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ABSTRACT

In image super-resolution (SR), perceptual quality and distortion form two com-
peting objectives, bounded by the Perception-Distortion trade-off. GAN-based SR
models reduce distortion but often fail to synthesize realistic fine-grained textures,
while diffusion-based models generate perceptually plausible details but frequently
hallucinate content, leading to fidelity loss. This raises a key challenge: how to har-
ness the powerful generative priors of diffusion models without sacrificing fidelity.
We introduce SpaSemSR, a Spatial-Semantic guided diffusion-based framework
that addresses this challenge through two complementary guidance. First, spatial-
grounded textual guidance integrates object-level spatial cues with semantic
prompts, reducing distortion by aligning textual guidance with visual structure.
Second, semantic-enhanced visual guidance unifies multimodal semantic pri-
ors via a multi-encoder design with semantic degradation constraints, improving
perceptual realism under severe degradations. These complementary guidances
are adaptively fused with diffusion priors via novel spatial-semantic attention
mechanisms, curbing distortion and hallucination while preserving the strengths of
generative diffusion models. Extensive experiments across multiple benchmarks
demonstrate that SpaSemSR achieves a state-of-the-art balance between perception
and distortion, producing both realistic and faithful restorations.

1 INTRODUCTION

Image Super-Resolution (SR) aims to reconstruct high-resolution (HR) images from low-resolution
(LR) inputs degraded by complex and often unknown processes, with the dual objective of achieving
high fidelity and strong perceptual quality. However, as demonstrated by (Blau & Michaeli, 2018), SR
methods are fundamentally constrained by the Perception-Distortion trade-off: improving distortion
(i.e., reconstruction accuracy) inevitably comes at the cost of perceptual quality, and vice versa, due
to the monotone boundary between the two. Distortion is measured by full-reference metrics such as
PSNR and SSIM, while perception emphasizes visual realism regardless of ground-truth similarity,
and is assessed by reference-free metrics such as CLIP-IQA, MUSIQ, and MANIQA.

GAN-based methods (Liang et al., 2022; Zhang et al., 2022; 2021; Wang et al., 2021) have demon-
strated strong fidelity performance, but their gains in reconstruction accuracy do not always translate
into perceptual improvements (e.g., lower CLIP-IQA, MUSIQ). As illustrated in Fig. 1, these models
often produce artifacts or blurring issues, stemming from unstable adversarial training, domain
shifts between synthetic training and real-world test data, and fidelity-biased optimization objectives.
Recently, diffusion-based approaches (Wang et al., 2024; Lin et al., 2024; Yang et al., 2024; Wu et al.,
2024c; Qu et al., 2024; Chen et al., 2025) have emerged as powerful alternatives. Leveraging the rich
generative priors of large-scale text-to-image (T2I) diffusion models, they excel in generating realistic
textures and achieve superior scores on perceptual quality metrics. Yet, somewhat counter-intuitively,
these methods often underperform GAN-based models on distortion metrics (e.g., lower PSNR and
SSIM), leading to reduced fidelity and frequent hallucinations, as shown in Fig. 1. More recently, lots
of studies (Wu et al., 2024b; Dong et al., 2025; Zhang et al., 2025) have shifted their focus toward
improving the efficiency of diffusion models, aiming to design more effective one-step generation
schemes for Stable Diffusion, thereby reducing the heavy computational cost caused by the multi-step
denoising process. However, these approaches do not primarily focus on addressing the distortion
problem caused by hallucinatory artifacts generated in diffusion models. Thus, neither paradigm fully
resolves the tension between perception and distortion, leaving it as an unsolved issue.
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Figure 1: Perception-distortion trade-off in GAN-based, Diffusion-based, and Our four variants (Sec. 3.1):
GAN-based methods yield less distortion but blurry textures, diffusion-based methods produce sharp yet
hallucinatory details, while our four variants restore clean, semantically accurate textures with high fidelity.

To further investigate the Perception-Distortion trade-off, we revisit the mechanisms underlying
diffusion-based SR. Despite their strong generative priors, diffusion models face three key challenges:
(1) Their generative nature promotes sample diversity, which benefits image synthesis but undermines
fidelity in restoration. (2) Severe degradations in LR inputs often destroy local structures, leading to
ambiguous semantics. (3) Existing solutions, such as PASD (Yang et al., 2024), SeeSR (Wu et al.,
2024c), address this by introducing semantic text prompts as auxiliary conditions. However, text
prompts alone lack spatial awareness, and thus reconstructions remain distorted compared to the
ground truth, yielding high perceptual but low fidelity scores (Ren et al., 2025).

In this work, we present a Spatial-Semantic guided SR framework (SpaSemSR), a diffusion-based
approach that pushes the perception-distortion boundary by integrating complementary spatial and
semantic guidance. Specifically, we introduce: a. spatial-grounded textual guidance, which aligns
spatial information with semantic textual prompts to improve fidelity. b. semantic-enhanced visual
guidance, which enriches perceptual quality by constraining generation with multimodal semantic
priors. Together, two forms of guidance bridge the gap between semantically rich but spatially
ambiguous text prompts and spatially precise but semantically degraded visual features.

To achieve it, firstly, we introduce a novel spatial-aware text fusion mechanism for better fidelity
representation that integrates object-level spatial coordinates with corresponding semantic textual
tags. Secondly, to extract rich and robust semantics from degraded LR inputs, we design a two-
branch image encoder system: one captures low-level latent structures, while the other extracts
high-level semantic features. The perception ability of these extracted features is further ensured by
our novel semantic degradation constraints derived from pre-trained VAE (Rombach et al., 2022) and
SAM (Kirillov et al., 2023) encoders. Thirdly, to effectively integrate semantic and spatial priors
with diffusion generative priors, we propose our Spatial-Semantic ControlNet, Spatial-aware Text
Attention (SpaTextAtten), and Semantic-enhanced Image Attention (SemImgAtten) layers, enabling
adaptive fusion of spatial and semantic guidance across modalities in the diffusion model. As a result,
this spatial and semantic guidance yields reconstructions that are both perceptually compelling and
faithful to the original content, thereby achieving a balance between perception and fidelity. Our
contributions are summarized as follows:

• We propose SpaSemSR, a novel diffusion-based framework for balancing perception and
distortion, which jointly exploits complementary spatial and semantic guidance, curbing
distortion and hallucination while fully leveraging the strengths of diffusion priors.

• We introduce a spatial-aware text fusion mechanism that augments semantic prompts with
spatial grounding, thereby improving generation fidelity and alleviating spatial misalignment
between textual and visual representations.

• We design a semantic-enhanced multi-encoder architecture with semantic degradation con-
straints that jointly capture low-level structures and high-level semantics, further constrained
by pretrained VAE and SAM priors to provide robust perceptual learning.

• We propose the Spatial-Semantic ControlNet, SpaTextAtten, and SemImgAtten layers to
effectively integrate semantic and spatial guidance into diffusion-based generation.

• Extensive experiments demonstrate that SpaSemSR substantially reduces blurry textures
and hallucinatory artifacts, achieving a state-of-the-art balance between perception and
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distortion across multiple benchmarks. Ablation studies further validate the complementary
contributions of spatial and semantic guidance to fidelity and perceptual quality.

2 RELATED WORK

Image Super-Resolution. Classical SR methods (Gu et al., 2019a; Huang et al., 2020; Zhang et al.,
2018) estimate predefined degradation kernels to recover high-resolution images. While effective on
synthetic data, they struggle with complex real-world degradations. To address this, BSRGAN (Zhang
et al., 2021) introduced randomized degradation pipelines, and Real-ESRGAN (Wang et al., 2021)
proposed high-order degradations with Sinc filters. GAN-based SR further incorporated perceptual
losses to enhance visual quality, but often introduces artifacts and fails to reconstruct faithful textures,
motivating the use of stronger generative priors.

Diffusion Prior-based Super-Resolution. Diffusion models leverage powerful generative priors to
produce perceptually realistic SR results. StableSR (Wang et al., 2024) fine-tuned Stable Diffusion
with a Time-aware Encoder and controllable feature wrapping. DiffBIR (Lin et al., 2024) used
restoration modules and IRControlNet to remove degradations while preserving fidelity. Text-guided
SR methods PASD (Yang et al., 2024), SeeSR (Wu et al., 2024c), FaithDiff (Chen et al., 2025),
XPSR (Qu et al., 2024)) extract semantic cues from images or multimodal models to guide generation.
However, these approaches often use global or loosely aligned text prompts, lacking precise spatial
grounding. Our work explicitly integrates spatial-aware semantic guidance into diffusion for fidelity
restoration.

Perception-Distortion Trade-off. Balancing perceptual realism and fidelity is a key SR challenge.
The perception–distortion trade-off was formalized in (Blau & Michaeli, 2018). Subsequent works
addressed it via multi-objective strategies: a two-stage fidelity-then-perception pipeline (Zhang
et al., 2022), Bayesian optimization for dynamic loss weighting (Zhu et al., 2024), and multi-
objective optimization strategies (Sun et al., 2024). GAN-based methods typically favor fidelity
but produce over-smoothed outputs, whereas diffusion-based models generate sharp textures at the
risk of hallucinations. Existing balancing techniques are mostly GAN-centric. Our approach bridges
this gap by constraining T2I diffusion with spatially grounded semantic guidance, improving fidelity
while preserving perceptual quality.

3 METHODOLOGY

3.1 MOTIVATION AND FRAMEWORK OVERVIEW

Preliminary: Stable Diffusion. Our method builds on Stable Diffusion (SD), a latent diffusion
model for T2I generation. SD operates in a compressed latent space for efficiency, where an
autoencoder maps an image to latent z0 = E(I0) and reconstructs it as I0 = D(z0).

The forward diffusion gradually perturbs z0 with Gaussian noise:

q(zt | zt−1) = N (zt;
√

1− βtzt−1, βtI), t = 1, . . . , T. (1)

The reverse process recovers zt−1 from zt via a denoising network ϵθ:

pθ(zt−1 | zt) = N (µθ(zt, t),Σθ(zt, t)), (2)

which is trained to minimize the noise prediction objective:

LSD = Ez0,t,ϵ

[
∥ϵ− ϵθ(

√
ᾱtz0 +

√
1− ᾱtϵ, t)∥22

]
, (3)

where ϵ ∼ N (0, I), ᾱt =
∏t

i=0(1− βi). Generation starts from noise zT ∼ N (0, I) and iteratively
applies reverse denoising to obtain z0.

Motivation. Image SR faces the well-known perception-distortion trade-off (Blau & Michaeli,
2018): GAN-based methods (Zhang et al., 2021; Wang et al., 2021) achieve strong fidelity but
often yield over-smoothed results lacking realistic details, while diffusion-based methods (Wang
et al., 2024; Lin et al., 2024) generate sharper details and higher perceptual quality but frequently
hallucinate content, leading to fidelity loss. This motivates our goal: harnessing the generative
strength of diffusion while constraining it with spatial and semantic priors to reduce distortion.
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Figure 2: Framework overview. (a) Spatial-aware text encoders generate position-grounded textual prompts
(Sec. 3.2); (b) Semantic-enhanced image encoders extract semantic-enhanced visual features with degradation
constraints (Sec. 3.3); (c) Spatial-semantic ControlNet integrates these multimodal conditions (Sec. 3.4); (d)
Spatial-semantic guided diffusion fuses semantic and spatial guidance with generative priors (Sec. 3.5).

Framework Overview. We propose SpaSemSR, a Spatial-Semantic guided SR framework that
steers diffusion with two complementary forms of guidance (Fig. 2): (a) Spatial-grounded textual
guidance, which integrates semantic prompts with object-level spatial cues, improving fidelity by
aligning text semantics with visual structure (Sec. 3.2); (b) Semantic-enhanced visual guidance,
which extracts semantic-enhanced features from degraded LR inputs under semantic degradation
constraints, improving perceptual realism (Sec. 3.3). These guidances are fused in (c) the proposed
Spatial-Semantic ControlNet (Sec. 3.4) via parallel cross-attention and integrated into (d) our Spatial-
Semantic guided Diffusion model (Sec. 3.5), where they adaptively modulate the generative prior. By
integrating spatial-grounded textual and semantic-enhanced visual guidance, SpaSemSR achieves
reconstructions that are both perceptually realistic and faithful to the ground truth, effectively
balancing the perception-distortion trade-off.

Model Variants. To validate the contributions of the proposed spatial-grounded textual guidance
and semantic-enhanced visual guidance, we design four variants: (i) Fidelity: retains only spatial-
grounded textual guidance with image-encoder constraints, without semantic-encoder constraints;
(ii) Perception: employs semantic-enhanced visual guidance (image + semantic encoders and
constraints), without spatial grounding; (iii) Balance-1: combines spatial-grounded textual guidance
with semantic-encoder constraints; (iv) Balance-2: full model combining spatial-grounded textual
guidance with both image and semantic encoder constraints. Detailed in the Appendix B.

3.2 SPATIAL-AWARE TEXT ENCODERS

In conventional T2I models, text inputs guide diffusion models but lack spatial grounding. As a
result, textual prompts may misalign semantics with image regions, leading to reduced fidelity and
unwanted distortions. To address this, we propose spatial-aware text encoders that integrate both
spatially grounded semantics and degradation-aware information.

Spatial-grounded Text Representations. We introduce a spatial-aware text fusion mechanism that
combines object semantics with their spatial locations, yielding more faithful region-to-text alignment.
Specifically, given a low-resolution image ILR, we employ a pretrained Grounded-SAM (Ren et al.,
2024) to extract object-level textual tags xobj-text and corresponding bounding boxes xspa:

xobj-text = Fobj-text(ILR), xspa = Fspa(ILR), (4)

where Fobj-text and Fspa are the object recognition and bounding box model from the pretrained
Grounded-SAM.
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The spatial coordinates are encoded with sinusoidal positional encoding FPE(·) to obtain embeddings
espa, which are then fused object-wise with textual embeddings eobj-text from the pretrained CLIP
encoder Etext (Radford et al., 2021):

espa = FPE(xspa), eobj-text = Etext(xobj-text), espa-text = Ffusion(eobj-text, espa), (5)

where Ffusion(·) is the object-wise fusion function. This ensures a unique semantic-spatial correspon-
dence, producing spatial-grounded text embeddings espa-text that better preserve fidelity.

Degradation-aware Text Representations. Object-level tags capture semantics but not degradation
characteristics (e.g., blur, noise, compression). To complement them, we adopt degradation-aware
textual priors (Qu et al., 2024) by using LLaVA (Liu et al., 2023) to generate an image-level
description xdeg-text that encodes coarse attributes such as sharpness and noise:

xdeg-text = Fdeg-text(ILR), edeg-text = Etext(xdeg-text), (6)

where Fdeg-text is the pretrained degradation-aware textual generation model. Thus, for each ILR,
we obtain two complementary textual priors: (i) spatial-grounded semantic prompts espa-text that
enhance region-level semantics, and (ii) degradation-aware prompts edeg-text that facilitate degradation
modeling. Finally, these dual embeddings are jointly fed into ControlNet and the diffusion model,
enabling high-fidelity, spatially consistent, and degradation-aware textual representations.

3.3 SEMANTIC-ENHANCED IMAGE ENCODERS

Image SR aims to reconstruct an HR image from a degraded LR input. Diffusion-based SR models
typically rely on LR images as control conditions. However, severe degradation often destroys local
structures, leading to ambiguous or misleading semantics.

To address this, we design a dual-encoder system with our semantic degradation loss that extracts
complementary features from the LR input: (1) a low-level encoder Eimg that captures latent structural
details, and (2) a high-level semantic encoder Esem that emphasizes semantic consistency. The
perception ability of these features is further reinforced by semantic degradation constraints derived
from pretrained VAE (Rombach et al., 2022) and SAM (Kirillov et al., 2023) encoders. This design
produces semantic-enhanced features that are robust to degradation and preserve meaningful visual
semantics. Formally, given an LR image ILR, the two encoders extract high-level semantic features
xsem and low-level latent features ximg, respectively:

ximg = Eimg(ILR), xsem = Esem(ILR), xsem-img = Concat(ximg,xsem-img), (7)

where Concat(·) denotes the concatenation operation. The fused feature xsem-img is injected into each
ControlNet layer. Following (Qu et al., 2024), we extract a hybrid representation xi

hyb from the i-th
layer and evenly split it into two streams:

xi
hyb = ControlNeti(xsem-img), [xi

img,x
i
sem] = Split(xi

hyb), (8)

where xi
img and xi

sem retain the respective low-level and semantic branches, ensuring disentangled
feature learning.

Semantic Degradation Loss. To guide each encoder, we introduce a semantic degradation loss:

LSemDeg
ControlNet =

n∑
i=1

[(1− λ)∥xi
img − x̂i

img∥1 + λ∥xi
sem − x̂i

sem∥1], (9)

where x̂i
img and x̂i

sem are the reference features extracted from pretrained VAE and SAM encoders on
the HR image, respectively. The balancing coefficient λ ∈ [0, 1] controls the relative emphasis on
structural fidelity versus semantic consistency. By enforcing this loss, each encoder is encouraged
to specialize: low-level encoders align with structural details, while semantic encoders capture
high-level semantics, thereby providing more reliable features to guide the diffusion model under
complex degradations.

3.4 SPATIAL-SEMANTIC CONTROLNET

To fully leverage semantic-enhanced image priors and spatial-grounded textual knowledge, we design
a Spatial-Semantic ControlNet, which serves as a controller integrated with Stable Diffusion.

5
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Specifically, we introduce two parallel and one fusion attention modules: Spatial-aware Text-Image
Attention (SpaAtten) and Degradation-aware Text-Image Attention (DegAtten), followed by a Spatial-
Semantic Attention (SpaSemAtten) fusion layer. As shown in Fig. 2, the spatial-aware text features
espa-text and degradation-aware text features edeg-text, obtained from Sec. 3.2, serve as the key-value sets
for SpaAtten and DegAtten, respectively. The semantic-enhanced image features xsem-img (Sec. 3.3)
are shared as queries across both branches. The outputs of SpaAtten and DegAtten are then fused by
SpaSemAtten to integrate complementary cues. Formally, the attention operations are defined as:

yspa = SpaAtten(xsem-imgW
Q
spa, espa-textW

K
spa, espa-textW

V
spa),

ydeg = DegAtten(xsem-imgW
Q
deg, edeg-textW

K
deg, edeg-textW

V
deg),

xspa-sem = SpaSemAtten(yspaW
Q
SpaSem,ydegW

K
SpaSem,ydegW

V
SpaSem),

(10)

where yspa and ydeg are intermediate outputs from the two branches, and xspa-sem denotes the
fused representation. Each cross-attention follows the standard formulation: Atten(Q,K, V ) =

Softmax
(

QKT

√
d

)
V. This design allows SpaAtten to inject precise spatial textual cues while DegAtten

introduces degradation-aware textual context. The subsequent SpaSemAtten layer fuses both signals,
balancing local spatial fidelity with global semantic consistency. Therefore, the diffusion model
generates contents that are not only perceptually realistic but also structurally faithful.

3.5 DIFFUSION VIA SPATIAL-SEMANTIC GUIDANCE

To seamlessly integrate cross-modal semantic and spatial priors with T2I generative priors, we
introduce the spatial-semantic guided diffusion model (SpaSemDM). SpaSemDM adaptively learns
to integrate semantic and spatial cues into the denoising process, thereby producing reconstructions
that are both perceptually compelling and faithful to the source content.

In SpaSemDM, the denoising network is augmented with two control conditions: (1) spatially aware
textual features espa-text extracted from Spatial-Aware Text Encoders, and (2) spatial-semantic visual
embeddings xspa-sem from the Spatial-Semantic ControlNet. To fuse these conditions, we design two
additional attention modules: Spatial-aware Text Attention (SpaTextAtten) and Semantic-enhanced
Image Attention (SemImgAtten), which jointly inject spatial grounding and semantic alignment into
the latent space during diffusion learning. This mechanism allows SpaSemDM to better navigate the
perception-distortion trade-off.

Training and Optimization. During training, we first obtain the latent representation z0 of an HR
image, which is progressively corrupted by Gaussian noise to yield zt at step t. Conditioned on t,
the LR input ILR, its degradation-aware text prompt xdeg-text, and the spatial-grounded text prompt
{xobj-text,xspa}, SpaSemDM network ϵθ is trained to predict the noise added to zt. The objective is:

LSpaSem
SD = Ez0,t,ILR,ϵ

[
∥ϵ− ϵθ(zt, t; ILR,xdeg-text, {xobj-text,xspa})∥22

]
. (11)

In our model training, the final loss can be expressed as:

L = LSpaSem
SD + λControlNetLSemDeg

ControlNet, (12)

where LSemDeg
ControlNet regularizes the image encoders and ControlNet to enhance semantic fidelity, and

λControlNet is the weighting coefficient.

4 EXPERIMENTS

Implementation. Our framework is built on ControlNet (Zhang et al., 2023) with Stable Diffusion
v2 (Rombach et al., 2022) as the backbone. Semantic features from a pretrained SAM image encoder
and image features from a VAE encoder serve as constraints for the corresponding encoders. During
training, Grounded-SAM (Ren et al., 2024) provides positional information and object-level tags from
HR images. For training inference consistency, LR inputs in inference are processed by a degradation
removal model (DRM) to restore a clean image following (Chen et al., 2025) , and then bounding
boxes are extracted from this restored image with Grounded-SAM. Training runs for 200k iterations
(batch size 32, lr 5× 10−5) at 512× 512 resolution on 4×RTX 6000 GPUs for three days.
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Table 1: Comparison with GAN methods.

Dataset Model Reference Fidelity Non-reference Perception a

PSNR↑ SSIM↑ CLIP-IQA↑ MUSIQ↑ MANIQA↑

DIV2K-
Val

BSRGAN 21.74 0.5530 0.5234 59.16 0.3528
Real-

ESRGAN 21.86 0.5746 0.5485 58.80 0.3776

SwinIR 21.45 0.5639 0.5467 59.03 0.3634

Ours-Fidelity 21.48 0.5445 0.6523 61.88 0.4520
Ours-Perception 20.70 0.5204 0.7194 69.32 0.5575
Ours-Balance1 21.51 0.5423 0.6609 62.14 0.4612
Ours-Balance2 21.31 0.5340 0.6932 63.32 0.4945

RealSR

BSRGAN 26.38 0.7651 0.5112 63.28 0.3754
Real-

ESRGAN 25.69 0.7614 0.4490 60.37 0.3730

SwinIR 26.31 0.7729 0.4364 58.69 0.3444

Ours-Fidelity 26.02 0.7434 0.5678 61.70 0.4276
Ours-Perception 23.90 0.6897 0.6900 69.79 0.5759
Ours-Balance1 25.84 0.7312 0.6116 64.03 0.4736
Ours-Balance2 25.74 0.7306 0.5893 62.96 0.4637

DrealSR

BSRGAN 28.70 0.8028 0.5093 57.16 0.3447
Real-

ESRGAN 28.61 0.8052 0.4517 54.27 0.3448

SwinIR 28.50 0.8044 0.4445 52.74 0.3298

Ours-Fidelity 29.14 0.7968 0.5719 54.64 0.3825

Ours-Perception 26.72 0.7406 0.6930 65.37 0.5308
Ours-Balance1 29.21 0.7945 0.5728 55.60 0.4023
Ours-Balance2 28.97 0.7826 0.5630 55.79 0.3998

aHighlight Best, Second-best, Third-best, Top-4 .

Table 2: Comparison with diffusion methods.

Dataset Model Reference Fidelity Non-reference Perception

PSNR↑ SSIM↑ CLIP-IQA↑ MUSIQ↑ MANIQA↑

DIV2K-
Val

StableSR 20.74 0.4888 0.6605 63.19 0.4002
DiffBIR 20.57 0.4740 0.7359 69.93 0.5763
PASD 20.77 0.5022 0.6140 63.29 0.4581
SeeSR 21.00 0.5362 0.7074 68.81 0.5149
XPSR 20.56 0.5081 0.7826 70.07 0.6108

Ours-Fidelity 21.48 0.5445 0.6523 61.88 0.4520
Ours-Perception 20.70 0.5204 0.7194 69.32 0.5575
Ours-Balance1 21.51 0.5423 0.6609 62.14 0.4612
Ours-Balance2 21.31 0.5340 0.6932 63.32 0.4945

RealSR

StableSR 24.70 0.7085 0.6166 65.18 0.4178
DiffBIR 24.83 0.6501 0.7054 69.28 0.5596
PASD 25.26 0.7191 0.6249 67.78 0.4971
SeeSR 25.15 0.7210 0.6704 69.82 0.5395

XPSR 23.74 0.6734 0.7417 71.45 0.6293

Ours-Fidelity 26.02 0.7434 0.5678 61.70 0.4276
Ours-Perception 23.90 0.6897 0.6900 69.79 0.5759
Ours-Balance1 25.84 0.7312 0.6116 64.03 0.4736
Ours-Balance2 25.74 0.7306 0.5893 62.96 0.4637

DrealSR

StableSR 28.07 0.7489 0.6375 58.99 0.3892
DiffBIR 25.90 0.6245 0.7068 66.13 0.5526
PASD 27.07 0.7251 0.6710 64.56 0.5061
SeeSR 28.07 0.7684 0.6911 65.09 0.5115
XPSR 26.55 0.7289 0.7433 67.02 0.5684

Ours-Fidelity 29.14 0.7968 0.5719 54.64 0.3825
Ours-Perception 26.72 0.7406 0.6930 65.37 0.5308
Ours-Balance1 29.21 0.7945 0.5728 55.60 0.4023
Ours-Balance2 28.97 0.7826 0.5630 55.79 0.3998

Datasets and Metrics. Training Data: We train on DIV2K (Agustsson & Timofte, 2017),
DIV8K (Gu et al., 2019b), Flickr2K (Timofte et al., 2017), OutdoorSceneTraining (Kim & Son,
2021), Unsplash2K (Wang et al., 2018), and 5k FFHQ faces (Karras et al., 2019), using Real-
ESRGAN’s (Wang et al., 2021) degradation pipeline to synthesize LR-HR pairs. Test Data: Synthetic
evaluation uses 3,000 degraded DIV2K validation patches with the same pipeline as Real-ESRGAN.
For real-world data, we follow StableSR (Wang et al., 2024), evaluate on RealSR (Cai et al., 2019)
and DRealSR (Wei et al., 2020), center-cropped to 128×128 LR images. We also evaluate on Re-
alLR200 (Wu et al., 2024c), which lacks ground-truth. Metrics: For distortion, we report PSNR
and SSIM (Wang et al., 2004). For perceptual quality, we adopt CLIP-IQA (Wang et al., 2023),
MUSIQ (Ke et al., 2021), and MANIQA (Yang et al., 2022).

4.1 BALANCING PERCEPTION AND DISTORTION

A key challenge in SR is reconciling the perception-distortion trade-off. We evaluate SpaSemSR with
its fidelity-, perception-, and balance-oriented variants against representative GAN-based methods
(Real-ESRGAN (Wang et al., 2021), BSRGAN (Zhang et al., 2021), SwinIR (Liang et al., 2021))
and diffusion-based methods (StableSR (Wang et al., 2024), DiffBIR (Lin et al., 2024), PASD (Yang
et al., 2024), SeeSR (Wu et al., 2024c), XPSR (Qu et al., 2024)).

Quantitative Comparisons. (1) Perceptual Quality: As shown in Table 1, in terms of perception,
our four variants significantly outperform GAN-based methods on CLIP-IQA and MANIQA, and
overall deliver higher MUSIQ scores than the GAN-based methods. When compared against diffusion-
based methods, our perception variant secures the third-best results in Table 2. These results
indicate that ours outperform GAN-based methods and are comparable to diffusion-based methods in
perceptual quality. (2) Reconstruction Fidelity: Table 2 indicates that our fidelity, balance-1, and
balance-2 variants outperform the diffusion-based methods from the perspective of fidelity. These
three variants are within a minor gap of GAN-based methods and even surpass them on the DRealSR
real-world images in terms of PSNR in Table 1. These results demonstrate that our model can
effectively enhance the fidelity of diffusion-based models and achieve high fidelity comparable to
GAN-based methods. (3) Trade-off analysis: Across both tables, GAN-based methods generally
outperform diffusion-based methods on reference distortion metrics like PSNR and SSIM, but lag far
behind diffusion-based methods on non-reference perceptual metrics. Ours balance the quantitative
behavior of GAN-based methods and diffusion-based methods while mitigating their respective
weaknesses, achieving a stronger perception-distortion trade-off.

Qualitative Comparisons. Visual comparisons (Fig. 3) further validate our approach. (1) Percep-
tual Quality: GAN-based methods typically produce over-smoothed or blurry reconstructions that
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BSRGAN Real-ESRGAN SwinIRLR Patch HR Patch

SeeSR DiffBIR StableSR PASD XPSR Ours-Balance2

Ours-Perception Ours-Fidelity

Ours-Balance1

BSRGAN Real-ESRGANLR Patch HR Patch

SeeSR DiffBIR StableSR PASD

SwinIR

XPSR Ours-Balance2

Ours-Perception Ours-Fidelity

Ours-Balance1

SeeSR DiffBIR StableSR PASD XPSR

BSRGAN Real-ESRGAN SwinIRLR Patch HR Patch

Ours-Balance2

Ours-Perception

Ours-Balance1

Ours-Fidelity

Figure 3: Qualitative comparisons with different methods. Zoom in for a better view.

lack human-perceived realism. In the case of windows from Fig. 3, they struggle to generate plausible
window frame textures, resulting in overly-smoothed or blurry reconstructions that fall short in
texture richness and sharpness compared to diffusion models, resulting in inferior perceptual quality.
In contrast, our four variants reconstruct clearer window-frame textures and sharper, perceptually
plausible details, yielding higher perceived quality than GAN-based methods. (2) Reconstruction
Fidelity: Although diffusion-based methods can generate clear textures and details, their inherent
generative diversity often results in details and textures inconsistent with the ground truth. For
example, SeeSR and DiffBIR produce inconsistent window frame textures, while StableSR, PASD,
and XPSR generate extra curtains or window frames on originally reflective window glass. This
diversity-driven hallucination undermines fidelity, causes semantic misalignment with the ground
truth. In comparison, our four variants produce images with realistic, fine-grained textures that
closely match the ground truth, exhibiting minimal distortion and substantially fewer hallucinated
artifacts. (3) Trade-off analysis: Our methods deliver clearer, fine-grained textures than GAN-based
methods, achieve higher perceptual quality, and exhibit fewer hallucinations with better ground truth
alignment than diffusion-based methods, producing high-fidelity reconstructions with a well-balanced
perception-distortion trade-off. More qualitative results are in Appendix C.3.

4.2 ABLATION STUDY

We conduct ablation experiments to evaluate the contributions of the proposed spatial-grounded
textual guidance and semantic-enhanced visual guidance. Fig. 4 displays the content of spatial-
grounded textual and semantic-enhanced visual guidance. Table 3 summarizes results for four model
variants across synthetic and real-world datasets. These variants enable systematic isolation and
quantification of each guidance component’s effect on fidelity, perception, and overall balance.
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Figure 4: Visualization of spatial-grounded textual and semantic-enhanced visual guidance.

Table 3: Ablation study, highlights the Best performance.
Vision Encoder Degradation Constraint Multimodal Encoder RealSR DrealSR DIV2K-Val

Image Semantic VAE Semantic Spatial Text PSNR↑ SSIM↑ CLIP-IQA↑ MUSIQ↑ MANIQA↑ PSNR↑ SSIM↑ CLIP-IQA↑ MUSIQ↑ MANIQA↑ PSNR↑ SSIM↑ CLIP-IQA↑ MUSIQ↑ MANIQA↑

Ours-Fidelity ✓ ✓ ✓ ✓ 26.02 0.7434 0.5678 61.70 0.4276 29.14 0.7968 0.5719 54.64 0.3825 21.48 0.5445 0.6523 61.88 0.4520
Ours-Balance1 ✓ ✓ ✓ ✓ 25.84 0.7312 0.6116 64.03 0.4736 29.21 0.7945 0.5728 55.60 0.4023 21.51 0.5423 0.6609 62.14 0.4612

Ours-Perception ✓ ✓ ✓ ✓ ✓ 23.90 0.6897 0.6900 69.79 0.5759 26.72 0.7406 0.6930 65.37 0.5308 20.70 0.5204 0.7194 69.32 0.5575
Ours-Balance2 ✓ ✓ ✓ ✓ ✓ ✓ 25.74 0.7306 0.5893 62.96 0.4637 28.97 0.7826 0.5630 55.79 0.3998 21.31 0.5340 0.6932 63.32 0.4945

Guidance Visualization In Fig. 4(c) and (d), the object-level tags with their corresponding bounding
boxes, together with the degradation-aware text, constitute the spatial-grounded textual guidance.
And the semantic mask in Fig. 4(c) serves as prior information of our semantic-enhanced visual
guidance. Incorporating high-level semantic priors extracted from the SAM image encoder as
guidance contributes to improving perceptual quality. In addition, guiding the model to align the
visual semantic mask with the corresponding object-level tags further enhances image fidelity, leading
to a better trade-off between perceptual quality and distortion. More results are in Appendix C.2.

Effectiveness of Spatial-grounded textual guidance. We compare Balance-2 with Perception,
which differs only by excluding spatial information. Table 3 confirms that adding spatial grounding
improves fidelity metrics (PSNR/SSIM), though with a slight trade-off in perceptual quality scores.
This trade-off is acceptable given SR’s primary objective of preserving structural consistency. More-
over, the Fidelity and Balance-1 variants, which both incorporate spatial information, consistently
reduce hallucinations and outperform the Perception variant on fidelity measures, validating that
spatial information effectively aligns semantic prompts with visual structure.

Effectiveness of Semantic-enhanced Visual Guidance. We next assess the impact of semantic-
enhanced visual guidance by comparing the Fidelity, Balance-1, and Balance-2 variants with different
degradation constraints. As shown in Table 3, variants equipped with semantic constraints achieve
clear improvements on perceptual metrics such as MUSIQ, MANIQA, and CLIP-IQA, indicating that
high-level semantic priors enrich perceptual realism and are robust to LR degradation. In contrast,
the Fidelity variant, constrained only by the VAE encoder, achieves slightly higher PSNR/SSIM since
VAE features emphasize pixel-level accuracy. Balance-1 and Balance-2 variants combining both
spatial and semantic guidance yield the best overall perception-distortion balance, demonstrating
complementarity of spatial-level fidelity and semantic-level realism. More results in Appendix C.1.

5 CONCLUSIONS

We present SpaSemSR, a spatial-semantic guided framework for image super-resolution that explicitly
addresses the perception-distortion trade-off. By integrating spatial-grounded textual guidance
with semantic-enhanced visual guidance, our approach leverages powerful diffusion priors while
mitigating distortion and hallucination. The proposed spatial-semantic attention mechanisms enable
adaptive fusion of multimodal priors, producing reconstructions that are both perceptually realistic
and structurally faithful. Extensive experiments demonstrate that SpaSemSR attains state-of-the-
art perception–distortion balance across multiple benchmarks by leveraging spatial and semantic
guidance.
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REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our results. A comprehensive description
of our method in Sec. 3, and experimental setup is provided in the main paper in Sec. 4, with additional
implementation details included in the Appendix A. Furthermore, we will release our implementation
code and the trained model checkpoints upon acceptance.
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APPENDIX

THE USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, LLMs were used solely for polishing author-written text, including
spell and grammar checks for editing purposes.

A IMPLEMENTATION DETAILS

A.1 SPATIAL-AWARE TEXT ENCODERS

Spatial-aware Text Generation To generate spatial-aware text, we employ Grounded-SAM (Ren
et al., 2024) to obtain both tag and positional information. The positional information is embedded
through a fixed position encoder, while the tag is embedded by a pre-trained CLIP text encoder
(Radford et al., 2021), producing a unified representation for subsequent processing.

Grounded-SAM is a unified multimodal framework that performs automated object detection, segmen-
tation, and generation from a single image input. It integrates Grounding DINO, Segment Anything,
and Recognize Anything to achieve fully automated object detection and localization, and further
incorporates Stable Diffusion to enable controllable image synthesis and editing within a unified
pipeline. In our framework, we use Grounded-SAM to generate tags xobj-text and bounding boxes
xspa, represented as four-tuples corresponding to the top-left and bottom-right coordinates:

xspa =

[
xLU
i yLU

i

xRB
i yRB

i

]
. (13)

where xLU
i and yLUi denote the horizontal and vertical coordinates of the left-upper (LU) corner

of the i-th bounding box, and xRB
i and yRB

i denote the horizontal and vertical coordinates of its
right-bottom (RB) corner. Next, we compute the spatial embedding of xspa using the following
sinusoidal positional encoding function:

PE(u, 2k) = sin
(

u
100002k/(d/4)

)
, PE(u, 2k + 1) = cos

(
u

100002k/(d/4)

)
. (14)

where u ∈ {xLU
i , yLUi , xRB

i , yRB
i } denotes one of the four coordinates of the i-th bounding box,

k = 0, 1, . . . , d
8 − 1 is the frequency index, and d is the embedding dimension. We set the embedding

dimension d to 1024, which matches the CLIP text embedding dimension. And the first 512 dimen-
sions are allocated to the left-upper coordinates and the remaining 512 dimensions to the right-bottom
coordinates, the final espa can be expessed as:

espa =
[
PE(xLU

i ) PE(yLUi ) PE(xRB
i ) PE(yRB

i )
]
∈ R1024. (15)

Semantic tags xobj-text will be go through a pre-trained CLIP text encoder to get textual embeddings
eobj-text. Then an object-wise fusion function Ffusion is used to fuse two semantic tags embedding with
spatial embedding to ensure a unique semantic-spatial correspondence:

Ffusion({eiobj-text, e
i
spa}Ni=1) = {eiobj-text + eispa}Ni=1, eiobj-text, e

i
spa ∈ R1024, (16)

where eiobj-text denotes the textual embedding of the i-th object-level tag, and eispa denotes the corre-
sponding spatial embedding of the same object.

To ensure consistency between training and inference while leveraging large multimodal models,
we adopt different strategies for constructing spatial-aware text prompts. During training, we apply
Grounded-SAM to extract spatial information from HR images and get object-level tags from the
LR input. During inference, following FaithDiff (Chen et al., 2025), a degradation removal model
(DRM) first restores a clean version of the LR image. Grounded-SAM is then applied to this restored
image to obtain spatial information, then combined with object-level tags to form the spatial-aware
text prompt.
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Degration-aware Text Generation To complement the object-level semantic tags, which cannot
capture image degradation characteristics, we follow the approach of (Qu et al., 2024) and leverage a
Q-Instruct fine-tuned LLaVA (Wu et al., 2024a) model to generate degradation-aware text xdeg-text
by prompting it with the instruction “Describe and evaluate the quality of the image.” The resulting
text is subsequently encoded using a pre-trained CLIP text encoder to obtain degradation-aware
embeddings edeg-text, which are used together with the spatial-aware text embeddings espa-text to
control the diffusion process.

A.2 SEMANTIC-ENHANCED IMAGE ENCODERS

Image Encoder and Semantic Encoder We use two trainable image encoders E , which have the
same structure as the image encoder in ControlNet (Zhang et al., 2023), to extract the semantic-
enhanced visual feature. For our task, we first upscale each LR image from 128× 128 to 512× 512,
ensuring the resolution aligns with the input size of Stable Diffusion. The up-scaled image is then
mapped into a 64 × 64 feature-space representation that matches the latent resolution of Stable
Diffusion. Specifically, the trainable image encoder is composed of a sequence of 3× 3 convolutional
layers with SiLU activations and progressively increasing channel dimensions (16, 32, 96, 256). Each
stage of the encoder contains one stride-1 convolution for feature refinement, followed by one stride-2
convolution for spatial downsampling, thereby reducing the resolution from 512 → 256 → 128 →
64.

To adapt to the subsequent ControlNet architecture, we first concatenate the features obtained from
the two image encoders, and then apply a single convolution layer to reduce the channel by half. Then
we split the feature maps, which are extracted from the i-th layer of ControlNet, into two groups,
corresponding to the low-channel image features and the high-channel semantic features. Each group
is further processed by a single convolution layer to map them into the desired feature shape, yielding
xi
img ∈ RHi×Wi×4, xi

sem ∈ RHi×Wi×256. Finally, we obtain the corresponding VAE features x̂i
img

and semantic features x̂i
sem from the HR image, and impose an ℓ1 loss to enforce consistency to

encourage specialization of each image encoder, providing low-level structural details and high-level
semantics. The semantic degradation loss can be expressed as:

LSemDeg
ControlNet =

n=3∑
i=1

[(1− λ)∥xi
img − x̂i

img∥1 + λ∥xi
sem − x̂i

sem∥1], (17)

B VARIANTS CONFIGURATION

In the section 3.1 of the main paper, we proposed four variants: fidelity, Perceptual, Balance 1, and
Balance 2. Each variant is designed to emphasize either fidelity or perceptual quality, or to achieve a
better trade-off between the two. The configurations of these four variants are summarized as follows:

(i) Fidelity: In this fidelity variant, we keep the whole spatial-aware text encoders; regarding
semantic-enhanced image encoders, we only use the VAE encoder to constrain image encoder.
Without incorporating semantic degradation constraints and a semantic encoder, the degradation loss
is defined as follows:

LDeg
ControlNet =

n=3∑
i=1

λ∥xi
img − x̂i

img∥1, (18)

(ii) Perception: In this perception variant, we modify the spatial-aware text encoders by removing
the spatial information xspa, and only keep object-level semantic tags xobj-text and degradation-aware
text xdeg-text. Both the SAM image encoder and the VAE image encoder are employed to constrain the
semantic encoder and the image encoder simultaneously, encouraging the model to learn high-level
semantic representations, thereby enhancing perceptual quality.

(iii) Balance-1: In this balanced variant, we retain the full spatial-aware text encoders, while
removing the VAE-based degradation constraint and the image encoder. Instead, only the semantic
degradation constraints and a semantic image encoder are applied, encouraging the model to learn
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Figure 5: Ablation visualization. Zoom in for a better view.

high-level semantic representations and thereby yielding a balanced variant biased toward perceptual
quality.

(iv) Balance-2: In the second balanced variant, we retain all modules, including the spatial-aware
text encoders and the semantic-enhanced image encoders. This variant fully exploits both spatial-
grounded textual guidance and semantic-enhanced visual guidance, aiming to achieve more favorable
balance between perception and distortion.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional ablation visualization results, some visualization cases of
spatial-grounded textual and semantic-enhanced visual guidance, and more qualitative results.

C.1 ADDITIONAL ABLATION STUDY RESULTS

Fig. 5 shows the visualization results with different variants on real-world datasets. The Perception
variant often introduces hallucinated textures (highlighted in yellow boxes), such as dashed strokes(a),
artificial characters appearing on the lantern surface(b), overly detailed and fabricated surface
patterns(c), and distorted letter shapes(d), which are inconsistent with the ground truth. In contrast,
our Fidelity, Balance-1, and Balance-2 variants significantly suppress these artifacts and better align
with the ground truth through the spatial-grounded textual guidance.

C.2 VISUALIZATION OF SPATIAL-GROUNDED TEXTUAL AND SEMANTIC-ENHANCED VISUAL
GUIDANCE

Fig. 6 displays the spatial-grounded textual and semantic-enhanced visual guidance, including images
processed by the DRM module, the object mask and its object-level tag, and corresponding bounding

15
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boxes generated by Grounded-SAM, as well as the degradation-aware text generated by LLaVA, under
different images. In addition, it also illustrates the tags directly extracted from the LR image using
the degradation-aware prompt extractor (DAPE) proposed by SeeSR (Wu et al., 2024c). Considering
that the object-level tags extracted by Grounded-SAM from the LR image, or even from the DRM-
processed image, are not always satisfactory, another optional strategy in our experiments is to employ
the DAPE module to extract object-level tags directly from the LR image, and then pair them with the
corresponding bounding boxes. These components together constitute a spatial-aware text guidance
that aligns spatial information with semantic textual prompts to enhance image fidelity.

C.3 MORE QUALITATIVE COMPARISONS

Fig. 7 and Fig. 8 present additional visual comparison of all evaluated models on DIV2K-Val datasets.
Fig. 9, Fig. 10, Fig. 11, Fig. 12 shows visual comparison on RealLR200 dataset, which do not provide
the ground truth.
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Figure 6: Visualization of spatial-grounded textual and semantic-enhanced visual guidance, including
objects with semantic masks and bounding boxes, tags generated by DAPE, and degradation-aware
text. We align bounding boxes with object-level tags to get image fidelity guidance.
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LR
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Ours-Balance2

Ours-Balance1
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Ours-PerceptionHR

SwinIR

Figure 7: Qualitative comparisons on an example from DIV2K-Val. GAN-based methods tend to
produce overly smooth outputs, making it difficult to recover clear images from those with complex
noise. Diffusion-based methods are prone to hallucinations: SeeSR and XPSR mistakenly restore
houses as rocks, while PASD interprets noise as water ripples. Our model and its variants preserve
the realism of the seawater and maintain the general contours of the houses.
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SwinIR

Figure 8: Qualitative comparisons on an example from DIV2K-Val. GAN-based methods lack
detailed textures. Diffusion-based methods generate jade that is deformed. Our model and its variants
generate richer texture details while maintaining fidelity, thereby more faithfully reflecting the jade
and plate compared to diffusion-based methods.
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Figure 9: Qualitative comparisons on an example from RealLR200. GAN-based methods tend to
oversmooth the chip surface and produce irregular font structures. Diffusion-based methods sharpen
edges but introduce structural inconsistencies: StableSR and XPSR produce distorted or missing
strokes in the characters, while PASD and SeeSR generate spurious textures on the chip body. Our
model and its balanced variants restore the text more clearly and consistently, no spurious textures on
the chip body, achieving a balanced trade-off between perceptual quality and distortion.
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Figure 10: Qualitative comparisons on an example from RealLR200. While GAN-based methods
remove noise effectively, they lead to blurred whiskers, linework, and edges. Diffusion-based methods
yield sharper edges but are prone to hallucinations and geometric distortions: XPSR and PASD
hallucinate cat fur, SeeSR produces abnormal eye patterns, and all four diffusion-based methods
alter the cap badge. Our model and its balanced variants produce clean and stable linework without
hallucinations, achieving a balanced trade-off between perceptual quality and distortion.
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Figure 11: Qualitative comparisons on an example from RealLR200. GAN-based methods over-
smooth the axolotl’s gill filaments and skin, whereas diffusion-based methods generate more texture
but introduce hallucinations and shape distortions: PASD, SeeSR, and XPSR hallucinate skin grain,
SeeSR and XPSR warp the mouth contour, and StableSR injects blotchy textures. Our model and
its balanced variants deliver clean, stable details, achieving a balanced trade-off between perceptual
quality and distortion.
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Figure 12: Qualitative comparisons on an example from RealLR200. GAN-based methods over-
smooth the axolotl’s gill filaments and body, blurring edges. Diffusion-based methods sharpen edges
but introduce hallucinations and geometric distortions: PASD and SeeSR generate spurious skin
textures and distorted mouths, while StableSR and XPSR hallucinate false filaments. Our model and
its balanced variants keep natural skin and gill filaments, achieving a balanced trade-off between
perceptual quality and distortion.
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