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Abstract

Large language models (LLMs) based agent001
systems have made great strides in real-002
world applications beyond traditional NLP003
tasks. This paper proposes a new LLM-004
powered Multi-Agent System (LLM-MAS)005
benchmark, Collab-Overcooked, built on the006
popular Overcooked-AI game with more appli-007
cable and challenging tasks in interactive envi-008
ronments. Collab-Overcooked extends existing009
benchmarks from two novel perspectives. First,010
it provides a multi-agent framework supporting011
diverse tasks and objectives and encourages012
collaboration through natural language com-013
munication. Second, it introduces a spectrum014
of process-oriented evaluation metrics to as-015
sess the fine-grained collaboration capabilities016
of different LLM agents, a dimension often017
overlooked in prior work. We conduct exten-018
sive experiments over 10 popular LLMs and019
show that, while the LLMs present a strong020
ability in goal interpretation, there is a signif-021
icant discrepancy in active collaboration and022
continuous adaption that are critical for effi-023
ciently fulfilling complicated tasks. Notably,024
we highlight the strengths and weaknesses in025
LLM-MAS and provide insights for improv-026
ing and evaluating LLM-MAS on a unified and027
open-sourced benchmark. Environments, 30028
open-ended tasks, and an integrated evaluation029
package will be publicly released.030

1 Introduction031

Leveraging the remarkable zero-shot and few-shot032

learning ability of Large Language Models (LLMs),033

LLM-based agents are demonstrating their poten-034

tial in complex task decomposition and planning035

(Wang et al., 2023a,c; Li et al., 2024). Inspired by036

human collaborative behaviors in social activities,037

recent research reveals that multi-agent systems038

can significantly enhance task efficiency and tackle039

challenges surpassing single-agent capabilities (Li040

et al., 2023; Hong et al., 2023; Zhang et al., 2023).041

To effectively address complex real-world tasks, 042

LLM-powered Multi-Agent Systems (LLM-MAS) 043

require three essential collaboration capabilities 044

beyond goal interpretation: (a) Competence bound- 045

ary awareness: the ability to analyze task flows 046

and environmental states to determine feasible ac- 047

tions, recognize limitations, and identify when ex- 048

ternal assistance is needed; (b) Communication: 049

proficiency in utilizing standardized protocols for 050

transmitting task-critical information and resource 051

requests; and (c) Dynamic adaptation: responsive- 052

ness to collaboration requests and dynamically ad- 053

justing their action sequences accordingly. 054

Given these fundamental requirements, establish- 055

ing evaluation frameworks becomes crucial for as- 056

sessing LLM-MAS collaboration effectiveness. Re- 057

searchers have developed specialized benchmarks 058

to quantify collaborative agents in specific envi- 059

ronments. Representative platforms like (Agashe 060

et al., 2023), RocoBench (Mandi et al., 2024) and 061

LLMARENA (Chen et al., 2024) create virtual 062

scenarios requiring collaborative problem-solving 063

through intricate workflows. These frameworks 064

are complemented by novel metrics, such as Col- 065

laboration Score (CoS) (Gong et al., 2023), which 066

evaluates end-to-end collaboration capability. 067

Despite recent progress in evaluating LLM-MAS 068

collaboration capability, existing approaches ex- 069

hibit three critical limitations. First, they priori- 070

tize task completion efficiency without imposing 071

strict collaboration requirements, allowing individ- 072

ual agents to accomplish tasks that are nominally 073

“collaborative” independently. This design flaw in- 074

troduces assessment biases by obscuring the role 075

of collaboration in performance gains, which con- 076

trasts with real-world applications where collab- 077

oration is often essential for task success. Sec- 078

ond, existing benchmarks conflate collaboration 079

capability with end-to-end metrics, such as task 080

completion rates, which are frequently used as 081

proxies for collaboration effectiveness in platforms 082
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Virtual Environment Various Task
Complexities Scalability Collaboration

Definition
Forced

Collaboration
Collaboration

Evaluation
RocoBench(Mandi et al.’s (2024)) NA/6 ✗ NA Partial E2E
VillagerBench(Dong et al.’s (2024)) 3/9 ✗ E2E ✗ E2E
LLMARENA(Chen et al.’s (2024)) NA/7 ✗ PO ✗ E2E
CivRealm(Qi et al.’s (2024)) NA/100k ✓ NA ✗ E2E
BattleAgentBench(Wang et al.’s (2024)) 3/3 ✗ E2E ✗ E2E
TDW-MAT(Zhang et al.’s (2023)) NA/2 ✗ E2E ✗ E2E
CuisineWorld(Gong et al.’s (2023)) 13/39 ✓ E2E ✗ E2E
Collab-Overcooked(ours) 6/30 ✓ PO ✓ E2E&PO

Table 1: Existing statistics on benchmarks for evaluating LLM-MAS collaboration capability. If no data is available,
it is marked as “NA”. Statistics in “Various Task Complexities” are presented in the format “Level Num / Task
Num”. “E2E” refers to end-to-end, while “PO” refers to process-oriented.

like CuisineWorld (Gong et al., 2023) and Vil-083

lagerBench (Dong et al., 2024). However, this084

approach overlooks two critical issues: divergent085

definitions of “success” across environments un-086

dermine comparability, and the absence of process-087

oriented metrics obscures actionable insights for088

optimizing collaborative strategies. Third, the lack089

of a fine-grained evaluation prevents a comprehen-090

sive, multi-perspective analysis of LLM agents’091

capabilities, making it difficult to interpret their092

strengths and limitations effectively, thus falling093

short of insightful research suggestions.094

To address the limitations of existing LLM-MAS095

benchmarks, we propose the Collab-Overcooked096

Benchmark, designed to provide a fine-grained097

analysis of collaborative interactions. Unlike prior098

benchmarks that focus primarily on task comple-099

tion, our benchmarks evaluate the capability of100

initiating and responding to collaboration during101

the collaboration process. Specifically, the Collab-102

Overcooked extends Overcooked-AI (Carroll et al.,103

2019) to a chef-and-assistant collaborating environ-104

ment and introduces 30 sequential process-specific105

tasks across 6 complexity levels. Each agent oper-106

ates in an isolated environment with distinct action107

spaces so that successful task completion depends108

on effective communication and resource exchange,109

therefore collaboration is strictly required. Further-110

more, we propose the Trajectory Efficiency Score111

(TES) and Incremental Trajectory Efficiency Score112

(ITES) functions to assess the collaboration capabil-113

ities from both coarse and fine-grained perspectives.114

Through comprehensive experiments on 10 LLMs115

of varying sizes, including both open-source and116

closed-source models, we reveal significant per-117

formance gaps in collaboration capabilities across118

different LLMs. We identify the key bottleneck as119

maintaining consistent collaboration performance120

both within a single task and across tasks of varying 121

complexity. These findings highlight the fundamen- 122

tal challenges of LLM-MAS and provide valuable 123

insights for future research. 124

To summarize, our contributions are as follows: 125

• We develop and open-source a lightweight and 126

extensible LLM-MAS benchmark, Collab- 127

Overcooked, which features 30 tasks across 128

6 complexity levels that encourage collabora- 129

tion, thus facilitating the evaluation of MAS 130

collaboration in a unified environment with 131

diverse, complex tasks. 132

• We define collaboration capability in LLM- 133

MAS as comprising both initiating collabora- 134

tion and responding collaboration. We intro- 135

duce 3 trajectory efficiency related metrics to 136

evaluate collaboration capabilities from both 137

coarse and fine-grained perspectives. 138

• We conduct a comprehensive evaluation of a 139

wide range of popular LLM agents, revealing 140

collaboration and adaptation bottlenecks as 141

task complexity varies, and identifying key 142

limitations of LLM-MAS. 143

2 Related Work 144

LLM-Powered Multi-Agent System LLM- 145

MAS enables agents to collaboratively engage in 146

planning, discussing, and decision-making. Col- 147

laboration is a pivotal capability in task-oriented 148

LLM-MAS, as it not only enhances task comple- 149

tion efficiency (Zhang et al., 2024b; Tao et al., 150

2024) but also enables the pursuit of complex goals 151

beyond the reach of single agent (Park et al., 2023; 152

Hong et al., 2023). Recent methods for improving 153

collaboration can be broadly categorized into (a) 154

Structural optimization (e.g., DyLAN’s (Liu et al., 155

2023) dynamic framework), (b) Role specialization 156
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(e.g., AutoGen’s (Wu et al., 2023) personas and157

AgentVerse’s (Chen et al., 2023) role assignments),158

and (c) Communication paradigm (e.g., MetaGPT’s159

(Hong et al., 2023) message pool). Despite these160

advancements, the inherent complexity and diver-161

sity of multi-agent tasks make it difficult to com-162

pare methods directly, driving the emergence of163

standardized benchmarks that enable quantitative164

evaluations under unified conditions.165

LLM-MAS Benchmark and Evaluation166

Benchmark testing in virtual environments is167

the primary method for evaluating multi-agent168

collaboration capability. As shown in Table169

1, existing studies establish diverse tasks and170

commonly use End-to-End (E2E) metrics to assess171

LLM-MAS collaboration capability, with some172

benchmarks offering environmental scalability.173

However, several limitations persist. A key issue is174

the lack of a formal collaboration definition in most175

benchmarks, leading to ambiguous assessments176

and inconsistent comparisons across different177

benchmarks. Furthermore, the absence of enforced178

collaboration mechanisms allows agents to achieve179

objectives independently (e.g., in CuisineWorld,180

where many tasks can be completed by a single181

agent), undermining the true assessment of182

collaboration. Finally, the predominant focus on183

outcome-based metrics such as E2E performance184

overlooks the critical role of process-driven185

dynamics. Approaches like (Song et al., 2024),186

LTC (Wang et al., 2023b), and EvoMAC (Hu et al.,187

2024) suggest refining LLMs through process188

behaviors to enhance adaptation and collaboration,189

indicating that incorporating process-oriented190

metrics could offer more comprehensive insights.191

3 Task-Oriented Collaboration192

3.1 Collaboration Capability193

A task in LLM-MAS can be formulated as a 4-tuple:194

T = (G,E,P,R), where G is a natural language195

description of the task goal, such as “make a dish196

of tomato soup”; E is a description of the environ-197

ment, which can be either the layout of a simulated198

scenario or the visual input of real-world surround-199

ings; P is optional natural language guidance, pro-200

viding recipes, helpful hints, or task constraints;201

and R is a Referential Action Trajectory (RAT)202

that leads to the successful completion of the task203

and is used to assess the agents’ performance. It is204

worth noting that there are often multiple RATs for205

a task, especially in dynamic environments.206

Collaboration often involves agents relying on 207

each other to solve tasks. As shown in Figure 1 208

Part I, we define collaboration capability as com- 209

prising two essential components: the capability to 210

initiate collaboration, where agents, upon realizing 211

that their competence boundary prevents them from 212

completing the task according to G and P at envi- 213

ronmental state st ∈ E at time t, generate a request 214

for collaborative actions areq to solicit assistance 215

from other agents; and the capability to respond to 216

collaboration, where agents, upon receiving areq 217

from another agent, adjust their action sequence 218

based on their own st and generate collaborative 219

actions aresp. 220

3.2 TES and ITES 221

3.2.1 TES 222

Trajectory Efficiency Score (TES) is designed to 223

compare the difference between two trajectories 224

and is defined as: 225

TES(hk) = max
j

{
(1 + β2)Dj

max(hk, g
j
k)

mk + β2nk

}
(1) 226

where hk =
⋃T

t=0 a
t
k = {a1, a2, . . . , ank

} is the 227

historical action sequence up to timestep T of agent 228

k, gjk = {gi}mk
i=1 ∈ R is j-th RAT of agent k, 229

β is the hyper-parameter balancing the weight of 230

task progress and redundancy, and Dj
max(hk, g

j
k) 231

computes the length of the longest order-preserving 232

subsequence in hk that matches gjk: 233

Dj
max = max

d
{d | ∀ 1 ≤ i1 < · · · < id ≤ nk, 234

s.t. ai1 = g1, ai2 = g2, . . . , aik = gk} (2) 235

Unlike other existing sequence alignment scores 236

(such as ROUGE-L (Lin, 2004)), TES takes into ac- 237

count sequence order and redundancy punishment 238

simultaneously, therefore suitable for assessing a 239

rationally planned action sequence (detailed in Ap- 240

pendix B.1). 241

3.2.2 ITES 242

Incremental Trajectory Efficiency Score (ITES) in- 243

troduces an incremental assessment to quantify the 244

task-progress contribution of an individual collab- 245

orative action. Formally, given a historical action 246

sequence hk of agent k and newly executed actions 247

a (either a request areq or response aresp), the ITES 248

is computed as: 249
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Figure 1: Part I presents the collaboration process, which are divided into initiating collaboration and responding
to collaboration, along with a general example. Part II outlines the design of the Collab-Overcooked Benchmark,
emphasizing its characteristics of resource isolation and asymmetric task knowledge, and provides an example of
agent collaboration in task completion.

ITES(a, hk) = TES(hk ∪ a)− TES(hk) (3)250

This differential formulation measures the251

marginal utility of action a by evaluating its im-252

pact on trajectory alignment with the RATs. It can253

be established that: ITES(a, hk) > 0 indicates a254

advances task progress, ITES(a, hk) ≤ 0 suggests255

a fails to advance task progress (i.e., a is redundant256

/ premature action or incorrect response).257

3.3 Evaluation Metrics258

Progress Completeness (PC) Built upon the259

TES which quantifies a piece of trajectory, PC mea-260

sures the task progress of all involved agents while261

penalizing redundancy as a whole, and is defined262

as:263

PC =
1

K

K∑
k=1

TES(hk) (4)264

where K is the number of agents, hk =
⋃Tmax

t=0 atk265

denotes the historical action sequence of agent k at266

time Tmax, which occurs either upon task comple-267

tion or when the maximum time limit is reached.268

The PC offers a finer-grained assessment of task269

completion efficiency compared to boolean success270

label or success rate.271

Initiating Capability (IC) IC evaluates the cor-272

rectness of the LLM agent’s collaboration initiation.273

IC is defined as:274

IC =
1

N

N∑
i=1

I
(

ITES(a(i)req, hj) > 0
)

(5) 275

where N is the number of required col- 276

laborations, I() is the indicator function. 277

I
(

ITES(a(i)req, hj) > 0
)

determines whether the 278

i-th initiating collaboration request a(i)req advances 279

the task progress, thereby indicating whether the 280

initiation is correct. 281

Responding Capability (RC) Similarly, RC as- 282

sesses the correctness of the LLM agent’s response 283

to a collaboration request: 284

RC =
1

N

N∑
i=1

I
(

ITES(a(i)resp, hj) > 0
)
. (6) 285

4 Benchmark 286

4.1 Collab-Overcooked Benchmark 287

The proposed Collab-Overcooked benchmark 288

builds upon the open-source Overcooked-AI (Car- 289

roll et al., 2019) and ProAgent (Zhang et al., 290

2024a), introducing two key upgrades: (1) The 291

environment is divided into two parts, featuring 292

resource isolation and asymmetric task knowledge 293

for Agent Bob and Agent Alice respectively. This 294

contrasts with Overcooked-AI, where all agents 295

share a single environment with the same set 296

of items1; (2) The benchmark encourages col- 297

1Four out of the five scenarios in the Overcooked-AI suite
use this configuration.
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laboration through natural language interactions,298

with some cases enforcing collaboration as a re-299

quirement for task success. Additionally, Collab-300

Overcooked provides APIs to configure new tasks301

and environmental settings, enabling the enhance-302

ment of LLM-MAS through scenario adaptation.303

4.1.1 Environment304

Our simulation environment is a grid-based kitchen305

simulation designed as a comprehensive testbed for306

analyzing collaboration behaviors in LLM-MAS.307

The environment comprises agents and config-308

urable interactive elements. The interactive ele-309

ments are dispensers, utensils, counters, and deliv-310

ery location. Agents can freely retrieve raw ma-311

terials from dispensers, place them into utensils312

for processing, and finally transfer the processed313

materials to other agents via counters or submit314

the required order through the delivery location.315

Notably, utensils process materials according to316

customizable synthesis tables, with each utensil317

having its distinct synthesis table. Agents can inter-318

act with these elements through predefined action319

primitives formatted as “func(args)”. For example,320

“pickup(apple, ingredient_dispenser)” clarifies ac-321

tion type, target material, and interactive element.322

Detailed information is provided in the Appendix323

A.1.324

The environment executes agents’ actions se-325

quentially and broadcasts the global state at each326

timestep, encompassing agents’ positions and the327

status of interactive elements. We have developed328

a comprehensive rule-based identification method329

for different types of invalid actions. The action330

validator evaluates the feasibility of actions, de-331

tecting issues such as mismatches between actions332

and the environment or incorrect action parameters.333

Upon rule violations, the validator issues error mes-334

sages, prompting the agent to identify the error and335

regenerate the action accordingly.336

4.1.2 Tasks Construction337

Sequential process-specific tasks are commonly en-338

countered in real-world scenarios, where a series339

of interdependent actions must be completed in340

a specific order to achieve a goal. We curate 30341

process-specific tasks stratified into 6 complexity342

levels, requiring two agents to complete collabo-343

ratively. The task complexity level is determined344

by the minimum number of collaborative actions345

required, increasing linearly with difficulty. To346

mitigate LLM biases toward specific ingredients,347

tasks at the same complexity level follow identical 348

workflows but vary in ingredient selection. A time 349

constraint is imposed on the task, determined by 350

the optimal completion time multiplied by a task 351

time limit factor γ. 352

Each task is accompanied by a natural language 353

structured process description and RATs for evalu- 354

ation. Given that the tasks are process-specific and 355

have straightforward success criteria, the RATs of 356

a given task are exhaustively definable and conve- 357

niently traversed, making them suitable for eval- 358

uation. We manually annotated the RATs corre- 359

sponding to all 30 tasks. Detailed task list, task 360

descriptions, and RAT examples are provided in 361

the Appendix A.2. 362

4.1.3 Collaboration Designs 363

Collab-Overcooked benchmark imposes strict col- 364

laboration among agents. For this, we have two spe- 365

cial designs: (a) Resource Isolation: agents operate 366

in resource-isolated sub-environments, necessitat- 367

ing resource exchange via a shared “counter”. This 368

enforces collaborative dependency. (b) Asymmet- 369

ric Task Knowledge: only one agent knows how to 370

complete the task. Agents must communicate to 371

synchronize task information. 372

4.2 Baseline 373

To evaluate the performance of LLM-MAS driven 374

by different LLMs on our benchmark, we provide 375

an in-context learning baseline. The baseline incor- 376

porates both memory and reflection mechanisms, 377

enabling agents to communicate and collaborate 378

freely using natural language while also incorpo- 379

rating error-handling capabilities. Additionally, 380

we provide prompts in detail, which include the 381

game rules, communication formats, and action 382

space definitions, as well as error correction and 383

reflection procedures. Figure 1 Part II illustrates 384

an example of how agents advance task progress 385

through collaborative communication in our bench- 386

mark. Detailed information regarding the baseline 387

can be found in Appendix A.3 and Figure 7. 388

5 Experiment and Analysis 389

5.1 Benchmark Overview 390

Figure 2 presents key statistics of our benchmark, 391

summarizing the minimum completion timesteps 392

and collaborative actions across 6 complexity lev- 393

els, which show monotonically increasing trends 394

with task complexity. Two agents perform 8 and 395
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Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
SR PC SR PC SR PC SR PC SR PC SR PC

Closed
Source

GPT-4o 94.00 85.92 86.00 84.96 68.00 76.61 34.00 44.42 2.00 29.13 4.00 22.45
o1-mini 70.00 74.18 2.00 36.36 0.00 33.60 0.00 24.80 0.00 20.28 0.00 13.07
GPT-3.5 42.00 68.20 8.00 43.42 0.00 36.44 0.00 24.74 0.00 15.21 0.00 12.03

Open
Source

DeepSeek-V3 88.00 77.74 76.00 71.90 56.00 66.61 22.00 50.01 4.00 30.41 6.00 33.44
Qwen2.5-72B-Instruct 78.00 76.84 64.00 68.00 14.00 46.88 8.00 30.80 0.00 22.67 0.00 18.45
Qwen2.5-32B-Instruct 64.00 73.36 44.00 62.02 14.00 40.08 4.00 33.78 2.18 22.16 0.00 18.93
Qwen2.5-14B-Instruct 32.00 50.36 4.00 26.66 0.00 24.41 0.00 19.00 0.00 14.14 0.00 14.27
Qwen2.5-7B-Instruct 8.00 44.79 0.00 13.00 0.00 9.29 0.00 8.35 0.00 5.57 0.00 4.51
Llama3.1-70B-Instruct 70.00 75.42 42.00 63.15 22.00 54.58 6.18 45.04 0.00 29.77 0.00 17.69
Llama3.1-8B-Instruct 4.00 33.03 0.00 15.49 0.00 12.33 0.00 11.24 0.00 9.05 0.00 7.45

Table 2: Performance of 10 representative LLMs with parameter sizes ranging from 7B to 671B+ across 6 task
complexity levels, evaluated using Success Rate (SR) and Progress Completeness (PC) as metrics.

Figure 2: The statistics for tasks of varying complexity
levels. “Min Collaborative Action Num” denotes the
minimum number of collaborative actions performed
by the responding agent. “Min Time” represents the
shortest timesteps to complete a task at a given level.

6 actions respectively. The environment layout in-396

dicates asymmetric interactivity, with two agents397

accessing 4 and 5 interactive elements, respectively,398

while sharing observation. Additional statistics are399

provided in Appendix A.1.400

5.2 Experiment Setting401

We leverage 10 representative LLMs with parame-402

ter sizes ranging from 7B to over 671B+ as the foun-403

dation models for LLM-MAS. The open-source404

models include DeepSeek-V3 (Liu et al., 2024),405

different parameter versions of Qwen2.5 (7B, 14B,406

32B, 72B) (Yang et al., 2024) and Llama3.1 (8B,407

70B) (Dubey et al., 2024), all with instruction-408

tuned configurations. The closed-source models409

include: GPT-4o-1120, o1-mini, and GPT-3.5-410

turbo-0125. For the open-source models except411

for DeepSeek-V3, inference is performed using412

vLLM (Kwon et al., 2023) with temperature of 0.7413

and top-p of 1. For each task, the task time limit414

factor is set to γ = 1.52, and each task is evaluated415

through 10 repetitions. The hyper-parameter β in416

TES is set to 0.95.417

2Experiments for different γ are in Appendix C.1.

5.3 Results and Analysis 418

5.3.1 Task Completion Efficiency 419

Table 2 presents the Success Rate (SR) and PC of 420

10 LLMs across 6 task complexity levels. From 421

these results, we derive three key insights: (1) 422

Smaller LLMs (8B parameters or fewer) struggle 423

with simple tasks, whereas increasing model size 424

significantly enhances performance. This indicates 425

the existence of a clear emergent scaling threshold 426

for this task. (2) Scaling up LLMs effectively im- 427

proves task completion efficiency for lower-level 428

tasks but fails to enhance performance on high- 429

complexity tasks. This suggests that current per- 430

formance gains primarily stem from pattern memo- 431

rization rather than cognitive reasoning. (3) When 432

task complexity surpasses a critical threshold (level 433

4+), both closed and open-source models experi- 434

ence a performance collapse. This highlights the 435

current limitations of LLMs in modeling long rea- 436

soning chains and capturing the complex, dynamic 437

logic between tasks and environments. 438

5.3.2 Process-Oriented Evaluation 439

Figure 3 shows the process-oriented evaluation of 440

LLM-MAS. Among closed-source models, GPT-4o 441

demonstrates the strongest collaboration capability, 442

while DeepSeek-V3 performs comparably to other 443

open-source models. We derived three key insights 444

from the experimental results. First, most mod- 445

els (14B+) exhibit higher RC than IC, indicating 446

that LLMs are better at responding to collabora- 447

tion than initiating collaboration. This is a result 448

of their strong instruction-following capabilities, 449

which make initiating collaboration the primary 450

bottleneck for most LLMs. Second, the collabora- 451

tion capability of all LLMs declines with increasing 452

task complexity. Moreover, the decline rate is sim- 453

ilar across all models, indicating that their ability 454
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Figure 3: The performance of 10 representative LLMs, with parameter sizes ranging from 7B to 671B+, was
evaluated across 6 task levels using the IC, and RC.

Figure 4: Comparison of human performance (repre-
sented by the lighter, more transparent bars) and GPT-4o
performance (represented by the solid, more saturated
bars) across 6 task complexity levels in our benchmark.

to maintain collaboration capability performance is455

similar. Despite the scale-up of the models, there456

is no corresponding improvement in their ability457

to sustain collaboration capability. Third, com-458

pared to GPT-3.5, the CoT-trained model o1-mini459

demonstrates superior collaboration performance460

on simpler tasks. Despite the inability to main-461

tain collaboration capability performance as task462

complexity increases, the improved performance463

on simpler tasks underscores the potential for fur-464

ther exploration of the CoT-training paradigm in465

the context of agent collaboration.466

5.3.3 Human Performance Evaluation467

To establish a performance ceiling, we experi-468

mented with 10 human participants completing469

tasks across 6 complexity levels. We designed470

a human-computer interaction interface to enable471

human participants to simulate agent interactions472

within the environment. Detailed experimental de-473

sign can be found in Appendix C.2.474

As shown in Figure 4, human participants475

achieved near-perfect and stable performance476

across all complexity levels, while GPT-4o, the477

state-of-the-art model in our benchmark, showed478

a decline in collaboration capability as task com-479

plexity increased. This highlights the limitations 480

of LLM-MAS in completing sequential, process- 481

specific tasks in a zero-shot setting, where simply 482

scaling up the LLM is insufficient to improve col- 483

laboration performance to human-like levels. The 484

model’s reliance on pre-trained knowledge does 485

not fully enable it to adapt to the dynamic and col- 486

laborative environment of complex tasks, empha- 487

sizing the need for more advanced mechanisms or 488

parameter fine-tuning to enhance its collaborative 489

capabilities to human-like levels. 490

5.3.4 Failure Analysis 491

Failure Modes in Collaboration Capabilities 492

Degradation To investigate the temporal dynam- 493

ics of initiating and responding to collaboration, we 494

selected 4 LLMs and tested them on 5 collaborative 495

actions from level 3 tasks. Using environmental 496

states and memory fragments from interaction tra- 497

jectories, we constructed prompts to elicit both ini- 498

tiation and response behaviors, evaluated using the 499

ITES function. As shown in Figure 5(a), all models 500

perform well on the first collaborative action, but 501

performance declines in subsequent actions. Re- 502

garding initiating collaboration capability, agents 503

fail to identify the appropriate actions needed to 504

advance the task in later steps, revealing a mis- 505

alignment between environmental states and task 506

flow (further analysis in Appendix C.3.1). The 507

confusion matrix shows a correlation between initi- 508

ating collaboration and responding to collaboration, 509

indicating that response accuracy depends on the 510

correctness of initiation, confirming that initiating 511

collaboration capability is the primary bottleneck. 512

Impact of Task Decomposition Ability We iso- 513

late the influence of task decomposition by re- 514

designing the recipes with explicit step-to-action 515

mappings, where each step corresponds to a single 516
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Figure 5: Figure (a) illustrates the dynamic changes in the capabilities of four LLMs in initiating collaboration
and responding to collaboration under the original task flow, with the confusion matrix depicting the relationship
between the two capabilities. Figure (b) shows the dynamic changes in collaboration capabilities after excluding
the impact of task decomposition ability on the task flow. Figure (c) highlights the sensitivity of collaboration
capabilities to position, comparing GPT-4o and Llama3.1-70B after adjusting the position of the task workflow.

action in recipe (details in Appendix C.3.2). Figure517

5(b) shows this modification leads to performance518

improvements. However, the gradual decline in519

accuracy persists, indicating that the degradation520

of collaboration capabilities is not attributable to521

limitations in LLM task decomposition abilities.522

Sequence Dependence in Collaboration Perfor-523

mance While maintaining step-to-action map-524

pings, we further examined the sensitivity of col-525

laboration performance to position dependencies526

by rearranging the task workflow (details in Ap-527

pendix C.3.3). Moving the target collaborative ac-528

tion to the first step led to significant performance529

improvement, as shown in Figure 5(c). Previously530

underperforming subsequent actions, when placed531

at step 1, showed notable gains, and performance532

degradation largely disappeared. This highlights533

strong positional dependence in sequential, process-534

specific tasks, which we attribute to pretraining bi-535

ases favoring early-sequence elements and limited536

context tracking in extended action chains.537

5.4 Future Challenges538

Enhance Collaboration Capability To enhance539

collaboration, we propose using process-oriented540

metrics, such as IC and RC, which evaluate the ca-541

pabilities of initiating and responding to collabora- 542

tion by scoring each collaborative interaction. Tar- 543

geted improvements based on these metrics, partic- 544

ularly for smaller models, may help address exist- 545

ing weaknesses and enhance overall performance. 546

Maintain Collaboration Performance A key 547

challenge in LLM-MAS collaboration is maintain- 548

ing stable performance, whether within a single 549

task or across tasks of varying complexity. Addi- 550

tionally, a significant gap persists between LLMs 551

and human collaborators, with humans consistently 552

outperforming models. Closing this gap requires 553

improving models’ adaptability and robustness to 554

better emulate human collaboration. 555

6 Conclusion 556

We introduce the Collab-Overcooked Benchmark, 557

a framework for evaluating LLM-MAS collabo- 558

ration from both end-to-end and process-oriented 559

perspectives. Experiments across 10 LLMs reveal 560

notable performance gaps, with a key bottleneck in 561

maintaining consistent performance across a single 562

task or tasks of varying complexity. These findings 563

highlight the challenge for further advancements 564

in model adaptability and robustness to enhance 565

collaboration capability across diverse scenarios. 566
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Limitations567

The Collab-Overcooked Benchmark is introduced568

in our paper and we explore methods for evaluating569

the collaboration capabilities of LLM-MAS using570

both end-to-end and process-oriented approaches.571

However, there are three limitations to our work.572

First, all of our tasks are sequential and process-573

specific. While we assume that RATs can be ex-574

haustively enumerated, making it possible to use575

exhaustive RATs as labeled data for evaluating the576

collaboration capabilities of LLM-MAS. However,577

in environments with highly complex state and ac-578

tion spaces, RATs are difficult to exhaustively enu-579

merate. In such cases, only representative RATs580

can be listed as evaluation data, which introduces581

potential bias into our evaluation methodology.582

Second, due to the complex mechanisms of LLM-583

MAS, such as communication, memory, and reflec-584

tion, the prompts are relatively long (approximately585

2,000 tokens, with variation depending on the to-586

kenizer used by the LLM). Additionally, process-587

oriented evaluation requires substantial interaction588

data, which leads to both low evaluation efficiency589

and significant token consumption, which is the590

common challenge across current methods for eval-591

uating LLM-MAS capabilities. Third, the baseline592

used to evaluate LLM-MAS is composed of rel-593

atively simple structures, with the agent possess-594

ing only basic memory and reflection mechanisms,595

leaving substantial room for optimization.596
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A Benchmark Detail741

A.1 Environment742

In this section, we provide a detailed overview of743

the Collab-Overcooked Benchmark environment744

design. We first introduce the interactive elements745

within the environment along with their layout.746

Next, we describe the action space available to747

agents. Finally, we present the methodology for748

defining layouts, enabling flexible modifications to749

the environment.750

A.1.1 Interactive Elements751

Due to our resource isolation design, the interactive752

elements available to each agent differ. Figure 6753

illustrates the interactive elements that both agents754

can engage with. We adopt the “Forced Coordi-755

nation” level design from Overcooked-AI (Carroll756

et al., 2019), where the two agents share only a757

single interactive element: the counter. This design758

necessitates resource exchange between agents to759

complete tasks.760

We categorize interactive elements into three761

types: utensils, dispensers, and others. The details762

are as follows:763

• Utensils: These interactive elements take one764

or more ingredients as input and process765

them according to a predefined synthesis table,766

transforming them into new ingredients.767

• Dispensers: Agents can retrieve ingredients or768

dishes from these elements, with the available769

items being predefined.770

• Others: The counter serves as a critical inter-771

active element for resource exchange between772

agents, allowing them to freely place or re-773

trieve ingredients. The delivery location is774

where agents submit task outcomes. If the sub-775

mitted ingredient meets the task requirements,776

the task is considered successful. Otherwise,777

incorrect submissions result in the removal778

of the submitted ingredient from the environ-779

ment, often leading to task failure.780

A.1.2 Action Space781

The action space of each agent consists of a se-782

ries of functions in the format “func(args)”, which783

facilitate interactions with the environment or col-784

laboration with other agents. Agent actions are785

categorized into shared actions and exclusive ac-786

tions. Shared actions are common to both agents787

Figure 6: Interactive elements

and include actions such as “pickup” (for picking 788

up ingredients), “place_obj_on_counter” (for in- 789

teracting with the counter), “put_obj_in_utensil” 790

(for placing ingredients into utensils), and “wait”. 791

Exclusive actions, on the other hand, arise from 792

the differing interactive elements in each agent’s 793

environment. For example, Agent Bob has access 794

to a pot, allowing it to perform the “cook” action, 795

whereas Agent Alice, lacking a pot, cannot perform 796

this action. Conversely, Agent Alice can interact 797

with the chopping board to perform the “cut” ac- 798

tion, which Agent Bob cannot. The specific actions 799

available to Agent Alice and Agent Bob are listed 800

as follows: 801

Listing 1: Action Space List
802

Action Space for Agent Alice: 803
1. pickup(obj,place) 804
2. cut(chopping_board_name) 805
3. stir(blender_name) 806
4. place_obj_on_counter() 807
5. put_obj_in_utensil(utensil) 808
6. wait(num) 809

810
Action Space for Agent Bob: 811

1. pickup(obj,place) 812
2. cook(pot_name) 813
3. place_obj_on_counter() 814
4. put_obj_in_utensil(utensil) 815
5. fill_dish_with_food(utensil) 816
6. bake(oven_name) 817
7. deliver() 818
8. wait(num) 819820

To accurately assess collaboration capabilities, 821

we require that when an agent initiates collabo- 822

ration, the initiating agent must encapsulate the 823

desired action for the responding agent within a 824

“request”. This mechanism is utilized for calcu- 825

lating IC and RC. For example, if Agent Bob 826

wants Agent Alice to retrieve an apple for it, 827

Agent Bob will generate the following output: 828

“request(pickup(apple, ingredient_dispenser)); re- 829

quest(place_obj_on_counter())”. This request ex- 830

plicitly specifies the sequence of actions that Agent 831

Alice is expected to execute, ensuring that the col- 832
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laboration process is systematically coordinated.833

A.1.3 Layout Definition Method834

We follow the environment design principles of835

Overcooked-AI (Carroll et al., 2019) and ProA-836

gent (Zhang et al., 2024a), enabling customization837

through external layout files. Compared to these838

prior works, our framework offers a broader range839

of configurable elements. For instance, the “or-840

der_probability” parameter allows users to adjust841

the probability of tasks appearing randomly in the842

environment, while the “recipes” parameter enables843

customization of the synthesis list for each uten-844

sil. Further details can be found in the examples845

provided in our GitHub repository’s layout files.846

Through our enhancements, nearly all aspects of847

the environment can be customized via a single848

external file, significantly enhancing the flexibility849

and scalability of our framework.850

A.2 Tasks Construction851

In this section, we provide detailed information852

about tasks, including task complexity level, task853

list, task recipe, and task RATs.854

A.2.1 Task complexity level855

To distinguish the complexity level of each task,856

we define four types of collaborative behaviors per-857

formed by the agents. The complexity level of a858

task is determined based on the minimum number859

of collaborative behaviors required to complete the860

task. The four types of collaborative behaviors are861

as follows:862

• Acquiring New Ingredients: This behavior863

involves retrieving an ingredient from the In-864

gredient Dispenser. For example, Agent Alice865

might pick up an onion or an apple from the866

dispenser.867

• Processing the Ingredients: This behavior in-868

volves placing ingredients into a cooking uten-869

sil. For example, Agent Alice might place an870

ingredient into a chopping board or a blender.871

• Acquiring a New Dish: This behavior involves872

retrieving a new dish from the Dish Dispenser.873

This action consists of a single step where874

Agent Alice picks up a dish.875

• Processing the Ingredients by Agent Bob:876

Similar to the first behavior, but performed877

by Agent Bob. This includes behaviors like878

placing an ingredient into a pot or an oven.879

Each collaborative behavior corresponds to sev- 880

eral collaborative actions. The complexity level of 881

a task is calculated by summing the total number of 882

collaborative actions required from each behavior. 883

Specifically, the number of actions in each of the 884

four categories is counted based on the task’s re- 885

quirements. This approach ensures that tasks with 886

more complex or numerous collaboration require- 887

ments are considered more difficult than those with 888

fewer actions. Table 3 provides statistical data on 889

collaborative behaviors and collaborative actions. 890

Each task’s RATs provide the exact number of 891

actions for each type of collaboration, which is 892

used to determine the total complexity level for 893

that task. The complexity calculation allows for a 894

comparison of tasks, ensuring that they are evalu- 895

ated on the basis of their collaborative complexity. 896

A.2.2 Task List 897

Table 4 presents a list of task names across 6 com- 898

plexity levels, comprising a total of 30 tasks. As 899

indicated by the task names, tasks within the same 900

complexity level share identical workflows, with 901

the only variation being the selection of ingredi- 902

ents. This design aims to mitigate potential biases 903

in LLMs towards specific ingredients, thereby re- 904

ducing evaluation discrepancies caused by such 905

biases. 906

A.2.3 Recipes 907

Each task corresponds to a recipe that outlines the 908

workflow required to complete the task, includ- 909

ing the necessary ingredients and cooking steps. 910

There are two important aspects to note regard- 911

ing the recipe: First, one cooking step typically 912

involves multiple actions by the agents. This ne- 913

cessitates that the agents carefully decompose the 914

cooking step into specific actions after thoroughly 915

understanding both the recipe and the environment. 916

Second, some cooking steps can be executed in 917

a different order. For instance, when multiple in- 918

gredients require pre-processing, followed by com- 919

bining the processed ingredients into a utensil for 920

further preparation, the order in which the ingre- 921

dients are preprocessed can be interchanged. This 922

decision is typically made by the agents, leading to 923

the possibility of multiple valid RATs for the same 924

task. Allowing such flexibility is both reasonable 925

and aligned with real-world practices. Listing 2 926

is an example of the recipe for “Baked Pumpkin 927

Soup”, which includes the recipe name, required 928

ingredients with quantities, and detailed cooking 929
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Complexity Level Acquiring
New Ingredients

Processing the Ingredients
by Agent Alice

Acquiring
a New Dish

Processing the Ingredients
by Agent Bob

Total Number of
Collaborative Actions

Level 1 1 0 0 1 2
Level 2 1 1 1 1 5
Level 3 1 1 1 2 7
Level 4 2 1 1 2 9
Level 5 2 2 1 3 12
Level 6 3 3 1 4 17

Table 3: The number of collaborative behaviors under different complexity levels is given, as well as the total
number of corresponding collaborative actions.

instructions.930

Listing 2: Recipe example
931

NAME:932
Baked Pumpkin Soup933

934
INGREDIENTS:935
pumpkin(1)936

937
COOKING STEPs:938
1. Cut a pumpkin into slices.939
2. Place the pumpkin slices in the oven and bake940

for 3 timesteps.941
3. Transfer the baked pumpkin slices to a pot942

and cook for 3 timesteps.943
4. Fill a dish with the soup from the pot and944

deliver.945946

A.2.4 Referential Action Trajectory947

To evaluate the agents’ collaboration capabilities948

both in terms of end-to-end and process-oriented949

metrics, we provide the RATs for each task. Given950

that our tasks are sequential process-specific, we951

assume that the RATs can be exhaustively enumer-952

ated or largely known. We have annotated the RATs953

for each task, which include the optimal referen-954

tial action sequences for both agents to complete955

the task. Each RAT ensures that the agents can956

accomplish the task with a minimal number of ac-957

tions, while also employing the optimal strategy958

to parallelize certain actions for efficiency. A task959

may have multiple valid RATs, for example, the960

order in which two ingredients are retrieved may961

not affect the overall task completion time. Dur-962

ing evaluation, the TES and ITES functions select963

the RAT with the highest matching score as the964

reference for assessment. Listing 3 provides an ex-965

ample of the RATs for the “Baked Pumpkin Soup”966

task, with separate RATs for each of the two agents.967

Because the “Baked Pumpkin Soup” task has only968

one completed route, there is only one RAT.969

Listing 3: RAT of "Baked Pumpkin Soup" task
970

"RAT_1": 971
{ 972

"agent_0": [ 973
"pickup(pumpkin_slices, counter)", 974
"put_obj_in_utensil(oven0)", 975
"bake(oven0)", 976
"pickup(baked_pumpkin_slices, oven0)", 977
"put_obj_in_utensil(pot0)", 978
"cook(pot0)", 979
"pickup(dish,counter)", 980
"fill_dish_with_food(pot0)", 981
"deliver()" 982

], 983
"agent_1": [ 984

"pickup(pumpkin, ingredient_dispenser)", 985
"put_obj_in_utensil(chopping_board0)", 986
"cut(chopping_board0)", 987
"pickup(pumpkin_slices,chopping_board0)", 988

989
"place_obj_on_counter()", 990
"pickup(dish,dish_dispenser)", 991
"place_obj_on_counter()" 992

] 993
} 994995

A.3 Baseline 996

In this section, we introduce the baseline structure 997

and prompt design we use to test different LLMs. 998

A.3.1 Baseline Construction 999

Figure 7 illustrates the structure of the baseline and 1000

provides an example of agents interacting and col- 1001

laborating to complete a task within our benchmark. 1002

The baseline architecture consists of an Instruction- 1003

Builder, Planner, Communication, Error-Handling, 1004

Memory, and Reflection modules. The structure 1005

remains identical across different agents, with vari- 1006

ations arising only in the environment descriptions, 1007

action spaces, and task-specific knowledge pro- 1008

vided within the prompts. 1009

Instruction-builder The Instruction-builder is a 1010

rule-based module responsible for managing and 1011

integrating the prompts for each agent. It reads the 1012

state dictionary from the environment and fills in 1013

a prompt template. The prompt template includes 1014

both fixed prompts and slot-based prompts. Fixed 1015
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Figure 7: The left side of the figure presents the baseline architecture used for evaluating different LLMs, where
Agent Alice and Agent Bob share the same structural design, differing only in their prompt. The right side of the
figure illustrates the interaction process between the two agents as they collaborate to complete the “Baked Potato
Slices” task within our benchmark. This includes the agents’ analytical processes as well as a record of their natural
language communication.

prompts contain: (1) game rules, such as objectives,1016

scoring workflows, functions of each kitchen uten-1017

sils, and methods for preparing dishes; (2) commu-1018

nication rules and output format specifications; and1019

(3) a definition of the agent’s action space, along1020

with a brief description of actions available to team-1021

mates. Slot-based prompts include: (1) the current1022

recipe for the task (if the agent has access to the1023

recipe); (2) the current environment observations,1024

such as kitchen layout and teammate status; (3)1025

communication records with other agents up to the1026

current time step; and (4) memory and reflection1027

from previous time steps.1028

Planner The planner is the core decision-making1029

component for the agent. It generates three fields:1030

“Analysis”, “Say”, and “Plan”. The “Analysis” field1031

represents the agent’s assessment of the current en-1032

vironment state, task, and past memories, assisting1033

the planner in making informed decisions. The1034

“Say” field determines whether collaboration is re-1035

quired; if the planner identifies a need for collabo-1036

ration, it generates communication content directly1037

in this field. The “Plan” field contains the action1038

sequence that the planner has devised for the agent.1039

Communication Communication between 1040

agents enables the transmission of collaborative 1041

intentions or requests for assistance. When 1042

communication content is detected in the “Say” 1043

field, all agents enter the communication channel. 1044

Within this channel, each agent speaks in sequence 1045

until a special token “[END]” is generated or 1046

the maximum number of interaction rounds is 1047

reached. Once communication is complete, agents 1048

formulate their plans based on the information 1049

exchanged. 1050

Error-handling The error-handling process man- 1051

ages situations in which the generated actions are 1052

deemed invalid by the environment. When an 1053

agent receives an error message from the environ- 1054

ment, the error information is incorporated into the 1055

prompt and re-entered into the planner. This cycle 1056

continues until the generated actions are considered 1057

valid by the environment or the maximum number 1058

of attempts is reached. 1059

Memory and Reflection Memory and reflection 1060

represent the accumulation of an agent’s past ex- 1061

periences, enabling it to engage in long-term plan- 1062

ning. We implement memory and reflection using 1063
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Complexity
Level

Task Name

Level 1

Baked Bell Pepper
Baked Sweet Potato

Boiled Egg
Boiled Mushroom

Boiled Sweet Potato

Level 2

Baked Potato Slices
Baked Pumpkin Slices

Boiled Corn Slices
Boiled Green Bean Slices

Boiled Potato Slices

Level 3

Baked Bell Pepper Soup
Baked Carrot Soup

Baked Mushroom Soup
Baked Potato Soup

Baked Pumpkin Soup
Sliced Bell Pepper

and Corn Stew
Sliced Bell Pepper

and Lentil Stew

Level 4
Sliced Eggplant

and Chickpea Stew
Sliced Pumpkin

and Chickpea Stew
Sliced Zucchini

and Chickpea Stew
Mashed Broccoli
and Bean Patty
Mashed Carrot

and Chickpea Patty

Level 5
Mashed Cauliflower

and Lentil Patty
Mashed Potato
and Pea Patty

Mashed Sweet Potato
and Bean Patty
Potato Carrot

and Onion Patty
Romaine Lettuce Pea

and Tomato Patty

level 6
Sweet Potato Spinach
and Mushroom Patty

Taro Bean
and Bell Pepper Patty
Zucchini Green Pea

and Onion Patty

Table 4: The names of 30 tasks in total are divided into
6 complexity levels.

a straightforward approach. The memory logs the 1064

action sequences that the agent has completed in 1065

the past, while the reflection records the previous 1066

agent’s reflections on invalid actions. 1067

A.3.2 Prompt 1068

In this section, we provide a detailed description 1069

of the prompts used to drive LLM-based agents. 1070

Since LLM-MAS involves multiple agents inter- 1071

acting within an environment, the prompt design 1072

is inherently more complex than that of a single- 1073

agent system. Each request to the LLM typically 1074

consumes approximately 2,000 tokens, with slight 1075

variations depending on the specific tokenizer used 1076

by the LLM. To structure this complexity, we cat- 1077

egorize the prompts into three key components: 1078

game rules, action space definitions, and input- 1079

output format specifications. We will elaborate on 1080

each component and provide illustrative examples 1081

to demonstrate their implementation. 1082

Game Rules The game rules part of the prompt 1083

defines the task objective, agent roles, and interac- 1084

tion constraints. It outlines the step-by-step work- 1085

flow for completing an order, emphasizing task di- 1086

vision, coordination, and strict adherence to recipe 1087

instructions. Figure 10 shows all the content of the 1088

game rule prompt. 1089

Action Space Definitions This part of the prompt 1090

defines the action space for Agent Bob, following 1091

the action specification method used in ProAgent 1092

(Zhang et al., 2024a). It categorizes actions into 1093

operation actions (directly executable by the agent) 1094

and collaborative actions (requests for the team- 1095

mate to perform an action). Figure 11 shows the 1096

prompt of Agent Bob’s action space. 1097

Input-Output Format The input-output format 1098

part defines the structured information provided to 1099

the agent at each step and the required response for- 1100

mat. The input includes past action history, lessons 1101

from failures, available utensils, the current order, 1102

the planned sequence of actions, and past conver- 1103

sations. The output consists of three fields: anal- 1104

ysis (environment assessment and reasoning for 1105

actions), plan (the agent’s planned actions for the 1106

next step), and say (communication with the team- 1107

mate, if necessary). This structured format ensures 1108

that the agent can make informed decisions, coor- 1109

dinate effectively, and execute tasks systematically. 1110

12 shows all the content of the input-output format 1111

prompt. 1112
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The above section outlines the key prompts used1113

to drive the LLM agents. For further details re-1114

garding prompts related to memory, reflection, and1115

other components, please refer to the comprehen-1116

sive prompts provided in our GitHub repository.1117

B Evaluation1118

B.1 Details in TES1119

The TES is formally expressed as:1120

TES(hk) = max
j

{
(1 + β2)Dj

max(hk, g
j
k)

mk + β2nk

}
(7)1121

where hk =
⋃T

t=0 a
t
k = {a1, a2, . . . , ank

} is the1122

historical action sequence up to timestep T of agent1123

k, gjk = {gi}mk
i=1 ∈ R is j-th RAT of agent k,1124

β is the hyper-parameter balancing the weight of1125

task progress and redundancy, and Dj
max(hk, g

j
k)1126

computes the length of the longest order-preserving1127

subsequence in hk that matches gjk:1128

Dj
max = max

d
{d | ∀ 1 ≤ i1 < · · · < id ≤ nk,1129

s.t. ai1 = g1, ai2 = g2, . . . , aik = gk} (8)1130

It is important to note that the TES function in-1131

troduces modifications to the Longest Common1132

Subsequence (LCS) calculation in ROUGE-L (Lin,1133

2004). These modifications are driven by one main1134

reason: Improved identification of redundant ac-1135

tions. Listing 4 illustrates a very common scenario1136

where, due to the agent’s incorrect choice in step1137

four, the fifth step fails to advance the task. Specif-1138

ically, the agent places an irrelevant item, “egg”,1139

onto the counter, which does not contribute to the1140

task’s progress. In this case, the standard ROUGE-1141

L, based on LCS, would mistakenly consider the1142

agent’s fifth action as matching the RAT, leading1143

to an inflated evaluation score.1144

TES overcomes this limitation by combin-1145

ing maximal order-preserving alignment with1146

efficiency-aware normalization, making it well-1147

suited for collaborative tasks requiring synchro-1148

nized, sequence-specific interactions.1149

Listing 4: Comparison of TES with other functions
1150

Example: 1151
RAT: 1152

1. pickup(tofu, ingredient_dispenser) 1153
2. put_obj_in_utensil(chopping_board_0) 1154
3. cut(chopping_board_0) 1155
4. pickup(chopped_tofu, chopping_board_0) 1156
5. place_obj_on_counter() 1157

Agent Action Trajectory: 1158
1. pickup(tofu, ingredient_dispenser) 1159
2. put_obj_in_utensil(chopping_board_0) 1160
3. cut(chopping_board_0) 1161
4. pickup(egg, ingredient_dispenser) 1162
5. place_obj_on_counter() 1163

Result: 1164
ROUGE-L: 0.8 1165
TES: 0.6 11661167

C Supplementary Experiment 1168

In this section, we present supplementary exper- 1169

iments that support the conclusions of the main 1170

body. First, we investigate the impact of different 1171

hyper-parameter values for γ on the task comple- 1172

tion success rate of the LLM-MAS and provide the 1173

rationale for selecting γ = 1.5. Next, we describe 1174

the details of the human performance evaluation, 1175

including the experimental design and the human- 1176

computer interaction interface. Additionally, we 1177

introduce new recipes and additional results pre- 1178

sented in the failure analysis section. Finally, we 1179

provide case studies illustrating both successful and 1180

unsuccessful task completions by the LLM-MAS. 1181

C.1 Impact of Varying γ on Task Success Rate 1182

The hyper-parameter γ controls the task failure 1183

threshold. Specifically, it determines a time con- 1184

straint on the task, which is calculated by multiply- 1185

ing the optimal completion time by the value of γ. 1186

Clearly, as γ increases, the task success rate (SR) 1187

of the LLM-MAS will improve, as the system is al- 1188

lowed more time to complete the task. However, γ 1189

cannot be increased indefinitely, as doing so would 1190

lead to inefficiencies in the evaluation process. An 1191

excessively high value of γ might artificially inflate 1192

the success rate, as the extended time window may 1193

not reflect the true capabilities of the model in real- 1194

world scenarios and it wastes computing resources. 1195

On the other hand, setting γ too low could result 1196

in an overly strict evaluation, where the system is 1197

unable to complete tasks even when it could have 1198

more time. Therefore, it is essential to select an 1199

optimal value for γ that balances both task success 1200

and evaluation efficiency. 1201

Figure 8 illustrates the task success rates of GPT- 1202

4o and Llama3.1-70B at 6 complexity levels under 1203
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Figure 8: The task success rates of the GPT-4o and Llama3.1-70B at 6 complexity levels under different γ values.

varying values of the hyper-parameter γ. We ob-1204

served that when γ = 1, which requires completing1205

tasks along the optimal path, even the state-of-the-1206

art GPT-4o failed to complete the majority of tasks.1207

However, when γ was increased to 1.5 or 2, GPT-1208

4o was able to complete most tasks at complexity1209

levels 4 and below. We chose γ = 1.5 rather than1210

γ = 2 because, for models with fewer parameters1211

than GPT-4o, such as Llama3.1-70B, increasing1212

γ does not significantly improve success rates on1213

higher complexity tasks. In fact, most models we1214

tested struggled to complete tasks above level 4,1215

often requiring the maximum time limit during1216

evaluations. By selecting γ = 1.5, we were able1217

to save approximately 33% of computational re-1218

sources compared to using γ = 2, thereby enabling1219

a more efficient evaluation of the LLM’s capabili-1220

ties.1221

C.2 Human Performance Evaluation1222

To evaluate human performance on our benchmark,1223

we invited 10 volunteers to participate in our ex-1224

periments. The participants were divided into five1225

pairs, with each pair assigned two randomly se-1226

lected tasks from each complexity level. As a re-1227

sult, each complexity level was tested 10 times.1228

To facilitate the understanding of the game rules,1229

action space, input-output format, and the current1230

state of the environment, we designed a human-1231

computer interaction interface. It is important to1232

note that we merely presented the prompts inputted1233

to the agent in a more human-friendly format on the1234

interface, without introducing any additional infor-1235

mation. Figure 13 and figure 14 illustrate the layout1236

of our human-computer interaction interface.1237

C.3 Failure Analysis 1238

In the “Failure Analysis” section of the main body, 1239

we designed three experiments to demonstrate that 1240

collaboration capabilities tend to decrease as the 1241

task progresses, particularly in sequential, process- 1242

specific tasks. We attribute this decline to pretrain- 1243

ing biases that favor early-sequence task elements, 1244

compounded by the diminishing ability to track 1245

context across extended action chains. We refer 1246

to the experiment corresponding to Figure 5(a) as 1247

Experiment A, the experiment in Figure 5(b) as 1248

Experiment B, and the experiment in Figure 5(c) 1249

as Experiment C. In this section, we will provide 1250

detailed information for these three experiments, 1251

along with additional analytical results to support 1252

our conclusions. 1253

C.3.1 Details in Experiment A 1254

Experiment A selected tasks from Level 3, which 1255

involve five distinct collaborative actions. These 1256

actions include: “pickup,” “put_obj_in_utensil,” 1257

“cut/stir,” “pickup,” and “place_obj_on_counter.” 1258

The parameters for these collaborative actions are 1259

not specified, as they vary depending on the spe- 1260

cific task associated with each action. 1261

For the preprocessing phase, we manually select 1262

environmental states and corresponding memories 1263

that require the generation of different collabora- 1264

tive actions from the Level 3 trajectory data. A total 1265

of five collaborative actions are chosen, with five 1266

scenarios selected for each action. For each model, 1267

we test the five scenarios of each collaboration ac- 1268

tion 20 times, with the prompts being identical to 1269

those used in normal testing. The output consists 1270

of collaborative actions, which are evaluated based 1271

on the ITES. If the collaborative action results in an 1272

17



ITES score greater than 0, it is deemed a successful1273

collaboration. However, if the ITES score is less1274

than or equal to 0, there unsuccessful collaborative1275

action is categorized manually. For the collabora-1276

tive actions generated by the initiating agent, the1277

categorization follows three criteria: premature ini-1278

tiation, where the collaborative action should have1279

been generated in subsequent scenarios; repetitive1280

initiation, where the action corresponds to a col-1281

laboration that should have occurred in a previous1282

scenario; and irrelevant collaboration, where the1283

action does not belong to any of the expected col-1284

laboration actions for the task.1285

Figure 9 illustrates the error conditions observed1286

in GPT-4o and Llama3.1-70B when initiating col-1287

laboration. Both LLMs demonstrate strong collab-1288

oration initiation abilities in Action 1. However, as1289

the task progresses, premature initiation and repeti-1290

tive initiation occur more frequently during subse-1291

quent collaborative actions, with this tendency be-1292

ing more pronounced in the smaller Llama3.1-70B1293

model. These results highlight that LLM agents,1294

when faced with sequential, process-specific task1295

workflows, may struggle to accurately track the1296

current step, leading to an increased occurrence of1297

premature and repetitive initiation errors in later1298

stages of the task.1299

C.3.2 Details in Experiment B1300

In the recipe used in Experiment A, Step 1 consists1301

of five collaborative actions. To isolate the influ-1302

ence of planning, we redesigned the recipes with1303

explicit mappings from steps to actions. Listing 21304

is an example of the recipe used in Experiment A.1305

Listing 5: Step-to-action mapping recipe of "Baked
Pumpkin Soup"

1306
NAME:1307
Baked Pumpkin Soup1308

1309
INGREDIENTS:1310
bell pepper(1)1311

1312
COOKING STEPs:1313
1. Pick up a bell pepper.1314
2. Place bell pepper on chopping board.1315
3. Cut a bell pepper into slices.1316
4. Pick up bell pepper slices.1317
5. Place the bell pepper slices on counter.1318
6. Place the bell pepper slices in the oven and1319

bake for 3 timesteps.1320
7. Transfer the baked bell pepper slices to a1321

pot and cook for 3 timesteps.1322
8. Fill a dish with the soup from the pot and1323

serve.13241325

We decomposed Step 1 into five distinct sub-1326

steps, with each sub-step corresponding precisely1327

to a specific collaborative action. Listing 5 is an 1328

example of the revised recipe. 1329

By employing this approach, we isolate the influ- 1330

ence of planning. However, as demonstrated in the 1331

experiments presented in the main body, even with 1332

this adjustment, the issue of diminishing collabora- 1333

tion capabilities as the task progresses in sequential, 1334

process-specific tasks remains unresolved. 1335

C.3.3 Details in Experiment C 1336

In Experiment C, we rearranged the order of steps 1337

in the recipe from Experiment B, placing the col- 1338

laborative actions to be generated in Step 1 of the 1339

recipe. We designed these five steps as a sequence. 1340

As shown in Listing 6, when Action 2 corresponds 1341

to Step 1, the modified recipe is as follows, where 1342

the content in square brackets is supplementary in- 1343

formation and will not appear in the experimental 1344

recipe. 1345

Listing 6: Rearranged recipe of "Baked Pumpkin Soup"
1346

NAME: 1347
Baked Pumpkin Soup 1348

1349
INGREDIENTS: 1350
bell pepper(1) 1351

1352
COOKING STEPs: 1353
[Previously for step 2] 1354
1. Place bell pepper on chopping board. 1355
[Previously for step 3] 1356
2. Cut a bell pepper into slices. 1357
[Previously for step 4] 1358
3. Pick up bell pepper slices. 1359
[Previously for step 5] 1360
4. Place the bell pepper slices on counter. 1361
[Previously for step 1] 1362
5. Pick up a bell pepper. 1363
[The following are not the steps corresponding 1364

to collaborative action] 1365
6. Place the bell pepper slices in the oven and 1366

bake for 3 timesteps. 1367
7. Transfer the baked bell pepper slices to a 1368

pot and cook for 3 timesteps. 1369
8. Fill a dish with the soup from the pot and 1370

serve. 13711372

Through these adjustments, we found that the 1373

phenomenon of decreasing performance with task 1374

progression largely disappeared, highlighting a 1375

strong positional dependence in sequential process- 1376

specific tasks. 1377

C.4 Case Study 1378

We present case studies of agent collaboration pro- 1379

cesses, using the DeepSeek-V3 model to illus- 1380

trate four scenarios: successful initiating and re- 1381

sponding, successful initiating but failed respond- 1382

ing, failed initiating but successful responding, and 1383
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Figure 9: The error condition of GPT-4o and Llama3.1-70B initiating collaboration.

failed initiating and responding. For each case,1384

we provide the agent’s environmental state inputs,1385

along with the output of the agent, including the1386

agent’s analysis, dialogue, and collaborative ac-1387

tions.1388

Case 1: Successful Initiating and Responding1389

Listing 7, 8, and 9 presents the input from Agent1390

Bob and the output from Agent Alice in Case 1. To1391

prepare the order, Bob requires Alice’s assistance1392

in obtaining ingredients for further processing. As1393

indicated by Bob’s analysis field, it correctly under-1394

stood the first step of the recipe, which is to retrieve1395

a bell pepper from the ingredient dispenser. Fur-1396

thermore, Bob recognized that it could not access1397

the dispenser and thus requested Alice to retrieve1398

the bell pepper on its behalf. Ultimately, Bob cor-1399

rectly initiated the collaborative action by request-1400

ing Alice to take the bell pepper from the ingredient1401

dispenser and place it on the counter. Therefore,1402

Bob’s initiation was accurate. Similarly, Alice’s1403

plan field correctly generated the two collaborative1404

actions initiated by Bob, which will be executed1405

subsequently. As a result, Alice appropriately re-1406

sponded to the collaboration.1407

Listing 7: Case 1 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:baked_bell_pepper
Scene 0: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [] Kitchen states: <
pot0> is empty; <chopping_board0> is empty;
<oven0> is empty; <blender0> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing

Listing 8: Case 1 Agent Bob’s output
Bob analysis: The order is for a baked bell

pepper. According to the recipe, the first
step is to pick up a bell pepper. Since only
the Alice can pick up ingredients from the
ingredient dispenser, I need to request the
Alice to perform this action. Once the bell
pepper is on the counter, I can proceed to
place it in the oven and bake it.

Bob plan: request('pickup(bell_pepper,
ingredient_dispenser)'); request('
place_obj_on_counter()')

Bob say: Alice, please pick up a bell pepper
from the ingredient dispenser and place it
on the counter. [END]

Listing 9: Case 1 Agent Alice’s output
Alice analysis: The Bob has instructed me to

pick up a bell pepper from the ingredient
dispenser and place it on the counter. Since
I am the Alice and only I can pick up
ingredients from the ingredient dispenser, I
will follow the Bob's instructions. The
ingredient dispenser is in my space, so I
can perform this action directly. After
picking up the bell pepper, I will place it
on the counter so the Bob can access it.

Alice plan: pickup(bell_pepper,
ingredient_dispenser); place_obj_on_counter
()

Alice say: [NOTHING]

Case 2: Successful Initiating but Failed Re- 1408

sponding Listing 10, 11, and 12 presents the 1409

input from Agent Bob and the output from 1410

Agent Alice in Case 2. In this scenario, Bob 1411

was supposed to request Alice to retrieve the 1412

pumpkin from the ingredient dispenser and place 1413

it on the chopping board (chopping_board0) 1414

for cutting. However, before requesting Alice 1415

to “cut”, Bob neglected to generate the action 1416

“put_obj_in_utensil(chopping_board0)” to place 1417

the ingredient on the chopping board. Since 1418
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the ingredient must be placed on the chopping1419

board before it can be cut, Bob’s collaborative re-1420

quest was incorrect. Although Alice recognized1421

Bob’s intention, it identified the missing action1422

“put_obj_in_utensil(chopping_board0)” during its1423

planning phase and included it. This correction1424

enabled the successful completion of the task to1425

cut the pumpkin. Therefore, Alice’s response was1426

successful, as it corrected Bob’s mistake.1427

Listing 10: Case 2 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:sliced_pumpkin_and_chickpea_stew
Scene 11: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [pickup(pumpkin,
ingredient_dispenser),place_on_counter(),
pickup(chickpea, ingredient_dispenser)]
Kitchen states: <pot0> is empty; <
chopping_board0> is empty; <oven0> is empty;
<blender0> is empty; 3 counters can be

visited by <Bob>. Their states are as
follows: counters have nothing.

Listing 11: Case 2 Agent Bob’s output
Bob analysis: The recipe for Sliced Pumpkin and

Chickpea Stew requires us to first cut the
pumpkin into slices, then place the pumpkin
slices and chickpea in a pot, cook them, and
finally fill a dish with the stew and serve

. The Alice is currently planning to pick up
the pumpkin and chickpea from the

ingredient dispenser. Once the Alice has the
ingredients, they will need to place them

on the counter for me to handle. I will need
to pick up the pumpkin from the counter and
cut it into slices using the chopping board

, but since the chopping board is in the
Alice's space, I will need to request them
to perform the cutting action.

Bob plan: request('cut(chopping_board0)'); wait
(1)

Bob say: Alice, please cut the pumpkin on the
chopping board after picking it up. [END]

Listing 12: Case 2 Agent Alice’s output
Alice analysis: Based on the Bob's instruction

in the conversation history, I need to pick
up the pumpkin from the ingredient dispenser
and then cut it on the chopping board. The
Alice space includes a chopping_board0,
which is available for use. Since the Bob
has not provided further instructions, I
will focus on these two tasks. The planned
sequence of actions for the Alice already
includes picking up the pumpkin and chickpea
, but the Bob specifically mentioned cutting
the pumpkin first. Therefore, I will
prioritize picking up the pumpkin and
cutting it.

Alice plan: pickup(pumpkin, ingredient_dispenser
), put_obj_in_utensil(chopping_board0),cut(
chopping_board0)

Alice say: [NOTHING]

Case 3: Failed Initiating but Successful Re- 1428

sponding Listing 13, 14, and 15 presents the in- 1429

put from Agent Bob and the output from Agent 1430

Alice in Case 3. In this scenario, Bob cor- 1431

rectly requested Alice to retrieve the cauliflower 1432

from the ingredient dispenser and place it on the 1433

chopping board (chopping_board0) for cutting, 1434

and the collaborative actions generated were also 1435

correct. Therefore, the initiation of collabora- 1436

tion was accurate. However, Alice’s first action, 1437

“pickup(cauliflower, dispenser)”, contained an in- 1438

correct parameter, as “dispenser” was not a valid 1439

option. This error in the first action prevented the 1440

execution of subsequent actions, resulting in an 1441

incorrect response to the collaboration. 1442

Listing 13: Case 3 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:mashed_cauliflower_and_lentil_patty
Scene 0: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [] Kitchen states: <
pot0> is empty; <chopping_board0> is empty;
<oven0> is empty; <blender0> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing
.
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Listing 14: Case 3 Agent Bob’s output
Bob analysis: According to the recipe, we need

to start by cutting the cauliflower into
slices. Since I don't have access to the
chopping board or the ingredient dispenser,
I need to ask the Alice to pick up the
cauliflower and cut it. The Alice can
perform these actions in their space. Once
the cauliflower is sliced, it needs to be
placed in a pot to cook, which is in my
space. I will request the Alice to pick up
the cauliflower and cut it, then place it on
the counter so I can transfer it to the pot

.
Bob plan: request('pickup(cauliflower,

ingredient_dispenser)'); request('
put_obj_in_utensil(chopping_board0)');
request('cut(chopping_board0)'); request('
place_obj_on_counter()')

Bob say: Please pick up the cauliflower from the
ingredient dispenser, cut it on the

chopping board, and place it on the counter
for me to handle next. [END]

Listing 15: Case 3 Agent Alice’s output
Alice analysis: The Bob has instructed me to

pick up the cauliflower from the ingredient
dispenser, cut it on the chopping board, and
place it on the counter. I need to follow

this sequence since I do not have the recipe
and must rely on the Bob's guidance.

Currently, I am not holding anything, and
all utensils in my space are empty. I will
start by picking up the cauliflower from the
ingredient dispenser, then proceed to cut

it on the chopping board, and finally place
it on the counter for the Bob to handle next
.

Alice plan: pickup(cauliflower, dispenser);
put_obj_in_utensil(chopping_board0); cut(
chopping_board0); place_obj_on_counter()

Alice say: [NOTHING]

Case 4: Failed Initiating and Responding List-1443

ing 16, 17, and 18 presents the input from Agent1444

Bob and the output from Agent Alice in Case 4.1445

In this scenario, Bob requested Alice to cut the1446

eggplant on “chopping_board0” and place it on1447

the counter. However, the collaborative actions1448

generated were incomplete, as they omitted the ac-1449

tions “put_obj_in_utensil(chopping_board0)” and1450

“place_obj_on_counter()”. As a result, these ac-1451

tions could not be executed, making them incor-1452

rect. Although Alice understood Bob’s intention, it1453

failed to notice the missing actions in Bob’s request1454

and directly replicated his generated actions. Con-1455

sequently, the response to the collaboration was1456

also incorrect, leading to a failure in the collabora-1457

tion. 1458

Listing 16: Case 4 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:sliced_eggplant_and_chickpea_stew
Scene 4: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds one eggplant.
The planned sequence of actions (yet to be
performed) for Alice is [request('
place_obj_on_counter()')] Kitchen states: <
pot0> is empty; <chopping_board0> is empty;
<oven0> is empty; <blender0> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing
.

Listing 17: Case 4 Agent Bob’s output
Bob analysis: The recipe requires preparing a

Sliced Eggplant and Chickpea Stew. The Alice
currently holds an eggplant and plans to
place it on the counter. I need to instruct
the Alice to cut the eggplant into slices
and then place them in the pot, along with
the chickpea. Since the Alice is in charge
of handling the ingredients, I will focus on
managing the cooking process in the pot and
ensuring the dish is served correctly.

Bob plan: request('cut(chopping_board0)');
request('place_obj_on_counter()')

Bob say: Please cut the eggplant into slices
using the chopping board and then place the
slices on the counter. [END]

Listing 18: Case 4 Agent Alice’s output
Alice analysis: I am currently holding an

eggplant, and the Bob has instructed me to
cut it into slices using the chopping board
and then place the slices on the counter.
The chopping board is in my space, so I can
perform the cutting action. After cutting, I
will place the slices on the counter for
the Bob to use in the next steps.

Alice plan: cut(chopping_board0);
place_obj_on_counter()

Alice say: [NOTHING]
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Figure 10: Prompt for game rules.
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Figure 11: Prompt for the action space of Agent Bob.
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Figure 12: Prompt for the input-outpout format.
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Figure 13: Human-computer interaction as Agent Alice.

Figure 14: Human-computer interaction as Agent Bob.

25


	Introduction
	Related Work
	Task-Oriented Collaboration
	Collaboration Capability
	TES and ITES
	TES
	ITES

	Evaluation Metrics

	Benchmark
	Collab-Overcooked Benchmark
	Environment
	Tasks Construction
	Collaboration Designs

	Baseline

	Experiment and Analysis
	Benchmark Overview
	Experiment Setting
	Results and Analysis
	Task Completion Efficiency
	Process-Oriented Evaluation
	Human Performance Evaluation
	Failure Analysis

	Future Challenges

	Conclusion
	Benchmark Detail
	Environment
	Interactive Elements
	Action Space
	Layout Definition Method

	Tasks Construction
	Task complexity level
	Task List
	Recipes
	Referential Action Trajectory

	Baseline
	Baseline Construction
	Prompt


	Evaluation
	Details in TES

	Supplementary Experiment
	Impact of Varying gamma on Task Success Rate
	Human Performance Evaluation
	Failure Analysis
	Details in Experiment A
	Details in Experiment B
	Details in Experiment C

	Case Study


