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ABSTRACT

We consider learning causal relationships under conditional moment restrictions.
Unlike causal inference under unconditional moment restrictions, conditional
moment restrictions pose serious challenges for causal inference, especially in high-
dimensional settings. To address this issue, we propose a method that transforms
conditional moment restrictions to unconditional moment restrictions through
importance weighting, using a conditional density ratio estimator. Using this
transformation, we successfully estimate nonparametric functions defined under
conditional moment restrictions. Our proposed framework is general and can
be applied to a wide range of methods, including neural networks. We analyze
the estimation error, providing theoretical support for our proposed method. In
experiments, we confirm the soundness of our proposed method.

1 INTRODUCTION

Consider learning the causal relationship between airline ticket prices and demand. As one might
expect, prices and demand rise and fall through the seasons, being affected by other events like
vacation periods, which are called confounders and may or may not be observable. Due to confounders,
naively inferring from this pattern that higher (lower) prices increase (decrease) demand would be
incorrect, and potentially detrimental. Thus, controlling for confounding effects is essential. This
issue frequently arises in practice, especially when learning causal (structural) relationships is
essential to answer counterfactual questions regarding policy intervention and outcome (Hansen,
2022).

One approach to deal with confounding effects (like in the airline example above) is the instrumental
variable (IV) approach (Wooldridge, 2002; Greene, 2003). In the IV approach, the conditional
moment restriction is defined as such that the causal model satisfies the restriction of zero expected
value given IVs, thus conditioning out the confounding effect. The simplest representation of this idea
is the two-step least squares (2SLS) for linear models (Wooldridge, 2002; Greene, 2003). However,
given the complex nature of the causal effect and confounding effect (and their relation), assuming
a linear relation can be too strong. Thus, in this paper, we focus on nonparametric IV (NPIV)
regressions, allowing for much more flexible estimation (Newey & Powell, 2003).

NPIV can be viewed as an instance of a more general framework of causal inference under conditional
moment restrictions. In this light, the machinery for inference under conditional moment restrictions
also applies to NPIV, as well as its shortcomings. One major issue with using the conditional moment
restrictions for causal inference is that one must approximate the conditional expectation, which
is often difficult to do (see, e.g., Newey (1993); Donald et al. (2003) for parametric and Newey &
Powell (2003); Ai & Chen (2003) for nonparametric IVs using sieves). For instance, Lewbel (2007)
and Otsu (2011) estimate the conditional expectation by local kernel density estimation. However,
local kernel density estimation suffers under high dimensionality. For this problem, recent methods
suggest the use of machine learning methods, such as neural networks (Hartford et al., 2017).
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In this paper, we propose transforming conditional moment restrictions into unconditional moment
restrictions by importance weighting using the conditional density ratio, which is defined as the ratio
of the conditional probability density, conditioned on the IVs, to the unconditional probability density.
We show that the unconditional expectation of a random variable weighted by the conditional density
ratio is equal to the conditional expectation. Further, we show that it is possible to estimate the
conditional density ratio with the least-squares method with a neural network. Once the conditional
density ratio is estimated, the usual method of moments, such as GMM, can be used straightforwardly.

The contribution of this paper is as follows: (i) we propose a novel approach to convert conditional
moment restrictions to unconditional moment restrictions by importance weighting; (ii) using our
proposed transformation, we develop methods for NPIV; (iii) we analyze the estimation error

2 SETUP AND NOTATION

Among various problems of learning causal relationships from conditional moment restrictions, we
focus on the NPIV regression for ease of discussion. Note that our proposed method can be applied
to more general settings, similar to Ai & Chen (2003).

Suppose that the observations {(Yi, Xi, Zi)}ni=1 are i.i.d., where Yi ∈ Y ⊆ R is an observable scalar
random variable, Xi ∈ X ⊆ RdX is a dX dimensional explanatory variable, Zi ∈ Z ⊆ RdZ is a
dZ dimensional random variable, called an IV, and X and Z are compact with nonempty interior.
We also assume that the probability densities of (Yi, Xi, Zi), (Yi, Xi), Zi exist and denote them by
p(y, x, z), p(y, x), and p(z), respectively. Let us define the causal relationships between Yi and Xi as

Yi = f∗(Xi) + εi,

where f∗ : X → Y is a structural function, εi is the sub-Gaussian error term with mean zero. To
learn f∗, suppose the IV Zi satisfies the following conditional moment restrictions:

E [εi|Zi] = 0 ∀i ∈ {1, 2, . . . , n}. (1)

Then, we also assume that under the conditional moment restriction, we can uniquely identify f∗.
Our goal is to learn f∗ from the conditional moment restrictions in (1). If Zi = Xi, this problem
boils down to the estimation of the conditional expectation (regression function) E[Yi|Xi]. However,
when E[εi|Xi] 6= 0, E[Yi|Xi] is not equivalent to f∗(Xi); that is, typical regression analysis, such as
least squares, may not return the correct estimate of f∗(Xi).

3 PRELIMINARIES AND LITERATURE REVIEW

In this section, we briefly review causal inference under moment restrictions.

3.1 IV METHOD FOR LINEAR STRUCTURAL FUNCTIONS

One of the basic cases of using the IV is when f∗ is a linear modelX>i θ
∗ with dX dimensional vector

θ∗ and the error term εi is correlated with the explanatory variable Xi. In this case, the parameter θ∗
of the linear model can be estimated if there are IVs of dimension dX or more that satisfy the uncon-
ditional moment restrictions, E[Ziεi] = 0dZ , where 0d is a d dimensional zero vector. In the just-
identified case (dX = dZ), we can estimate θ∗ as θ̂IV =

(
1
n

∑n
i=1 ZiX

>
i

)−1 1
n

∑n
i=1 ZiYi. In the

over-identified case (dX ≤ dZ ), we can estimate it by the 2SLS. In the 2SLS, we first regressXi byZi;
then using a dX dimensional function ĝ(Zi) obtained from the first stage regression, we estimate θ∗ as
θ̂2SLS = ( 1

n

∑n
i=1 X̂iX̂

>
i )−1 1

n

∑n
i=1 X̂iYi, where X̂d,i = Z>i ( 1

n

∑n
j=1 ZjZ

>
j )−1 1

n

∑n
j=1 ZjXd,j

and X̂i = (X̂1,i, . . . , X̂dX ,i)
>.

More generally, we can formulate the estimation of the linear structural function by uncondi-
tional moment restrictions defined using the IV; that is, E[m(θ∗;Yi, Xi, Zi)] = 0dm , where
θ∗ ∈ Θ is a parameter representing the causal effect, Θ is the parameter space, and m :
Θ×R×X×Z → Rdm is a dm dimensional moment function. Then, the GMM estimator is defined as
θ̂GMM = arg minθ∈Θ

(
1
n

∑n
i=1m(θ;Yi, Xi, Zi)

)>
Wdm

(
1
n

∑n
i=1m(θ;Yi, Xi, Zi)

)
, where Wdm

is a dm × dm weight matrix. If Wdm is chosen as W ∗dm ∝ E[m(θ∗;Yi, Xi, Zi)
>m(θ∗;Yi, Xi, Zi)],
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the estimator θ̂GMM is efficient under the posited moment conditions. Note that the GMM includes the
2SLS as a special case where εi has the same variance among i ∈ {1, . . . , n} and the zero covariance.

Three methods have been proposed to obtain W ∗dm ; two-step GMM, iterative GMM (Hayashi, 2000),
and continuous updating GMM (CU estimator; CUE, Hansen et al., 1996). These estimators have the
same asymptotic distribution, but different non-asymptotic properties. In particular, CUE is known as
a special case of the generalized empirical likelihood (GEL) estimator (Owen, 1988; Smith, 1997),
which plays an important role in estimation with many moment restrictions (Newey & Smith, 2004).

3.2 NPIV AND LEARNING FROM CONDITIONAL MOMENT RESTRICTIONS

In linear structural functions, zero covariance between the IV and error term suffices for identification.
However, in nonparametric structural functions, we require a stronger restriction: the error term has
conditional expectation zero given the IVs. Then, we can characterize the solution of NPIV as that of
an integral equation K(z) = E[Yi|Zi = z] = E[f∗(Xi)|z] =

∫
f∗(x)dF (x|z) with F denoting the

conditional c.d.f of x given z. The identification also results in the uniqueness of the solution.

Several estimators have been proposed. Newey & Powell (2003) proposes a nonparametric analogue
of the 2SLS for linear structural functions. They first define the linear-in-parameter model as a model
to approximate the nonparametric structural function f∗, where they use a linear approximation with
basis expansion, such as sieve (series) regression. Let us denote the approximation as f∗(Xi) ≈
ψ(Xi)

>θ∗, where ψ : X → Rdψ , dψ ≤ n is a vector-valued function consisting of outputs of basis
functions. Then, they conduct the 2SLS as follows: (i) they define a linear-in-parameter model as an
approximation to the nonparametric model of Zi, and estimate E[ψ(Xi)|Zi] using that model; (ii) they
regress Yi by E[ψ(Xi)|Zi] to estimate θ∗. In contrast, Ai & Chen (2003) proposes a nonparametric
analogue of the GMM. Ai & Chen (2003) also approximate the nonparametric structural function
f∗ by a linear-in-parameter model. However, unlike Newey & Powell (2003), Ai & Chen (2003)
estimates E[(Yi − f(Xi))|Zi], instead of estimating E[ψ(Xi)|Zi], by another linear-in-parameter
model. Using the estimator of E[(Yi−f(Xi))|Zi], Ai & Chen (2003) transforms conditional moment
restrictions into unconditional ones and apply the GMM to estimate f∗. In addition to these two
typical methods, Darolles et al. (2011), Carrasco et al. (2007a) propose their own methods for NPIV.

This is how the NPIV problem is typically cast into the framework of conditional moment restrictions,
where a parameter representing the causal relationship satisfies E[m(θ∗;Yi, Xi, Zi)|Zi] = 0dm . As
with NPIV, we often define the moment function as a function of the nonparametric function f instead
of the parameter θ. We can estimate f∗ defined under conditional moment restrictions using variants
of GMM or empirical likelihood, e.g., Ai & Chen (2003); Domínguez & Lobato (2004); Otsu (2011);
Lewbel (2007), by transforming the conditional moment restrictions to unconditional ones.

3.3 APPROACHES IN THE MACHINE LEARNING LITERATURE

2SLS with more flexible models. Hartford et al. (2017) extends the two-stage approach by employ-
ing a neural network density estimator, and Singh et al. (2019) does it by conditional mean embedding
in RKHS. For example, in Hartford et al. (2017), they first approximate K(z) by estimating F (x|z)
with neural networks. Then, for B samples {X̃j}Bj=1 generated from the estimator F̂ (x|z), they train

neural networks by minimizing the empirical risk 1
n

∑n
i=1

(
Yi − 1

B

∑
X̃j∼F̂ (Xj |Zi) f(X̃j)

)2

.

In contrast, Xu et al. (2021a) first approximates f(Xi) by neural networks and regard the last layer as
ψ(Xi) in the 2SLS of NPIV. Then, they predict ψ(Xi) by another model ϕ(Zi). Because ψ(Xi) is
transitive in the learning process, they alternatively train the models ϕ(Zi) and f(Xi).

Minimax approach. There has also been a recent surge in interest in minimax approaches that
reformulate conditional moment restrictions as a minimax optimization problem (Bennett et al., 2019;
Bennett & Kallus, 2020; Muandet et al., 2020; Chernozhukov et al., 2020; Liao et al., 2020). For this
approach, Dikkala et al. (2020) shows a strong theoretical guarantee on the estimation error bound.
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4 PROPOSED METHOD: NPIV BY IMPORTANCE WEIGHTING

Suppose that p(y, x) > 0 for all (y, x) ∈ Y × X . Note that we have already assumed the existence
of p(y, x|z) for all (y, x, z) ∈ Y × X × Z by assuming the existence of the conditional moment
restrictions. Define the conditional density ratio function r : Y × X × Z → (0, C) as

r∗(y, x|z) =
p(y, x|z)
p(y, x)

=
p(y, x, z)

p(y, x)p(z)
,

for 0 < C <∞. We assume the existence of the conditional density ratio function.
Assumption 1. For all (y, x, z) ∈ Y × X × Z , the conditional density ratio r∗(y, x|z) exists.

Then, we transform conditional moment restrictions into unconditional moment restrictions as

E[(Yi − f(Xi))|z] =

∫ (
y − f(x)

)p(y, x|z)
p(y, x)

p(y, x)dydx = E
[(
Yi − f(Xi)

)
r∗(Yi, Xi|z)

]
.

Thus, if we know the conditional density ratio function r∗(y, x|z), we can approximate E[(Yi −
f(Xi))|z] for z ∈ Z by the following sample average:

1

n

n∑
i=1

(
Yi − f(Xi)

)
r∗(Yi, Xi|z).

Based on this property, we propose the following two-stage method: (i) estimate the conditional
density ratio function r∗; (ii) approximate conditional moment restrictions by the sample average of(
Yi − f(Xi)

)
using the estimate of the conditional density ratio function r∗. Since we do not know

the true value of the conditional density ratio r∗ and cannot calculate the expected value, we consider
replacing r∗ with an estimator r̂ and approximating the expected value with the sample mean.

4.1 CONDITIONAL DENSITY RATIO ESTIMATION

First, we consider estimating r∗(y, x|z). While it is possible to estimate the probability density func-
tions of the numerator and the denominator, individually, following Vapnik’s principle (Vapnik, 1998),
we should avoid solving more difficult intermediate problems. Sugiyama et al. (2012) summarizes
various methods to estimate the density ratio directly. Inspired by least-squares importance fitting
(LSIF) of Kanamori et al. (2009), we estimate the conditional density ratio by minimizing

r̃ = arg min
r∈R̃

1

2
EY,X

[
EZ
[(
r∗(Yi, Xi|Zj)− r(Yi, Xi|Zj)

)2]]
,

where R̃ denotes a set of measurable functions and for a function g : Y × X × Z → R,
EY,X [EZ [g(Yi, Xi, Zj)]] denotes

∫
g(y, x, z)p(y, x)p(z)dydxdz. It is easy to confirm that r̃ = r∗

by taking the first derivative of the risk. Because this risk includes the unknown r∗, it may seem
intractable objective function. However, we can obtain the risk that does not include r∗ as

arg min
r∈R̃

1

2

(
EY,X

[
EZ
[
r∗2(Yi, Xi|Zj)− 2r∗(Yi, Xi|Zj)r(Yi, Xi|Zj) + r2(Yi, Xi|Zj)

]])
= arg min

r∈R̃

{
−EY,X [EZ [r∗(Yi, Xi|Zj)r(Yi, Xi|Zj)]] +

1

2
EY,X

[
EZ
[
r2(Yi, Xi|Zj)

]]}
= arg min

r∈R̃

{
−EY,X,Z [r(Yi, Xi|Zi)] +

1

2
EY,X

[
EZ
[
r2(Yi, Xi|Zj)

]]}
.

Here, we used EY,X [EZ [r∗(Yi, Xi|Zj)r(Yi, Xi|Zj)]] = EY,X
[
EZ
[
p(Yi,Xi,Zj)
p(Yi,Xi)p(Zj)

r(Yi, Xi|Zj)
]]

=

EY,X,Z [r(Yi, Xi|Zi)]. For some hypothesis class R, by approximating the risk with its sample
approximation, we estimate the conditional density ratio as

r̂ = arg min
r∈R

{
− 1

n

n∑
i=1

r(Yi, Xi|Zi) +
1

2

1

n

n∑
j=1

1

n

n∑
i=1

r2(Yi, Xi|Zj)

}
.

For the hypothesis classR, we can use various models, such as linear-in-parameter models and neural
networks. Suzuki et al. (2008) also proposes a similar formulation based on maximum likelihood
estimation with constraints, which is not easy to solve with neural networks.
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4.2 NPIV REGRESSION BY IMPORTANCE WEIGHTING

If we know the conditional density ratio function r∗, we can obtain unconditional moment
restrictions EY,X

[(
ρ(f ;Yi, Xi, Z1, r

∗) ρ(f ;Yi, Xi, Z2, r
∗) · · · ρ(f ;Yi, Xi, Zn, r

∗)
)>]

= 0n,

where ρ(f ;Yi, Xi, z, r
∗) =

(
Yi − f(Xi)

)
r∗(Yi, Xi|z). By replacing r∗ and its expectation

with its estimator and the sample average, we obtain the sample vector moment restrictions,
1
n

∑n
i=1

(
ρ(f ;Yi, Xi, Z1, r̂) ρ(f ;Yi, Xi, Z2, r̂) · · · ρ(f ;Yi, Xi, Zn, r̂)

)>
.

Once we obtain the sample average, we can apply various methods for learning f∗ from the uncondi-
tional moment restriction. For instance, for a hypothesis class F , we estimate f∗ by minimizing

Rn(f, r̂) =
1

n

n∑
j=1

(
1

n

n∑
i=1

(Yi − f(Xi))r̂(Yi, Xi|Zj)

)2

. (2)

This objective function is closely related with the projected mean squared error (MSE) introduced in
Dikkala et al. (2020), defined as

L(f, r∗) := EZ
[
(EY,X [(f∗(Xi)− f(Xi))r

∗(Yi, Xi|Zj)])2
]
, (3)

The objective function (2) is a special case of the GMM and GEL. In the GMM, we estimate f∗ by min-
imizing 1

n

∑n
j=1

(
1
n

∑n
i=1(Yi − f(Xi))r̂(Yi, Xi|Zj)

)>
wj
(

1
n

∑n
i=1(Yi − f(Xi))r̂(Yi, Xi|Zj)

)
,

where wj > 0 is a weight (Ai & Chen, 2003). Thus, our framework of transforming conditional
moment restrictions to unconditional moment restrictions using importance weighting allows us to
conduct causal inference using NPIV with conditional moment restrictions using a variety of models,
such as linear-in-parameter models with basis functions and neural networks.

Linear-in-parameter models. As an example, we introduce a linear-in-parameter model with some
basis functions. Here, let us consider using the Gaussian kernel as the basis function. For x ∈ X ,
let ϕ(x;σ2) =

(
K(x,X1;σ2), . . . ,K(x,Xn;σ2)

)>
, where K(x,Xu;σ2) = exp

(
−‖x−Xu‖

2
2

2σ2

)
is

the Gaussian kernel with a hyperparameter σ2 > 0 and ‖ · ‖2 is the L2 norm. Then, we define a
linear-in-parameter model as f(x;σ2) = β>ϕ(x;σ2) + β0, where β ∈ Rn, and β0 ∈ R.

Neural networks. We can also use neural networks for approximating f∗. In this case, we need to
carefully determine the network structures because we cannot uniquely determine the solution owing
to the overparameterization. In existing studies, it is assumed that the network modes are well defined
for the complexity of the nonparametric function f∗ and the sample size n.

Advantages of our proposed method. Our method has the following three advantages: (i) our
method is applicable to general causal inference problems, and is not limited to the NPIV problem
formulated in Section 2, as well as the Ai & Chen (2003), (ii) our method can deal with high
dimensional variables, owing to the machine learning technique. This is in contrast to related studies
Ai & Chen (2003) and Otsu (2011), which use a sieve and Nadaraya-Watson estimator, respectively,
and hence do not work in high dimension settings, and (iii) our method is computationally efficient by
the use of the importance weight approach. A similar study Hartford et al. (2017) requires additional
sampling of Yi from an estimated conditional density p(y|z, y). Another related study Dikkala et al.
(2020) requires a difficult algorithm to solve its minimax optimization problem. Our importance
weight approach avoids such computational burden.

4.3 LEARNING WITH OVERPARAMETRIZED MODELS

In learning from moment restrictions, the structural function f∗ is determined by the equations that
the expected value of random variables satisfy. When approximating the structure function f∗ using a
model with more parameters than the sample size, the solution cannot be uniquely determined. When
minimizing the prediction error directly, such overparameterization may not pose a major problem,
and, in fact, may be necessary to improve the generalization error, as a recent finding suggests in
the case of linear regression (Bartlett et al., 2020). However, in NPIV, the objective function is
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the set of conditional moment restrictions. Unlike in direct prediction error minimization, a model
trained to minimize empirically approximated conditional moment restrictions does not necessarily
minimize the MSE for f∗ (E[(f(Xi) − f∗(Xi))

2]). In fact, we empirically confirm that methods
using neural network sometimes do not work well partly because of their overfitting to empirical
moment minimization, not to the empirical MSE for f∗. Despite these potential problems, there is
a strong motivation to use neural networks, owing to the reported superiority in some applications,
such as computer vision (Xu et al., 2021a;b; Yuan et al., 2021), natural language processing (Ash
et al., 2019; Chen et al., 2020) tasks. For this reason, we introduce a heuristic to avoid this problem.

As we explained, the parameters are not uniquely determined by conditional moment restrictions
alone. Therefore, from the set of parameters satisfying conditional moment restrictions, we need to
select a set of parameters that works well in prediction. We consider training a model that has the
minimum MSE with Yi while satisfying conditional moment restrictions as follows:

min
f∈F

E
[
(Yi − f(Xi))

2
]

s.t. E [(Yi − f(Xi))|Zj ] = 0 ∀j ∈ {1, 2, . . . , n}.

Since it is difficult to solve constrained optimization with neural networks, we propose to solve the
penalized optimization. In the case of linear combination with penalties, we train the model by

min
f∈F

1

n

n∑
i=1

(Yi − f(Xi))
2 + η

n∑
j=1

(
1

n

n∑
i=1

(Yi − f(Xi))r̂(Yi, Xi|Zj)

)2

, (4)

where η ≥ 0 is a regularization coefficient.

The motivation of this heuristic is to select a function f(x) that is the closest to E[Yi|Xi = x], among
multiple functions satisfying the conditional moment restriction. This heuristic works well when
f∗(x) takes a near value of E[Yi|Xi = x] while f∗(x) 6= E[Yi|Xi = x].

5 ESTIMATION ERROR ANALYSIS

We show the estimation error of the conditional density ratio r∗ and structural function f∗. We denote
the sample counterpart of L(f, r∗) as

Ln(f, r∗) =
1

n

n∑
j=1

(
1

n

n∑
i=1

(f∗(Xi)− f(Xi))r
∗(Yi, Xi|Zj)

)2

.

Let us denote the distributions of (Yi, Xi) and Zi by P and Q, respectively, and define the L2 risk
of a function g with P and Q as ‖g‖2L2(P×Q) =

∫ ∫
g2(w)dPdQ. Let us denote the distribution of

(Yi, Xi, Zi) by O, and define the L2 risk of a function g with O as ‖g‖2L2(O) =
∫
g2(w)dO. We put

the following assumptions on the error term εi.
Assumption 2. The error term εi is sub-Gaussian random variables. In addition, the distributions
of Xi and Zi have probability densities that are finite and bounded away from zero.

Note that the randomness of Yi depends on εi andXi. Define the hypothesis classes of the conditional
density ratio r∗ and structural function f∗ as R and F , respectively. Suppose that the hypothesis
classes are Vapnik–Chervonenkis (VC) class (for rigorous definition, see Section 2.6 in van der vaart
& Wellner (1996)). This class include the true models, and the hypothesises are bounded.
Assumption 3. The hypothesis classR is VC class, includes the true model, r∗ ∈ R, and all r ∈ R
are uniformly bounded by B > 0.
Assumption 4. The hypothesis class F is VC class, includes the true model, f∗ ∈ F , and all f ∈ R
are uniformly bounded by B > 0.

We define a measure of complexity of the hypothesis classes: for F , we define the com-
plexity CB(F) :=

∫ B
0

√
logN (δ′,F , ‖ · ‖L∞)dδ′ with a covering number N (δ′,F , ‖ · ‖) :=

inf{N |{fj}Nj=1 s.t. F ⊂ ∪j=1{f |‖f − fj‖ ≤ δ′}} in terms of a sup-norm ‖f‖L∞ = supx |f(x)|.
In this following parts, for the conditional density ratio estimation, we derive the bound of the MSE
‖r̂ − r∗‖L2(P×Q); for the structural function estimation, we derive the bound of the projected MSE
L(f̂ , r∗), which corresponds to the upper bound of the MSE of ‖f̂ − f∗‖L2(O) (Section 5.3).
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5.1 MSE OF THE CONDITIONAL DENSITY RATIO

First, we consider the MSE of the conditional density ratio. For a multilayer perception with ReLU
activation function (Definition 1), we show the following bound. The proof is shown in Appendix B.2.
Lemma 1 (MSE of r∗). Suppose that Assumptions 1–3 hold. Let I(r) be a non-negative function on
R and I(r∗) <∞. Define RM = {r ∈ R : I(r) ≤ M} satisfying R =

⋃
M≥1RM . Suppose that

there exist c0 > 0 and 0 < γ < 2 such that supg∈RM ‖r − r
∗‖ ≤ c0M and sup r∈RM

‖r−r∗‖L2(P )≤δ
‖r −

r∗‖∞ = c0M for all δ > 0, and that logN (δ,RM , ‖ · ‖L∞) = O (M/δ)
γ . Then,

‖r̂ − r∗‖L2(O) = Op
(
n−1/(2+γ)

)
(5)

5.2 PROJECTED MSE OF STRUCTURAL FUNCTION f∗

Next, we consider bounding the projected MSE of the structural function f∗. To bound the projected
MSE, we use a technique associated with U-statistics. We first obtain the following lemma. Let
(Yi, Xi) be Wi, and W ′i be the i.i.d. copy of Wi. The proof is shown in Appendix B.3.

Lemma 2. Suppose that Assumptions 1–4 hold. For any f ∈ F and r ∈ R, L(f, r) = L̃(f, r)+op(1)
holds as a freely chosen hyper-parameter as n→∞, where

L̃(f, r) = EW,W ′,Z [(f∗(Xi)− f(Xi))r(Wi|Zi)(f∗(X ′i)− f(X ′i))r(W
′
i |Zi)] ,

Regarding the form, we define an empirical version of L̃(f, r) in an U-statistic form:

L̃n(f, r) =
1

n

n∑
j=1

1

n(n− 1)

n∑
i,i′=1,i6=i′

(f∗(Xi)− f(Xi))r(Wi|Zj)(f∗(Xi′)− f(Xi′))r(Wi′ |Zj).

By a property of U-statistics (for example, see Arcones & Giné (1993)), Ln(f, r) = L̃n(f, r) +

Op (1/n) clearly holds. Then, we can decompose the projected MSE L(f̂ , r∗) as follows:

L(f̂ , r∗) = L̃(f̂ , r∗)− L̃(f̂ , r̂)︸ ︷︷ ︸
=:∆r

+ L̃(f̂ , r̂)− L̃n(f̂ , r̂)︸ ︷︷ ︸
=:∆f

+L̃n(f̂ , r̂) +Op (1/n) . (6)

We can handle ∆r by the estimation error of r∗ as shown in Lemma 6 in Appendix B.4. We evaluate
the projected MSE by combining (6) with Lemma 1 and Lemma 6:
Theorem 1. Assume that the conditions of Lemmas 1–2 hold. Then, for any any δ ∈ (0, 1), there
exists a constant c > 0 such that the following inequality holds with n ≥ 1 and with probability at
least 1− δ, for any γ ∈ (0, 1):

L(f̂ , r∗) ≤ cCB(F) + CB(R)√
n

+Op

(
max

{√
log(1/δ)

n
,

1

n1/(2+γ)

})
.

This result reveals the following two findings: (i) the projected MSE is affected separately by the
complexity of F andR, and (ii) the overall convergence is O(1/

√
n) when these complexities are

finite. For instance, when using neural networks with Definition 1, the assumptions on the hypothesis
classes are satisfied (Lemma 3).

5.3 FROM PROJECTED MSE TO MSE OF f∗

Following Chen & Pouzo (2012) and Dikkala et al. (2020, Appendix C.4), we discuss the derivation
of the upper bound of the MSE of f∗ from the projected MSE. Let us define the measure of ill-
posedness (Chen & Pouzo, 2012; Dikkala et al., 2020) with respect to the function class F as

τ := supf∈R
‖f−f∗‖L2(O)

L(f,r∗) . Then, the MSE of f∗ is upper bounded as ‖f − f∗‖2L2(O) ≤ τ
2L(f̂ , r∗)

(Chen & Pouzo, 2012; Dikkala et al., 2020). Thus, Theorem 1 also implies

‖f̂ − f∗‖2L2(O) = cτ2 CB(F) + CB(R)√
n

+Op

(
τ2 max

{√
log(1/δ)

n
,

1

n1/(2+γ)

})
.

Note that Dikkala et al. (2020) derived 1/n rate on the MSE of f∗.
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Figure 1: The log10 scaled MSEs of the setting in Newey & Powell (2003). The left graph shows the
results using the original dataset. The right graph shows the results with additional IVs.

Figure 2: The log10 scaled MSEs of the original setting in Ai & Chen (2003). The left graph shows
the result with R = 0.1 and the right graph shows the result with R = 0.9.

Figure 3: The log10 scaled MSEs of the setting in Ai & Chen (2003) with additional IVs. The left
graph shows the result with R = 0.1 and the right graph shows the result with R = 0.9.

6 EXPERIMENTS

We implement the following three methods based on our proposed method: first, we use neural
networks to predict f∗ and train the model by penalized least-squares in (4) (IW-LS); second, we use
neural networks to predict f∗ and train the model by minimizing the sum of approximated moment
restrictions in (2) (IW-MM), which is the same as IW-LS except for the penalized term in the IW-LS;
third, we use a linear-in-parameter model with the Gaussian kernel to predict f∗ and train the model
by GMM (IW-Krnl). For all cases, we use neural networks for estimating r∗. We compare our
proposed methods with four methods: DeepGMM (Bennett et al. (2019)), DFIV (Xu et al. (2021a)),
DeepIV (Hartford et al. (2017)), and KIV (Singh et al. (2019)). We use the datasets proposed in
Newey & Powell (2003), Ai & Chen (2003), and Hartford et al. (2017). In addition, we train neural
networks by simple least squares (LS), ignoring the dependency between Xi and εi, as a comparison.
To fairly evaluate the performances, for DeepGMM, DFIV, DeepIV, and KIV, we use the code and
hyperparameters used in Xu et al. (2021a)1. For IW-LS, IW-MM, IW-Krnl, and LS, we also follow
the model and hyperparameters of the code as possible. More details are shown in Appendix C.

6.1 EXPERIMENTS WITH DATASETS OF NEWEY & POWELL (2003) AND AI & CHEN (2003)

First, we investigate the performances of the proposed methods using econometric settings of Newey
& Powell (2003) and Ai & Chen (2003). These settings have simpler structures than recently proposed
settings, such as in Hartford et al. (2017). When using complex and high-dimensional datasets, there
is an inherent difficulty in learning due to its complexity, separate from the problem setting. Therefore,
we use simple datasets to check whether the proposed method can actually learn f∗.

Newey & Powell (2003) generates {(Yi, Xi, Zi)}ni=1 as follows: first, they generate {(εi, Ui, Zi)}ni=1

from the multivariate normal distribution N

((
0
0
0

)
,

((
1 0.5 0

0.5 1 0
0 0 1

)))
; then, they generate

Xi = Zi + Ui and Yi = f∗(Xi) + εi, where f∗(Xi) = ln(|Xi − 1|+ 1) sgn(Xi − 1).

1https://github.com/liyuan9988/DeepFeatureIV
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Figure 4: The log10 scaled MSEs of the demand design experiments with 1, 000 samples. The left
graph show the results with ρ = 0.25 and the right graph shows the results with ρ = 0.75.

Ai & Chen (2003) generates {(Yi, Xi, Zi)}ni=1 as follows: first, they generate {(εi, X1i, Vi, Ui)}ni=1

as εi ∼ N
(
0, X2

1i + V 2
i

)
, X1i

i.i.d.∼ Unif[0, 1], Vi
i.i.d.∼ Unif[0, 1], and Ui

i.i.d.∼ N
(
0, X2

1i + V 2
i

)
;

second, they generate X2i = X1i + Vi + R × εi + Ui and Y1 = X1iγ0 + h0 (X2i) + εi, where
h0 (X2i) = exp (X2i) / (1 + exp (X2i)) and R is chosen as 0.9; then, obtain Xi = (X1i X2i)

>

and Zi = (X1i Vi). Here, εi and Ui are unobservable, and f∗(Xi) = X1iγ0 + h0 (X2i), where the
function h0 and γ0 are unknown.

We run each algorithm 20 times on each dataset with n = 1, 000 and calculate the mean squared
error (MSE). In the left graph of Figure 1 and Figure 2, we report the MSEs. In the dataset of Newey
& Powell (2003), DFIV and our proposed IW-MM produce smaller MSE. The dataset only has a
one-dimensionalXi, which mitigates the identification problem of neural networks. In contrast, in the
dataset of Ai & Chen (2003), IW-LS leads to smaller MSE. In Appendix C.4, using the experimental
setting of Newey & Powell (2003), we also show additional experimental results on the empirical
convergence of the MSE of the IWMM and a comparison between the IWMM and classical 2SLS.

Because the dimensions of the IVs are low in the original settings, we add more IVs to the original
settings and investigate the performances of the algorithms. The detailed settings are described in
Appendix C.1. The results are shown in the right graph of Figures 1 and Figure 3.

6.2 SIMULATION STUDIES USING DEMAND DESIGN DATASETS

To investigate the performance with more complicated and high-dimensional datasets, we use the
demand design dataset for synthetic airline ticket sales proposed by Hartford et al. (2017). In this
dataset, we observe (Yi, Pi, Ti, Si, Ci), where Yi is sales, Pi is price, Ti is time, Si is consumer’s
emotion, and Ci is cost to use as IV. Here, Ti and Si are covariates, that is, Xi = (Ti, Si), and the
IV is Zi = (Ci, Ti, Si). The sales Yi is generated as Yi = 100 + (10 + Pi)Sih(Ti) − 2Pi + εi,
where h(t) = 2

(
(t−5)4

600 + exp
(
−4(t− 5)2

)
+ t

10 − 2
)
. Since Pi is an endogenous variable and

correlated with the IV, we generate Pi to contain Ci as Pi = 25 + (Ci + 3)h(Ti) + Vi. In the
simulation, we assume εi ∼ N

(
ρVi, 1− ρ2

)
, Vi ∼ N (0, 1), Ci ∼ N (0, 1), Ti is sampled from

the uniform distribution with the continuous support [0, 10], and Si is sampled from the uniform
distribution with the discrete support {1, . . . , 7}. Here note that E[εi|Ci, Ti, Si] = E[εi|Zi] = 0. The
extent of correlation between Pi and Vi is controlled by ρ ∈ {0.25, 0.75} and the larger the ρ is, the
more severe the correlation problem becomes.

Figure 4 shows the results with 1, 000 samples. The results under other settings are reporetd in
Appendix C.2. In this setting, IW-LS and LS outperform the other methods. We consider this is
because f∗(Xi) takes large values compared to the error term. Under this situation, a model trained to
predict Yi may perform well because the influence of E[εi|Xi] 6= 0 is limited. However, the purpose
of using NPIV in the first place is because the influence is large, or else effects of E[εi|Xi] 6= 0 can
be ignored. Therefore, this dataset is often used in the existing studies, it may not be suitable.

7 CONCLUSION

This paper proposed a method for learning causal relationships from conditional moment restrictions.
Our method is based on importance weighting using the conditional density ratio. The proposed
method showed superior performance in experiments. We point out potential problems in recently
proposed methods concerning identification and empirical performances.
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A LITERATURE REVIEW OF IV METHODS

In the field of economics, the causal effect is often referred to as the structural effect, because
the causal relationship arises from some economic structure. The idea of endogeneity has a close
relationship with the estimation of the structural effect. For example, in estimation problems with
supply/demand models, because the supply and demand are determined simultaneously, there is a
simultaneous equation bias, which causes the correlation between the explanatory variable and error
term. This correlation is called enodogeneity. Under the enodogeneity, the OLS does not yield a
consistent estimator of the structural model. To obtain a consistent estimator to capture the causal
effect, the method of IVs have been used Wright (1928); Reiersöl (1945).

A.1 IV METHODS FOR LINEAR STRUCTURAL MODELS

First, we consider a linear structural model. For two random variables Y ∈ R, X ∈ Rd, endogeneity
refers to a situation, such that

Y = X>β + εi, (7)

where εi ∈ R is the error term, β is the parameter of interest, and

E[Xε] 6= 0. (8)

This regression model is called a structural equation and β is the structural parameter. Under
endogeneity, the least squares method does not yield a consistent estimator.

Let us consider an IV Z ∈ Rk such that

E[Zε] = 0. (9)

For the estimation of the structural parameter under endogeneity, the IV Z plays an important.

A.2 IV METHODS FOR NONPARAMETRIC STRUCTURAL MODELS

Nonparametric estimation of structural models under conditional moment restrictions is an important
topic in statistics and econometrics, because it allows us to model economic relationships flexibly.
Let h∗(·) = (h∗1(·), . . . , h∗q(·)) be unknown nonparametric structural functions, where each function
h∗` (·) may depend on Xi and Yi. In general, we can consider estimating the unknown nonparametric
structural functions h∗(·) defined as

E [ρ(Y,X; θ0, h
∗(·))|Z] = 0, (10)

where ρ(·; θ0, h
∗(·))) is a vector of residuals with functional forms. Note that the conditional

distribution of Y given X is not specified.

This model is a generalization of semi/nonparametric estimation with conditional moment restrictions
considered in Chamberlain (1992) and Newey & Powell (2003). This model includes many structural
models as special cases. A typical example is the target structural model of the NPIV problem
defined in Section 2 (Newey & Powell, 2003; Darolles et al., 2011). The NPIV problem also includes
the estimation of a shape-invariant system of Engel curves with an endogenous total expenditure
(Blundell et al., 2007). Another important special case of (10) is the quantile instrumental variables
(IV) treatment effect model of Chernozhukov & Hansen (2005), and the nonparametric quantile
instrumental variables regression of Chernozhukov et al. (2007) and Horowitz & Lee (2007a). There
are other applications, such as asset pricing models (Chen & Ludvigson2009Ludvigson, 2009) and
reinforcement learning.

There are three approaches to the estimation of the structural models under the conditional moment
restrictions: the sieve minimum distance (SMD) method, the function space Tikhonov regularized
minimum distance (TMD) method, and the minimax optimization method.

SMD method. The SMD procedure minimizes a consistent estimate of the minimum distance
criterion over some finite-dimensional compact sieve space. Newey & Powell (2003) extends the
2SLS methods for linear structural models to the NPIV problem. The authors approximate the
nonparametric structural function with a sieve estimator, which is a linear combination of growing
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feature basis functions. Ai & Chen (2003) and Chen & Pouzo (2012) propose the penalized minimum
distance sieve estimator to a more general problem defined as (10).

When applying the minimum distance method to the NPIV problem, we consider solving the following
problem:

min
h∈H

EZ [EY,X [Y − h(X)|Z]2] + λR(h),

where R(h) is a regularizer. Chen & Pouzo (2012) approximates the function class Hn by linear
functions in growing feature space with the sample size n. Subsequently, the authors also estimate
the function m(z) = E[y − h(x) | z] based on another growing sieve.

TMD method. In the TMD method, we minimize a consistent penalized estimate of the minimum
distance criterion over the whole infinite dimensional function spaceH, in which the penalty function
is of the classical Tikhonov type (Hall & Horowitz, 2005; Horowitz & Lee, 2007b; Carrasco et al.,
2007b; Darolles et al., 2011; Gagliardini & Scaillet, 2012). In the NPIV problem, this approach is
equivalent to solving

min
h∈H

EZ [EY,X [Y − h(X)|Z]] + λ‖h‖22. (11)

Note that this is equivalent to the minimum distance estimation, such as Chen & Pouzo (2012).

Minimax optimization method. Recently, in the machine learning literature, the minimax ap-
proach has garnered attention (Bennett et al., 2019; Dikkala et al., 2020). In this approach, we solve
the following minimax optimization problem:

min
f∈F

max
h∈H

E[(Y − f(X))h(Z)]− ‖h‖22. (12)

Such a representation of the conditional moment restrictions has long been used in statistics and
econometrics. One of the related studies is the specification testing by Bierens (1982; 1990). The
authors assume that a statistical model that satisfies the conditional moment restrictions is correct
and propose a specification testing method to investigate whether the model is correct. These studies
transform the conditional moment restrictions to unconditional moment restrictions by using the
product of any function of a random variable used in the conditioning and the moment function. This
idea of transformation to unconditional moment restrictions is also used in other related work, such
as Santos (2012).

In particular, Dikkala et al. (2020) shows the minimax optimality of a method based on such minimax
optimization. This minimax optimization technique is known to be applicable, not only to the NPIV
problem, but also to a wider range of problems. It is also closely related to debiased machine learning
literature (Chernozhukov et al., 2020).

B PROOFS IN SECTION 5

B.1 MATHEMATICAL TOOLS

Concentration inequalities for empirical processes Given a probability distribution P and a
random variable g(X), we denote the expectation of g(X) under P by

∫
gdP . Given samples

X1, X2, . . . , Xn from P , the empirical distribution is denoted by Pn, and the empirical mean is
denoted by

∫
gdPn; that is,

∫
gdPn = 1

n

∑n
i=1 g(Xi). We also denote

∫
gdP − 1

n

∑n
i=1 g(Xi) by∫

gd
(
P − Pn

)
.

We also define

ρ2
K(g) = 2K2

∫ (
exp

(
|g|/K − 1− |g|/K

))
dP, K > 0. (13)

Let G satisfy

sup
g∈G

ρK(g) ≤ R (14)

Then, we summarize some tools used in the theoretical analysis.
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Proposition 1 (Theorem 5.11 in van de Geer (2000)). C is a (sufficiently large) universal constant,
whereas a, C0, and C1 may be chosen, but do have to satisfy the following conditions:

• a ≤ C1
√
nR2/K;

• a ≤ 8
√
nR;

• a ≥ C0

(
max

{∫ R
a/(26

√
n)

√
logN (u,G, ‖ · ‖)du,R

})
• C2

0 ≥ C2(C1 + 1).

Then,

P
(

sup
g∈G

∣∣∣∣√n ∫ gd
(
Pn − P

)∣∣∣∣ ≥ a) ≤ C exp

(
− a2

C2(C1 + 1)R2

)
(15)

Proposition 2 (Lemma 5.14 in van de Geer (2000)). Let G ⊂ L2(P ) be a function class and the map
I(g) be a complexity measure of g ∈ G, where I is a non-negative function onR and I(g0) <∞ for
a fixed g0 ∈ G. We now define GM = {g ∈ G : I(g) ≤M} satisfying G =

⋃
M≥1 GM . Suppose that

there exist c0 > 0 and 0 < γ < 2 such that
sup
g∈GM

‖g − g0‖ ≤ c0M, sup
r∈GM

‖g−g0‖L2(P )≤δ

‖g − g0‖∞ ≤ c0M, for all δ > 0,

and that logN (δ,GM , P ) = O (M/δ)
γ . Then, we have

sup
g∈G

∣∣∫ (g − g0)d(P − Pn)
∣∣

D(g)
= Op (1) , (n→∞),

where D(g) is defined by

D(g) = max

‖g − g0‖1−γ/2L2(P ) I(g)γ/2
√
n

,
I(g)

n2/(2+γ)

 .

Lemma 3 (Lemma 9 of Kato & Teshima (2021)). Let ` : (br, Br)→ R be a ν-Lipschitz continuous
function. Let logN

(
δ,F , ‖ · ‖L2(P )

)
denote the bracketing entropy ofF with respect to a distribution

P . Then, for any distribution P , any γ > 0, any M ≥ 1, and any δ > 0, we have

logN
(
δ, ` ◦ HM , ‖ · ‖L2(P )

)
≤ (s+ 1)(2ν)γ

γ

(
M

δ

)γ
.

Moreover, there exists c0 > 0 such that for any M ≥ 1 and any distribution P ,
sup

`◦r∈`◦HM
‖` ◦ r − ` ◦ r∗‖L2(P ) ≤ c0νM,

sup
`◦r∈`◦HM

‖`◦r−`◦r∗‖L2(P )≤δ

‖` ◦ r − ` ◦ r∗‖∞ ≤ c0νM, for all δ > 0.

Concentration inequalities for U-statistics. Given a probability distributions P and Q and a
random variable g(X,Z), we denote the expectation of g(X,Z) under P and Q by

∫ ∫
gdPdQ; that

is, EX
[
EZ
[
g(X,Z)

]]
=
∫ ∫

gdPdQ. Given samples X1, X2, . . . , Xn from P and Z1, Z2, . . . , Zn

from Q, the empirical distributions are denoted by Pn and Qn, and the empirical mean is denoted by∫ ∫
gdPndQn; that is,

∫ ∫
gdPndQn = 1

n

∑n
j=1

1
n

∑n
i=1 g(Xi, Zj). We also denote

∫ ∫
gdPdQ−

1
n

∑n
j=1

1
n

∑n
i=1 g(Xi, Zj) by

∫ ∫
gd
(
P − Pn

)
d
(
Q−Qn

)
.

We also define

ρ2
K(g) = 2K2

∫ (
exp

(
|g|/K − 1− |g|/K

))
dP, K > 0. (16)

Let G satisfy
sup
g∈G

ρK(g) ≤ R (17)

Then, we summarize some tools used in the theoretical analysis.

15
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Proposition 3 (Concentration inequality on empirical processes with U-statistics: Theorem 5 in
Arcones (1995), adjusted to our setting). Suppose that S1, ..., Sn are S-valued i.i.d. random variables
and consider a class of symmetric functionsH ⊂ L2(S ×S). Also, suppose that any function inH is
uniformly bounded by b > 0 and define σ2 = suph∈HVarS(ES′ [h(S, S′)]) where S′ is an i.i.d. copy
of S. If the N (ε,H, ‖ · ‖2) ≤ (A/ε)ν for some A, ν > 0, for any t ≥ c with some c > 0, we obtain

P

n1/2 sup
h∈H

 1

n(n− 1)

n∑
i,i′=1,i6=i′

h(Si, Si′)− ES,S′ [h(S, S)]

 ≥ t


≤ 8 exp(−t2/217(σ2 + tbn−1/2)) + 8A2ν(σ2 + 2tbn−1/2)−ν exp(−n(σ2 + tbn−1/2/2)/2b2)

+ 2 exp(−t2/(211bc(σ2 + tbn−1/2))).

Proposition 4 (Bernsteins’ inequality for U-statistics (Hoeffding, 1963; Arcones & Giné, 1993)).
Let ‖g‖∞ < c,

∫ ∫
gdPdQ = 0, and σ2 =

∫ ∫
g2dPdQ. Then, for any a′ > 0:

P
(∫ ∫

gdPndQn > a′
)
≤ exp

(
na
′2/2

2σ2 + (2/3)ca′

)
.

This implies that for any a > 0,

P
(∣∣∣∣∫ ∫ g − g0d

(
P − Pn

)
d
(
Q−Qn

)∣∣∣∣ > a√
n

)
≤ exp

(
a2/2

6σ2 + 2ca/
√
n

)
.

As well as Suzuki et al. (2008), by applying this result, we can obtain the following result.
Proposition 5 (From Proof of Theorem 1 in Suzuki et al. (2008)). Let G ⊂ L2(P ×Q) be a function
class and the map I(g) be a complexity measure of g ∈ G, where I is a non-negative function on
R and I(g0) < ∞ for a fixed g0 ∈ G. We now define GM = {g ∈ G : I(g) ≤ M} satisfying
G =

⋃
M≥1 GM . Suppose that there exist c0 > 0 and 0 < γ < 2 such that

sup
g∈GM

‖g − g0‖ ≤ c0M, sup
r∈GM

‖g−g0‖L2(P×Q)≤δ

‖g − g0‖∞ ≤ c0M, for all δ > 0,

and that logN (δ,GM , P ×Q) = O (M/δ)
γ . Then, we have

sup
g∈G

∣∣∫ ∫ (g − g0)d(P − Pn)d(Q−Qn)
∣∣

D(g)
= Op (1) , (n→∞),

where D(g) is defined by

D(g) = max

‖g − g0‖1−γ/2L2(P×Q)I(g)γ/2
√
n

,
I(g)

n2/(2+γ)

 .

sup
g∈R

∣∣∣∣∫ ∫ (g − g0)d(P − Pn)d(Q−Qn)

∣∣∣∣ = Op
(
1/
√
n
)
, (n→∞). (18)

Complexities of neural networks.
Definition 1 (ReLU neural networks; Schmidt-Hieber, 2020). For L ∈ N and p = (p0, . . . , pL+1) ∈
NL+2,

F(L, p) :={f : x 7→WLσvLWL−1σvL−1
· · ·W1σv1

W0x :

Wi ∈ Rpi+1×pi , vi ∈ Rpi(i = 0, . . . , L)},
where σv(y) := σ(y − v), and σ(·) = max{·, 0} is applied in an element-wise manner. Then, for
s ∈ N, F ≥ 0, L ∈ N, and p ∈ NL+2, define

H(L, p, s, F ) := {f ∈ F(L, p) :

L∑
j=0

‖Wj‖0 + ‖vj‖0 ≤ s, ‖f‖∞ ≤ F},

16
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where ‖ · ‖0 denotes the number of non-zero entries of the matrix or the vector, and ‖ · ‖∞ denotes
the supremum norm. Now, fixing L̄, p̄, s ∈ N as well as F > 0, we define

IndL̄,p̄ := {(L, p) : L ∈ N, L ≤ L̄, p ∈ [p̄]L+2},

and we consider the hypothesis class

H̄ :=
⋃

(L,p)∈IndL̄,p̄

H(L, p, s, F )

H := {r ∈ H̄ : Im(r) ⊂ (br, Br)}.

Moreover, we define I1 : IndL̄,p̄ → R and I : H → [0,∞) by

I1(L, p) := 2|IndL̄,p̄|
1
s+1 (L+ 1)V 2,

I(r) := max

‖r‖∞, min
(L,p)∈IndL̄,p̄

r∈H(L,p,s,F )

I1(L, p)

 ,

where V :=
∏L+1
l=0 (pl + 1), and we define

HM := {r ∈ H : I(r) ≤M}.

Lemma 4 (Lemma 5 in Schmidt-Hieber (2020)). For L ∈ N and p ∈ NL+2, let V :=
∏L+1
l=0 (pl + 1).

Then, for any δ > 0,

logN (δ,H(L, p, s,∞), ‖ · ‖∞) ≤ (s+ 1) log(2δ−1(L+ 1)V 2).

Definition 2 (Derived function class and bracketing entropy). Given a real-valued function class F ,
define ` ◦ F := {` ◦ f : f ∈ F}. By extension, we define I : ` ◦ H → [1,∞) by I(` ◦ r) = I(r)
and ` ◦ HM := {` ◦ r : r ∈ HM}. Note that, as a result, ` ◦ HM coincides with {` ◦ r ∈ ` ◦ H :
I(` ◦ r) ≤M}.

Notations. Let us denote a pair of random variables (Yi, Xi) by Wi. We denote the distribution of
(Wi, Zi) by R and its empirical distribution as On. Besides, we denote the distributions of Wi and
Zi by P and Q, and their empirical distributions by Pn and Qn. For a function g(X,Z), we define
the L2 risk over the distribution P and Q as

∥∥g∥∥
L2(P×Q)

=

√
EX
[
EZ
[
g2(X,Z)

]]
=

√∫ ∫
g2dPdQ.

B.2 PROOF OF LEMMA 1: ESTIMATION ERROR IN CONDITIONAL DENSITY RATIO ESTIMATION

Lemma 5 (Decomposition of MSE).

‖r̂ − r∗‖2L2(O) ≤

∣∣∣∣∣EW,Z [r∗(W |Z)− r̂(W |Z)]− 1

n

n∑
i=1

(
r∗(Wi|Zi)− r̂(Wi|Zi)

)∣∣∣∣∣
+

1

2

∣∣∣∣∣EZ [EW [r∗2(W |Z)− r̂2(W |Z)
]]
− 1

n

n∑
j=1

1

n

n∑
i=1

(
r∗2(Wi|Zj)− r̂2(Wi|Zj)

)∣∣∣∣∣.
Proof of Lemma 5. Since The estimator r̂ is the minimizer of the empirical risk, it satisfies the
inequality

− 1

n

n∑
i=1

r̂(Wi|Zi) +
1

2

1

n

n∑
j=1

1

n

n∑
i=1

r̂2(Wi|Zj) ≤ −
1

n

n∑
i=1

r∗(Wi|Zi) +
1

2

1

n

n∑
j=1

1

n

n∑
i=1

r∗2(Wi|Zj).

(19)

17
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Additionally, we consider an expectation of squared residuals as

1

2
EZ
[
EW

[(
r̂(W |Z)− r∗(W |Z)

)2]]
=

1

2
EZ
[
EW

[
r̂2(W |Z)− 2r̂(W |Z)r∗(W |Z) + r∗2(W |Z)

]]
=

1

2
EZ
[
EW

[
r̂2(W |Z)

]]
− EW,Z [r̂(W |Z)] +

1

2
EW,Z [r∗(W |Z)]

+ EW,Z [r∗(W |Z)]− EW,Z [r∗(W |Z)]

=
1

2
EZ
[
EW

[
r̂2(W |Z)

]]
− EW,Z [r̂(W |Z)]− 1

2
EW,Z [r∗(W |Z)]︸ ︷︷ ︸
=EZ [EW [r∗2(W |Z)]]

+EW,Z [r∗(W |Z)]

= −1

2
EZ
[
EW

[
r∗2(W |Z)− r̂2(W |Z)

]]
+ EW,Z [r∗(W |Z)− r̂(W |Z)] . (20)

Taking sum of the both hand sides of (19) and (20), then we obtain the following by subtracting
− 1
n

∑n
i=1 r̂(Wi|Zi) + 1

2
1
n

∑n
j=1

1
n

∑n
i=1 r̂

2(Wi|Zj) from the both side as

1

2
EW,Z

[(
r̂(W |Z)− r∗(W |Z)

)2]
≤ −1

2
EZ
[
EW

[
r∗2(W |Z)− r̂2(W |Z)

]]
+ EW,Z [r∗(W |Z)− r̂(W |Z)]

+
1

2

1

n

n∑
j=1

1

n

n∑
i=1

(
r∗2(Wi|Zj)− r̂2(Wi|Zj)

)
− 1

n

n∑
i=1

(
r∗(Wi|Zi)− r̂(Wi|Zi)

)
.

Then, we obtain the statement.

Our remaining task is to bound the following target values:

sup
r∈R

∣∣∣∣∣∣EZ [EW [r2(W |Z)
]]
− 1

n

n∑
j=1

1

n

n∑
i=1

r2(Wi|Zj)

∣∣∣∣∣∣ , and (21)

sup
r∈R

∣∣∣∣∣EW,Z [r(W |Z)]− 1

n

n∑
i=1

r(Wi|Zi)

∣∣∣∣∣ . (22)

Proof of Lemma 1. Since 0 < γ < 2, we can apply Propositions 2 and 5 in combination with
Lemma 3 to obtain

sup
r∈H

|EZ
[
EW

[
r2(W |Z)

]]
− 1

n

∑n
j=1

1
n

∑n
i=1 r

2(Wi|Zj)|
D1(r)

= Op (1) ,

sup
r∈H

∣∣EW,Z [r(W |Z)]− 1
n

∑n
i=1 r(Wi|Zi)

∣∣
D2(r)

= Op (1) ,

where

D1(r) = max

‖r
2 − r∗2‖1−γ/2L2(P×Q)I(r2)γ/2

√
n

,
I(r2)

n2/(2+γ)

 , and

D2(r) = max

‖r − r
∗‖1−γ/2L2(O) I(r)γ/2
√
n

,
I(r)

n2/(2+γ)

 .

18



Published as a conference paper at ICLR 2022

Noting that supr∈H I(r) <∞ and supr∈H I(r2) <∞. Then, for any 0 < γ < 2, we have∥∥∥∥∥∥EZ [EW [r̂2(W |Z)
]]
− 1

n

n∑
j=1

1

n

n∑
i=1

r̂2(Wi|Zj)

∥∥∥∥∥∥
2

L2(P×Q)

. Op

max

‖r̂
2 − r∗2‖1−γ/2L2(P×Q)√

n
,

1

n2/(2+γ)


 , and

∥∥∥∥∥EW,Z [r̂(W |Z)]− 1

n

n∑
i=1

r̂(Wi|Zi)

∥∥∥∥∥
2

L2(P×Q)

. Op

max

‖r̂ − r
∗‖1−γ/2L2(O)√
n

,
1

n2/(2+γ)


 .

These inequalities imply
‖r̂ − r∗‖L2(P×Q) ≤ Op

(
n−

1
2+γ

)
.

B.3 PROOF OF LEMMA 2

We start with the expected loss function for a learner f : X → R and a conditional density function
r : X × Y × Z → R as

L(f, r) := EZ
[
(EW [(f∗(X)− f(X))r(W |Z)])

2
]
, (23)

where W = (Y,X). For T ∈ T, we consider T i.i.d. random variables Wi = (Xi, Yi), i = 1, ..., n
generated from a conditional distribution P and approximate the inner expectation term as

EW [(f∗(X)− f(X))r(W |Z)] = n−1
n∑
i=1

(f∗(Xi)− f(Xi))r(Wi|Z) + κn(f, r),

where

κn(f, r) := EW [(f∗(X)− f(X))r(W |Z)]− n−1
n∑
i=1

(f∗(Xi)− f(Xi))r(Wi|Z)

is a residual. We substitute this form into (3) and obtain

L(f, r) = EZ

(n−1
n∑
i=1

(f∗(Xi)− f(Xi))r(Wi|Z) + κn(f, r)

)2


= EZ

n−2
T∑

k,k′=1

(f∗(Xi)− f(Xi))r(Wi|Z)(f∗(Xi′)− f(Xi′))r(Wi′ |Z)


+ 2EZ

[
κn(f, r)n−1

n∑
i=1

(f∗(Xi)− f(Xi))r(Wi|Z)

]
︸ ︷︷ ︸

=:T1

+EZ [κn(f, r)2]︸ ︷︷ ︸
=:T2

= EZ

n−2
n∑

i,i′=1,i′ 6=i

(f∗(Xi)− f(Xi))r(Wi|Z)(f∗(Xi′)− f(Xi′))r(Wi′ |Z)


︸ ︷︷ ︸

=:T ∗

+ EZ

[
n−2

n∑
i=1

(f∗(Xi)− f(Xi))
2r(Wi|Z)2

]
︸ ︷︷ ︸

=:T0

+T1 + T2.
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For T0, the uniformly bounded property of f∗, f and r implies that it is T0 = O(1/n). For T1 and T2,
the VC-class property and the Glivenko-Cantelli theorem (Section 2.8.1 in van der vaart & Wellner
(1996)), we obtain κn(f, r) → 0 in probability as T → ∞ uniformly on F × R. Associate with
the boundedness of f∗, f and r, we obtain that T1 = op(1) and T2 = op(1). About T ∗, which is an
U-statistic, a convergence theorem (Theorem 3.1 in Arcones & Giné (1993)) as n→∞ implies that
the U-statistic converges to EW,W ′|Z [(f∗(X)− f(X))r(W |Z)(f∗(X ′)− f(X ′))r(W ′|Z)], where
W ′ = (Y ′, X ′) is an i.i.d. copied random element of W . Hence, we obtain

L(f, r) = EZ
[
EW,W ′|Z [(f∗(X)− f(X))r(W |Z)(f∗(X ′)− f(X ′))r(W ′|Z)]

]
+ op(1)

= EW,W ′,Z [(f∗(X)− f(X))r(W |Z)(f∗(X ′)− f(X ′))r(W ′|Z)] + op(1),

for any f ∈ F and r ∈ R as T →∞.

B.4 ESTIMATION ERROR BOUND OF ∆r

We can bound ∆r as follows:

Lemma 6. Suppose that Assumptions 1 holds. Then,

∆r = O(‖r̂ − r∗‖L2(P×Q)) (24)

Proof. Let us define ξf̂ := f̂ − f∗. We bound ∆r by the Lipschitz continuity of L(f̂ , r) in r. For
any r, r′ ∈ R, we obtain

L(f̂ , r)− L(f̂ , r′) = E
[
ξ2
f̂
(X)ξ2

f̂
(X ′)(r(W |Z)r(W ′|Z)− r′(W |Z)r′(W ′|Z))

]
= E

[
ξ2
f̂
(X)ξ2

f̂
(X ′)r(W ′|Z)(r(W ′|Z)− r′(W ′|Z))

]
+ E

[
ξ2
f̂
(X)ξ2

f̂
(X ′)r′(W |Z)(r(W ′|Z)− r′(W ′|Z))

]
. 32B

′5‖r − r′‖L2(O),

by the Cauchy-Schwartz inequality and the uniformly bounded property over F andR. As a result,
if the conditional density ratio p(w,z)

p(w)p(z) is bounded, we obtain

∆r = O(‖r̂ − r∗‖2L2(O)) = O(‖r̂ − r∗‖2L2(P×Q)).

B.5 PROOF OF THEOREM 1: ESTIMATION ERROR BOUND

We use the following lemma to show Theorem 1.

Lemma 7.
L̃n(f̂ , r̂) ≤ Γ(f̂ , r̂) +Op (1/n) .

Proof. We start with the following basis inequality following the definition of f̂ ; since it is an
minimizer of the empirical risk with r̂, we obtain

1

n

n∑
j=1

(
1

n

n∑
i=1

(Yi − f̂(Xi))r̂(Wi|Zj)

)2

≤ 1

n

n∑
j=1

(
1

n

n∑
i=1

(Yi − f∗(Xi))r̂(Wi|Zj)

)2

.

Since Yi = f∗(Xi) + ε, the above inequality updated as

1

n

n∑
j=1

(
1

n

n∑
i=1

(εi − ξf̂ (Xi))r̂(Wi|Zj)

)2

≤ 1

n

n∑
j=1

(
1

n

n∑
i=1

εir̂(Wi|Zj)

)2

, (25)
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where we define ξf̂ := f̂ − f∗. Since the left-hand side is expanded as

1

n

n∑
j=1

(
1

n

n∑
i=1

(εi − ξf̂ (Xi))r̂(Wi|Zj)

)2

=
1

n

n∑
j=1

(
1

n

n∑
i=1

εir̂(Wi|Zj)

)2

+
1

n

n∑
j=1

(
1

n

n∑
i=1

ξf̂ (Xi)r̂(Wi|Zj)

)2

︸ ︷︷ ︸
=Ln(f̂ ,r̂)+Op(1/n)

− 2
1

n

n∑
j=1

1

n2

n∑
i,i′=1,i6=i′

εiεi′ξf̂ (Xi)ξf̂ (Xi′)r̂(Wi|Zj)r̂(Wi′ |Zj)︸ ︷︷ ︸
=:Γ(f̂ ,r̂)

− 2
1

n3

n∑
i,j=1

ε2
i ξf̂ (Xi)

2r̂(Wi|Zj)2

︸ ︷︷ ︸
=Op(1/n)

.

Substituting this expansion into (25), we obtain

Ln(f̂ , r̂) ≤ Γ(f̂ , r̂) +Op (1/n) ≤ sup
f∈F,r∈R

Γ(f, r) +Op (1/n) .

Therefore,

L̃n(f̂ , r̂) = Ln(f̂ , r̂) +Op (1/n) = Γ(f̂ , r̂) +Op (1/n) ≤ sup
f∈F,r∈R

Γ(f, r) +Op (1/n) .

Then we show Theorem 1.

Step (i): Bound of L̃n(f̂ , r̂). A goal of this step is to show that the definition of f̂ implies that for
some ε ≥ 0, with high probability,

L̃n(f̂ , r̂) ≤ ε.

From Lemma 7,

L̃n(f̂ , r̂) ≤ Γ(f̂ , r̂) +Op (1/n) ≤ sup
f∈F,r∈R

Γ(f, r) +Op (1/n) .

A rest of this step is to bound supf∈F,r∈R Γ(f, r). We bound the tail-probability by the Talagrand’s
inequality (Theorem 3.3.9 in Giné & Nickl (2021)) for U-statistics (Theorem 5 in Arcones (1995), or
Theorem 1 in Li et al. (2014)) as the following inequality; for any δ > 0, with probability at least
1− δ, we obtain

sup
f∈F,r∈R

Γ(f, r) . ED

[
sup

f∈F,r∈R
Γ(f, r)

]
+O

(√
log(1/δ)

n

)
,

provided the uniformly bounded and finite variance properties over F ×R.

To the end, we study an expectation of Γ(f̂ , r̂) in terms of the dataset D = {(Yi, Xi, Zi)}ni=1 and
obtain

ED

[
sup

f∈F,r∈R
Γ(f, r)

]
≤ ED [Γ(f∗, r∗)] + E

[
sup

f,f ′∈F,r,f ′∈R
|Γ(f, r)− Γ(f ′, r′)|

]

. 0 + n−1/2

∫ B

0

√
logN (δ,F ×R, ‖ · ‖)dδ.

Here, for the joint set F ×R, we define a distance ‖(f, r)‖ := ‖f‖+‖r‖. The last inequality follows
Γ(f∗, r∗) = 0 and the sub-Gaussianity inequality (Corollary 2.2.8 in van der vaart & Wellner (1996))
associated with the sub-Gaussianity of εi and the Lipschitz continuity of Γ(f, r) in (f, r).
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By these results, we obtain

Ln(f̂ , r̂)

≤ n−1/2

∫ B

0

√
logN (δ,F ×R, ‖ · ‖)dδ +O

(√
log(1/δ)

n

)

. n−1/2

∫ B

0

√
logN (δ′,F , ‖ · ‖)dδ′ + n−1/2

∫ B

0

√
logN (δ′,R, ‖ · ‖)dδ′ +O

(√
log(1/δ)

n

)
,

which follows logN (δ,F ×R, ‖ · ‖) . logN (δ,F , ‖ · ‖) + logN (δ,R, ‖ · ‖).

Step (ii): Bound of ∆f . To bound ∆f = L̃(f̂ , r∗) − L̃n(f̂ , r∗), we apply the concentration
inequality on empirical processes (displayed in Proposition 3, which is originally developed in
Theorem 5 in Arcones (1995)). We regard h in Proposition 3 as (y, x, y′, x′) 7→ (y − f∗(x))(y′ −
f∗(x′))∆f (x)∆f (x′)r(y, x|Zj)r(y′, x′|Zj) and obtain

∆f = EW,W ′,Z [(f∗(X)− f(X))r(W |Z)(f∗(X ′)− f(X ′))r(W ′|Z)]

− 1

n

n∑
j=1

1

n(n− 1)

n∑
i,i′=1,i6=i′

(f∗(Xi)− f(Xi))r(Wi|Zj)(f∗(Xi′)− f(Xi′))r(Wi′ |Zj)

.

√
log(1/δ)

n
,

with probability at least δ for any δ ∈ (0, 1).

Step (iii): Conclusion. Finally, by combining the above results, with probability at least 1− δ with
δ > 0,

L(f̂ , r∗) = L̃(f̂ , r∗)− L̃n(f̂ , r∗)︸ ︷︷ ︸
=:∆f

+ L̃n(f̂ , r∗)− L̃n(f̂ , r̂)︸ ︷︷ ︸
=:∆r

+L̃n(f̂ , r̂)

≤ ∆f + ∆r + n−1/2

∫ B

0

√
logN (δ′,F ×R, ‖ · ‖)dδ′ +O

(√
log(1/δ)

n

)

. O(‖r̂ − r∗‖) + n−1/2

∫ B

0

√
logN (δ,F , ‖ · ‖)dδ

+ n−1/2

∫ B

0

√
logN (δ,R, ‖ · ‖)dδ +O

(√
log(1/δ)

n

)

= n−1/2

∫ B

0

√
logN (δ,F , ‖ · ‖)dδ + n−1/2

∫ B

0

√
logN (δ,R, ‖ · ‖)dδ

+O

(
max

{√
log(1/δ)

n
,

1

n1/(2+γ)

})
(from Lemma 1).

C EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS

C.1 SIMULATION STUDIES USING ECONOMICS DATASETS

Here, we report the details of the model and hyperparameters used in our experiments. Since the
network structures used in Ai & Chen (2003) and Newey & Powell (2003) have many common
features, we describe the network structure in Newey & Powell (2003).

For DeepGMM, DFIV, DeepIV, and KIV, we use the same model and hyperparameters published
by Xu et al. (2021a). For IW-LS, we use the following two networks for estimating density ratio
and predicting f∗ respectively : FC(4,128)-FC(128,128)-FC(128,1) and FC(1,128)-FC(128,128)-
FC(128,1). Each fully-connected layer (FC) is followed by leaky ReLU activations with leakiness
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Figure 5: Demand design experiments with 5, 000 samples. The left graph show the results with
ρ = 0.25 and the right graph shows the results with ρ = 0.75.

Figure 6: Demand design experiments with stronger correlation between Xi and εi. The sample sizes
are 1, 000. The left graph show the results with ρ = 0.25 and the right graph shows the results with
ρ = 0.75.

α = 0.2. A regularization coefficient η is set to 0.001 as a result of cross-validation. For LS, we
use the same network structure in IW-LS for predicting f∗. For IW-MM, we use the same network
structure as IW-LS. For IW-Krnl, the same network structure as IW-LS to estimate the density ratio
and ζ and σ2 are selected via cross-validation. In Ai & Chen (2003) experiment, we change only the
first layer in the network structure to match the dimension of Xi, and the rest of the network structure
is the same.

In addition to the original settings of Newey & Powell (2003) and Ai & Chen (2003), we investigate
cases where we add more IVs.

In Newey & Powell (2003), we generate {(Yi, Xi, Zi,1, Zi,2, Zi,3, Zi,4)}ni=1, where Zi,2, Zi,3, Zi,4
are additional IVs, as follows: first, they generate {(εi, Ui, Zi,1, Zi,2, Zi,3, Zi,4)}ni=1 from the mul-

tivariate normal distribution N




0
0
0
0
0
0

 ,


1 0.5 0 0 0 0

0.5 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



; then, they generate Xi =

Zi,1 +Zi,2 +Zi,3 +Zi,4 +Ui and Yi = f∗(Xi)+εi, where f∗(Xi) = ln(|Xi−1|+1) sgn(Xi−1).
Here, εi and Ui are unobservable.

In Ai & Chen (2003), they generate {(Yi, Xi, Zi,Wi,1,Wi,2,Wi,3)}ni=1, where Wi,1,Wi,2,Wi,3

are additional IVs, as follows: first, we generate {(εi, X1i, Vi, Ui)}ni=1 as εi ∼ N
(
0, X2

1i + V 2
i

)
,

X1i
i.i.d.∼ Unif[0, 1], Vi

i.i.d.∼ Unif[0, 1],

(
Wi,1

Wi,2

Wi,3

)
i.i.d.∼ N

((
0
0
0

)
,

((
1 0.3 0.3

0.3 1 0.3
0.3 0.3 1

)))
, Wi =

∑3
j=1Wi,j , and Ui

i.i.d.∼ N
(
0, X2

1i + V 2
i + |Wi|

)
; second, we generate X2i = X1i + Vi + Wi +

R× εi + Ui and Y1 = X1iγ0 + h0 (X2i) + εi, where h0 (X2i) = exp (X2i) / (1 + exp (X2i)) and
R is chosen as 0.9; then, obtain Xi = (X1i X2i)

> and Zi = (X1i Vi Wi,1 Wi,2 Wi,3). Here, εi and
Ui are unobservable, and f∗(Xi) = X1iγ0 + h0 (X2i), where the function h0 and γ0 are unknown.

C.2 SIMULATION STUDIES USING DEMAND DESIGN DATASETS

For DeepGMM, DFIV, DeepIV, and KIV, we use the exact same model and hyperparameters in Xu
et al. (2021a). For LS and IW-LS, we use the network structure based on the economics datasets
network. η is 0.001 as a result of cross-validation. For IW-Krnl, we use the same network structure
as IW-LS to estimate the density ratio and select ζ and σ2 via cross-validation.
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Figure 7: Demand design experiments with stronger correlation between Xi and εi. The sample sizes
are 5, 000. The left graph show the results with ρ = 0.25 and the right graph shows the results with
ρ = 0.75.

Figure 5 shows the results with 5000 samples. First, our proposed IW-LS outperforms the existing
methods and minimizes the MSE. Second, LS, which is a naive nonlinear regression without IV,
outperforms the other existing methods using IV. In contrast, IW-LS outperforms LS.

We consider the case where endogeneity causes a larger change in outcome. Since the original
demand design dataset has a small effect of the bias, we slightly change Vi in the price equation:
Pi = 25 + (Ci + 3)h(Ti) + 10Vi. In the original dataset, Yi is generated as Yi = 100 + (10 +
Pi)Sih(Ti) − 2Pi + εi. However, because the impact of εi on the price is very limited, because
the variance of εi is relatively small compared to that of Yi. This is the reason why the LS also
performs well in the previous result; that is, we can obtain good performance even when ignoring
endogeneity (because f∗(Xi)) is close to E[Yi|Xi]). For this reason, this dataset is not appropriate
for investigating the performances of the methods, although it is used in existing studies. Here, we
consider the different model Yi = 100 + (10 + Pi)Sih(Ti) − 2Pi + 100εi, in which we multiply
the error term by 100. In this case, the bias has a more serious impact on the values of price and
outcome. Figure 6 shows the results with 1, 000 samples, and Figure 7 shows the results with
5, 000 samples. Regardless of the sample size and ρ, our proposed method outperforms existing
methods. Even in this experiment, the LS still performs well. We consider that this is because
the correlation between Xi and εi is not strong. In the dataset, Vi, which is a cause of the bias,
follows a standard normal distribution and has a limited impact on price due to the constant term 25
(Pi = 25 + (Ci + 3)h(Ti) + Vi), that is, in the variation of Pi, Vi has a small effect compared with
the other variables.

In this dataset, f∗(Xi) takes large values compared to the error term. Under this situation, a model
trained to predict Yi may perform well because the influence of E[εi|Xi] 6= 0 is limited. However,
the purpose of using NPIV in the first place is because the latter influence is large, or else effects
of E[εi|Xi] 6= 0 can be ignored. As expected, in our experiments using Hartford et al. (2017), the
least-squares method also performs well, even though the training process ignores the problem of
NPIV. To investigate the performance for causal inference, we recommend using simpler datasets,
before using more complicated datasets.

We also show how the MSE of the IWMM decreases as the sample size grows in Appendix C.4

C.3 SIMULATION STUDIES USING MNIST DATASETS

We also investigate how our proposed method performs on high-dimensional data. By using MNIST
dataset (LeCun & Cortes, 2010), we convert the low dimensional IVs of economics artificial datasets
used in Newey & Powell (2003) and Ai & Chen (2003) to high-dimensional IVs. We compare our
proposed methods, IW-LS and IW-MM, with the LS and KIV.

Extension of the dataset in Newey & Powell (2003): For creating high-dimensional IVs, we equip
the IVs used in Newey & Powell (2003) to the feature vector of the MNIST dataset. Let Di ∈ R100

be a randomly chosen feature vector of the MNIST dataset of the number 0. We reduce the dimension
to 100 by using the principle component analysis. We multiply the original IV in Newey & Powell
(2003) by the feature vector to convert the low-dimensional IV to the high-dimensional IV; that is,
we create a new IVs Z̃i ∈ R100 as Z̃i = ZiDi. Instead of Zi, we use this new IV Z̃i and estimate the
structural function f∗. The sample size is 2, 500. The other settings are the same as Section 6.1. The
experimental results are shown in the left figure of Figure 8.
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Figure 8: The log10 scaled MSEs using the setting in Newey & Powell (2003). The left graph shows
the results using the original dataset with the MNIST dataset. The right graph shows the results with
additional IVs and the MNIST dataset.

Figure 9: The log10 scaled MSEs of dataset in Ai & Chen (2003) with the MNIST dataset. The left
graph shows the result with R = 0.1 and the right graph shows the result with R = 0.9.

Next, we add an IV to the original dataset in Newey & Powell (2003) as {(Yi, Xi, Zi,1, Zi,2)}ni=1 ∼

N


0

0
0
0

 ,

 1 0.5 0 0
0.5 1 0 0
0 0 1 0
0 0 0 1


 , where Zi,2 is an additional IV. Then, we generate Xi = Zi,1 +

Zi,2 + Ui and Yi = f∗(Xi) + εi, where f∗(Xi) = ln(|Xi − 1|+ 1) sgn(Xi − 1). Here, εi and Ui
are unobservable. Let Di,1 ∈ R100 be a randomly chosen feature vector of the MNIST dataset of
the number 0, and Di,2 ∈ R100 be a randomly chosen feature vector of the MNIST dataset of the
number 1. We reduce the dimension to 100 by using the principle component analysis. We multiply
the original IVs by the feature vector to convert the low-dimensional IVs to high-dimensional IVs;
that is, we create a new IV Z̃i,1 ∈ R100 as Z̃i,1 = Zi,1Di,1 and Z̃i,2 ∈ R100 as Z̃i,2 = Zi,2Di,2. We
use these new IVs Z̃i,1 and Z̃i,2 to estimate the structural function f∗. The experimental results are
shown in the right figure of Figure 8.

Extension of the dataset in Ai & Chen (2003): We also equip the MNIST dataset to the IVs
of the dataset used in Ai & Chen (2003). Let Di,1 ∈ R100 be a randomly chosen feature vector
of the MNIST dataset with the number 0, and Di,2 ∈ R100 be a randomly chosen feature vector
of the MNIST dataset with the number 1. We reduce the dimension to 100 by using the principle
component analysis. We transform the original IVs in Ai & Chen (2003), Wi,1,Wi,2 ∈ R, to the
high-dimensional IVs by multiplying them with the MNIST feature vectors; that is, we create a new
IV W̃i,1 ∈ R100 as W̃i,1 = Wi,1Di,1 and W̃i,2 ∈ R100 as W̃i,2 = Wi,2Di,2. We use these new IVs,
W̃i,1 and W̃i,2, to estimate the structural function f∗. The sample size is 2, 500. The other settings
are the same as Section 6.1. The experimental results are shown in Figure 9.

C.4 SIMULATION STUDIES ON THE RATE OF THE MSE

We show experimental results on the MSEs of the NPIV and the classical 2SLS under various sample
sizes. Here, we have two goals: (i) we validate the theoretical MSE derived in Section 5.3, and (ii)
we show the relative performance of the NPIV method against the classical 2SLS in the learning
problem with conditional moment restrictions.

In Figure 10, we show the MSEs of the IWMM in the setting of Newey & Powell (2003) with various
sample sizes. We follow the same setting used in Section 6.1, except for the choices of sample sizes.
We investigate whether the empirical MSE of IWMM converges to 0 with Op(1/

√
n) for sample size

n, which is theoretically provided in Section 5.3 under some assumptions. We compute the empirical
MSEs with sample sizes {500, 1000, 1500, 2000, 3500, 4000, 4500, 5000} with 10 trials, then obtain
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Figure 10: MSEs of the IWMM in the setting of Newey & Powell (2003) with various sample sizes.
The light blue region represents the standard deviation.

Figure 11: MSE of the IWMM in the setting of Newey & Powell (2003).

its mean and standard deviation. In Figure 10, we compare the empirical MSEs with the line that
represents 1/

√
n. As in our theoretical results, the MSEs decays in Op(1/

√
n).

With the same setting, we also compare the MSEs of IWMM with the classical 2SLS in Figure 11, to
understand the effectiveness of the NPIV method. We consider three models for the 2SLS:

Yi = β0 + β1Xi + εi,

Yi = β0 + β1Xi + β2X
2
i + εi,

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + εi.

The difference between these three models lies in the choice of the polynomial basis. For instance, the
last model approximates the structure function by a cubic function. If a model introduces an infinite
number of polynomial bases, they can approximate various smooth functions by the series expansion.
In other words, as the number of the polynomial basis increases, the classical 2SLS approaches the
NPIV. This method of introducing a basis is called sieve regression in econometrics, and Newey &
Powell (2003) proposed using it to solve NPIV. The experimental result in Figure 11 also shows that
the second and third models, with the polynomial bases, X2

i and X3
i , perform closer to the NPIV

method than the first model using only Xi.

It is important to note that the 2SLS with a polynomial basis function is difficult to implement in
high-dimensional situations. In the setting of Newey & Powell (2003), because both X and Z have
one dimension, polynomial approximation is effective. However, if the dimension increases, the series
expansion of multivariate functions requires a huge number of basis functions, hence approximation
becomes very difficult. In machine learning, for instance, Singh et al. (2019) proposes to introduce
RKHS to avoid this difficulty.
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