T

-70

Initiate

-20

76 69 71 67 64

Steps
Step5 Step4 Step3 Step2 Stepl

- 65

F

. . . ! !
Action 1 Action 2 Action 3 Action 4 Action 5
Actions

T Respond "

(b) (c)

Figure 5: Figure (a) illustrates the dynamic changes in the capabilities of four LLMs in initiating collaboration
and responding to collaboration under the original task flow, with the confusion matrix depicting the relationship
between the two capabilities. Figure (b) shows the dynamic changes in collaboration capabilities after excluding
the impact of task decomposition ability on the task flow. Figure (c) highlights the sensitivity of collaboration
capabilities to position, comparing GPT-40 and Llama3.1-70B after adjusting the position of the task workflow.

action in recipe (details in Appendix C.3.2). Figure
5(b) shows this modification leads to performance
improvements. However, the gradual decline in
accuracy persists, indicating that the degradation
of collaboration capabilities is not attributable to
limitations in LLM task decomposition abilities.

Sequence Dependence in Collaboration Perfor-
mance While maintaining step-to-action map-
pings, we further examined the sensitivity of col-
laboration performance to position dependencies
by rearranging the task workflow (details in Ap-
pendix C.3.3). Moving the target collaborative ac-
tion to the first step led to significant performance
improvement, as shown in Figure 5(c). Previously
underperforming subsequent actions, when placed
at step 1, showed notable gains, and performance
degradation largely disappeared. This highlights
strong positional dependence in sequential, process-
specific tasks, which we attribute to pretraining bi-
ases favoring early-sequence elements and limited
context tracking in extended action chains.

5.4 Future Challenges

Enhance Collaboration Capability To enhance
collaboration, we propose using process-oriented
metrics, such as IC and RC, which evaluate the ca-

pabilities of initiating and responding to collabora-
tion by scoring each collaborative interaction. Tar-
geted improvements based on these metrics, partic-
ularly for smaller models, may help address exist-
ing weaknesses and enhance overall performance.

Maintain Collaboration Performance A key
challenge in LLM-MAS collaboration is maintain-
ing stable performance, whether within a single
task or across tasks of varying complexity. Addi-
tionally, a significant gap persists between LLMs
and human collaborators, with humans consistently
outperforming models. Closing this gap requires
improving models’ adaptability and robustness to
better emulate human collaboration.

6 Conclusion

We introduce the Collab-Overcooked Benchmark,
a framework for evaluating LLM-MAS collabo-
ration from both end-to-end and process-oriented
perspectives. Experiments across 10 LLMs reveal
notable performance gaps, with a key bottleneck in
maintaining consistent performance across a single
task or tasks of varying complexity. These findings
highlight the challenge for further advancements
in model adaptability and robustness to enhance
collaboration capability across diverse scenarios.

Limitations

The Collab-Overcooked Benchmark is introduced
in our paper and we explore methods for evaluating
the collaboration capabilities of LLM-MAS using
both end-to-end and process-oriented approaches.
However, there are three limitations to our work.
First, all of our tasks are sequential and process-
specific. While we assume that RATs can be ex-
haustively enumerated, making it possible to use
exhaustive RATs as labeled data for evaluating the
collaboration capabilities of LLM-MAS. However,
in environments with highly complex state and ac-
tion spaces, RATs are difficult to exhaustively enu-
merate. In such cases, only representative RATs
can be listed as evaluation data, which introduces
potential bias into our evaluation methodology.
Second, due to the complex mechanisms of LLM-
MAS, such as communication, memory, and reflec-
tion, the prompts are relatively long (approximately
2,000 tokens, with variation depending on the to-
kenizer used by the LLM). Additionally, process-
oriented evaluation requires substantial interaction
data, which leads to both low evaluation efficiency
and significant token consumption, which is the
common challenge across current methods for eval-
uating LLM-MAS capabilities. Third, the baseline
used to evaluate LLM-MAS is composed of rel-
atively simple structures, with the agent possess-
ing only basic memory and reflection mechanisms,
leaving substantial room for optimization.

References

Saaket Agashe, Yue Fan, and Xin Eric Wang. 2023.
Evaluating multi-agent coordination abilities in large
language models. arXiv preprint arXiv:2310.03903.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths,
Sanjit Seshia, Pieter Abbeel, and Anca Dragan. 2019.
On the utility of learning about humans for human-ai
coordination. Advances in neural information pro-
cessing systems, 32.

Junzhe Chen, Xuming Hu, Shuodi Liu, Shiyu Huang,
Wei-Wei Tu, Zhaofeng He, and Lijie Wen. 2024. LI-
marena: Assessing capabilities of large language
models in dynamic multi-agent environments. arXiv
preprint arXiv:2402.16499.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia
Qin, Yaxi Lu, Ruobing Xie, et al. 2023. Agent-
verse: Facilitating multi-agent collaboration and ex-
ploring emergent behaviors in agents. arXiv preprint
arXiv:2308.10848, 2(4):6.

Yubo Dong, Xukun Zhu, Zhengzhe Pan, Linchao Zhu,
and Yi Yang. 2024. Villageragent: A graph-based
multi-agent framework for coordinating complex
task dependencies in minecraft. arXiv preprint
arXiv:2406.05720.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane
Durante, Yusuke Noda, Zilong Zheng, Song-Chun
Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. 2023.
Mindagent: Emergent gaming interaction. arXiv
preprint arXiv:2309.09971.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collabo-
rative framework. arXiv preprint arXiv:2308.00352.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui
Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and Siheng
Chen. 2024. Self-evolving multi-agent collaboration
networks for software development. arXiv preprint
arXiv:2410.16946.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008.

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang,
Yu Zhou, Sanjana Srivastava, Cem Gokmen, Tony
Lee, Li Erran Li, Ruohan Zhang, et al. 2024. Embod-
ied agent interface: Benchmarking llms for embodied
decision making. arXiv preprint arXiv:2410.07166.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi
Yang. 2023. Dynamic llm-agent network: An llm-
agent collaboration framework with agent team opti-
mization. arXiv preprint arXiv:2310.02170.

Zhao Mandi, Shreeya Jain, and Shuran Song. 2024.
Roco: Dialectic multi-robot collaboration with large
language models. In 2024 IEEE International Con-
ference on Robotics and Automation (ICRA), pages
286-299. IEEE.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th an-
nual acm symposium on user interface software and
technology, pages 1-22.

Siyuan Qi, Shuo Chen, Yexin Li, Xiangyu Kong,
Junqi Wang, Bangcheng Yang, Pring Wong, Yifan
Zhong, Xiaoyuan Zhang, Zhaowei Zhang, et al. 2024.
Civrealm: A learning and reasoning odyssey in civi-
lization for decision-making agents. arXiv preprint
arXiv:2401.10568.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian
Li, and Bill Yuchen Lin. 2024. Trial and error:
Exploration-based trajectory optimization for llm
agents. arXiv preprint arXiv:2403.02502.

Wei Tao, Yucheng Zhou, Yanlin Wang, Wengiang
Zhang, Hongyu Zhang, and Yu Cheng. 2024. Magis:
Llm-based multi-agent framework for github issue
resolution. arXiv preprint arXiv:2403.17927.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Kuan Wang, Yadong Lu, Michael Santacroce, Yeyun
Gong, Chao Zhang, and Yelong Shen. 2023b. Adapt-
ing llm agents through communication. arXiv
preprint arXiv:2310.01444.

Wei Wang, Dan Zhang, Tao Feng, Boyan Wang, and
Jie Tang. 2024. Battleagentbench: A benchmark for
evaluating cooperation and competition capabilities
of language models in multi-agent systems. arXiv
preprint arXiv:2408.15971.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023c. Describe,
explain, plan and select: Interactive planning with
large language models enables open-world multi-task
agents. arXiv preprint arXiv:2302.01560.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

10

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang,
Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. 2024a. Proa-
gent: building proactive cooperative agents with large
language models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
17591-17599.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong
Zhou, Yilun Du, Joshua B Tenenbaum, Tianmin Shu,
and Chuang Gan. 2023. Building cooperative em-
bodied agents modularly with large language models.
arXiv preprint arXiv:2307.02485.

Yang Zhang, Shixin Yang, Chenjia Bai, Fei Wu, Xiu
Li, Zhen Wang, and Xuelong Li. 2024b. Towards
efficient llm grounding for embodied multi-agent col-
laboration. arXiv preprint arXiv:2405.14314.

A Benchmark Detail

A.1 Environment

In this section, we provide a detailed overview of
the Collab-Overcooked Benchmark environment
design. We first introduce the interactive elements
within the environment along with their layout.
Next, we describe the action space available to
agents. Finally, we present the methodology for
defining layouts, enabling flexible modifications to
the environment.

A.1.1 Interactive Elements

Due to our resource isolation design, the interactive
elements available to each agent differ. Figure 6
illustrates the interactive elements that both agents
can engage with. We adopt the “Forced Coordi-
nation” level design from Overcooked-Al (Carroll
et al., 2019), where the two agents share only a
single interactive element: the counter. This design
necessitates resource exchange between agents to
complete tasks.

We categorize interactive elements into three
types: utensils, dispensers, and others. The details
are as follows:

e Utensils: These interactive elements take one
or more ingredients as input and process
them according to a predefined synthesis table,
transforming them into new ingredients.

e Dispensers: Agents can retrieve ingredients or
dishes from these elements, with the available
items being predefined.

e Others: The counter serves as a critical inter-
active element for resource exchange between
agents, allowing them to freely place or re-
trieve ingredients. The delivery location is
where agents submit task outcomes. If the sub-
mitted ingredient meets the task requirements,
the task is considered successful. Otherwise,
incorrect submissions result in the removal
of the submitted ingredient from the environ-
ment, often leading to task failure.

A.1.2 Action Space

The action space of each agent consists of a se-
ries of functions in the format “func(args)”, which
facilitate interactions with the environment or col-
laboration with other agents. Agent actions are
categorized into shared actions and exclusive ac-
tions. Shared actions are common to both agents

Agent Alice Agent Bob
Chopping board .
Blender .
Utensil
Pot .
. Oven .
Interactive
Elements Ingredient .
Dispenser
Dish .
Counter . .
Others
Deliver Location .

Figure 6: Interactive elements

and include actions such as “pickup” (for picking
up ingredients), “place_obj_on_counter” (for in-
teracting with the counter), “put_obj_in_utensil”
(for placing ingredients into utensils), and “wait”.
Exclusive actions, on the other hand, arise from
the differing interactive elements in each agent’s
environment. For example, Agent Bob has access
to a pot, allowing it to perform the “cook” action,
whereas Agent Alice, lacking a pot, cannot perform
this action. Conversely, Agent Alice can interact
with the chopping board to perform the “cut” ac-
tion, which Agent Bob cannot. The specific actions
available to Agent Alice and Agent Bob are listed
as follows:

Listing 1: Action Space List

Action Space for Agent Alice:

1. pickup(obj,place)
cut(chopping_board_name)
stir(blender_name)
place_obj_on_counter()
put_obj_in_utensil(utensil)
. wait(num)

o Ul wN

Action Space for Agent Bob:

1. pickup(obj,place)
cook(pot_name)
place_obj_on_counter()
put_obj_in_utensil(utensil)
fill_dish_with_food(utensil)
bake (oven_name)
deliver()

. wait(num)

0 ~NOOUTA WN

To accurately assess collaboration capabilities,
we require that when an agent initiates collabo-
ration, the initiating agent must encapsulate the
desired action for the responding agent within a
“request”. This mechanism is utilized for calcu-
lating IC and RC. For example, if Agent Bob
wants Agent Alice to retrieve an apple for it,
Agent Bob will generate the following output:
“request(pickup(apple, ingredient_dispenser)); re-
quest(place_obj_on_counter())”. This request ex-
plicitly specifies the sequence of actions that Agent
Alice is expected to execute, ensuring that the col-

laboration process is systematically coordinated.

A.1.3 Layout Definition Method

We follow the environment design principles of
Overcooked-Al (Carroll et al., 2019) and ProA-
gent (Zhang et al., 2024a), enabling customization
through external layout files. Compared to these
prior works, our framework offers a broader range
of configurable elements. For instance, the “or-
der_probability” parameter allows users to adjust
the probability of tasks appearing randomly in the
environment, while the “recipes” parameter enables
customization of the synthesis list for each uten-
sil. Further details can be found in the examples
provided in our GitHub repository’s layout files.
Through our enhancements, nearly all aspects of
the environment can be customized via a single
external file, significantly enhancing the flexibility
and scalability of our framework.

A.2 Tasks Construction

In this section, we provide detailed information
about tasks, including task complexity level, task
list, task recipe, and task RATs.

A.2.1 Task complexity level

To distinguish the complexity level of each task,
we define four types of collaborative behaviors per-
formed by the agents. The complexity level of a
task is determined based on the minimum number
of collaborative behaviors required to complete the
task. The four types of collaborative behaviors are
as follows:

e Acquiring New Ingredients: This behavior
involves retrieving an ingredient from the In-
gredient Dispenser. For example, Agent Alice
might pick up an onion or an apple from the
dispenser.

Processing the Ingredients: This behavior in-
volves placing ingredients into a cooking uten-
sil. For example, Agent Alice might place an
ingredient into a chopping board or a blender.

Acquiring a New Dish: This behavior involves
retrieving a new dish from the Dish Dispenser.
This action consists of a single step where
Agent Alice picks up a dish.

Processing the Ingredients by Agent Bob:
Similar to the first behavior, but performed
by Agent Bob. This includes behaviors like
placing an ingredient into a pot or an oven.

12

Each collaborative behavior corresponds to sev-
eral collaborative actions. The complexity level of
a task is calculated by summing the total number of
collaborative actions required from each behavior.
Specifically, the number of actions in each of the
four categories is counted based on the task’s re-
quirements. This approach ensures that tasks with
more complex or numerous collaboration require-
ments are considered more difficult than those with
fewer actions. Table 3 provides statistical data on
collaborative behaviors and collaborative actions.

Each task’s RAT's provide the exact number of
actions for each type of collaboration, which is
used to determine the total complexity level for
that task. The complexity calculation allows for a
comparison of tasks, ensuring that they are evalu-
ated on the basis of their collaborative complexity.

A.2.2 Task List

Table 4 presents a list of task names across 6 com-
plexity levels, comprising a total of 30 tasks. As
indicated by the task names, tasks within the same
complexity level share identical workflows, with
the only variation being the selection of ingredi-
ents. This design aims to mitigate potential biases
in LLMs towards specific ingredients, thereby re-
ducing evaluation discrepancies caused by such
biases.

A.2.3 Recipes

Each task corresponds to a recipe that outlines the
workflow required to complete the task, includ-
ing the necessary ingredients and cooking steps.
There are two important aspects to note regard-
ing the recipe: First, one cooking step typically
involves multiple actions by the agents. This ne-
cessitates that the agents carefully decompose the
cooking step into specific actions after thoroughly
understanding both the recipe and the environment.
Second, some cooking steps can be executed in
a different order. For instance, when multiple in-
gredients require pre-processing, followed by com-
bining the processed ingredients into a utensil for
further preparation, the order in which the ingre-
dients are preprocessed can be interchanged. This
decision is typically made by the agents, leading to
the possibility of multiple valid RATSs for the same
task. Allowing such flexibility is both reasonable
and aligned with real-world practices. Listing 2
is an example of the recipe for “Baked Pumpkin
Soup”, which includes the recipe name, required
ingredients with quantities, and detailed cooking

Complexity Level Acquiring Processing the Ingredients Acquiring Processing the Ingredients Total Number of
New Ingredients by Agent Alice a New Dish by Agent Bob Collaborative Actions
Level 1 1 0 0 1 2
Level 2 1 1 1 1 5
Level 3 1 1 1 2 7
Level 4 2 1 1 2 9
Level 5 2 2 1 3 12
Level 6 3 3 1 4 17

Table 3: The number of collaborative behaviors under different complexity levels is given, as well as the total

number of corresponding collaborative actions.

instructions.

Listing 2: Recipe example

NAME :
Baked Pumpkin Soup

INGREDIENTS:
pumpkin(1)

COOKING STEPs:

1. Cut a pumpkin into slices.

2. Place the pumpkin slices in the oven and bake

for 3 timesteps.

3. Transfer the baked pumpkin slices to a pot
and cook for 3 timesteps.

4. Fill a dish with the soup from the pot and
deliver.

A.2.4 Referential Action Trajectory

To evaluate the agents’ collaboration capabilities
both in terms of end-to-end and process-oriented
metrics, we provide the RATS for each task. Given
that our tasks are sequential process-specific, we
assume that the RATs can be exhaustively enumer-
ated or largely known. We have annotated the RATs
for each task, which include the optimal referen-
tial action sequences for both agents to complete
the task. Each RAT ensures that the agents can
accomplish the task with a minimal number of ac-
tions, while also employing the optimal strategy
to parallelize certain actions for efficiency. A task
may have multiple valid RATs, for example, the
order in which two ingredients are retrieved may
not affect the overall task completion time. Dur-
ing evaluation, the TES and ITES functions select
the RAT with the highest matching score as the
reference for assessment. Listing 3 provides an ex-
ample of the RAT for the “Baked Pumpkin Soup”
task, with separate RATSs for each of the two agents.
Because the “Baked Pumpkin Soup” task has only
one completed route, there is only one RAT.

13

Listing 3: RAT of "Baked Pumpkin Soup" task

"RAT_1":
{
"agent_0": [
"pickup(pumpkin_slices, counter)”,
"put_obj_in_utensil(oven@)"”,
"bake (oveno)",
"pickup(baked_pumpkin_slices, oveno)"”,
"put_obj_in_utensil(pot®@)”,
"cook (pot@)",
"pickup(dish,counter)"”,
"fill_dish_with_food(pot@)"”,
"deliver()"
:l:
"agent_1": [
"pickup(pumpkin, ingredient_dispenser)"”,
"put_obj_in_utensil(chopping_boarde)",
"cut (chopping_boarde)",
"pickup(pumpkin_slices,chopping_boarde)",

"place_obj_on_counter()",
"pickup(dish,dish_dispenser)”,
"place_obj_on_counter ()"

A.3 Baseline

In this section, we introduce the baseline structure
and prompt design we use to test different LLMs.

A.3.1 Baseline Construction

Figure 7 illustrates the structure of the baseline and
provides an example of agents interacting and col-
laborating to complete a task within our benchmark.
The baseline architecture consists of an Instruction-
Builder, Planner, Communication, Error-Handling,
Memory, and Reflection modules. The structure
remains identical across different agents, with vari-
ations arising only in the environment descriptions,
action spaces, and task-specific knowledge pro-
vided within the prompts.

Instruction-builder The Instruction-builder is a
rule-based module responsible for managing and
integrating the prompts for each agent. It reads the
state dictionary from the environment and fills in
a prompt template. The prompt template includes
both fixed prompts and slot-based prompts. Fixed

@ LLM-MAS Environment Legend = ...
Alice Analysis
Task =5y AgentAice JEE) -------f
Description Alice Sa
...................................... iy
. Agent Structure i Yopy || 5 gm
H 1. Slice a potato @ Potato ok Anaysi
H : 2. Bake the potato : s
Memory Reflection e - @ SicedPomate [oo
| tatests Fupcate R BakedPota Bob Say
Instruction ! - L g ST T
Promgt Template s (_Jnsffuchﬂns Analysis & Collaboration Planning
........... M e e
s BT B e
ame Rules Analyse H H ¢ Based on . I'should ask 3 request | slice the potato,
. ' ! : Alice to slice the potato. ' { should take it first and then siice it, | ; 1+ Pickup S from E
Task & Env Stats Colaborate H H b A _/m e A 3 2 place Son >
s : Hello! Could you first slice a Certainly! | will pick up and : 3. ot Qon
Mamary & Reflaction Ptan Action e p e slice the potato. : Agent Bob:
,, 1. wait
I A * l Instructions
X ‘ i Ishould request Alice put the I have already sliced the potato, | .« agentAlice: ===~ [&= ===
Jeas v sliced potato into the aven.] should follow the instruction. H H
______________________ ' JPARESRENENETR E ! Error Message !
_— [: 1 3 Agent 1 cannot
Agent Alice : = 1 : ¥ H :
9 : : LD : Then you should bake the — OK, | will ry to put it in the | _reachthe oven. |
VAT e @ " AR LA potato in oven. ETE oven. 7
I I R e el teieir ittt ettt ettt -
| ErorMessage,- — — — — — T T T T T T - — = - — = = T == = — e m =
VA, i ‘ = i Agent Al
H H An error have occurred. | should ‘1 made a mistake, | should ice:
tta, . It ay errort : © discuss with Bob 1o solve this. | | sliced potato and bakeit. | : 1. pickup % from Iﬂ
Validator | G T : | P o
Fulos i) y - =2, place @ on counter_,,
i !
' It seems that | cannot interact I'm somry! | was wrong. Gan + Agent Bob:
‘ No error L ‘with the oven. LN you pass me the potato? 1 1. pickup \, from counter
Executor | | LT
Pathfinding Algorithm Instructions
y} __ “Agent Alice:
jroossmee T N N s R e]
L Environment State) o s IR B e i istbakeitanddeiver. | PoentBob
: ' IE t-eeeeeeeremeeegemeeeeenn! - 21 1. place Qin 1 >
:) A . ¥ 2. bake % in (1
: Hello! What can I do naw? e mm,,'"’ “: e 3. plokup ifrom B
H : : thank you! d
Benchmark] e S . e N i oty

Figure 7: The left side of the figure presents the baseline architecture used for evaluating different LLMs, where
Agent Alice and Agent Bob share the same structural design, differing only in their prompt. The right side of the
figure illustrates the interaction process between the two agents as they collaborate to complete the “Baked Potato
Slices” task within our benchmark. This includes the agents’ analytical processes as well as a record of their natural

language communication.

prompts contain: (1) game rules, such as objectives,
scoring workflows, functions of each kitchen uten-
sils, and methods for preparing dishes; (2) commu-
nication rules and output format specifications; and
(3) a definition of the agent’s action space, along
with a brief description of actions available to team-
mates. Slot-based prompts include: (1) the current
recipe for the task (if the agent has access to the
recipe); (2) the current environment observations,
such as kitchen layout and teammate status; (3)
communication records with other agents up to the
current time step; and (4) memory and reflection
from previous time steps.

Planner The planner is the core decision-making
component for the agent. It generates three fields:
“Analysis”, “Say”, and “Plan”. The “Analysis” field
represents the agent’s assessment of the current en-
vironment state, task, and past memories, assisting
the planner in making informed decisions. The
“Say” field determines whether collaboration is re-
quired; if the planner identifies a need for collabo-
ration, it generates communication content directly
in this field. The “Plan” field contains the action
sequence that the planner has devised for the agent.

14

Communication Communication between
agents enables the transmission of collaborative
intentions or requests for assistance. = When
communication content is detected in the “Say”
field, all agents enter the communication channel.
Within this channel, each agent speaks in sequence
until a special token “[END]” is generated or
the maximum number of interaction rounds is
reached. Once communication is complete, agents
formulate their plans based on the information
exchanged.

Error-handling The error-handling process man-
ages situations in which the generated actions are
deemed invalid by the environment. When an
agent receives an error message from the environ-
ment, the error information is incorporated into the
prompt and re-entered into the planner. This cycle
continues until the generated actions are considered
valid by the environment or the maximum number
of attempts is reached.

Memory and Reflection Memory and reflection
represent the accumulation of an agent’s past ex-
periences, enabling it to engage in long-term plan-
ning. We implement memory and reflection using

Complexity

Level Task Name

Baked Bell Pepper
Baked Sweet Potato
Boiled Egg
Boiled Mushroom
Boiled Sweet Potato
Baked Potato Slices
Baked Pumpkin Slices
Boiled Corn Slices
Boiled Green Bean Slices
Boiled Potato Slices
Baked Bell Pepper Soup
Baked Carrot Soup
Baked Mushroom Soup
Baked Potato Soup
Baked Pumpkin Soup
Sliced Bell Pepper
and Corn Stew
Sliced Bell Pepper
and Lentil Stew
Sliced Eggplant
and Chickpea Stew
Sliced Pumpkin
and Chickpea Stew
Sliced Zucchini
and Chickpea Stew
Mashed Broccoli
and Bean Patty
Mashed Carrot
and Chickpea Patty
Mashed Cauliflower
and Lentil Patty
Mashed Potato
and Pea Patty
Mashed Sweet Potato
and Bean Patty
Potato Carrot
and Onion Patty
Romaine Lettuce Pea
and Tomato Patty
Sweet Potato Spinach
and Mushroom Patty
Taro Bean
and Bell Pepper Patty
Zucchini Green Pea
and Onion Patty

Level 1

Level 2

Level 3

Level 4

Level 5

level 6

Table 4: The names of 30 tasks in total are divided into
6 complexity levels.

a straightforward approach. The memory logs the
action sequences that the agent has completed in
the past, while the reflection records the previous
agent’s reflections on invalid actions.

A.3.2 Prompt

In this section, we provide a detailed description
of the prompts used to drive LLM-based agents.
Since LLM-MAS involves multiple agents inter-
acting within an environment, the prompt design
is inherently more complex than that of a single-
agent system. Each request to the LLM typically
consumes approximately 2,000 tokens, with slight
variations depending on the specific tokenizer used
by the LLM. To structure this complexity, we cat-
egorize the prompts into three key components:
game rules, action space definitions, and input-
output format specifications. We will elaborate on
each component and provide illustrative examples
to demonstrate their implementation.

Game Rules The game rules part of the prompt
defines the task objective, agent roles, and interac-
tion constraints. It outlines the step-by-step work-
flow for completing an order, emphasizing task di-
vision, coordination, and strict adherence to recipe
instructions. Figure 10 shows all the content of the
game rule prompt.

Action Space Definitions This part of the prompt
defines the action space for Agent Bob, following
the action specification method used in ProAgent
(Zhang et al., 2024a). It categorizes actions into
operation actions (directly executable by the agent)
and collaborative actions (requests for the team-
mate to perform an action). Figure 11 shows the
prompt of Agent Bob’s action space.

Input-Output Format The input-output format
part defines the structured information provided to
the agent at each step and the required response for-
mat. The input includes past action history, lessons
from failures, available utensils, the current order,
the planned sequence of actions, and past conver-
sations. The output consists of three fields: anal-
ysis (environment assessment and reasoning for
actions), plan (the agent’s planned actions for the
next step), and say (communication with the team-
mate, if necessary). This structured format ensures
that the agent can make informed decisions, coor-
dinate effectively, and execute tasks systematically.
12 shows all the content of the input-output format
prompt.

The above section outlines the key prompts used
to drive the LLM agents. For further details re-
garding prompts related to memory, reflection, and
other components, please refer to the comprehen-
sive prompts provided in our GitHub repository.

B Evaluation

B.1 Details in TES
The TES is formally expressed as:

B

where hj, = UtT:o al, = {a1,a2,...,an,} is the
historical action sequence up to timestep 1" of agent
k, ﬁf; = {g:};"% € R is j-th RAT of agent k,
B is the hyper-parameter balancing the weight of
task progress and redundancy, and Dl (ﬁk,gi)
computes the length of the longest order-preserving
subsequence in Ay, that matches ﬁ:

(1 4 %) Dihax (M, 30)

TES(hy) =
() = mex my, + 32ny,

J

J
Dmax

:mciax{d|V1§i1<-~<id§nk,

S.t. Qi = g1, @iy = G2, ..., 05, :gk} (8)

It is important to note that the TES function in-
troduces modifications to the Longest Common
Subsequence (LCS) calculation in ROUGE-L (Lin,
2004). These modifications are driven by one main
reason: Improved identification of redundant ac-
tions. Listing 4 illustrates a very common scenario
where, due to the agent’s incorrect choice in step
four, the fifth step fails to advance the task. Specif-
ically, the agent places an irrelevant item, “egg”,
onto the counter, which does not contribute to the
task’s progress. In this case, the standard ROUGE-
L, based on LCS, would mistakenly consider the
agent’s fifth action as matching the RAT, leading
to an inflated evaluation score.

TES overcomes this limitation by combin-
ing maximal order-preserving alignment with
efficiency-aware normalization, making it well-
suited for collaborative tasks requiring synchro-
nized, sequence-specific interactions.

16

Listing 4: Comparison of TES with other functions

Example:

RAT:

pickup(tofu, ingredient_dispenser)
put_obj_in_utensil(chopping_board_0)
cut(chopping_board_0)
pickup(chopped_tofu, chopping_board_o)
. place_obj_on_counter()

Action Trajectory:

pickup(tofu, ingredient_dispenser)
put_obj_in_utensil(chopping_board_0)
cut(chopping_board_0)

pickup(egg, ingredient_dispenser)
place_obj_on_counter()

g w N =

Agent

AwN =

5.
Result:

ROUGE-L: 0.8

TES: 0.6

C Supplementary Experiment

In this section, we present supplementary exper-
iments that support the conclusions of the main
body. First, we investigate the impact of different
hyper-parameter values for v on the task comple-
tion success rate of the LLM-MAS and provide the
rationale for selecting v = 1.5. Next, we describe
the details of the human performance evaluation,
including the experimental design and the human-
computer interaction interface. Additionally, we
introduce new recipes and additional results pre-
sented in the failure analysis section. Finally, we
provide case studies illustrating both successful and
unsuccessful task completions by the LLM-MAS.

C.1 Impact of Varying v on Task Success Rate

The hyper-parameter v controls the task failure
threshold. Specifically, it determines a time con-
straint on the task, which is calculated by multiply-
ing the optimal completion time by the value of ~.
Clearly, as -y increases, the task success rate (SR)
of the LLM-MAS will improve, as the system is al-
lowed more time to complete the task. However, v
cannot be increased indefinitely, as doing so would
lead to inefficiencies in the evaluation process. An
excessively high value of v might artificially inflate
the success rate, as the extended time window may
not reflect the true capabilities of the model in real-
world scenarios and it wastes computing resources.
On the other hand, setting ~y too low could result
in an overly strict evaluation, where the system is
unable to complete tasks even when it could have
more time. Therefore, it is essential to select an
optimal value for -y that balances both task success
and evaluation efficiency.

Figure 8 illustrates the task success rates of GPT-
40 and Llama3.1-70B at 6 complexity levels under

GPT-40

0.75

0.5

Task Success Rate

0.25

Level 2

Level 4 Level 5 Level 6

Wy=1

Level 1 Level 3

y=1.2

Task Success Rate

Llama3.1-70B

0.75
0.5

0.25

Level 2

0

Level 1 Level 3 Level 4 Level 5 Level 6

y=1.5 y=2

Figure 8: The task success rates of the GPT-40 and Llama3.1-70B at 6 complexity levels under different -y values.

varying values of the hyper-parameter y. We ob-
served that when v = 1, which requires completing
tasks along the optimal path, even the state-of-the-
art GPT-4o failed to complete the majority of tasks.
However, when v was increased to 1.5 or 2, GPT-
40 was able to complete most tasks at complexity
levels 4 and below. We chose v = 1.5 rather than
v = 2 because, for models with fewer parameters
than GPT-40, such as Llama3.1-70B, increasing
~ does not significantly improve success rates on
higher complexity tasks. In fact, most models we
tested struggled to complete tasks above level 4,
often requiring the maximum time limit during
evaluations. By selecting v = 1.5, we were able
to save approximately 33% of computational re-
sources compared to using v = 2, thereby enabling
a more efficient evaluation of the LLM’s capabili-
ties.

C.2 Human Performance Evaluation

To evaluate human performance on our benchmark,
we invited 10 volunteers to participate in our ex-
periments. The participants were divided into five
pairs, with each pair assigned two randomly se-
lected tasks from each complexity level. As a re-
sult, each complexity level was tested 10 times.
To facilitate the understanding of the game rules,
action space, input-output format, and the current
state of the environment, we designed a human-
computer interaction interface. It is important to
note that we merely presented the prompts inputted
to the agent in a more human-friendly format on the
interface, without introducing any additional infor-
mation. Figure 13 and figure 14 illustrate the layout
of our human-computer interaction interface.

17

C.3 Failure Analysis

In the “Failure Analysis” section of the main body,
we designed three experiments to demonstrate that
collaboration capabilities tend to decrease as the
task progresses, particularly in sequential, process-
specific tasks. We attribute this decline to pretrain-
ing biases that favor early-sequence task elements,
compounded by the diminishing ability to track
context across extended action chains. We refer
to the experiment corresponding to Figure 5(a) as
Experiment A, the experiment in Figure 5(b) as
Experiment B, and the experiment in Figure 5(c)
as Experiment C. In this section, we will provide
detailed information for these three experiments,
along with additional analytical results to support
our conclusions.

C.3.1 Details in Experiment A

Experiment A selected tasks from Level 3, which
involve five distinct collaborative actions. These
actions include: “pickup,” “put_obj_in_utensil,”
“cut/stir,” “pickup,” and “place_obj_on_counter.”
The parameters for these collaborative actions are
not specified, as they vary depending on the spe-
cific task associated with each action.

For the preprocessing phase, we manually select
environmental states and corresponding memories
that require the generation of different collabora-
tive actions from the Level 3 trajectory data. A total
of five collaborative actions are chosen, with five
scenarios selected for each action. For each model,
we test the five scenarios of each collaboration ac-
tion 20 times, with the prompts being identical to
those used in normal testing. The output consists
of collaborative actions, which are evaluated based
on the ITES. If the collaborative action results in an

ITES score greater than 0, it is deemed a successful
collaboration. However, if the ITES score is less
than or equal to O, there unsuccessful collaborative
action is categorized manually. For the collabora-
tive actions generated by the initiating agent, the
categorization follows three criteria: premature ini-
tiation, where the collaborative action should have
been generated in subsequent scenarios; repetitive
initiation, where the action corresponds to a col-
laboration that should have occurred in a previous
scenario; and irrelevant collaboration, where the
action does not belong to any of the expected col-
laboration actions for the task.

Figure 9 illustrates the error conditions observed
in GPT-40 and Llama3.1-70B when initiating col-
laboration. Both LLMs demonstrate strong collab-
oration initiation abilities in Action 1. However, as
the task progresses, premature initiation and repeti-
tive initiation occur more frequently during subse-
quent collaborative actions, with this tendency be-
ing more pronounced in the smaller Llama3.1-70B
model. These results highlight that LLM agents,
when faced with sequential, process-specific task
workflows, may struggle to accurately track the
current step, leading to an increased occurrence of
premature and repetitive initiation errors in later
stages of the task.

C.3.2 Details in Experiment B

In the recipe used in Experiment A, Step 1 consists
of five collaborative actions. To isolate the influ-
ence of planning, we redesigned the recipes with
explicit mappings from steps to actions. Listing 2
is an example of the recipe used in Experiment A.
Listing 5: Step-to-action mapping recipe of "Baked
Pumpkin Soup"

to a specific collaborative action. Listing 5 is an
example of the revised recipe.

By employing this approach, we isolate the influ-
ence of planning. However, as demonstrated in the
experiments presented in the main body, even with
this adjustment, the issue of diminishing collabora-
tion capabilities as the task progresses in sequential,
process-specific tasks remains unresolved.

C.3.3 Details in Experiment C

In Experiment C, we rearranged the order of steps
in the recipe from Experiment B, placing the col-
laborative actions to be generated in Step 1 of the
recipe. We designed these five steps as a sequence.
As shown in Listing 6, when Action 2 corresponds
to Step 1, the modified recipe is as follows, where
the content in square brackets is supplementary in-
formation and will not appear in the experimental
recipe.

Listing 6: Rearranged recipe of "Baked Pumpkin Soup"

NAME :
Baked Pumpkin Soup

INGREDIENTS:
bell pepper(1)

COOKING STEPs:

Pick up a bell pepper.

Place bell pepper on chopping board.

Cut a bell pepper into slices.

Pick up bell pepper slices.

Place the bell pepper slices on counter.

Place the bell pepper slices in the oven and

bake for 3 timesteps.

7. Transfer the baked bell pepper slices to a
pot and cook for 3 timesteps.

8. Fill a dish with the soup from the pot and
serve.

o Ul A WN =

NAME :
Baked Pumpkin Soup

INGREDIENTS:
bell pepper(1)

COOKING STEPs:

[Previously for step 2]

1. Place bell pepper on chopping board.

[Previously for step 3]

2. Cut a bell pepper into slices.

[Previously for step 4]

3. Pick up bell pepper slices.

[Previously for step 5]

4. Place the bell pepper slices on counter.

[Previously for step 1]

5. Pick up a bell pepper.

[The following are not the steps corresponding
to collaborative action]

6. Place the bell pepper slices in the oven and
bake for 3 timesteps.

7. Transfer the baked bell pepper slices to a
pot and cook for 3 timesteps.

8. Fill a dish with the soup from the pot and
serve.

We decomposed Step 1 into five distinct sub-
steps, with each sub-step corresponding precisely

Through these adjustments, we found that the
phenomenon of decreasing performance with task
progression largely disappeared, highlighting a
strong positional dependence in sequential process-
specific tasks.

C.4 Case Study

We present case studies of agent collaboration pro-
cesses, using the DeepSeek-V3 model to illus-
trate four scenarios: successful initiating and re-
sponding, successful initiating but failed respond-
ing, failed initiating but successful responding, and

GPT-40

Percentage

Action 1

Action 2 Action 3 Action 4 Action 5

B Successful Collaboration

[Premature Initiation

Percentage

Llama3.1-70B

Action 1

Action 2 Action 3 Action 4 Action 5

[Repetitive Initiation Irrelevant Collaboration

Figure 9: The error condition of GPT-40 and Llama3.1-70B initiating collaboration.

failed initiating and responding. For each case,
we provide the agent’s environmental state inputs,
along with the output of the agent, including the
agent’s analysis, dialogue, and collaborative ac-
tions.

Case 1: Successful Initiating and Responding
Listing 7, 8, and 9 presents the input from Agent
Bob and the output from Agent Alice in Case 1. To
prepare the order, Bob requires Alice’s assistance
in obtaining ingredients for further processing. As
indicated by Bob’s analysis field, it correctly under-
stood the first step of the recipe, which is to retrieve
a bell pepper from the ingredient dispenser. Fur-
thermore, Bob recognized that it could not access
the dispenser and thus requested Alice to retrieve
the bell pepper on its behalf. Ultimately, Bob cor-
rectly initiated the collaborative action by request-
ing Alice to take the bell pepper from the ingredient
dispenser and place it on the counter. Therefore,
Bob’s initiation was accurate. Similarly, Alice’s
plan field correctly generated the two collaborative
actions initiated by Bob, which will be executed
subsequently. As a result, Alice appropriately re-
sponded to the collaboration.

Listing 7: Case 1 Agent Bob’s input

Successful Action History: []

Bob space:pot@ oven@ counter

Alice space:chopping_board@ blender@
dish_dispenser ingredient_dispenser

Order:baked_bell_pepper

Scene 0@: <Bob> holds nothing. The planned
sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [] Kitchen states: <
pot@> is empty; <chopping_board@> is empty;
<oven@> is empty; <blender0> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing

Listing 8: Case 1 Agent Bob’s output

Bob analysis: The order is for a baked bell
pepper. According to the recipe, the first
step is to pick up a bell pepper. Since only

the Alice can pick up ingredients from the
ingredient dispenser, I need to request the
Alice to perform this action. Once the bell
pepper is on the counter, I can proceed to
place it in the oven and bake it.

Bob plan: request('pickup(bell_pepper,
ingredient_dispenser)'); request(’
place_obj_on_counter()")

Bob say: Alice, please pick up a bell pepper
from the ingredient dispenser and place it
on the counter. [END]

Listing 9: Case 1 Agent Alice’s output

Alice analysis: The Bob has instructed me to
pick up a bell pepper from the ingredient
dispenser and place it on the counter. Since

I am the Alice and only I can pick up
ingredients from the ingredient dispenser, I
will follow the Bob's instructions. The
ingredient dispenser is in my space, so I
can perform this action directly. After
picking up the bell pepper, I will place it
on the counter so the Bob can access it.

Alice plan: pickup(bell_pepper,
ingredient_dispenser); place_obj_on_counter
O

Alice say: [NOTHING]

19

Case 2: Successful Initiating but Failed Re-
sponding Listing 10, 11, and 12 presents the
input from Agent Bob and the output from
Agent Alice in Case 2. In this scenario, Bob
was supposed to request Alice to retrieve the
pumpkin from the ingredient dispenser and place
it on the chopping board (chopping_board0)
for cutting. However, before requesting Alice
to “cut”, Bob neglected to generate the action
“put_obj_in_utensil(chopping_board0)” to place
the ingredient on the chopping board. Since

the ingredient must be placed on the chopping
board before it can be cut, Bob’s collaborative re-
quest was incorrect. Although Alice recognized
Bob’s intention, it identified the missing action
“put_obj_in_utensil(chopping_board0)” during its
planning phase and included it. This correction
enabled the successful completion of the task to
cut the pumpkin. Therefore, Alice’s response was
successful, as it corrected Bob’s mistake.

Listing 10: Case 2 Agent Bob’s input

Successful Action History: []

Bob space:pot@ oven@ counter

Alice space:chopping_board® blendero
dish_dispenser ingredient_dispenser

Order:sliced_pumpkin_and_chickpea_stew

Scene 11: <Bob> holds nothing. The planned
sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [pickup(pumpkin,
ingredient_dispenser),place_on_counter(),
pickup(chickpea, ingredient_dispenser)]
Kitchen states: <pot@> is empty; <
chopping_board@> is empty; <oven@> is empty;
<blender@> is empty; 3 counters can be
visited by <Bob>. Their states are as
follows: counters have nothing.

Listing 12: Case 2 Agent Alice’s output

Alice analysis: Based on the Bob's instruction
in the conversation history, I need to pick
up the pumpkin from the ingredient dispenser

and then cut it on the chopping board. The
Alice space includes a chopping_boardo,
which is available for use. Since the Bob
has not provided further instructions, I
will focus on these two tasks. The planned
sequence of actions for the Alice already
includes picking up the pumpkin and chickpea
, but the Bob specifically mentioned cutting
the pumpkin first. Therefore, I will
prioritize picking up the pumpkin and
cutting it.

Alice plan: pickup(pumpkin, ingredient_dispenser
), put_obj_in_utensil(chopping_board®),cut(
chopping_boardo)

Alice say: [NOTHING]

Listing 11: Case 2 Agent Bob’s output

Bob analysis: The recipe for Sliced Pumpkin and
Chickpea Stew requires us to first cut the
pumpkin into slices, then place the pumpkin
slices and chickpea in a pot, cook them, and

finally fill a dish with the stew and serve
. The Alice is currently planning to pick up
the pumpkin and chickpea from the
ingredient dispenser. Once the Alice has the
ingredients, they will need to place them
on the counter for me to handle. I will need
to pick up the pumpkin from the counter and
cut it into slices using the chopping board
, but since the chopping board is in the
Alice's space, I will need to request them
to perform the cutting action.

Bob plan: request('cut(chopping_board®)'); wait
m

Bob say: Alice, please cut the pumpkin on the
chopping board after picking it up. [END]

Case 3: Failed Initiating but Successful Re-
sponding Listing 13, 14, and 15 presents the in-
put from Agent Bob and the output from Agent
Alice in Case 3. In this scenario, Bob cor-
rectly requested Alice to retrieve the cauliflower
from the ingredient dispenser and place it on the
chopping board (chopping_boardO) for cutting,
and the collaborative actions generated were also
correct. Therefore, the initiation of collabora-
tion was accurate. However, Alice’s first action,
“pickup(cauliflower, dispenser)”, contained an in-
correct parameter, as “dispenser” was not a valid
option. This error in the first action prevented the
execution of subsequent actions, resulting in an
incorrect response to the collaboration.

Listing 13: Case 3 Agent Bob’s input

Successful Action History: []

Bob space:pot@ oven@ counter

Alice space:chopping_board® blender@
dish_dispenser ingredient_dispenser

Order:mashed_cauliflower_and_lentil_patty

Scene @: <Bob> holds nothing. The planned
sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [] Kitchen states: <
pot@> is empty; <chopping_boarde> is empty;
<oven®> is empty; <blender@> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing

20

Listing 14: Case 3 Agent Bob’s output

Bob analysis: According to the recipe, we need
to start by cutting the cauliflower into
slices. Since I don't have access to the
chopping board or the ingredient dispenser,
I need to ask the Alice to pick up the
cauliflower and cut it. The Alice can
perform these actions in their space. Once
the cauliflower is sliced, it needs to be
placed in a pot to cook, which is in my
space. I will request the Alice to pick up
the cauliflower and cut it, then place it on

the counter so I can transfer it to the pot

Bob plan: request('pickup(cauliflower,
ingredient_dispenser)'); request(’
put_obj_in_utensil(chopping_boardd)');
request('cut(chopping_boardd)'); request(’
place_obj_on_counter()"')

Bob say: Please pick up the cauliflower from the

ingredient dispenser, cut it on the
chopping board, and place it on the counter
for me to handle next. [END]

Listing 15: Case 3 Agent Alice’s output

Alice analysis: The Bob has instructed me to
pick up the cauliflower from the ingredient
dispenser, cut it on the chopping board, and

place it on the counter. I need to follow
this sequence since I do not have the recipe
and must rely on the Bob's guidance.
Currently, I am not holding anything, and
all utensils in my space are empty. I will
start by picking up the cauliflower from the

ingredient dispenser, then proceed to cut
it on the chopping board, and finally place
it on the counter for the Bob to handle next

Alice plan: pickup(cauliflower, dispenser);
put_obj_in_utensil(chopping_boardd); cut(
chopping_board@); place_obj_on_counter()

Alice say: [NOTHING]

Case 4: Failed Initiating and Responding List-
ing 16, 17, and 18 presents the input from Agent
Bob and the output from Agent Alice in Case 4.
In this scenario, Bob requested Alice to cut the
eggplant on “chopping_board0” and place it on
the counter. However, the collaborative actions
generated were incomplete, as they omitted the ac-
tions “put_obj_in_utensil(chopping_board0)” and
“place_obj_on_counter()”. As a result, these ac-
tions could not be executed, making them incor-
rect. Although Alice understood Bob’s intention, it
failed to notice the missing actions in Bob’s request
and directly replicated his generated actions. Con-
sequently, the response to the collaboration was
also incorrect, leading to a failure in the collabora-

21

tion.

Listing 16: Case 4 Agent Bob’s input

Successful Action History: []

Bob space:pot@ oven@ counter

Alice space:chopping_board@ blendere
dish_dispenser ingredient_dispenser

Order:sliced_eggplant_and_chickpea_stew

Scene 4: <Bob> holds nothing. The planned
sequence of actions (yet to be performed)
for Bob is [] <Alice> holds one eggplant.
The planned sequence of actions (yet to be
performed) for Alice is [request('
place_obj_on_counter()')] Kitchen states: <
pot@> is empty; <chopping_boarde> is empty;
<oven@> is empty; <blender®> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing

Listing 17: Case 4 Agent Bob’s output

Bob analysis: The recipe requires preparing a
Sliced Eggplant and Chickpea Stew. The Alice
currently holds an eggplant and plans to
place it on the counter. I need to instruct
the Alice to cut the eggplant into slices
and then place them in the pot, along with
the chickpea. Since the Alice is in charge
of handling the ingredients, I will focus on
managing the cooking process in the pot and
ensuring the dish is served correctly.

Bob plan: request('cut(chopping_boardd)');
request('place_obj_on_counter()"')

Bob say: Please cut the eggplant into slices
using the chopping board and then place the
slices on the counter. [END]

Listing 18: Case 4 Agent Alice’s output

Alice analysis: I am currently holding an
eggplant, and the Bob has instructed me to
cut it into slices using the chopping board
and then place the slices on the counter.
The chopping board is in my space, so I can
perform the cutting action. After cutting, I

will place the slices on the counter for
the Bob to use in the next steps.

Alice plan: cut(chopping_boardo);
place_obj_on_counter()

Alice say: [NOTHING]

{ Game Rule Prompt }

System You are an intelligent agent planner; you must generate output and create plans in the specified format, based on the game rules
and the environmental status.

User

Suppose you are a Chef proficient in an adapted version of the Overcooked game. Your goal is to cooperate with your teammate, who is
also a large language model agent, to complete a single order.

‘You have recipe, so you need to direct yourself and your teammates to complete the order.

Due to the numerous settings that differ from the original Overcooked game, you must strictly adhere to the following game rules:

Game Rules:

- The Overcooked_Al game requires two players (the chef and assistant) in separate environments to work together with the goal of
completing an order in the shortest time.
- To finish one order, your team needs to follow these steps:

1. Pick raw ingredients from the ingredient dispenser.

2. Place the ingredients in the correct utensil according to the chef's recipe and initiate cooking using the appropriate action.

3. Your team may need to repeat Step 2 using several utensils according to the chef's recipe. After cooking, you need to pick up the
cooked ingredients and decide whether to move somewhere else.

4, Check if you need a dish to hold the cooked food. If so, the chef must pick up a dish first and then fill it with food from the utensil.
Otherwise, the chef can directly pick up the cooked food from the utensil.

5. Deliver the food to the serving location immediately.

*You cannot complete all of these steps alone. You need to think about what you can do in the situation and what you need your
teammate to help you with.*
- - The usual workflow for the chef is:

1. Read the cooking process from your recipe. All of your decisions must be strictly guided by the recipe and should not lead to
unfounded behavior.

2. Ask the assistant to pick up ingredients from the ingredient dispenser and use the correct utensil to handle them according to the
recipe. Since you do not have access to all the objects, you need to assign
some tasks to the assistant while you perform other tasks in parallel.

3. Work in parallel with the assistant to finish the order in the shortest time possible, unless there is nothing you can do in the current
situation. If you have nothing to do, you can wait.

4. Serve the dish (optional). If the recipe specifies that the dish needs to be served on a plate, you must use
“fill_dish_with_food(utensil_name) to serve the dish from the utensil first; otherwise, just pick up the
food from the utensil.

5. Use deliver().

- The recipe contains all the steps necessary to complete the order. Every choice you make must be based on the recipe.

- You only need to complete one order, so focus solely on the progress of that dish.

- Only the assistant can pick up ingredients from the ingredient dispenser, which has an unlimited supply.

- The utensil is a stationary unit that cannot be moved.

- After placing an ingredient into a utensil, you need to use the correct action to start cooking.

- As long as there is something on the counter, both the chef and assistant can directly pick it up.

- If you wish to place something in another position, first check if you are holding it by verifying through "<Chef> holds XXX" or

*<Assistant> holds XXX." Each player can only pick up one item at a time.

- Players can only pass items by placing them on the counter; there is no direct "pass" action. To pass an item to your teammate, you
need to pick it up, then use ‘place_obj_on_counter()’, and instruct your teammate to pick it up.

Figure 10: Prompt for game rules.

22

ction Space Prompt for Agent Bol
{ Action Space P for Agent Bob

User

Skill: In this game, you can ONLY perform the following allowed

actions. Do not attempt to use any other actions that are not listed return
here. If there are parameters (like steps, utensil), you need to fill them
without using quotation marks, angle brackets, etc. There are 2 kind ef wait{num)

of actions: 'operation actions' and 'requests'. If you want a
teammate to perform a certain operation action, you need to

wait positive num timesteps

generate a 'request’ action with the operation action as an argument

'Operation actions':
def pickup(obj, place):
if object_in_hand{) == "nothing":

if place in utensil_list or place == "counter" or place ==

"dish_dispenser" or place == “ingredient_dispenser":
if object_in_place(obj, place):
return

def cook(pot_name):
""" To start cooking in the pot """
if has_food(pot_name):
return

def place_obj_on_counter():
if object_in_hand() = "nothing":
return

def put_obj_in_utensil(utensil):
it object_in_hand() = "nothing":
if utensil in utensil_list:
return

def fill_dish_with_food(utensil):
if object_in_hand() == "dish":
if utensil_food_ready() or utensil_started_cooking():
return

""" To start oven example: bake(oven0) """
def bake(oven_name):
if has_food(oven_name):
return

if isinstance(num, int) and 0 < num <= 20:
return
Collaborative action':

sk a teammate to do an operation action. Each request can only
contain one action with quotation marks, so if you need a teammate
ito perform multiple actions, you need to generate multiple requests.
he detailed conversation content you want to convey is contained
n '{role} says'.
i Example: request('pickup(potato, ingredient_dispenser)');
! request('place_obj_on_counter()');...
ef request(operation_action):
teammate.plan_list.append(operation_action)
send_message(content=self.say, to=teammate)
return

Assistant's Skill: Assistant can ONLY perform the following allowed
ctions. If you need the Assistant to perform actions, you can use
he actions below.
ef pickup(obj, place):

pass
i def cutichopping_board_name):
: pass
ef stir(blender_name):

pass
ef place_obj_on_counter():

pass
def put_obj_in_utensil{utensil):

pass

def wait(num):
pass

Figure 11: Prompt for the action space of Agent Bob.

23

rL Input-output Format Prompt :'[

User

Input:
- For sach stap, you will receive input like the following:
- 1.Your successful action history in the past steps is: XXX
= A dictionary of all actions you've successfully performed in recent time steps. Use this information to infer your past plans and
continue forward.
- 2.Here are lessons learned from past failures that can guide your decisions:
- Reflect on past mistakes to avoid repeating them when making new plans.
- 3.Chef space: utensill, utensil2, utensil3, Xo0C
- The chef can only use the utensils in the Chef space; you cannct use any utensils outside this area.
- 4,Order: order
- You only need to complete the cument order.
- 5.5cene: The planned sequence of actions (yet to be performed) for you and your teammate, status of each ingredient and wtensil.
- "The planned sequence of actions" refers to what each role intends to do in the upcoming time step, and none of these actions are
completed yet.
- Based on the "Scene”, gather the existing plans for both roles, along with the status of utensils and ingredients, to plan the next
steps efficiently.
- If a dish is already finished, the chef should consider serving it immediately.
- 6.Past conversation turns:
- Assistant says (turn 1)200¢
- Chef says (turn 1)200(
- Assistant says (turn 2)200¢
- Chef says (turn 2):200(
- Each line of conversation history follows this structure; sender of the message + "says® + "turn number®. Messages with the same
turn number are grouped together.
- Read the conversation history from top to bottom, with the most recent messages at the bottom.
- You need to respond to your teammate's most recent message.
Output:
You must provide output in three fields, formatted as follows:
1. Chef analysisnooood
- This field should include your analysis of the environmental conditions and your reasoning for the actions you plan to take. There are
two things to focus on:
1. Analyze the environment step by step, considering your conversation history with your teammate if "Past conwversation turn® exists.
Understand where you are in the order and plan based on the recipe.
2. Analyze which actions are available to you based on the 'Chef space’ and ‘Assistant space’. Actions that must be done by your
teammate should be surrounded by ‘request’.
2. Chef plan:action1(params1, params2); action2(params1); ... ; actionM{params1)
- This field contains the actions you intend to perform in the next time step. Four things to note:
1. Only generate actions for yourself. If a teammate must perform an action, generate a 'request’ with the action as an argument.
2. The arguments for your actions must all be in your interactive space, or the action is invalid.
3. Actions should be written in sequence, separated by semicolons, with no additional descriptions or serial numbers. You cannot add
any comments or actions not listed in your skill set.
3. Chef saynoooo
= This field refers to the communication you need to convey to your teammata. If you do not plan to communicate, the fiald should
always be [NOTHING].
- You can either:
1. [NOTHING] — Meaning there’s no need to communicate with your teammate.
2. The content to pass to your teammate — If you generated a ‘request’ action in your plan, include a message here to tell your
teammate what to do.
- If you want to end the conversation, add [END] to the |ast line of your response.
<input=
Your successful action history in the past steps are: [|
Here are some lessons you have learned from past failures that you can use to make the right decisions:[]
Chef space:potd ovend counter
Assistant space:chopping_board) blender0 dish_dispenser ingredient_dispenser
Order: zucchini_green_pea_and_onion_patty
Scene 0: =<Chef> holds nothing. The planned sequence of actions (yet to be performed) for Chef is [| <Assistant> holds nothing. The
planned sequence of actions (yet to be performed) for Assistant is [] Kitchen states: <pot0= is empty; <chopping_board(: is empty;
<ovenO:> is empty; <blender0> is empty; 3 counters can be visited by <Chef>. Their states are as follows: counters have nothing.

Figure 12: Prompt for the input-outpout format.

24

Successful Action History: []
Lessons from Past Failures

Chef space:pot0 oven0 counter
Assistant space:chopping_board0 blender0 dish_dispenser ingredient_dispenser
Order:baked_bell_pepper

Scene 0: <Assistant> holds nothing. The planned sequence of actions (yet to be performed) for Assistant is [] <Chef> holds nothing. The planned sequence of actions (yet to be performed) for Chef is []
Kitchen states: <pot0> is empty; <chopping_board0> is empty; <oven0> is empty; <blender0> is empty; 3 counters can be visited by <Assistant>. Their states are as follows: counters have nothing.

Action Space for Agent1

Map
Turn: 0
def pickup(obj,place):
[X I X I x [P X | i ehies i) = e 4 e el qedim
if place in utensil_list or place == "counter” or place == "dish_dis
if object_in_place(obj,place):
1] B8 1 ES B
To start cutting item on chopping_board
example: cut(chopping_board®)
def cut(chopping_board_name):
if has_food(chooping_board_name):
ESEnEs s &8 return
Figure 13: Human-computer interaction as Agent Alice.
. Recipe
Successful Action History: [] NAME:
Lessons from Past Failures Baked Bell Pepper
Chef space:pot0 oven0 counter INGREDIENTS:
Assistant space:chopping_board0 blender0 dish_dispenser ingredient_dispenser bell_pepper (1)
Order:baked_bell_pepper
Scene 0: <Chef> holds nothing. The planned sequence of actions (yet to be performed) for COOKING STEPs:
Chef is [] <Assistant> holds nothing. The planned sequence of actions (yet to be performed) 1. Pick up a bell pepper.
for Assistant is [] Kitchen states: <pot0> is empty; <chopping_board0> is empty; <oven0> is 2. Place the bell pepper in the oven and bake for 3 timesteps.
empty; <blender0> is empty; 3 counters can be visited by <Chef>. Their states are as follows: 3. Take the baked bell pepper out of the oven and serve it.
counters have nothing.
Plan
Say
Action Space for Agent0
Map

Turn: 0

L x 1 x | x [P] x|
1] B8 1 ES
G 1 ES [X
[D] [X [0

ESEnEs s &8

def

def

def

pickupCobj,place):
if object_in_hand() — "nothing”: # hand holds nothing
if place in utensil_list or place — "counter” or place
if object_in_place(obj,place):
return

== "dish_dispen:

cut(chooping_board_name) : #dice food
if has_food(chooping_board_name) :
return

cook(pot_name) :

To start cook pot

Figure 14: Human-computer interaction as Agent Bob.

25

	Introduction
	Related Work
	Task-Oriented Collaboration
	Collaboration Capability
	TES and ITES
	TES
	ITES

	Evaluation Metrics

	Benchmark
	Collab-Overcooked Benchmark
	Environment
	Tasks Construction
	Collaboration Designs

	Baseline

	Experiment and Analysis
	Benchmark Overview
	Experiment Setting
	Results and Analysis
	Task Completion Efficiency
	Process-Oriented Evaluation
	Human Performance Evaluation
	Failure Analysis

	Future Challenges

	Conclusion
	Benchmark Detail
	Environment
	Interactive Elements
	Action Space
	Layout Definition Method

	Tasks Construction
	Task complexity level
	Task List
	Recipes
	Referential Action Trajectory

	Baseline
	Baseline Construction
	Prompt

	Evaluation
	Details in TES

	Supplementary Experiment
	Impact of Varying gamma on Task Success Rate
	Human Performance Evaluation
	Failure Analysis
	Details in Experiment A
	Details in Experiment B
	Details in Experiment C

	Case Study

