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Abstract

Recent advancements in Retrieval-Augmented001
Language Models (RALMs) have demon-002
strated their efficacy in knowledge-intensive003
tasks. However, existing evaluation bench-004
marks often assume a single optimal approach005
to leveraging retrieved information, failing to006
account for varying user needs. This paper in-007
troduces a novel evaluation framework that sys-008
tematically assesses RALMs under three user009
need cases—Context-Exclusive, Context-First,010
and Memory-First—across three distinct con-011
text settings: Context Matching, Knowledge012
Conflict, and Information Irrelevant. By vary-013
ing both user instructions and the nature of re-014
trieved information, our approach captures the015
complexities of real-world applications where016
models must adapt to diverse user requirements.017
Through extensive experiments on multiple QA018
datasets, including HotpotQA, DisentQA, and019
our newly constructed synthetic URAQ dataset,020
we find that restricting memory usage improves021
robustness in adversarial retrieval conditions022
but decreases peak performance with ideal re-023
trieval results and model family dominates be-024
havioral differences. Our findings highlight025
the necessity of user-centric evaluations in the026
development of retrieval-augmented systems027
and provide insights into optimizing model per-028
formance across varied retrieval contexts. We029
will release our code and URAQ dataset upon030
acceptance of the paper.031

1 Introduction032

Recent advances in Language Models (LMs) have033

yielded impressive performance in knowledge-034

intensive tasks through Retrieval Augmented Gen-035

eration (RAG) (Lewis et al., 2020), including Real-036

time Question Answering (Wang et al., 2024b),037

Educational Tutoring (Han et al., 2024), and Per-038

sonal Assistants (Wang et al., 2024c). While039

these applications showcase RAG’s versatility, they040

also demand LMs that can adapt to diverse user041

needs—expressed via instructions on whether to042

Just search
and give me
the results

user

>

Use your
knowledge

then search if
not confident

user

Previous work

Our work

Search first
then use your
knowledge if

irrelevant

user

<

Figure 1: User needs may have different directions on
how to use retrieved context and internal memory as
knowledge sources and most of the previous work only
focused on a small portion of them.

prioritize external evidence or internal knowledge. 043

For instance, Real-time QA may rely heavily on 044

updated external facts, whereas tutoring may draw 045

more on the model’s conceptual understanding. 046

Despite this potential, current RAG methods still 047

struggle with identifying relevant references (La- 048

ban et al., 2024), resolving knowledge conflicts 049

(Wang et al., 2024a), and reasoning effectively (Is- 050

lam et al., 2024). These challenges underscore 051

the need for robust evaluation strategies capturing 052

how well Retrieval Augmented Language Models 053

(RALMs) adapt to evolving user requirements. 054

Even though existing RAG/RALM benchmarks 055

(Yu et al., 2024; Es et al., 2023; Chen et al., 056

2024)—including those that focus on multi- 057

scenario evaluations (Friel et al., 2024; Zhu et al., 058

2024)—have advanced retrieval-augmented eval- 059

uation, they typically assume a single “optimal” 060

approach to external information (e.g., always rely- 061

ing on retrieved context). This narrow perspective 062

overlooks how diverse user instructions can dramat- 063

ically alter model behavior and performance within 064

the same scenario. In medical fact-checking, for 065

instance, one user might demand answers derived 066

only from peer-reviewed studies, while another re- 067
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lies on the model’s internal knowledge—even if068

these sources conflict (Miao et al., 2024). Such069

constraints underscore an urgent question: how070

can we systematically evaluate LMs under varying071

context usage requirements to reflect different user072

needs?073

In this paper, we present a simple yet effec-074

tive evaluation framework that rigorously exam-075

ines how Retrieval-Augmented Language Models076

(RALMs) respond to varying user instructions and077

context conditions. We consider three generic user078

cases—(1) Context-Exclusive , (2) Context-First,079

and (3) Memory-First —to capture different de-080

grees of reliance on external information versus081

internal knowledge. Alongside these cases, we082

vary the context settings—(a) Context Matching,083

(b) Knowledge Conflict, and (c) Information Ir-084

relevant—to represent scenarios where retrieved085

materials may align with, contradict, or fail to ad-086

dress the query. By intersecting user cases with087

distinct context conditions, we more closely mirror088

the complexities of real-world applications, where089

both the user’s priorities and the reliability of re-090

trieved information can shift dramatically. This091

approach reveals how each scenario might alter092

the correct response—especially when context and093

memory conflict—an aspect often overlooked in094

previous work.095

We conduct extensive experiments on our cu-096

rated dataset, URAQ, along with two public097

datasets, DisentQA (Neeman et al., 2023) and098

HotpotQA (Yang et al., 2018), evaluating two099

model families, Llama3.1 Grattafiori et al. 2024100

and Qwen2.5 Qwen et al. 2025, across various101

model sizes and numbers of retrieved contexts. Our102

findings reveal that: 1) Current LMs struggle to103

satisfy diverse user needs, achieving below 50%104

accuracy across all datasets, with Llama-3.1-8B-105

Instruct occasionally nearing 0%. 2) Contextual106

restriction alters performance: Restricting mod-107

els to rely solely on retrieved context improves108

LMs performance when external context content is109

different from internal memory by up to 23% accu-110

racy difference on the same model but decreases the111

performance under ideal retrieval by up to 17%. 3)112

Model family dominate behavioral differences:113

Model family contributes the majority of behav-114

ioral differences, which further emphasize the im-115

portance of choosing the correct model for differ-116

ent user needs through proper evaluations. For117

instance, under retrieval with knowledge conflict,118

Llama3.1 models exhibit a performance decline of119

up to 10.2% in accuracy when transitioning from 120

Context-First and Memory-First to the Context- 121

Exclusive case, whereas Qwen2.5 models show the 122

opposite pattern, with an improvement of nearly 123

20%. 124

2 Related Work 125

Our work intersects with four key research ar- 126

eas: (1) Retrieval-Augmented Generation Systems 127

(§2.1), (2) Knowledge Conflict Resolution (§2.2), 128

and (3) RAG Evaluation Benchmarks (§2.3). We 129

situate our framework within this landscape and 130

highlight critical gaps in current approaches. 131

2.1 RAG Systems 132

Modern RAG systems built on foundational archi- 133

tectures like REALM (Guu et al., 2020) and DPR 134

(Karpukhin et al., 2020), which first demonstrated 135

the value of integrating neural retrieval with lan- 136

guage modeling. Subsequent work improved con- 137

text utilization through better attention mechanisms 138

(RETRO (Borgeaud et al., 2021)) and multi-stage 139

reasoning (Atlas (Izacard et al., 2023)). While 140

these systems demonstrate impressive performance 141

on knowledge-intensive tasks, they primarily opti- 142

mize for single objective functions under the im- 143

plicit assumption that retrieved context should al- 144

ways be prioritized. Recent work on controllable 145

generation (Li et al. 2023; Ashok and Poczos 2024; 146

Wei et al. 2024) begins to address this limitation but 147

focuses on content style rather than source prioriti- 148

zation. We aim to raise the attention to diversified 149

objectives of RAG system by this work about eval- 150

uating performance under different user needs. 151

2.2 Knowledge Conflict 152

The challenge of resolving conflicts between inter- 153

nal knowledge and external context has gained at- 154

tention as LMs and RAG systems mature (Xu et al., 155

2024b). Early work by Longpre et al. (2021) identi- 156

fied context-memory conflicts as a key failure mode 157

of LMs through evaluation on QA dataset. Subse- 158

quent works proposed multiple solutions, including 159

but not limit to various fine-tuning, prompting, or 160

decoding methods, to context-memory conflicts 161

that require LM to be faithful to context in order to 162

ignore outdated knowledge (Shi et al., 2024; Zhou 163

et al., 2023) or faithful to memory in order to dis- 164

criminate misinformation are rarely explored (Xu 165

et al., 2024a). However, the hybrid strategies that 166

utilize both context and memory with prioritiza- 167

tion, although commonly appeared in real-world 168
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applications, are rarely explored. In addition, there169

also exists applications that require LMs and RAG170

systems to work along or accept fictitious informa-171

tion or knowledge, which are commonly ignored172

by the previous works. Our framework includes the173

hybrid strategies that stem from the fundamental174

user needs, providing a wider coverage of evaluat-175

ing RALMs performance under context-memory176

conflict situations.177

2.3 Recent RAG Benchmark178

Previous RAG benchmarks like RAGAS (Es et al.,179

2023) and RGB (Chen et al., 2024) have facili-180

tated progress by quantifying performance across181

various scenarios. However, many of these bench-182

marks focused on a single type of optimal setting183

in terms of context usages (for instance, always184

prioritizing the context), overlooking how differ-185

ent user instructions may drastically affect model186

behaviors and performances. Moreover, previous187

multi-scenario evaluations (Friel et al. 2024; Zhu188

et al. 2024), while covering a wide range of spe-189

cific tasks and purpose abundant metrics for evalu-190

ating different aspects of RAG systems, also tend191

to follow the paradigm of focusing on singular op-192

timality, neglecting that different user needs can193

actually happen in the same scenario, ultimately194

hindering the comprehensiveness of benchmark.195

Our work diverges by decoupling evaluation crite-196

ria from predefined singular optimality and mea-197

suring model capability to adapt to dynamic user198

needs. This mirrors real-world deployments where199

systems must honor diverse users’ requirements200

rather than optimize for monolithic accuracy.201

3 Evaluation Framework202

In this section, we present our evaluation frame-203

work to measure Language Models’ (LMs’) perfor-204

mance. Specifically, we first describe the design of205

three abstract user need cases (§3.1) representing206

different typical user needs expressed by context us-207

ages. Then, we describe the three context settings208

(§3.2) motivated by practical usage conditions in209

which the relevancy of the context varies and may210

conflict with the LMs’ memory.211

3.1 User Need Cases212

To evaluate RALMs under varying user needs, we213

define a spectrum based on reliance on contextual214

information versus internal memory. This spec-215

trum, illustrated in Figure 2, consists of three dis-216

Framework

M
at

ch Context-only

Sun

Context-priority

Sun

Memory-Priority

Sun

C
on

fli
ct Proxima

Centauri
Proxima
Centauri Sun

Irr
el

ev
an

t

I don't know Sun Sun

Question: What is the name of the only star in the solar system?
Match Context: Earth is circling the Sun in the solar system which
has only one star in it.
Conflict Context: Earth is circling the Proxima Centauri in the
solar system.
Irrelevant Context: Dinosaur is extinct probably because of
meteor strike.

Figure 2: An illustration of the framework with an ex-
ample question with its possible retrieved context and
the ground truth answer under each situation. According
to different user needs and context settings, the ground
truth answer can be different.

tinct user needs, determined by how LMs are in- 217

structed. Example prompts are in Appendix B. 218

Context-Exclusive: LMs must strictly base an- 219

swers on retrieved context, responding “I don’t 220

know” if context is unhelpful. Prompts enforce 221

unconditional adherence to external evidence, elim- 222

inating reliance on internal knowledge. 223

Context-First: LMs prioritize retrieved context 224

but fall back on memory when no relevant context 225

exists. Prompts establish context as primary, with 226

memory as a secondary source. 227

Memory-First: LMs rely on internal memory 228

unless uncertain, in which case they defer to re- 229

trieved context. Prompts invert the hierarchy, mak- 230

ing memory the default unless confidence is low. 231

3.2 Context Settings 232

To better analyze RALMs under real-world situa- 233

tions with sub-optimal retrieval results, it is benefi- 234

cial to also consider the spectrum of context quality 235

on top of each user case. For any context retrieved 236

in an RAG system, we can assess its quality based 237

on two primary dimensions: 1) Relevance to the 238

Task or Question: Whether the retrieved context 239

contains information that is semantically or factu- 240

ally related to the question. 2) Alignment with 241

LM’s Internal Knowledge: Whether the retrieved 242

context supports or contradicts the knowledge that 243

the model already possesses. These two dimen- 244

sions create a 2 × 2 space (relevant/irrelevant × 245

match/conflict), but due to the nature of irrelevant 246
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context (which neither supports nor contradicts),247

the space reduces to three distinct context settings.248

Conext Matching. There is at least one retrieved249

context relevant to the question and matches with250

the LM’s memory. This is an ideal situation for251

RALMs as correct knowledge is presented in both252

the external context and the internal memory.253

Knowledge Conflict. There is at least one re-254

trieved context relevant to the question but con-255

flicts with the LM’s memory. This setting sim-256

ulates context-memory knowledge conflicts (Xu257

et al., 2024b) and tests the model’s ability on gener-258

ation with strictly following instructions regarding259

context usages.260

Information Irrelevant. All retrieved contexts261

are unrelated to the question. This setting simulates262

the Needle-In-a-Haystack (Laban et al., 2024) sit-263

uation and tests the model’s ability on knowledge264

selection. Models are expected to avoid hallucinat-265

ing and admit knowledge gaps by responding with266

“I don’t know” under Case 1 instructions or relying267

on its memory in Case 2 and 3.268

4 Experimental Setup269

4.1 Datasets270

Overview of QA Datasets. This experiment em-271

ploys three QA datasets: HotpotQA (Yang et al.,272

2018), DisentQA (Neeman et al., 2023), and our273

synthetic User-focused Retrieval-Augmented QA274

(URAQ). To assess RALMs’ real-world perfor-275

mance, we use HotpotQA and DisentQA versions276

augmented with conflicted knowledge by Shaier277

et al. (2024) for the retrieval-content knowledge278

conflict setting. While valuable, these bench-279

marks lack controlled knowledge boundaries and280

have varying question difficulty, limiting evalua-281

tion. They also rely on long-document contexts, re-282

stricting retrieval diversity. URAQ addresses these283

issues with uniformly difficult questions and con-284

cise factual contexts, enabling evaluation under285

extensive retrieval without exceeding LMs’ context286

windows.287

URAQ Construction. We construct URAQ by288

first generating simple, distinct knowledge state-289

ments via GPT-4o-mini (OpenAI et al., 2024) and290

removing near-duplicates using SentenceBERT291

(Reimers and Gurevych, 2019), then creating both292

original and “manipulated” versions by substitut-293

ing key information or adding negations. For each294

Dataset Num. of Context Sequence Size Max. Token

Synthetic 1, 10, 25, 50, 100, 250, 500, 1000 231 25k
DisentQA 1, 2, 4, 8, 16, 32, 64 1415 59k
HotpotQA 1, 2, 4, 8, 16, 32 1274 35k

Table 1: Basic information of the three datasets used
in the experiment. For the sequence of the number
of retrieved context,the number of retrieved context is
increased in a exponential way until the average num-
ber of tokens at the highest number of each sequence
reaches around 20k in order to balance the effectiveness
of the experiment on long context and the consumption
of computational resources. The Max. Token, which
refers to the number of maximum tokens among all sam-
ples for a dataset, may vary based on context retrieved.

knowledge pair, we produce a question requiring 295

1–5 reasoning steps and two separate answers (one 296

from the original knowledge, one from the manip- 297

ulated), ultimately selecting the 4-hop subset for 298

the final dataset. A detailed description of this pro- 299

cedure is provided in Appendix A, ensuring the 300

pipeline’s applicability across various domains. 301

4.2 Context Setting and Prompt Formatting 302

Retrieval Context Setting. To examine how per- 303

formance changes with varying amounts of re- 304

trieved context, rather than using a fixed retrieval 305

count as in previous work (Zhu et al., 2024), we 306

evaluate LM performance by exponentially increas- 307

ing the retrieval count across different datasets, 308

shown in Table 1. To assess the models’ toler- 309

ance to distracting or irrelevant contexts, we ensure 310

that only one relevant context is present for both 311

the context-matching and conflicting settings, ran- 312

domly positioned within the prompt. All other 313

contexts are selected from a pool of original and 314

manipulated knowledge that excludes any informa- 315

tion directly related to the current question. 316

Prompt Formatting The input prompt is orga- 317

nized as (I, C,Q) or (If , Iu, C,Q), where I is 318

the instruction and can be separated into format- 319

ting instruction If and user needs instructions Iu, 320

C = {c1, c2, ..., cn} is a series of retrieved context 321

with retrieval number of n, and Q is the question. 322

Given an input (If , Iu, C,Q), we have the follow- 323

ing prompting template: 324

<sys>If ⊕ Iu</sys><user>C ⊕Q</user> (1) 325

where <sys></sys> and <user></user> denote the 326

system prompt and the user prompt. Among all 327

data samples, the Iu and C may change accord- 328

ing to the user case and context setting, while 329
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the If remaining the same by instructing models330

to directly output a simple answer that is either a331

numeric value, a boolean ("yes" or "no"), or an en-332

tity, as described in Section 4. A complete example333

prompt template is in the Appendix C.334

4.3 Evaluation Metrics335

To rigorously assess user-need awareness across336

across different user needs with different retrieval337

content, we test each user need with identical ques-338

tions but varying the guidance on context usage,339

spanning three levels:340

1. Overall User Need Accuracy : The model341

must satisfy all user needs simultaneously. Specifi-342

cally, each test sample can be counted as correct if343

and only if the model can answer the same question344

under all user cases and all context settings. In this345

way, we can evaluate the LMs in a generic setting.346

2. Case-Level Accuracy For each individual347

user need, we assess the model’s performance348

across multiple context settings. A test sample349

is considered correct only if the model consistently350

provides the correct answer across all variations of351

context under that specific user need. This evalua-352

tion method ensures that the model demonstrates353

reliability in addressing a given requirement, inde-354

pendent of the context variations presented.355

3. Setting-Specific Accuracy In each context set-356

ting, test sample is considered correct if the model357

obtain the answer is same as the ground truth in358

the corresponding setting. By evaluating models at359

these three levels, we obtain a comprehensive view360

of how consistently and robustly they meet each361

user need across different contextual requirements.362

4.4 Evaluation model363

To evaluate user-need awareness, we conduct com-364

prehensive experiments on 4 Instruct LMs using365

two distinct open-source LLM families—Llama366

3.1 (Grattafiori et al., 2024), and Qwen 2.5 (Qwen367

et al., 2025)—which vary in model size. We set the368

maximum context length to 128k, the temperature369

to 0, and Top-p to 1, while leaving all other config-370

urations at their default values which defers to the371

Appendix D.372

5 Result & Analysis373

5.1 Overall Performance374

We start our analysis on the overall performance375

across all three user cases by using the overall user376

need accuracy to access the capacity of user need 377

awareness on different LMs. The results are shown 378

in Figure 3. 379

LMs struggle across all datasets, and URAQ 380

is more challenging than existing benchmarks 381

No model surpasses 50% accuracy across differ- 382

ent user needs, with Llama-3.1-8B-Instruct per- 383

forming particularly poorly, nearing 0%. While 384

performance is low across all datasets, URAQ 385

proves significantly more challenging than Disen- 386

tQA and HotpotQA. The best-performing model, 387

Qwen2.5-72B-Instruct, scores up to 44.4% lower 388

on URAQ. URAQ’s diverse external information, 389

multi-step reasoning, and conflicting knowledge 390

make retrieval and synthesis more challenging for 391

LLMs, emphasizing the need for stronger reason- 392

ing capabilities to handle complex real-world user 393

needs. 394

LMs behave differently at the model-family level 395

but similarly within the same family. Overall, 396

we observe distinct patterns in LMs across differ- 397

ent model families on two out of three datasets. 398

Specifically, there is a clear divergence in behavior 399

between the Qwen2.5 and Llama-3.1 model fam- 400

ilies on DisentQA and HotpotQA. The Qwen2.5- 401

7B-Instruct and its larger 72B variant exhibit an 402

increasing trend in accuracy as the number of re- 403

trieved contexts grows, whereas the Llama-3.1-8B- 404

Instruct and 70B-Instruct models follow a decreas- 405

ing trend. This difference likely stems from model- 406

specific behavioral tendencies and a potential trade- 407

off between instruction-following capability and 408

multi-hop reasoning ability, which we further dis- 409

cuss in Section 5.2. On URAQ, although both 410

model families exhibit declining trends, the Llama- 411

3.1 models experience a steeper drop in perfor- 412

mance compared to the Qwen2.5 models. For ex- 413

ample, the performance gap from 1 to 10 retrieved 414

contexts in the Qwen family is around relative ac- 415

curacy 1.5%, whereas for the Llama-3.1 family, it 416

is 9.1%, indicating a more pronounced decline. 417

Larger models exhibit better user needs aware- 418

ness. Within the same model family, larger 419

models (70B+/72B) consistently outperform their 420

smaller counterparts (7B/8B), demonstrating im- 421

proved user needs awareness. Notably, Qwen mod- 422

els exhibit up to a 37.7% accuracy improvement, 423

while Llama models achieve a 36.3% gain on Dis- 424

entQA, highlighting the substantial benefits of scal- 425

ing model size. However, it is also important to 426
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Figure 4: Case-Level Accuracy curve of Qwen2.5 and
Llama-3.1-70B on HotpotQA

note that the magnitude of performance improve-427

ment diminishes as the number of retrieved con-428

texts increases, suggesting potential saturation ef-429

fects or increased difficulty in effectively leverag-430

ing larger context windows.431

5.2 General Performance for Each User Need432

To further analyze the behavior of LMs on each433

user need, we measure the curve of Case-Level434

Accuracy versus number of retrieved context on435

HotpotQA, as shown in Figure 4. We defer other436

two datasets to Figure 10 in the Appendix E.437

Restricting memory usage improves real-world438

performance. We find that the model’s accu-439

racy increased from Context or Memory-First to440

Context-Exclusive case, meaning that limiting the 441

usage of internal memory improves the lower limit 442

of general performance, possibly because Context- 443

Exclusive strategy forces strict reliance on retrieved 444

evidence and prevents hallucinations. This trend 445

is particularly evident in Qwen2.5 models on Hot- 446

potQA dataset that maintain at least 7.7% increase 447

in accuracy. However, as the number of context in- 448

creases, the performance gap gradually shrinks and 449

may even be inverted on Llama-3.1 models where 450

Context-Exclusive accuracy drops by up to 12.5% 451

when the number of retrieved context increases to 452

32. 453

Models Tend to Be Lazy with More Context. 454

To investigate the counterintuitive pattern in which 455

the accuracy of Context or Memory-First cases in- 456

creases as the number of retrieved contexts grows 457

across all models, we analyze the impact of dif- 458

ferent context settings in both cases, as shown in 459

Figure 5. Interestingly, the Information Irrelevant 460

setting appears to contribute to this upward trend. 461

By randomly sampling 100 cases across different 462

retrieval context lengths, we observe that models 463

are easily influenced by irrelevant information, of- 464

ten generating responses such as “no,” “none,” or 465

“0.” However, as more context is retrieved, models 466

exhibit emergent Chain-of-Thought reasoning capa- 467

bilities. This phenomenon may stem from a form of 468

"lazy" behavior, where models, instead of actively 469

identifying the correct context, increasingly rely on 470

their own memory as the context length grows. We 471

defer the case study example into Appendix D. 472

5.3 Individual Setting Performance 473

To provide more detailed analysis on models’ be- 474

havior on the context setting-level, we measure the 475

Setting-Specific Accuracy Accc curve for each user 476
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Figure 6: Setting-Specific Accuracy curve of Qwen2.5
and Llama-3.1 models on HotpotQA dataset with ideal
context retrieval. These two model as the representa-
tive demonstrate the large and small performance drop
from Context or Memory-First user need to Context-
Exclusive.

need case, categorizing them into two groups: Op-477

timal Context, where the provided context aligns478

with the model’s memory, and Challenging Con-479

text, where the context is conflicting or irrelevant.480

5.3.1 Performance on Optimal Context481

Under the Context Matching setting, where the482

model receives fully relevant and correct context,483

we assess its maximum potential performance.484

This defines an optimal performance, isolating485

the model’s ability to utilize ideal context without486

retrieval constraints.487

Restricting memory usage limits optimal perfor-488

mance. Based on the results in Figure 6, we ob-489

Dataset Llama-3.1-Instruct Qwen2.5-Instruct

8B (%) 70B (%) 7B (%) 72B (%)

Synthetic 52 74 85 97
DisentQA 70 84 92 98
HotpotQA 63 76 84 95

Table 2: Percentage of errors that is "I don’t know"
among the shortest 100 randomly selected samples that
under Context Matching setting that is incorrect for
Context-Exclusive user need and correct for Context or
Memory-First. A number exceeding 50 hints that the
model is leaning towards reject answering when it has
trouble locating the source or deducing the answers.

serve that models’ accuracy declines when internal 490

memory is restricted under the Context-Exclusive 491

strategy. This effect is more pronounced in the 492

Qwen2.5 family, where Qwen2.5-7B-Instruct expe- 493

riences up to a 12.1% accuracy drop from Context 494

or Memory-First to Context-Exclusive, whereas 495

the Llama-3.1 family shows only a slight decrease, 496

with Llama-3.1-8B-Instruct losing up to 4.1%. 497

LLMs exhibit self-protective conservatism. 498

To examine the accuracy drop under the Context- 499

Exclusive setting, we analyze 100 randomly se- 500

lected cases with up to four retrieved context seg- 501

ments, where the model provides an incorrect an- 502

swer under Context-Exclusive but a correct one 503

under Context or Memory-First. Errors are catego- 504

rized into two types: (1) the model refuses to an- 505

swer by stating, "I don’t know," and (2) the model 506

generates an incorrect hallucinated response. Table 507

2 reports the percentage of refusals. 508

We observe that models overwhelmingly pre- 509

fer rejection over hallucination when they struggle 510

to locate relevant context, with refusal rates ex- 511

ceeding 50% across all models and datasets. This 512

tendency is particularly strong in the Qwen2.5 fam- 513

ily, where the 7B and 72B models reject answers 514

in over 85% of cases, with Qwen2.5-72B-Instruct 515

reaching a 98% rejection rate on DisentQA. Simi- 516

larly, the Llama-3.1 models exhibit high rejection 517

rates, ranging from 70% to 84% on DisentQA. This 518

conservative behavior may stem from its training 519

objectives or alignment strategies prioritizing an- 520

swer correctness over speculative responses. 521

5.3.2 Performance with Challenging Context 522

For performance under Knowledge Conflict or Ir- 523

relevant Context, we realize that evaluating only 524

the performance of single context setting in isola- 525

tion can introduce bias and skewed interpretations 526
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(1) Setting-Specific Accuracy curve of Qwen2.5 model family
on HotpotQA dataset with knowledge conflict.

35

40

45

50

1 2 4 8 16 32

Ac
cu

ra
cy

 (%
)

Num. Retrieved Context

Llama-3.1-8B-Instruct

50

55

60

65

70

1 2 4 8 16 32

Ac
cu

ra
cy

 (%
)

Num. Retrieved Context

Llama-3.1-70B-Instruct

Context-FirstContext-Exclusive Memory-First

(2) Setting-Specific Accuracy curve of Llama-3.1 model fam-
ily on HotpotQA dataset with knowledge conflict.

Figure 7: Setting-Specific Accuracy curve of Qwen2.5
and Llama-3.1 model family on HotpotQA dataset with
knowledge conflict. While two models have similar
accuracy on Context or Memory-First case, Llama mod-
els has lower accuracy on Memory-Exclusive compared
with Context or Memory-First and Qwen models has
higher accuracy.

due to LMs preference on using memory than con-527

text or vise versa (Longpre et al., 2021; Jin et al.,528

2024), resulting performing perfectly in one setting529

but failed in other. For example, succeeding in Ir-530

relevant Context but failing in Matching Context531

may suggest that the model is prone always rely-532

ing on memory without actually complying with533

the instructions to use retrieved context. Therefore,534

we measure the Setting-Specific Accuracy Accc for535

Challenging Context in a way that the same ques-536

tion need to be also answered correctly in Context537

Matching settings, ensuring the robustness of eval-538

uation. Such measuring method is applied to all539

experiments in this section shown in Figure 7 and540

8.541

Model family dominates behavioral difference.542

Model families still exhibit distinct behavioral pat-543

terns: When knowledge conflict exists as Figure544

7, Llama3.1 models show degradation of perfor-545

mance from Context-First and Memory-First to546

Context-Exclusive case for up to 10.2% accuracy,547

while Qwen2.5 models demonstrate the opposite548

trend with an increase close to 20%. This behavior549

suggests fundamental differences in knowledge re-550
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(1) Setting-Specific Accuracy curve of Qwen2.5 model family
on HotpotQA dataset with irrelevant context.
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(2) Setting-Specific Accuracy curve of Llama-3.1 model fam-
ily on HotpotQA dataset with irrelevant context.

Figure 8: Setting-Specific Accuracy curve of Qwen2.5
and Llama-3.1 model family on HotpotQA dataset with
irrelevant context.

liance—Llama3.1 appears more context-dependent, 551

struggling to effectively integrate memory, whereas 552

Qwen2.5 leverages its parametric knowledge more 553

effectively when permitted. Such difference also 554

appears in the as Figure 8 with Information Irrele- 555

vant setting, Llama models exhibit significant de- 556

creasing accuracy on Context-Exclusive strategy 557

with increasing context length for up to 60.1%, 558

whereas Qwen exhibit almost no loss in perfor- 559

mance, for the same reason as discussed in Section 560

5.2. 561

6 Conclusion 562

We introduce an evaluation framework for RALMs 563

that systematically assesses performance across 564

diverse user needs and context settings. By decom- 565

posing user instructions into three generic user need 566

cases (Context-only, Context-priority, Memory- 567

priority) and three context settings (Match, Con- 568

flict, Irrelevant), our framework provides compre- 569

hensive insights into model capabilities and limi- 570

tations. Our analysis covers overall user require- 571

ments, case-level evaluations, and the impact of 572

varying context contents across different context 573

lengths. The findings highlight the need for user- 574

centric evaluations and architectural innovations 575

to enhance RAG system reliability and real-world 576

applicability. 577
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7 Limitations578

While our study provides a structured evaluation579

framework for Retrieval-Augmented Language580

Models (RALMs) under diverse user needs and re-581

trieval conditions, several limitations remain. Our582

experiments rely on three datasets: HotpotQA, Dis-583

entQA, and the synthetic URAQ dataset. While584

these datasets cover various knowledge retrieval585

challenges, they may not fully capture the diver-586

sity of real-world retrieval scenarios, particularly in587

highly specialized domains such as medical or le-588

gal applications. Additionally, the synthetic URAQ589

dataset, although designed to control retrieval com-590

plexity, may not generalize perfectly to naturally591

occurring retrieval conflicts found in real-world592

settings. In addition, our results are based on evalu-593

ations of two model families, Llama-3.1 and Qwen-594

2.5, across different sizes. While these models are595

representative of current state-of-the-art retrieval-596

augmented systems, our conclusions may not gener-597

alize to other architectures, such as retrieval-heavy598

fine-tuned transformers or proprietary models with599

distinct retrieval and reasoning mechanisms. Fu-600

ture work should extend this analysis to a broader601

range of models.602

8 Ethics Statement603

Our framework is designed to assess how well604

RALMs adhere to different user instructions, re-605

flecting real-world applications where users may606

have distinct expectations regarding knowledge us-607

age. However, models may still exhibit dispari-608

ties in their ability to satisfy certain user needs,609

especially in adversarial retrieval settings. We rec-610

ommend further research on mitigating disparities611

and enhancing fairness in retrieval-augmented sys-612

tems. The datasets used in our experiments include613

HotpotQA, DisentQA, and the newly introduced614

synthetic URAQ dataset. While these datasets con-615

tain diverse question-answer pairs, we acknowl-616

edge that biases may be present in both retrieved617

and internally generated content. We have taken618

measures to minimize biases by curating synthetic619

data with balanced question difficulty and by eval-620

uating model performance under varying retrieval621

conditions. However, residual biases in training622

corpora or retrieval mechanisms may influence the623

observed model behavior. One of our primary mo-624

tivations is to analyze how models handle conflict-625

ing or irrelevant retrieved information. While our626

evaluation reveals scenarios where models fail to627

distinguish misinformation or exhibit hallucination 628

tendencies, our work does not actively promote 629

the generation or dissemination of false informa- 630

tion. Instead, we highlight the need for more robust 631

mechanisms to ensure factual consistency, particu- 632

larly in knowledge-conflict scenarios. By conduct- 633

ing this study, we aim to advance the ethical design 634

of retrieval-augmented models while encouraging 635

further research on mitigating biases, improving 636

factual robustness, and ensuring alignment with 637

diverse user needs. 638
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A.1 Knowledge Generation1166

We used gpt-4o-mini (OpenAI et al., 2024) to pro-1167

duce an initial list of short, simple knowledge state-1168

ments. These statements are general facts (e.g.,1169

“A hummingbird can hover in mid-air” or “Blue1170

whales are the largest animals on Earth”) rather1171

than domain-specific or specialized knowledge.1172

The generated statements were deliberately kept1173

concise and straightforward to facilitate subsequent1174

manipulation and question generation.1175

A.2 Redundancy Filtering1176

Since GPT-based generators can produce highly1177

similar or paraphrased statements, we employed1178

SentenceBERT (Reimers and Gurevych, 2019) to1179

measure the semantic similarity between all knowl-1180

edge statements. Any pair of statements with a1181

cosine similarity above 0.5 was considered near-1182

duplicate and therefore removed to ensure diversity1183

in the final knowledge set.1184

A.3 Manipulated Knowledge Creation1185

For every remaining “original” knowledge state-1186

ment, we prompted gpt-4o-mini to generate a ma-1187

nipulated variant. The manipulation involved either1188

substituting key elements (e.g., entities, numerical1189

values, or critical details) or adding a negation that1190

changes the statement’s truth value (e.g., “A hum-1191

mingbird cannot hover in mid-air”). Each pair of1192

statements (original vs. manipulated) thus serves as1193

a pairwise contrast for subsequent question-answer1194

(QA) creation.1195

A.4 Question-Answer (QA) Generation1196

From each pair of original and manipulated knowl-1197

edge statements, we prompted gpt-4o-mini to gen-1198

erate a question that requires between 1 to 5 reason-1199

ing steps to arrive at an answer. The reasoning steps1200

typically involve either numerical computation, log-1201

ical inference, or entity comparison. Each question1202

was tied to both the original and the manipulated1203

knowledge. The resulting QA format consists of1204

one question and two different answers: one cor-1205

rect answer derived from the original statement,1206

and a second answer derived from the manipulated1207

statement.1208

A.5 Answer Format and Difficulty Selection1209

We constrained valid answers to be either (i) a nu-1210

meric value, (ii) a boolean (“yes” or “no”), or (iii)1211

a single entity. Among the generated questions,1212

those requiring 4-hop reasoning were chosen for1213

the final dataset, as manual inspection suggested 1214

these exhibited higher quality and clearer multi- 1215

step logic compared to simpler or more complex 1216

variants. 1217

A.6 Final Ground Truth Assignment 1218

For each question, we designated the correct 1219

ground truth answer to be the one aligned with 1220

the original knowledge statement. An example il- 1221

lustrating how this ground truth is integrated into 1222

the evaluation framework is provided in Figure 2 1223

of the main paper. 1224

By following these steps, we ensure that the 1225

URAQ dataset offers well-defined pairs of knowl- 1226

edge (original vs. manipulated) and corresponding 1227

multi-step questions designed to differentiate be- 1228

tween factual and altered information. This frame- 1229

work supports a diverse range of potential use 1230

cases, from fact-checking systems to more elab- 1231

orate multi-step reasoning models. 1232

B Example User Need Instructions 1233

B.1 Context-Exclusive 1234

You are a helpful AI assistant tasked 1235
with answering the given question 1236
ONLY based on the provided 1237
information. Here are the 1238
requirements to answer the question: 1239

1240
1. The answer should be a numeric value , 1241

a boolean ("yes" or "no"), or an 1242
entity. 1243

1244
2. You MUST directly provide the final 1245

answer within an <output > XML tag , 1246
without including any units if the 1247
answer is numeric. 1248

1249
3. You MUST utilize the RELEVANT 1250

knowledge contained in the provided 1251
information to answer the question , 1252
even if the knowledge is INCORRECT. 1253
If NONE of the provided information 1254
is RELEVANT to the question , you 1255
MUST output "I don't know". 1256

B.2 Context-First 1257

You are a helpful AI assistant tasked 1258
with answering the given question by 1259
referring to the provided 1260

information. Here are the 1261
requirements to answer the question: 1262

1263
1. The answer should be a numeric value , 1264

a boolean ("yes" or "no"), or an 1265
entity. 1266

1267
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2. You MUST directly provide the final1268
answer within an <output > XML tag ,1269
without including any units if the1270
answer is numeric.1271

1272
3. If the provided information contains1273

RELEVANT knowledge that can be used1274
to answer the question , you MUST1275
utilize the provided information ,1276
even if the knowledge is INCORRECT.1277

1278
4. If NONE of the provided information1279

is RELEVANT to the question , you1280
MUST utilize your own knowledge to1281
answer the question.1282

B.3 Memory-First1283

You are a helpful AI assistant tasked1284
with answering the given question by1285
referring to the provided1286

information. Here are the1287
requirements to answer the question:1288

1289
1. The answer should be a numeric value ,1290

a boolean ("yes" or "no"), or an1291
entity.1292

1293
2. You MUST directly provide the final1294

answer within an <output > XML tag ,1295
without including any units if the1296
answer is numeric.1297

1298
3. You MUST utilize your own knowledge1299

to answer the question if you are1300
certain of the accuracy (e.g.,1301
factual information you are sure1302
about). If you are UNSURE about your1303
knowledge , you MUST use the1304

relevant knowledge from the given1305
information instead.1306

C Example Input Prompt1307

In this section, we introduce an example input1308

prompt that is designed for Case 1 Setting a with 21309

total retrieved context following the abstract input1310

(If , Iu, C,Q) in Section 4.2. The prompt is format-1311

ted with XML for both input and output. Specifi-1312

cally, the formatting instructions If are separated1313

into two parts: 1) The first and second instructions1314

in the system prompt describing that the answer1315

should be as simple as possible with XML format.1316

2) The instruction in the user prompt about format1317

of context with an reinforcement of output format.1318

The user need instruction Iu is at the third instruc-1319

tion in the system prompt. The retrieved context1320

C is all the sentences in the user prompt within1321

<info> xml tag. Finally, the question Q is at the1322

last of user prompt within <question> xml tag.1323

System Prompt:1324

You are a helpful AI assistant tasked 1325
with answering the given question 1326
ONLY based on the provided 1327
information. Here are the 1328
requirements to answer the question: 1329

1. The answer should be a numeric value , 1330
a boolean ("yes" or "no"), or an 1331

entity. 1332
2. You MUST directly provide the final 1333

answer within an <output > XML tag , 1334
without including any units if the 1335
answer is numeric. 1336

3. You MUST utilize the RELEVANT 1337
knowledge contained in the provided 1338
information to answer the question , 1339
even if the knowledge is INCORRECT. 1340
If NONE of the provided information 1341
is RELEVANT to the question , you 1342
MUST output 'I don't know'. 1343

1344
User Prompt: 1345
Given the following information enclosed 1346

in xml tag <info ></info >, answer 1347
the question enclosed in xml tag < 1348
question ></question >. 1349

** 1350
<info >2 + 2 equals 4.</info > 1351
<info >The sun is the only star in our 1352

solar system.</info > 1353
** 1354
<question >If you have two apples and you 1355

get two more , how many apples do 1356
you have?</question > 1357

D Case Study of Model Laziness 1358

Question: How do plants create their 1359
food , photosynthesis or moonthesis? 1360

1361
Answer with 1 context: <output >No </ 1362

output > 1363
1364

Answer with 1000 context: I think there 1365
might be a small mistake in your 1366
question. The correct term is " 1367
photosynthesis" not "moonthesis". 1368
Photosynthesis is the process by 1369
which plants , algae , and some 1370
bacteria make their own food using 1371
sunlight , water , and carbon dioxide. 1372
So, to answer your question: Plants 1373
create their food through 1374

photosynthesis. 1375

Above question-answer pair from our synthetic 1376

URAQ dataset is an example of model relying on 1377

their own memory on long context and acquire bet- 1378

ter result than the result from shorter input. For 1379

answer with only 1 context, the model outputs a 1380

single word "No" with correct output format. For 1381

answer with 1000 context, the model provides clear 1382

thinking path with correct, affirmative answer with- 1383

out the desinated XML format for output. We also 1384

calculate the percentage of 100 randomly selected 1385

testing samples that has similar behaviors using 1386
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Qwen2.5-72B-Instruct and Llama-3.1-70B-Instruct1387

as shown in Table 3.1388

Context-First (%) Memory-First (%)

Qwen2.5-72B-Instruct 84 77
Llama-3.1-70B-Instruct 56 65

Table 3: Percentage of testing samples that answered
with single negative output for short input but correct
output with explicit reasoning, among 100 randomly
selected samples that the question answered incorrectly
with 1 retrieved context and correctly with 1000 re-
trieved context.

E Accuracy Curves of URAQ and1389
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(1) Accuracy curve of Llama-3.1 on URAQ dataset under
Context Matching setting.
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(2) Accuracy curve of Qwen2.5 on URAQ dataset under Con-
text Matching setting.
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(3) Accuracy curve of Llama-3.1 on DisentQA dataset under
Context Matching setting.
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(4) Accuracy curve of Qwen2.5 on DisentQA dataset under
Context Matching setting.

Figure 9: Accuracy curve of all models under Context
Matching setting.
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(1) Case-Level Accuracy curve of Llama-3.1 on URAQ
dataset.
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(2) Case-Level Accuracy curve of Qwen2.5 on URAQ dataset.
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(3) Case-Level Accuracy curve of Llama-3.1 on DisentQA
dataset.
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(4) Case-Level Accuracy curve of Qwen2.5 on DisentQA
dataset.

Figure 10: Case-Level Accuracy of all models.
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(1) Accuracy curve of Llama-3.1 on URAQ dataset under
Context Matching & Knowledge Conflict setting.
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(2) Accuracy curve of Qwen2.5 on URAQ dataset under Con-
text Matching & Knowledge Conflict setting.
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(3) Accuracy curve of Llama-3.1 on DisentQA dataset under
Context Matching & Knowledge Conflict setting.
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(4) Accuracy curve of Qwen2.5 on DisentQA dataset under
Context Matching & Knowledge Conflict setting.

Figure 11: Accuracy curve of all models under Context
Matching & Knowledge Conflict setting.
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(1) Accuracy curve of Llama-3.1 on URAQ dataset under
Context Matching & Information Irrelevant setting.
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(2) Accuracy curve of Qwen2.5 on URAQ dataset under Con-
text Matching & Information Irrelevant setting.
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(3) Accuracy curve of Llama-3.1 on DisentQA dataset under
Context Matching & Information Irrelevant setting.
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(4) Accuracy curve of Qwen2.5 on DisentQA dataset under
Context Matching & Information Irrelevant setting.

Figure 12: Accuracy curve of all models under Context
Matching & Information Irrelevant setting.

18


	Introduction
	Related Work
	 RAG Systems
	Knowledge Conflict
	Recent RAG Benchmark

	Evaluation Framework
	User Need Cases
	Context Settings

	 Experimental Setup
	Datasets
	Context Setting and Prompt Formatting
	Evaluation Metrics
	Evaluation model 

	Result & Analysis
	Overall Performance
	General Performance for Each User Need
	Individual Setting Performance
	Performance on Optimal Context
	Performance with Challenging Context


	Conclusion
	Limitations
	Ethics Statement
	Detailed Dataset Curation Procedure
	Knowledge Generation
	Redundancy Filtering
	Manipulated Knowledge Creation
	Question-Answer (QA) Generation
	Answer Format and Difficulty Selection
	Final Ground Truth Assignment

	Example User Need Instructions
	Context-Exclusive
	Context-First
	Memory-First

	Example Input Prompt
	Case Study of Model Laziness
	Accuracy Curves of URAQ and DisentQA

