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ABSTRACT

Purpose: To evaluate a transmission optical spectroscopy instrument for rapid ex vivo assessment of core needle cancer
biopsies (CNBs) at the point of care.

Materials and Methods: CNBs from surgically resected renal tumors and nontumor regions were scanned on their
sampling trays with a custom spectroscopy instrument. After extracting principal spectral components, machine learning
was used to train logistic regression, support vector machines, and random decision forest (RF) classifiers on 80% of
randomized and stratified data. The algorithms were evaluated on the remaining 20% of the data set held out during training.
Binary classification (tumor/nontumor) was performed based on a decision threshold. Multinomial classification was also
performed to differentiate between the subtypes of renal cell carcinoma (RCC) and account for potential confounding effects
from fat, blood, and necrotic tissue. Classifiers were compared based on sensitivity, specificity, and positive predictive value
(PPV) relative to a histopathologic standard.

Results: A total of 545 CNBs from 102 patients were analyzed, yielding 5,583 spectra after outlier exclusion. At the indi-
vidual spectra level, the best performing algorithm was RF with sensitivities of 96% and 92% and specificities of 90% and
89%, for the binary and multiclass analyses, respectively. At the full CNB level, RF algorithm also showed the highest
sensitivity and specificity (93% and 91%, respectively). For RCC subtypes, the highest sensitivity and PPV were attained for
clear cell (93.5%) and chromophobe (98.2%) subtypes, respectively.

Conclusions: Ex vivo spectroscopy imaging paired with machine learning can accurately characterize renal mass CNB at
the time of tissue acquisition.

ABBREVIATIONS

AUC = area under the curve, CNB = core needle cancer biopsy, Hb = deoxyhemoglobin, HbO, = oxyhemoglobin, LR = logistic
regression, MCC = Matthew correlation coefficient, PPV = positive predictive value, RCC = renal cell carcinoma, RF = random decision
forest, SVM = support vector machine

The rate of molecular diagnostic discoveries has increased
the number of solid tumor biopsies performed as well as
magnified the importance of these specimens for classifying
cancer and guiding treatment selection to optimize patient
outcomes (1,2). Presently, the rate of failure to provide
adequate material from needle biopsies for complete

characterization by cell morphology, staining properties,
and immunohistochemistry is substantial. In particular,
genetic profiling is unsuccessful in over 50% of fine needle
aspiration biopsies and over 30% of core needle biopsies
(CNBs) (3). Rapid evaluation of specimen quality and
tumor yield at the time of a biopsy could provide critical

Figures E1 and E2 and Appendices A and B can be found by accessing the
online version of this article on www.jvir.org and selecting the Supplemental
Material tab.
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RESEARCH HIGHLIGHTS

« Spectroscopy paired with machine learning had a high
sensitivity and specificity, up to 96% and 92%,
respectively, for renal mass core needle biopsy
characterization.

« The algorithm differentiated between renal cell carci-
noma subtypes, with the highest sensitivity and positive
predictive value for clear cell (93.5%) and chromophobe
(98.2%) subtypes, respectively.

« With direct feedback, biopsy procedures may be
modified at the point of care to improve sampling, effi-
cacy, and safety.

« A new performance standard for cancer biopsies may
be possible through a combined hardware and software
platform for rapid nondestructive tissue analysis.

feedback to the operator, leading to more effective and
efficient tumor sampling.

Deployment of biopsy assessment technologies that
facilitate rapid on-site evaluation in clinical settings has
been hampered by factors such as lengthy analytic times,
tissue degradation, expense, on-site tissue staining,
requirement for interpretive expertise, and challenges to
workflow integration. Additionally, many of these tech-
nologies analyze tissues in vivo, which may be helpful for
determining intraoperative surgical margins but are less
informative for ex vivo assessment of tissue acquired from a
needle biopsy. To facilitate ex vivo CNB quality assess-
ment, a transmission optical spectroscopy instrument was
combined with machine learning methods to rapidly char-
acterize CNB samples. This study aimed to evaluate the
performance characteristics of the spectroscopy instrument
paired with machine learning utilizing a renal mass biopsy
training set.

MATERIALS AND METHODS

This study was approved by the institutional review board
and human biospecimen utilization committee as a retro-
spective analysis.

Optical Spectroscopy and Machine
Learning Platform Overview

A transmission optical spectroscopy instrument was
designed to provide direct feedback to the operator
including the analyzable specimen length, geometric pro-
portion of the sample that contains malignant cells, and
overall sample classification as predominantly malignant or
benign. Based on this information, in clinical practice, an
operator may choose to obtain additional biopsy samples,
with an associated risk from additional needle passes, or
conclude the procedure. After spectroscopic analysis and
point-of-care feedback, unadulterated label or dye-free

STUDY DETAILS

Study type: Laboratory investigation

samples can then undergo standard of care diagnostic and
molecular analysis. This workflow offers the opportunity to
limit sources of preanalytical variation, such as the per-
centage of samples with little or no cancerous tissue, to
review in the pathology laboratory. A comparison of the
traditional on-site imprint cytology- and spectroscopy-based
CNB assessment is depicted in Figure E1 (available online
on the article’s Supplemental Material page at www.jvir.
org).

Designed for use in procedure rooms or surgical suites
or at the patient’s bedside, the hardware and software
platform acquires spectra along CNB samples that remain
intact on the biopsy needle. Machine learning algorithms
trained using ground truth histopathologic analysis of
tumor samples classify individual transmission spectra
along a biopsy sample. Output to the user includes the
likelihood of the sample containing tumor tissue, geo-
metric proportion of the malignant cells in the sample, and
classification of the sample by histopathologic subtype. In
this study, spectra obtained from every 0.75 mm of CNB
tissue were used to train 3 different discriminative
machine learning algorithms: (a) logistic regression (LR),
(b) support vector machine (SVM), and (¢) random
decision forests (RFs). The CNB samples were obtained
from human kidneys and kidney tumors. Classification
sensitivity, specificity, and accuracy metrics were reported
for individual spectra as well as for full CNBs to differ-
entiate tumor biopsies from predominantly benign tissue
biopsies.

Biopsy Protocol

Surgically excised human kidney specimens were biopsied
ex vivo in a tissue procurement facility immediately after
partial or complete nephrectomy for a renal tumor. The
distinction between normal and tumor regions was made by
gross examination of pathology specimens. Biopsies were
obtained using 18-gauge side-notch, spring-loaded core
needle devices with 20-mm-long sampling trays exposed
(Temno Evolution or Adjustable Coaxial Temno; Care-
Fusion Corporation, San Diego, California). Kidney tumor
and normal renal parenchymal tissues distant from the
tumor were sampled. In addition, renal sinus fat, visibly
necrotic tissue, and blood-only samples were collected to
evaluate classification in the presence of potential con-
founding tissue types. The final histopathologic tumor
diagnosis was recorded for association with spectroscopy
data. The optical spectroscopy, data acquisition, outlier
rejection, principal component analysis, machine learning,
and classification steps are succinctly described in the
following and in more detail in Appendices A and B
(available online at www.jvir.org).
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Optical Spectroscopy

Biopsy samples were analyzed using a custom-built trans-
mission optical spectrometer (Appendix A and Fig E2,
available online at www.jvirorg). Up to 20 transmission
spectra were collected at approximately 0.75-mm sampling
increments. Data acquisition time was typically 45 seconds
per biopsy, which includes multiexposure (high dynamic
range) stitching to improve the signal-to-noise ratio. Spectra
with a low signal-to-noise ratio due to light obstruction by
the needle or 100% transmittance due to empty biopsy tray
regions fell outside the interquartile range of the spectral
distribution and were rejected as outliers.

Principal Component Analysis, Machine
Learning, and Classification

The majority of spectral data were represented by 10 prin-
cipal components. Machine learning classifiers, including
LR, SVMs, and RFs (4,5), were trained on 80% of the data
and tested on the remaining 20%. The training-test set split
was randomized and stratified, and classifier hyper-
parameters were tuned using tenfold stratified cross vali-
dation on the training set.

Tissue classification was performed both at the individ-
ual spectrum and the full CNB sample levels. The ground
truth pathology labels were assigned into renal cell carci-
noma (RCC), normal renal parenchyma, renal sinus fat,
blood, or necrotic tumor categories at the whole CNB level.

Performance Evaluation

Individual spectral and whole biopsy classifiers were
quantitatively evaluated using ROC analysis and scalar
performance metrics at their respective optimal decision
thresholds (Appendix B, available online at www.jvir.org).
The McNemar statistical test, Matthew correlation coeffi-
cient (MCC) and kappa statistics were used to compare the
performance of RF, LR, and SVM algorithms for individual
spectra and whole CNB classification. To facilitate data
visualization, false color “heat maps” for biopsy samples
were generated by color coding the likelihood of constituent
spectra belonging to the tumor class.

RESULTS

Sample and Spectroscopy
Characteristics

A total of 545 CNBs obtained from surgically resected
kidneys from 102 patients undergoing partial or complete
nephrectomy for renal tumors were analyzed with the
transmission optical spectroscopy device (Fig E2, available
online at www.jvir.org). Table 1 summarizes the distribution
of tissues sampled. The maximum scan duration using
the spectroscopy platform was 60 seconds for a full-
trough biopsy sample. Each CNB sample had up to 21
spectra (1 spectrum corresponds to 0.75 mm of tissue)

Table 1. Distribution of Biopsied Tissue and Total Number of

Spectra Obtained from Each Sample Type

Tissue Specimens Spectra
Renal masses 322 3,176
Clear cell 194 1,847
Papillary 50 348
Chromophobe 37 440
Oncocytoma 15 220
TSC-associated RCC 3 51
Undifferentiated RCC 15 190
Adrenal cortical 4 52
Dedifferentiated sarcoma 4 48
Normal renal parenchyma 123 1,618
Renal sinus fat 44 370
Blood 37 242
Necrotic tumor 19 177
Total 545 5,583

RCC = renal cell carcinoma; TSC = tuberous sclerosis complex.

depending upon the length of tissue obtained from a needle
pass, and the number of spectra rejected from areas where
no tissue was present on the needle. Analysis of the 545
CNB samples produced a library of 5,583 spectra. There
was at least 1 spectrum obtained from each of the 545
biopsies (range, 1-20; mean, 10.24; median, 10 spectra per
sample).

Classifier Performance for Individual
Spectra

Classifier performance results for binary (tumor vs normal)
and multiclass (confounders included) classifications based
on individual spectra are presented in Figure 1. Of the 3
classification algorithms evaluated, the RF classifier
achieved the highest area under the curve (AUC) of 0.98.
The multiclass classification results were collapsed to
produce a binary classification summary, with tumor and
necrotic tissues considered positive and normal tissues
(normal kidney, blood, and fat) considered negative classes.
The RF again achieved the best performance with an AUC
of 0.96. The comparative scalar performance metrics,
including confidence intervals, at optimal receiver operating
curve thresholds (P, of 0.59 and 0.57) for binary and
multiclass classification are shown in Table 2. Classifier
discrimination was highest using the RFs algorithm, with
sensitivities of 96% and 92% and specificities of 90% and
89% for the binary and multiclass analyses, respectively.
The MCCs were 0.871, 0.689, and 0.718 for the RF, LR,
and SVM algorithms, respectively. The kappa statistic was
highly correlated with MCC with almost the same values
(0.871, 0.688, and 0.717, respectively). Figure 2 reveals
the relative performance of the RF, LR, and SVM
algorithms using the McNemar test. The difference
between the performance of RF and the other algorithms
was statistically significant across all compared metrics
(error rate, sensitivity, and specificity). Taken together, the
results of this study demonstrated statistically significant
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Figure 1. Receiver operating characteristic analysis for spectral classification: (a) tumor versus normal tissue. (b) Multiclass
classification (collapsed to binary output) of tumor and normal tissues with 3 additional confounding tissue types: (a) blood,
(b) fat, and (c) necrotic tissue (right). The machine learning algorithms included logistic regression (LR), support vector machine
(SVM), and random decision forests (RFs). AUC = area under the curve; Cl = confidence interval.

Table 2. Classifier Performance Metrics Comparing the Spectral Classifiers, Including LR, SVM, and RFs

Algorithm Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%)

Tumor vs normal tissue spectrum classifier

[95% Cl, 95-97]

[95% Cl, 90-94]

[95% Cl, 86-93]

[95% Cl, 86-92]

[95% ClI, 92-95]

Tumor and necrotic tissues vs nontumor (fat, blood, and normal tissues) spectrum classifier

[95% Cl, 89-92]

LR 90 (576/635) 77 (251/323) 86 (827/958) 88 (576/648) 80 (251/310)
[95% Cl, 87-92] [95% Cl, 72-81] [95% Cl, 84-88] [95% Cl, 86-91] [95% Cl, 76-85]

SVM 88 (564/635) 84 (272/323) 87 (836/958) 91 (564/615) 79 (272/343)
[95% Cl, 85-90] [95% Cl, 80-87] [95% Cl, 85, 89] [95% Cl, 88-93] [95% Cl, 74-83]

RF 96 (611/635) 90 (293/323) 94 (904/958) 95 (611/641) 92 (293/317)

[95% Cl, 93-96]

LR 87 (589/670) 80 (356/445) 84 (945/1115) 86 (589/678) 81 (356/437)
[95% Cl, 84-89] [95% Cl, 76-83] [95% Cl, 82-86] [95% Cl, 84-89] [95% Cl, 77-85]

SVM 86 (581/670) 86 (385/445) 86 (966/1115) 90 (581/641) 81 (385/474)
[95% Cl, 84-89] [95% Cl, 83-89] [95% Cl, 84-88] [95% Cl, 88-92] [95% Cl, 77-84]

RF 92 (620/670) 89 (397/445) 91 (1017/1115) 92 (620/668) 88 (397/447)

[95% Cl, 90-94]

[95% Cl, 89-94]

[95% Cl, 85-91]

Note-The top half of the table reflects binary tumor versus normal tissue spectral classification; the bottom half shows multiclass classification with confounders
collapsed to a binary output (positive class, tumor and necrotic tissue spectra; negative class, fat, blood, and normal tissue spectra). All metrics were computed at
their respective optimal receiver operating characteristic thresholds.

Cl = confidence interval; LR = logistic regression; NPV = negative predictive value; PPV = positive predictive value; RF = random decision forest; SVM = support

vector machine.

superiority in terms of AUC, sensitivity, specificity, accuracy,
positive predictive value (PPV), and negative predictive
value for the RF algorithm over LR and SVM.

Table 3 shows the results of the multinomial classification
for the predominant subtypes of RCC as a confusion matrix.
The sensitivity and PPV values for each subtype were
computed by considering each tumor subtype in the
positive class and the remainder in the negative class. The
highest sensitivity and PPV were attained for clear cell
(93.5%) and chromophobe RCC (98.2%) subtypes,
respectively. The majority of misclassification errors were
associated with the chromophobe and papillary subtypes
relative to the clear cell subtype.

Full CNB Classifier Performance

RFs, the best performing individual spectral classifier, were
used to build the full CNB classifier. Figure 3 shows the
results of classifying the full CNB specimen based on an

optimal decision threshold (p> PY). At the optimal ROC
threshold of Pf;l = 0.02, the classification sensitivity and
specificity were 93% and 91%, respectively. The MCC
and kappa statistic were 0.8 and 0.807, respectively. All
performance  measures indicate  highly  accurate
classification of full CNBs using the combined tissue
spectroscopy and classification approach.

Heat Maps for Visualization of Classifier
Results

Figure 4 shows representative false color heat maps that
depict the probability of tumor at each site of spectral
acquisition along CNB samples. True-positive samples are
largely yellow to red because their constituent spectra were
predicted to belong to the tumor category with high prob-
ability. Similarly, the true-negative biopsy samples are
largely green to yellow because their constituent spectra had
a low probability of belonging to the tumor category.
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Figure 2. McNemar test for comparing random decision forests (RFs) with support vector machine (SVM) and logistic
regression (LR) spectral classifiers for each of the compared metrics: error rate (top), sensitivity (middle), and specificity
(bottom), all computed at their respective optimal receiver operating characteristic thresholds on the held-out test set.

Table 3. Spectroscopy-Based Tumor Subtype Classification Using the Random Forest Algorithm

Test (spectroscopy) Sensitivity
Clear cell Chromophobe Oncocytoma Papillary Normal
Gold Standard (pathology)
Clear cell 345 0 0 9 15 93.5%
Chromophobe 22 55 0 1 10 62.5%
Oncocytoma 9 0 30 0 1 75.0%
Papillary 42 0 1 22 4 31.9%
Normal 22 1 0 1 299 92.6%
PPV 78.4% 98.2% 96.8% 66.7% 90.9%

Note-The different classes include clear cell, chromophobe, oncocytoma, papillary, and normal spectra. The sensitivity and PPV values were computed by
including each of the renal cell carcinoma subtypes in the positive class and the remainder in the negative class.
PPV = positive predictive value.

development of a variety of automated or semiautomated

DISCUSSION technologies and techniques for in vivo or ex vivo tissue
Automated biospecimen analytic platforms have trans- characterization (6). These include optical spectroscopy (7),
formed several aspects of modern clinical medicine. Pursuit x-ray imaging (8), confocal microscopy (9), structured

of cancer biopsy quality improvement has led to the illumination microscopy (10), Fourier transform infrared
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Figure 4. (a) False color heat map classification results displayed along the length of a biopsy sample obtained from the margin
of a tumor and normal tissue. Normalized representative transmittance spectra are shown for tumor (red), unclassifiable
(orange), normal tissue (green), and outlier (black) regions. In this example, the proximal region of biopsy trough did not contain
any tissue, resulting in outlier spectra (black) that were not classified. (b) False color heat maps of biopsy samples selected to
illustrate the variability of constituent spectra within standard core needle biopsy samples. Each horizontal bar represents
approximately 0.75 mm of imaged tissue along a standard needle cancer biopsy sampling tray. The color of each bar reflects
the probability of an individual spectrum representing tumor tissue. Automated classification of component spectra across full
biopsy specimens enables grouping into true-positive, false-negative, true-negative, and false-positive categories. Two
representative samples of true-positive (TP) and true-negative (TN) biopsies are displayed.

imaging (11), fluorescence microscopy (12-15), contrast-
enhanced micrography (16), and diffuse reflectance, elec-
trical impedance, and Raman spectroscopy (17-21).
Differences between normal and cancerous tissue have been
explored using these techniques and correlated with tissue
morphology and histology (22-24). These technologies for
ex vivo cancer specimen quality assessment possess
advantages and disadvantages with respect to portability,
infrastructure requirements, ease of use, and costs to
develop or implement (5,6,25,26).

This study suggests that optical spectroscopy combined
with machine learning—based tissue -classification can
quickly, accurately, and nondestructively characterize sam-
ples obtained for cancer diagnostics. The technology
described here evaluates unstained tissues on the core
biopsy needle itself, with no additional physical manipula-
tion or risk of structural, cellular, or genetic damage prior to
submission to the pathology laboratory.

For some time, immediate biopsy specimen assessment
using traditional cytologic imprints (glass slide touch
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preparations) under light microscopy has been shown to
improve sampling accuracy (27,28). However, the resources
and expertise necessary to provide rapid on-site sample
assessment are often unavailable (29,30). Glass slide touch-
preparation techniques can also be deleterious to down-
stream processing by substantially depleting the CNB of
neoplastic cells or disrupting tissue architecture (31).

Several studies have examined the biological underpin-
nings of distinct optical imaging signatures from normal
versus malignant tissues. Differences in tissue architecture,
blood supply and oxygenation are commonly cited (32). For
example, deoxyhemoglobin/oxyhemoglobin (Hb/HbO,)
absorption (Hb peak, approximately 350-400 nm; HbO,
peak, approximately 550-600 nm) can impact the spectral
slope within the near-infrared region, and the relationship
between scattering and tissue composition has been outlined
in other malignancies, such as breast cancer (22).

The combination of an imaging modality, a reference
library of tissue characteristics, a computational platform, and
data networking can effectively close the physical and tem-
poral gap between operating rooms or biopsy suites (tissue
acquisition) and pathology departments (tissue analysis),
providing actionable results at the point of care. Relative to
technologies that characterize tissues in vivo (prior to biopsy),
the instrument studied here analyzes ex vivo material obtained
from the targeted lesion. This offers the advantage of
providing information regarding the actual sample destined for
downstream processing, rather than a possible target within the
vicinity of the device. For example, an operator can discon-
tinue needle biopsies when readouts indicate high tumor
content within acquired samples. Alternatively, an operator
with a high degree of suspicion for disease may reposition the
biopsy needle and obtain additional samples when the readout
suggests only noncancerous tissues. Reducing undersampling
could improve biopsy efficacy, whereas limiting oversampling
may improve biopsy procedure safety.

Short scan durations and fast response times are impor-
tant to minimize procedural delays, particularly when
multiple biopsy samples are required for patients receiving
sedation, or anesthesia. The present study data were
acquired with scan times of <1 minute per sample based on
focal spots every 0.75 mm. Combined with the computa-
tional time for spectral and whole biopsy classification of
<1 second, this system is highly efficient relative to tradi-
tional imprint cytology slide preparation and review.

This study has a number of limitations. First, a common
criticism of machine learning classification algorithms to
automate diagnoses is that there may be limited insight into
the specific determinants used for classification. Further
efforts to improve classifier accountability may benefit from
advances in the field of machine learning. At present, the
precise etiology of false-positive and false-negative sample
classification is uncertain. This may be due to the relatively
small size of the spectroscopic data and lack of availability
of truth at the level of individual spectra, requiring addi-
tional spectral data and further investigation of biological
underpinnings to assess. Several studies have attempted to

extract the basis of distinct optical imaging signatures from
normal versus malignant tissues. Differences in tissue
architecture, blood supply, and oxygenation are commonly
cited (32). For example, Hb/HbO, absorption (Hb peak,
approximately 350-400 nm; HbO, peak, approximately
550—600 nm) can impact the spectral slope within the near-
infrared region, and the relationship between scattering and
tissue composition has been outlined in other malignancies,
such as breast cancer (28).

Necrotic tumor tissues, inflammation, fibrosis, and
residual blood on tissue samples also present a challenge for
classification and are potential confounders. In particular,
necrotic tumors may be considered either tumor positive or
tumor negative, even by highly trained histopathologists
depending upon whether small clusters of viable tumor cells
are detected. Further studies in real-world biopsy settings
will also be necessary to determine whether ex vivo tissue
sample spectroscopic profiles may have been impacted by
the time delay between surgical removal of the tumors and
imaging. The high sensitivity and specificity achieved in
this study suggests that tissue desiccation or ischemia does
not significantly alter the spectroscopic signature of tumors.
Although studies to date demonstrate high instrument
sensitivity and specificity in kidney, the testing domain has
been limited and requires expansion to a range of tumor
types to generalize performance claims. To this end, a
clinical trial utilizing this technology in a wide array of
tissue and tumor types would be beneficial. Clinical trans-
lation would also require attention to the “ASSURED”
criteria (Affordable, Sensitive, Specific, User-friendly,
Rapid and robust, Equipment-free, and Deliverable to end
users), often cited to evaluate the potential of rapid point-of-
care tests in resource limited environments (6,33).
Following the ASSURED criteria, these technologies are
promising based on performance characteristics, speed, and
potential for integration into point-of-care environments.
However, robust clinical validation, true cost-effectiveness
assessment, and data reproducibility studies with histo-
pathologic correlation at the individual spectral level will
need to be performed.

Point-of-acquisition tissue assessment using instruments
such as the optical spectroscopy and machine learning
platform described in this study could help to establish a
new performance standard for rapid cancer biopsy assess-
ment and automated needle biopsy quality control. The
potential of this technology is increasingly evident in the era
of molecular oncology in which personalized cancer treat-
ments require accurate and often repeated profiling of
continually mutating cancer cell populations.
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APPENDIX A
Optical Spectroscopy

Biopsy samples were analyzed using a custom-built auto-
mated transmission optical spectrometer (Fig E1, available
online at www.jvir.org). A deuterium-tungsten light source
(DH-2000-DUYV; Ocean Optics, Dunedin, Florida) deliv-
ered broadband illumination in the ultraviolet (UV)-visible-
near-infrared range (200—1,100 nm). Light passed through a
correction filter (FSR-KG2; Newport, Irvine, California) for
uniform output across the lamp’s spectrum. To maximize
transmission of UV signal, the illumination light was
guided via a UV core multimode solarization-resistant fiber
(QP600-1-SR; Ocean Optics) and focused on the sample
using a 10-mm focal length fused silica lens (74-UV; Ocean
Optics). Illumination intensity was controlled by neutral
density filters (NDUV series; Thorlabs, Newton, New Jer-
sey) selected from an addressable motorized filter wheel
(FW102C; Thorlabs).

Imaging was performed directly across the core needle
cancer biopsy sampling trough. A custom snap-in acrylo-
nitrile butadiene styrene three-dimensional-printed needle
holder was used to align the tip of the needle with the
illumination beam prior to scanning. Light transmitted
through the tissue sample was collected by fused silica lens
(74-UV) and fiber-optically guided to a spectrometer
coupled with a multichannel array detector (VS70; Horiba;
spectral window, 190—1,000 nm; Kyoto, Japan).

Data Acquisition

Up to 20 transmission spectra were collected at approxi-
mately 0.75-mm sampling increments along the biopsy
sample. The spot size of the beam incident on the sample
was approximately 0.25 mm, verified by a knife-edge
technique. This resulted in a sampling volume of approxi-
mately 0.17 mm? at each location. Similar to routine clinical
core needle cancer biopsies, discontinuous samples (frag-
ments) were commonly acquired, resulting in fewer than 21
spectra per sample. High dynamic range spectra were
constructed by recording multiple exposures (10, 100, and
1,000 milliseconds of integration times) merged into a
single spectrum optimized for signal-to-noise across the
entire 190-1,000-nm detector sensitivity range. Data
acquisition time was typically 45 seconds per biopsy, which
includes multiexposure (high dynamic range) stitching to
improve the signal-to-noise ratio. Instrument control and
data acquisition were performed using a laptop computer
with LabVIEW software (National Instruments, Austin,
Texas).

Outlier Rejection

In this step, all data are concatenated, normalized, and
distributed against the geometrical mean of the population.
The acquired transmittance spectra were normalized to
values between 0 and 1 by subtracting the dark spectrum

and dividing by the reference spectrum. The spectra that fall
outside the interquartile range of the distribution are rejec-
ted as outliers. In practice, these rejected spectra correspond
to either low signal-to-noise ratio (due to light obstruction
by the needle) or 100% transmittance (due to empty tray
regions that are not covered with tissue). Samples falling
out of the interquartile range were evaluated and confirmed
to contain very little discriminative power. Specifically,
these spectra were either predominantly flat across a wide
range of wavelengths (saturated) or predominantly noise.
Moreover, we performed separate classification experiments
in which outliers were given a separate label and then
classified against the main tissue types (normal and tumor).
In these experiments, we confirmed that the outliers could
be easily differentiated from the signals of interest, having a
negligible impact on the sensitivity and specificity of tumor
detection.

APPENDIX B

Classifier Performance For Individual
Spectra

Machine learning classifiers were trained on the extracted
principal spectral components to differentiate tumor spectra
from normal tissue spectra using logistic regression, support
vector machine, and random decision forest (RF) classifi-
cation algorithms (1,2). The spectra were designated as
either tumor or normal based on an optimal decision
threshold on the probability of tumor (p > Pj,). Each tissue
spectrum was decomposed into statistically significant
principal components by solving the eigenvalue problem for
the concatenated data. The probability of a full core needle
cancer biopsy (CNB) sample representing predominantly
tumor or normal tissue was computed by combining the
likelihood of each of its constituent spectrum via a signal
fusion approach, where the spectra from the biopsy sample
are treated as the output of different sensors. The naive
Bayes assumption was used to compute the likelihood of
each sensor output (spectra) belonging to either tumor or
normal classes. To test the robustness of classification to
confounders, the analysis was repeated with 3 additional
types of tissue spectra commonly obtained during clinical
kidney mass CNBs: (a) renal sinus fat, (b) blood, and (c)
necrotic tumor regions. New multiclass classification
models were trained to obtain probabilities of each spec-
trum belonging to one of the 5 classes.

Full Core Needle Biopsy Classifier
Performance

The probability of a full CNB sample representing pre-
dominantly tumor or normal tissue was computed by
combining the likelihood of each of its constituent spectra
via a signal fusion approach and using the naive Bayes
assumption. RF, the best performing individual spectral
classifier, was used to build the full CNB classifier.
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Performance Evaluation

The optimal decision thresholds, Pj, and Pﬁ’h, for the spec-
tral and full CNB sample classifiers were computed using
the Zweig and Campbell method (3), where the slope of the
optimal receiver operating characteristic point is computed
based on a combination of misclassification cost and
prevalence analysis. The cost of misclassifying a tumor
spectrum as normal tissue and vice versa was assumed to be
equal. The McNemar statistical test, Matthew correlation
coefficient, and kappa statistic were used to compare the
performance of RF, logistic regression, and support vector
machine algorithms on spectral classification and whole
CNB performance. We tested the stability of our models
with regard to imbalance using the synthetic minority

oversampling technique for the underpopulated classes and
by downsampling the overpopulated classes. The latter
reduced the population size too much to train the classifi-
cation model, whereas former confirmed stability of model
training and performance.
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Figure E1. Comparison of glass slide imprint cytology versus transmission optical spectroscopy evaluation of core needle
biopsy samples. Imprint cytology (top row, panels a-e) is based on the presence or absence of cytopathology on slides viewed
by light microscopy. (a) Representative tumor in the lower pole of the right kidney, (b) core needle biopsy sample obtained from
the tumor, (c) core sample physically advanced across glass slide to leave cytologic imprint, (d) imprinted slide dipped into a
fixative agent followed by eosinophilic and basophilic solutions and finally rinsed in water (approximately 10-15 seconds per
solution), and (e) evaluation of stained slide under a microscope by a cytopathologist. The typical time required for slide review
per sample is 3-5 minutes (steps c—e). Based on a cytopathologist’s interpretation of cell number, morphology, architecture,
and staining characteristics, repeated needle passes may be recommended. The transmission optical spectroscopy (bottom
row, panels a-d) workflow does not require a cytopathologist, sample transfer to slides, or staining methods that degrade the
sample. (a-b) A needle biopsy sample was obtained; (c) the spectroscopy instrument scanned the sample on the needle and
provided data to a computer for analysis; (d) an interpretative readout was immediately provided to the operator.
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Figure E2. Schematic diagram of core biopsy spectroscopic imaging platform and subcomponents. Transmission spectros-
copy systems. Deuterium/tungsten light source (LAMP), optical fiber (F), filter wheel (FW), lenses (L1 and L2), biopsy tissue core
(B), motorized translation stage (XYZ), detector (DET), and laptop computer (PC).
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