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Inferring 3D Occupancy Fields through Implicit Reasoning on
Silhouette Images

Anonymous Authors

ABSTRACT

Implicit 3D representations have shown great promise in
deep learning-based 3D reconstruction. With differentiable
renderers, current methods are able to learn implicit occu-
pancy fields without 3D supervision by minimizing the error
between the images rendered from the learned occupancy
fields and 2D ground truth images. In this paper, howev-
er, we hypothesize that a full rendering pipeline including
visibility determination and evaluation of a shading model
is not required for the learning of 3D shapes without 3D
supervision. Instead, we propose to use implicit reasoning,
that is, we reason directly on the implicit occupancy field
without explicit rendering. This leads our method to reveal
highly accurate 3D structures from low quality silhouette
images. Our implicit reasoning infers a 3D occupancy field by
evaluating how well it matches with multiple 2D occupancy
maps, using occupancy clues rather than rendering the 3D
occupancy field into images. We exploit the occupancy clues
that indicate whether a viewing ray inside a 2D object silhou-
ette hits at least one occupied 3D location, or whether a ray
outside the silhouette hits no occupied location. In contrast
to differentiable renderers whose losses do not distinguish
between the inside and outside of objects, our novel loss
function weights unoccupied clues more than occupied ones.
Our results outperform recent state-of-the-art techniques,
justifying that we can learn accurate occupancy fields only
using sparse clues without an explicit rendering process.
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1 INTRODUCTION

Implicit functions have emerged as an important 3D repre-
sentation in deep learning models. They enable deep neural
networks to represent 3D shapes in a discriminative manner
by learning mappings from 3D locations to their occupan-
cy labels (or signed distance values). For learning with 3D
supervision, 3D locations with known occupancy labels are
sampled densely around 3D ground truth shapes, which are
used as training samples.

More recent methods [5, 8, 12, 20, 21, 27, 29, 37–39, 41,
46, 47, 49] proposed various differentiable renderers to imple-
ment surface rendering or volume rendering , which enable
the learning of implicit functions from 2D images without 3D
supervision. These differentiable renderers first render implic-
it functions learned by deep neural networks into 2D images,
and then refine the implicit function by back-propagating
the error between the rendered and ground truth images.
Although differentiable renderers provide an intuitive way to
optimize the learned implicit functions to match the ground
truth shapes, this kind of explicit reasoning requires imple-
menting a complete rendering procedure including visibility
testing (via rasterization or ray tracing) or even shading in a
differentiable manner. This also makes some of these methods
rely on high quality images as supervision which provides
perfect multi-view color consistency for structure inference.
In contrast, in this paper we hypothesize that we can still
conduct the learning of deep implicit shape representations
without a complete rendering pipeline.

To investigate this question, we propose implicit reasoning
to learn 3D occupancy fields for 3D shapes from multiple
2D occupancy maps, that is, low quality silhouette images.
Without explicit rendering, our implicit reasoning infers a
3D occupancy field by evaluating how well it matches with
multiple silhouette images. Here, “implicit” means that we
reason only based on the implicit occupancy function, but we
do not explicitly evaluate visibility or shading. Specifically,
implicit reasoning leverages two types of occupancy clues
that we evaluate on the 2D image plane. The first one is the
occupied clue, that is, if we shoot a ray from a pixel inside
a 2D silhouette to the 3D shape, there must be at least one
occupied 3D location along the ray. The second one is the
unoccupied clue, that is, if we shoot a ray from a pixel outside
a 2D silhouette to the 3D shape, there cannot be any occupied
3D location along the ray. To conduct implicit reasoning, we
introduce a loss function for each ray that includes two terms
to evaluate how well the learned implicit function fits these
two clues. Our approach leads to two main insights, which
are first that the unoccupied clues are more important than
the occupied clues, and second, clues from a sparse set of
pixels are adequate to conduct good implicit reasoning on the

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

implicit function. Finally, we report state-of-the-art results
that justify our approach in the experiments. In summary,
our main contributions are as follows:

i) We propose implicit reasoning to infer 3D occupancy
fields from multiple silhouette images without rendering.
Our novel loss function can implicitly evaluate how well
the learned 3D implicit function matches the unknown
ground truth.

ii) In contrast to rendering based methods that infer 3D
structures from different pixels in the same way, we justi-
fied the feasibility of inferring 3D structures in different
manners determined by 2D occupancy labels, which pro-
vides a novel perspective to more efficiently leverage 2D
supervision.

iii) We demonstrate that our method improves the accuracy
over the state-of-the-art in 3D reconstruction from single
images under widely used benchmarks.

2 RELATED WORK

In recent years, deep learning based 3D structure learning
has made huge progress with supervised or unsupervised
methodology [10, 31–33, 42, 43]. Because of the limit of
pages, we will only briefly review methods trained without
3D supervision.
For explicit 3D representations. We have been able to
leverage deep learning models to learn from different explicit
3D representations including voxel grids [6, 35, 36, 45], tri-
angle meshes [2, 13, 17–19], point clouds [11, 14, 15, 26, 48].
Without 3D supervision, a widely used strategy is to propose
differentiable renderers to first render a reconstructed 3D
shape into 2D images, and then, calculate the error between
the rendered and ground truth images, where the error on 2D
images can be back propagated to train the neural networks
through the differentiable renders.

For voxel grids, differentiable renderers were proposed to
bridge 3D voxels to silhouette images by projective projec-
tion with shooting rays [45] or orthogonal projection with
simple projection function [6]. For the projection, the camera
positions can be known [6, 45], estimated by an additional
network along with the reconstruction network [35] or in the
presence of viewpoint uncertainties [6]. To model the infor-
mation along each ray, [45] selected the maximum occupancy
value along a ray and [36] derived a differentiable formulation
by leveraging ray collision probabilities.

For triangle meshes, OpenDR [22] was first proposed to
approximate gradients with respect to pixel positions in back-
propagation. With hand-crafted gradients [13] or analytically
compute gradients [17, 18], the loss on 2D images can also
be back-propagated to update vertices on meshes. Similarly,
SoftRas [19] introduced a probabilistic rasterization to assign
each pixel to all faces on a mesh, and Chen et al. [2] employed
interpolation of local mesh properties as the rasterization.

Different from voxel grids and meshes, point clouds can not
directly represent a 3D continuous surface. To resolve this
issue, different renderers employed either dense points [15]
or different rasterization [11, 14, 26, 48] in rendering process.

For example, Lin et al. [15] proposed pseudo-renderer to
model the visibility using pooling among the projections of
dense 3D points. Rendering based methods employed surface
splatting [48] or Gaussian functions in 3D space [11] and on
2D images [14, 26] to approximate the point distribution on
point clouds.
For implicit 3D representations. Recently, it has been
drawing more research interests to learn implicit 3D rep-
resentations using deep learning models. With 3D super-
vision, implicit 3D representations provide deep learning
models a way to generate 3D shapes in a discriminative
manner [3, 23, 24, 28, 30, 33, 40], such as classifying a 3D
location into inside or outside of a 3D shape or regressing
its signed distance value. Without 3D supervision, different
differentiable renderers employed rendering process to learn
implicit 3D representations by back propagating loss on 2D
images.

Specifically, to reduce the computational cost on sampling
implicit surface required in training, Vincent et al. [34] pro-
posed differentiable ray marching to learn a mapping from
world coordinates to a feature representation of local scene
properties. To render a signed distance field, [21] introduced
another differentiable sphere tracing method which runs ef-
ficiently with affordable memory consumption. With indif-
ferentiable sphere tracing, SDFDiff [12] was proposed with a
differentiable shading to back propagate the loss on 2D im-
ages. With the analytically computed normal,a method [50]
introduced the rendering of SDF by projecting 0-isosurface
with surface tangent discs. To render an occupancy field, Liu
et al. [20] employed ray-based field probing technique to probe
the learned implicit function, and rendered silhouette images
by aggregating occupancy along each ray using max pooling.
Similarly, Wu et al. [44] rendered occupancy field by aggre-
gating detection points on rays to mine supervision for 3D
occupancy fields. Using the concept of implicit differentiation,
depth gradients were derived analytically in a differentiable
rendering formulation for implicit shape and texture repre-
sentations [27]. By leveraging single views from objects as
supervision, Lin et al. [16] managed to learn signed distance
fields using a novel differentiable rendering formulation.

NeRF [25] was introduced to model geometry and appear-
ance of shapes and scenes for novel view synthesis using
volume rendering. Based on NeRF, recent methods [5, 29,
37, 39, 41, 46, 47, 49] learn implicit functions from multi-
view images with additional priors or constraints. However,
they require high quality images for multi-view consistency
to infer accurate 3D structures. While we merely use low
quality silhouette images to reveal 3D structures and learn
to reconstruct a shape from a single image.

All these differentiable renderers were proposed to explic-
itly infer the implicit 3D representation based on rendering.
Our method is different from them by introducing implicit
reasoning for implicit 3D representation without rendering.
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Figure 1: Demonstration of implicit reasoning along
rays.

3 METHOD

3.1 Problem Statement and Overview

Without 3D supervision, we aim to learn implicit occupancy
fields for 3D shapes using a neural network from multiple
silhouette images {𝑣𝑖|𝑖 ∈ [1, 𝑉 ]}. The neural network with a
set of parameters 𝜃 represents the implicit occupancy field
by learning a mapping 𝑓𝜃 from an observation condition 𝐶,
such as an image, and a 3D location 𝑙 ∈ R3 to the probability
of occupancy 𝑝:

𝑓𝜃 : 𝐶 × 𝑙 → 𝑝,where 𝑝 ∈ [0, 1]. (1)

Without 3D supervision, current methods leverage differen-
tiable renderers to produce rendered images from the learned
implicit occupancy fields, which are then refined by mini-
mizing the difference between the rendered images and the
ground truth images. Our implicit reasoning accomplishes
the same task, but without the needs of rendering an image
with visibility testing (via ray tracing or rasterization) and
evaluating some shading model. Instead, we introduce a novel
loss only based on the implicit occupancy function to evaluate
how well the occupancy probabilities 𝑝 fit the ground truth
silhouettes.

We demonstrate our framework in Fig. 1. Our implicit
reasoning is based on shooting rays 𝑠 from pixels 𝑥 on the
2D ground truth silhouette images 𝑣𝑖 to the space holding
3D shapes. Our occupancy function 𝑓𝜃 represents 3D shapes
in an object-centered coordinate system, and we evaluate
the occupancy function in a discretized 3D space 𝑀 with
a resolution of 𝑅. Note that we uniformly discretize the 3D
space 𝑀 to facilitate rays to probe the space rather than rep-
resenting 3D shapes using voxel grids, since it would be easier
to determine the coordinate of which 3D area is involved on
each ray in implicit reasoning optimization. Moreover, our
preliminary results show that we can achieve much better
training efficiency than randomly sampling points along each
ray with much less sampled points to train and much faster
convergence, which still leads to our implicit reasoning to
infer smooth occupancy fields. The discrete space not only
reduce the redundance of sampled points but also improve
the limited probing ability of randomly sampled points on
rays.

For each ray 𝑠, we input the coordinates 𝑙𝑗 of the 3D
grid cells hit by the ray to the occupancy network 𝑓𝜃, where
𝑗 ∈ [1, 𝐽 ] and 𝐽 is the number of grid cells hit by the ray.

Accordingly, the occupancy network predicts the occupancy
probabilities for each 𝑙𝑗 with an observation condition 𝐶 as
follows,

𝑝𝑗 = 𝑓𝜃(𝐶, 𝑙𝑗). (2)

Finally, our loss for implicit reasoning evaluates how the
current occupancy probabilities 𝑝𝑗 fit the ground truth sil-
houettes. Then, the parameters 𝜃 in the occupancy network
are further optimized to minimize the loss. For a simplified
demonstration in Fig. 1, we only represent the 3D space 𝑀
with a resolution of 𝑅 = 5, and shoot a ray hitting 𝐽 = 4 3D
locations on 𝑀 .

3.2 Clues on Silhouette Images

We conduct implicit reasoning solely based on occupancy
clues provided by the 2D ground truth silhouette images
𝑣𝑖. As our experiments suggest, these clues are adequate to
infer accurate implicit occupancy fields during training. We
leverage two types of occupancy clues, including occupied
clues and unoccupied clues:

i) Occupied clues: if a ray 𝑠 starts from a pixel 𝑥 inside a
silhouette with a pixel value of 𝑦 = 1, then there must
be at least one occupied grid location among all 𝐽 cells
traversed by the ray.

ii) Unoccupied clues: if a ray 𝑠 starts from a pixel 𝑥 outside
a silhouette with a pixel value of 𝑦 = 0, then there cannot
be any occupied cells among the 𝐽 cells hit by the ray.

Note that we do not directly leverage the voxel grid to infer
3D structure, we only want to obtain coordinate to index 3D
area. The grid will help us easily to obtain the coordinate
of 3D area affected by a ray, and get better probing ability
than using points directly sampled on rays.

We further illustrate these two kinds of clues in Fig. 2. For
simplicity, we show the 3D space 𝑀 as a 2D grid and the 2D
silhouette image 𝑣𝑖 as a 1D vector. The ray for the occupied
clue starts from a pixel with a value of 𝑦 = 1 and hits at
least one occupied cell. While the ray for the unoccupied clue
starts from a pixel with a value of 𝑦 = 0 and does not hit
any occupied cells.

3.3 Loss for Implicit Reasoning

A key of our approach is a novel loss to evaluate how well the
currently learned implicit occupancy field fits with the occu-
pied and unoccupied clues. This loss implements our implicit
reasoning, which is based only on the implicit occupancy
function but does not require explicit rendering. Minimizing
the loss effectively refines the implicit occupancy fields as we
show in our experiments.

For each ray 𝑠 starting from a pixel 𝑥 with a value of 𝑦, we
first collect the 3D locations of the grid cells 𝑙𝑗 traversed by
the ray 𝑠, where 𝑗 ∈ [1, 𝐽 ]. Given a condition 𝐶, we get their
occupancy probabilities 𝑝𝑗 by evaluating 𝑝𝑗 = 𝑓𝜃(𝐶, 𝑙𝑗), as
shown in Fig. 1.

For occupied clues, the challenge is that we cannot define
a loss to specifically regulate how many occupied grid cells
there should be along the ray, since the clues only require the
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Figure 2: The occupied (solid line) and unoccupied
(dotted line) clues. If the ray 𝑠 shoots from the sil-
houette on image 𝑣𝑖, it will hit at least one occupied
area in the space of 𝑀 , otherwise it hits no occupied
area.

occupied number to be larger than one. However, the actual
number of occupied cells is highly variable among different
shapes. One option would be to use max-pooling to first
select the cell with maximum occupancy probability, which
is then further optimized to be as close to one as possible, as
used in [20]. However, this leads to inefficient optimization
because only one occupancy probability can be updated in
the back propagation. To resolve this issue, we define a loss
𝑂 to aggregate all occupancy probabilities 𝑝𝑗 on each ray
into an occupancy summary 𝐴 by summing them. Then, we
normalize 𝑂 to lie in a range of [0, 1] using an exponential
function,

𝑂 = 𝑦 × 𝑒𝑥𝑝(−𝐴), (3)

where 𝐴 =
∑︀𝐽

𝑗=1 𝑝𝑗 and 𝑦 is the silhouette value of the
pixel where the ray 𝑠 starts. Here, we loosen the occupied
clue (𝑦 = 1) a little bit. 𝑂 is not definite zero when 𝐴 > 1,
such as 𝐴 ∈ [1, 5], although 𝑂 approaches zero along with
increasing 𝐴. This is because it is highly possible for 𝐴 to
be larger than one in the optimization when we sum up lots
of small occupancy probabilities on the ray, although these
small occupancy probability locations are not expected to be
occupied. In addition, our loss defined for unoccupied clues
with a weight can help to make up the loosen.

For unoccupied clues, our loss 𝑈 directly requires the
occupancy summary 𝐴 along the ray to be as close to zero
as possible. To normalize 𝑈 in a range of [0, 1] similar as the
loss 𝑂, we use the average of 𝐴 in 𝑈 as follows, where 𝐽 is
the number of grid cells hit by the ray,

𝑈 = (1− 𝑦)×𝐴/𝐽. (4)

In summary, our loss function to conduct implicit reasoning
is a weighted sum of 𝑂 and 𝑈 ,

𝐸 = 𝑂 + 𝛽 × 𝑈, (5)

(a) (b) (c)

Figure 3: Illustration of shooting rays. We shoot
rays within the bounding box of silhouette (b) on
image (a) with a subsampling factor in (c).

where 𝛽 is a weight to balance the contribution from the occu-
pied and unoccupied clues. Therefore, our objective function
is to find an optimal set of parameters 𝜃 in the occupancy
network.

𝜃* = argmin
𝜃

𝑂 + 𝛽 × 𝑈. (6)

The contribution of our loss here is three-fold. First, our
loss removes the requirement of rendering for the learning
of implicit occupancy fields without 3D supervision. Instead,
the loss only uses occupancy clues. Second, our loss allows
us to infer accurate implicit occupancy fields with sparse
rays from each view. Third, different from current rendering
based methods that treat all pixels equally in the per-pixel
loss computation, we find that we can increase the inference
performance by weighting the loss 𝑈 for unoccupied clues
more. More detailed implementation can be found in the
code released in our supplementary material. We will justify
our contributions in the following experiments.

4 EXPERIMENTS AND ANALYSIS

4.1 Details

Dataset and metric. For fair comparison, we leverage the
widely used 13 categories from ShapeNetCore [1]. Specifi-
cally, in the auto-decoding experiments, we use 5 categories
including airplane, car, chair, rifle, and table with the same
train/test splitting as [3], where the resolution of shapes is
𝑅 = 64. In the single image reconstruction experiments, we
use all 13 categories with rendered images, ground truth
voxel grids in a resolution of 𝑅 = 32, and train/test splitting
from [4]. In all experiments, we employ volumetric IoU to
evaluate the accuracy of the reconstructed shapes. Note that
all reported IoU values are multiplied by 102.
2D supervision and rays. We only use 𝑉 = 20 silhouette
images as supervision for each 3D shape for network training.
On each silhouette image, we merely shoot rays 𝑠 from sparse
pixel locations to the 3D space with the known camera poses.
Specifically, we first calculate the bounding box on a silhou-
ette image, as shown in Fig. 3 (a) to (b), and then shoot rays
from a subsampled set of pixels with a subsampling factor
of 5, as illustrated by red dots in Fig. 3 (c). We found that
this setting can help us save computational burden without
degenerating the learning performance. We also explore the
effect of subsampling factor in the following.
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Classes Supervision Plane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Boat Mean

DISN [40] Occupancy 61.7 54.2 53.1 77.0 54.9 57.7 39.7 55.9 68.0 67.1 48.9 73.6 60.2 59.4
DIBR [2]

RGB
57.0 49.8 76.3 78.8 52.7 58.8 40.3 72.6 56.1 67.7 50.8 74.3 60.9 61.2

SDFDiff [12] 68.7 68.6 77.4 80.0 64.4 65.8 51.5 65.3 55.5 76.5 62.9 82.8 62.4 66.7
PTNR [45]

Silhouette

55.6 48.8 57.1 65.2 35.1 39.6 29.1 46.0 51.3 53.1 31.0 67.0 40.8 47.7
PTN [45] 55.6 49.2 68.2 71.2 44.9 54.0 42.2 58.7 59.9 62.2 49.4 75.0 55.1 57.4
NMR [13] 58.5 45.7 74.1 71.3 41.4 55.5 36.7 67.4 55.7 60.2 39.1 76.2 59.4 57.0

SoftRas [19] 58.4 44.9 73.6 77.1 49.7 54.7 39.1 68.4 62.0 63.6 45.3 75.5 58.9 59.3
IMFun [44] 53.3 39.1 65.2 66.0 44.4 52.2 37.7 62.7 38.9 54.8 45.6 66.8 53.8 52.3

IMRender [20] 65.1 53.6 - 78.2 54.8 - - - - - 51.5 - 60.8 60.7
Ours Silhouette 73.1 62.4 77.6 86.7 61.8 69.5 52.7 76.9 62.9 69.7 61.0 84.6 68.1 69.8

Table 1: Quantitative comparison of single image 3D shape reconstruction in terms of IoU.
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Figure 4: Auto-decoded shapes.

Network and training. The occupancy network 𝑓𝜃 that
we are using is modified from OccNet [23] by replacing the
2D CNN encoder which extracts 512-dimensional features of
observation 𝐶. Specifically, in auto-decoding, we replace the
OccNet 2D CNN encoder by a learnable feature for each 3D
object, which is similar as shape memories [9] or codes [30]. In
single image reconstruction, we replace the OccNet 2D CNN
encoder by the 2D CNN network in SoftRas [19], which aims
to better fit the 2D observation 𝐶 in the dataset from [4] in
unsupervised learning application.

We train our network using the Adam optimizer with a
learning rate of 0.0001 and a batch size of 400 rays. In each
epoch, we iterate over all shapes in the training set in random
order. In each batch, all 400 rays are randomly shot from all
𝑉 = 20 views of the same 3D shape, with the same condition
𝐶 that is also randomly selected from the images rendered
for the same 3D shape (from dataset [4] for single image
reconstruction). Along each ray, we randomly repeat some
hit voxels to make all rays containing the same number of
hit voxels. We initialize the balance weight 𝛽 in our loss in
Eq. 5 as 30.

During testing, for each 3D shape, we first employ the
learnable features (in auto-decoding) or 2D observation 𝐶
(in single image reconstruction) as condition to generate
occupancy values at all voxels in the discretized 3D space
𝑀 under a specific resolution of 𝑅. Then, we use marching
cubes to obtain meshes without any further post-processing.

4.2 Auto-decoding

We first evaluate the occupancy network 𝑓𝜃 trained by our
loss in auto-decoding. We aim to reveal the structure of a
3D shape from a given set of silhouette images. To make

the implicit occupancy fields fit the silhouette images, we
minimize our loss in Eq. 5 by optimizing the learnable features
of shapes and the parameters 𝜃 in the occupancy network
at the same time. We show some complicated shapes auto-
decoded by the learned occupancy network with a resolution
of 𝑅 = 128 in Fig. 4. The results demonstrate that our
implicit reasoning can infer accurate 3D structures on shapes
with arbitrary topology, such as the airplanes with layered
or thin wings, which justifies the effectiveness of our loss.

We further visualize the optimization of two shapes in auto-
decoding experiment in Fig. 5. We select several optimization
steps to visualize each shape from 4 view angles. We found
that our method can gradually infer the correct 3D structures
using the clues on multiple silhouette images.

4.3 Single Image Reconstruction

We further evaluate the occupancy network trained by our
loss in single image reconstruction, where we aim to recon-
struct a 3D shape from a given rendered image. Following the
setting of [20], we compare with the state-of-the-art methods
trained without 3D supervision under 13 classes in Table 1
with a resolution of 𝑅 = 32. Several recent methods mainly
leverage silhouette images as 2D supervision, including per-
spective transform net [45] (PTN), the retrieval version of
PTN (PTNR), neural mesh renderer [13] (NMR), soft rasteriz-
er [19] (SoftRas), Implicit Function renderer (IMFun) [44] and
implicit renderer [20] (IMRender). Other methods leverage
RGB images as 2D supervision, such as interpolation-based
differentiable renderer [2] (DIBR) and differentiable renderer
for signed distance fields [12] (SDFDiff). Moreover, these
differentiable renderers are designed for various 3D repre-
sentations, such as voxel grids [45], triangle meshes [2, 13],
signed distance fields [12], and implicit occupancy fields [20].
We achieve the best performance among the methods using
silhouette images as 2D supervision, and significantly better
than rendering-based methods [20, 44] for implicit occupancy
fields. Our performance is a little bit worse than SDFDiff un-
der the Bench, Chair, and Table classes. One possible reason
is that SDFDiff leverages normals to calculate shading when
rendering signed distance fields to compare with RGB images
as the supervision signal. However, to evaluate shading, S-
DFDiff requires that the illumination and surface reflectance
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Figure 5: Visualization of optimization in auto-decoding. The two shapes are visualized from four views at
different optimization steps. Please watch our video in supplementary materials for more details.

model is known. In contrast, our method does not require
any such information.

Moreover, we also report the comparison with DISN [40]
which leverages the 3D supervision to learn. We can see that
our method significantly outperforms DISN under almost all
classes. One thing we want to note is that although DISN can
leverage 3D supervision to train the neural network, there
are lots of training queries for each shape, which makes the
network to learn the mapping from single images and 3D
shapes.

AtlasNet Occnet SoftRas IMRender Ours GT

Figure 6: Visual comparison with methods (Atlas-
Net [7], OccNet [23]) trained with 3D supervision
and methods (SoftRas [19], IMRender [20]) trained
without 3D supervision under chair, plane and table
classes.

We further compare our method with a resolution of
𝑅 = 128 with methods trained with and without 3D super-
vision under three challenging classes including chair, plane,

Subsampling Factor 1 2 4 5 7

IoU 71.1 71.5 72.3 73.1 71.3

Table 2: Effect of number of rays in terms of IoU
(%).

Figure 7: The randomly selected 200 airplane recon-
struction.

table in Fig. 6. We can see that our method can reconstruct
shapes with arbitrary topologies. In addition, compared to
the GT shapes, our method reconstructs shapes with more
accurate geometry than supervised methods and rendering-
based unsupervised methods. Note that we also visualize
the GT shapes in a resolution of 𝑅 = 128 to highlight the
similarity of our method to the GT shapes. However, with
additional geometric regularization, IMRender [20] can pro-
duce smoother surfaces than ours. We further highlight our
advantage by visualizing more single image reconstruction
results obtained by our method in Fig. 7, Fig. 8, and Fig. 9,
where we randomly select 200 from each one of airplane, chair
and table class from the test dataset.

4.4 Ablation Study

Sparse Rays. One advantage of removing rendering is that
we do not have to calculate information at every pixel lo-
cation on each supervision plane. Therefore, our loss can
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Figure 8: The randomly selected 200 chair recon-
struction.

Figure 9: The randomly selected 200 table recon-
struction.

𝛽 0 1(𝑛𝑜 𝑂) 10 15 20 25 30 35

IoU 15.58 0 61.9 68.3 71.3 71.4 73.1 71.2

Table 3: Effect of weights in terms of IoU (%).

leverage sparse rays in a multiple view scenario, as described
in Fig. 3, to reveal plausible 3D structures. In this exper-
iment, we explore the effect of the number of rays on the
performance under the Airplane class in single image recon-
struction. Shooting rays in the bounding box as shown in
Fig. 3, we evaluate different subsampling factor in the loss cal-
culation such as {1, 2, 4, 5, 7}. The IoU in Table 2 shows that
the performance is not significantly affected by the number
of rays even for a subsampling factor of 7.
Weight. Intuitively, rendering based methods also employ
the occupied clues and unoccupied clues, but encoding them
into rendered pixel values with equal weight. Our loss for
implicit reasoning shows that it is helpful to increase the per-
formance by weighting unoccupied clues more in the learning
process, such as our 𝛽 = 30 in our previous experiments. In
this experiment, we explore the effect of the weight 𝛽 on the
performance under the airplane class in single image recon-
struction by using values in {0, 1(𝑛𝑜𝑂), 10, 15, 20, 25, 30, 35}.
Our results in Table 3 show that the performance is increas-
ing along with increasing 𝛽. But we can not get reasonable
results when only using occupied clues (“0”) or unoccupied
clues (“1(no O)”). For example, when we only use the occu-
pied clues, the generated shapes can not reveal 3D structures
like shapes, while the network learns unoccupied everywhere
when only using unoccupied clues.

100 150 200 250
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Bench

Boat

Epoch

E

500

Figure 10: Our loss under Bench and Boat during
training.

View Number 𝑉 5 10 15 20 25

IoU 45.6 52.5 65.4 73.1 73.1

Table 4: Effect of view numbers in terms of IoU (%).

Resolution. In this experiment, we explore the effect of our
loss on probing the discretized 3D space 𝑀 with a resolution
of 𝑅 under the airplane class. We keep the balance weight
𝛽 = 30 and shoot sparse rays with subsampling factor of 5.
We train the occupancy network 𝑓𝜃 with different resolutions,
such as {32, 64, 128, 256}. The reconstruction comparison
in Fig. 11 shows that our implicit reasoning is able to infer
shapes at arbitrary resolutions with sparse rays. Note that we
need to shoot denser rays in high resolution such as 𝑅 = 256
to make up the degeneration caused by less locations hit by
the rays, such as the improvement by rays with a subsampling
factor of 2 in Fig. 11 (e) over a subsampling factor of 5 in
Fig. 11 (d).
View Number. We also explore the effect of view numbers
𝑉 . We reported our results with 𝑉 = 20 in tables above.
In this experiment, we try different different view number
options to train the network, including 𝑉 = {5, 10, 15, 20, 25}.
We train the network using shapes in the training set under
plane class, and evaluate the trained network using shapes in
the testing set under the same class. We report our results
in Tab. 4. The numerical comparison shows that our method
can not inference the 3D structure from fewer views, and we
can not get significant improvements if we use more than 20
views for each shape.
Interpolation. We visualize the learned global feature space
by shape interpolation in Fig. 12. We randomly select two
reconstructed shapes in the test set, and employ their latent
codes to interpolate several new latent codes between them.
The interpolated latent codes are further used to generate
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Figure 11: Shapes reconstructed by our method at different resolutions 𝑅.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 12: Illustration of interpolated planes in (a-b), chairs in (c-d), and tables in (e-f).

novel shapes by the trained network. We visualize two pairs
of shape interpolation under each one of Airplane, Table, and
Chair class. The interpolated shapes can smoothly transform
from one shape to another, which justifies the semantics of
the space learned with our loss.
Loss. Finally, we visualize our proposed loss using the loss
curves producing the results of bench and boat in Fig. 10. We
can see that our loss can smoothly approach to zero, which is
also the approximate value of our loss computed on the GT
shapes. The loss curves show that our proposed loss function
can guide the occupancy network 𝑓𝜃 to converge very fast in
the first several epochs under both classes.

5 CONCLUSION

We introduce implicit reasoning on silhouette images to infer
implicit occupancy fields without rendering. Our implicit

reasoning successfully leverages our proposed loss to evalu-
ate how well the currently learned implicit occupancy fields
fit the occupied and unoccupied clues on silhouette images.
With only sparse clues, our performance shows significant
improvement over rendering based methods. Different from
RGB images, our renderer is able to infer geometry infor-
mation from low quality supervision. More importantly, we
show that it improves the performance if we weight differ-
ently on pixel supervision during reasoning. Our method
justifies the feasibility of learning implicit occupancy fields
without rendering, and provides a novel perspective to infer
3D structures in different manners determined by 2D occu-
pancy labels, which leverages 2D supervision more efficiently
than rendering based methods that adopt the same inference
for all 2D occupancy labels.
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