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Abstract

Sequential dependencies present a fundamen-001
tal bottleneck in deploying large-scale autore-002
gressive models, particularly for real-time ap-003
plications. While traditional optimization ap-004
proaches like pruning and quantization often005
compromise model quality, recent advances006
in generation-refinement frameworks demon-007
strate that this trade-off can be significantly008
mitigated.009

This survey presents a comprehensive taxon-010
omy of generation-refinement frameworks, ana-011
lyzing methods across autoregressive sequence012
tasks. We categorize methods based on their013
generation strategies (from simple n-gram pre-014
diction to sophisticated draft models) and re-015
finement mechanisms (including single-pass016
verification and iterative approaches). Through017
systematic analysis of both algorithmic inno-018
vations and system-level implementations, we019
examine deployment strategies across com-020
puting environments and explore applications021
spanning text, images, and speech generation.022
This systematic examination of both theoreti-023
cal frameworks and practical implementations024
provides a foundation for future research in025
efficient autoregressive decoding.026

1 Introduction027

Large Models (LMs) have demonstrated remark-028

able capabilities across diverse domains, from text029

generation (Brown et al., 2020; Zhuang et al., 2023;030

Touvron et al., 2023) and translation (Zhu et al.,031

2023; Hadi et al., 2023; Huang et al., 2023) to im-032

age synthesis (Ho et al., 2020; Yang et al., 2023a;033

Tian et al., 2024) and video generation (Ding et al.,034

2023; Wu et al., 2023; ope, 2024). However,035

these models face a critical challenge: their in-036

herently sequential nature creates significant la-037

tency bottlenecks, particularly for real-time appli-038

cations. While traditional optimization approaches039

like quantization and pruning often compromise040

model quality for speed, recent research has fo- 041

cused on maintaining output quality while breaking 042

sequential dependencies through novel algorithmic 043

and system-level innovations. 044

Generation-refinement frameworks have 045

emerged as a promising family of solutions that 046

directly address these sequential bottlenecks. 047

These approaches encompass a range of methods, 048

from speculative decoding with draft models 049

to iterative refinement techniques inspired by 050

numerical optimization. The common thread 051

among these approaches is their division of the 052

generation process into two phases: an initial 053

generation step that produces draft tokens in 054

parallel, followed by a refinement step that ensures 055

output quality. 056

The implementation of these frameworks 057

presents unique system-level challenges across dif- 058

ferent deployment scenarios. Edge devices require 059

careful optimization of memory usage and compu- 060

tation patterns (Svirschevski et al., 2024; Xu et al., 061

2024a), while distributed systems must manage 062

complex communication patterns and load balanc- 063

ing. These system-level considerations have driven 064

innovations in areas like kernel design, hardware 065

acceleration, and batch processing optimization, 066

significantly influencing both algorithmic choices 067

and practical performance. 068

This survey synthesizes research across these 069

approaches, examining both algorithmic innova- 070

tions and their system implementations. We present 071

a systematic taxonomy of generation-refinement 072

methods, analyze deployment strategies across 073

computing environments, and explore applications 074

spanning text, images (Wang et al., 2024d; Jang 075

et al., 2024), and speech (Li et al., 2024a; Raj et al., 076

2024). Our primary contributions include compre- 077

hensive analysis of system-level implementations 078

and optimizations, detailed examination of appli- 079

cations across modalities, and identification of key 080

research challenges in efficient neural sequence 081
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Figure 1: Illustration of speculative decoding workflow.

generation.082

2 The Sequential Bottleneck in Large083

Model Inference084

Traditional approaches to accelerating LM infer-085

ence have focused on reducing computational costs086

through model compression, knowledge distilla-087

tion, and architectural optimizations. However,088

these methods primarily address individual compu-089

tation costs rather than the fundamental sequential090

dependency that requires each token to wait for all091

previous tokens.092

Speculative decoding (SD) (Stern et al., 2018)093

has emerged as a promising solution that directly094

targets this sequential bottleneck. As illustrated095

in Figure 1, this approach introduces a two-phase096

process where a smaller, faster draft model first097

predicts multiple tokens in parallel, followed by098

verification using the target model. The draft model099

enables parallel token generation, breaking away100

from traditional token-by-token generation, while101

the target model’s verification step maintains output102

quality through accept/reject decisions.103

This strategy has proven particularly valuable for104

real-time applications like interactive dialogue sys-105

tems, where response latency directly impacts user106

experience. The verification mechanism provides a107

crucial balance between generation speed and out-108

put quality, accepting correct predictions to main-109

tain throughput while falling back to sequential110

generation when necessary to preserve accuracy.111

While SD represents one successful approach112

to breaking sequential dependencies in autoregres-113

sive (AR) models, it belongs to a broader family114

of generation-refinement methods. The following115

sections present a systematic taxonomy of these116

approaches, examining how different techniques117

balance the trade-offs between generation paral-118
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Figure 2: A taxonomy of generation-refinement frame-
works, showing two phases: (1) Generation of draft
tokens through various methods and (2) Refinement
through verification strategies.

lelism and output quality. 119

3 A Taxonomy for Generation and 120

Refinement Frameworks 121

To systematically analyze approaches for breaking 122

sequential dependencies in large models, we pro- 123

pose a unified taxonomy that categorizes methods 124

based on their generation and refinement strategies. 125

As shown in Figure 2, our taxonomy decomposes 126

these frameworks into two fundamental phases: Se- 127

quence Generation and Sequence Refinement. This 128

decomposition not only encompasses traditional 129

SD approaches but also captures a broader range 130

of emerging methods that trade off between gener- 131

ation parallelism and output quality. 132

The sequence generation phase focuses on differ- 133

ent strategies for producing draft tokens more effi- 134

ciently than conventional auto-regressive decoding 135

using a single larger model. These strategies range 136

from simple approaches like random token sam- 137

pling (used in conjunction with iterative decoding) 138

to more sophisticated methods like retrieval-based 139

generation and draft model prediction. Each gener- 140

ation method offers trade-offs in terms of compu- 141

tational cost and prediction quality. The sequence 142

refinement phase then determines how these candi- 143

dates are processed - either accepting them directly 144
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▲ DARE (Xi et al., 2024), ‹ AtSpeed (Lin et al., 2024)

Figure 3: Taxonomy of Speculative Decoding Algorithms. Symbols indicate implementation approach: ▲ Direct
application (no training required), ‚ Full model training from scratch, ■ Model fine-tuning, ‹ Parameter-efficient
fine-tuning (PEFT), ♦ Knowledge distillation from target model.

(with possible poorer quality), verifying a subset of145

tokens in a single pass, or refining the draft tokens146

through multiple iterations until convergence.147

4 Sequence Generation Methods148

4.1 Predefined Fill Tokens149

The simplest approach uses random initialization or150

predefined tokens (e.g., PAD). While computation-151

ally free, these methods provide poor initialization152

points, requiring multiple refinement iterations as153

discussed in Section 5.2.154

4.2 Retrieval-based Methods155

LLMA (Yang et al., 2023b) first proposed exploit-156

ing overlaps between LLM outputs and reference157

documents to accelerate inference through paral-158

lel token verification while maintaining identical159

generation results. In retrieval-based approaches,160

REST (He et al., 2023) replaces smaller language161

models with exact suffix matching from a datas-162

tore to generate draft tokens. It builds a Trie (pre-163

fix tree) from retrieved continuations, where node 164

weights reflect token sequence frequencies. Spec- 165

ulative RAG (Wang et al., 2024e) use a fine-tuned 166

specialist LM to generate complete answer drafts 167

with supporting rationales. It clusters retrieved 168

documents by similarity, generates diverse drafts 169

from different document subsets, and employs self- 170

consistency and self-reflection scores for draft eval- 171

uation instead of token-level verification. 172

4.3 N-gram-based Methods 173

Several approaches leverage n-gram patterns for 174

efficient token generation. ANPD (Ou et al., 2024) 175

replaces traditional draft models with an adaptive 176

N-gram system that updates predictions based on 177

context. LOOKAHEAD (Fu et al., 2024) uses 178

n-gram verification by collecting and utilizing n- 179

grams from previous iterations as draft tokens. The 180

N-Grammys (Stewart et al., 2024) further develops 181

this idea by creating a dedicated n-gram based pre- 182

diction system that can operate without requiring a 183

separate draft model. 184
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4.4 Auto-regressive Generation185

Most sequence generation methods employ auto-186

regressive drafting, where a smaller model gener-187

ates draft tokens that are verified by a larger target188

model. This drafting paradigm has spawned nu-189

merous techniques that vary in how the draft model190

interacts with the target model.191

4.4.1 Independent Drafters192

Independent drafters use smaller models to gener-193

ate tokens sequentially while a larger target model194

verifies them in parallel. SpecDec (Xia et al., 2023)195

pioneered this approach with an independent draft196

model using distinct attention queries for masked197

positions. SpecDec++ (Huang et al., 2024) im-198

proves SpecDec (Xia et al., 2023) by training a199

prediction head on top of the draft model that es-200

timates the probability of token acceptance by the201

target model. Based on these predictions, it dynam-202

ically determines when to stop generating tokens203

and trigger verification.204

Recent works focus on dynamic adaptation and205

confidence monitoring. BiLD (Kim et al., 2024a)206

triggers target model verification when draft con-207

fidence falls below a threshold, while ON-THE-208

FLY (Liu et al., 2025b) dynamically adjusts win-209

dow sizes based on prediction accuracy. OSD (Liu210

et al., 2023) enables online adaptation through211

knowledge distillation during inference, and Distill-212

Spec (Zhou et al., 2023) extends this by accessing213

target model logits for improved alignment. (Liu214

et al., 2025a) introduces special tokens for draft215

models to autonomously determine target model216

consultation, eliminating separate verification at217

some performance cost. For mathematical applica-218

tions, Judge(Bachmann et al., 2025) adds a learned219

verification layer atop the target model’s embed-220

dings, using contextual correctness assessment to221

reduce strict output alignment requirements.222

4.4.2 Dependent Drafters223

The main drawbacks of independent drafting ap-224

proaches are that (1) the computation required to225

generate the draft tokens is fixed per tokens, mean-226

ing that computation is over-provisioned for many227

“easy” tokens and (2) the target model cannot reuse228

the features of the drafting process, increasing the229

amount of compute required. Self-speculative de-230

coding approaches generate draft tokens by relying231

directly on a subset (Layer Skipping) or extension232

(Dependent Heads) of the target model.233

Layer Skipping Draft&Verify (Zhang et al., 234

2023), SWIFT (Xia et al., 2024), and Draft on 235

the Fly (Metel et al., 2024) achieves fast draft to- 236

ken generation by selectively skipping some in- 237

termediate layers in the Draft process, and then 238

verifies these drafts using the full LLM. In or- 239

der to achieve good draft accuracy, they also de- 240

signed an intermediate layer selection algorithm 241

based on Bayesian optimization. LayerSkip (El- 242

houshi et al., 2024) uses an early exiting (Teerapit- 243

tayanon et al., 2016) approach to dynamically out- 244

put tokens at different depths of the target model. 245

Kangaroo (Liu et al., 2024b) also applied early 246

exit by adopting a shallow sub-network to gener- 247

ate drafts and using a lightweight adapter mod- 248

ule to bridge the performance gap with the full 249

model, achieving efficient and accurate decoding. 250

EESD (Liu et al., 2024c) use Thompson Sampling 251

Control (Slivkins et al., 2019) Mechanism to adap- 252

tively determines how many draft token will be 253

generated. SPEED (Hooper et al., 2023) combines 254

speculative execution with parameter sharing, us- 255

ing early predictions to process multiple tokens in 256

parallel through shared decoder layers, rather than 257

waiting for each token to complete sequentially. 258

Dependent Heads Dependent head-based draft- 259

ing eliminates the need for a separate draft model 260

by adding lightweight feed-forward prediction 261

heads using the hidden states of the target model. 262

The main idea is that the first token in sequence 263

generation block uses the target model as usual but 264

the features at the end of the model are fed into ad- 265

ditional heads to predict subsequent tokens without 266

passing back through the entire target model. 267

EAGLE (Li et al., 2024e) uses a trained head 268

that takes in hidden states from the target model 269

and generates subsequent draft tokens in an AR 270

manner. Hydra (Ankner et al., 2024) use multiple 271

decoding, one for each draft token position. 272

EAGLE extensions have focused on improv- 273

ing parallel token generation and attention mecha- 274

nisms. Falcon (Gao et al., 2024) introduces a semi- 275

autoregressive framework combining LSTM layers 276

and relaxed causal-masked self-attention to gener- 277

ate k tokens per forward pass, while HASS (Zhang 278

et al., 2024a) enhances knowledge distillation by 279

prioritizing high-probability tokens during training. 280

Mixture of Attentions (Zimmer et al., 2024) in- 281

corporates multiple attention types (LSA, SA, and 282

CA) for improved token prediction, and DeepSeek- 283

V3 (Liu et al., 2024a) adapts (Gloeckle et al., 284
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2024)’s multi-token approach (discussed in Sec-285

tion 4.5) while maintaining complete causal atten-286

tion during inference.287

4.5 Multi-token Prediction288

Stern et al. (2018) proposes adding multiple decod-289

ing heads on top of a model to predict k future to-290

kens in parallel, requiring training the entire model291

from scratch. Medusa (Cai et al., 2024) introduces292

a parameter-efficient approach, where lightweight293

decoding heads are fine-tuned on top of pre-trained294

language models. Each head is trained to predict295

a specific future position in the sequence without296

modifying the target model.297

Recent approaches improve Medusa’s indepen-298

dent draft heads by modeling inter-token rela-299

tionships. Amphista (Li et al., 2024f) uses bi-300

directional self-attention to consider both past and301

future predictions, while CTC Drafting (Wen et al.,302

2024) employs Connectionist Temporal Classifica-303

tion (CTC) with blank tokens and repetition, fol-304

lowed by duplicate removal to generate draft se-305

quences.306

5 Sequence Refinement Methods307

5.1 Single-pass Verification308

Single-pass verification represents the most com-309

mon refinement strategy in draft-and-verify ap-310

proaches, where drafted tokens are verified exactly311

once by the target model.312

5.1.1 Linear Verification313

Linear verification sequentially validates draft to-314

kens against the target model’s logit distributions,315

with early works like SpecDec (Xia et al., 2023)316

and Draft&Verify (Zhang et al., 2023) comparing317

drafted tokens against the target model’s predic-318

tions. When a token fails verification (i.e., when319

the draft output doesn’t match the target model’s320

distribution), the system falls back to standard AR321

generation from that point.322

Fast Inference (Leviathan et al., 2023) and323

(Chen et al., 2023a) introduced speculative sam-324

pling to improve acceptance rates while approxi-325

mately maintaining the target distribution. Their326

method accepts a token if the target model assigns327

equal or higher probability; otherwise, it accepts328

with probability ppxq{qpxq or resamples from an329

adjusted distribution.330

Block Verification (Sun et al., 2025) and331

MTAD (Qin et al., 2024b) improve upon linear ver-332
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Figure 4: Illustration of tree-based speculative decoding,
with token tree construction on the left and tree attention
mask on the right.

ification by examining the joint probability distribu- 333

tion of draft tokens as a chain of conditional proba- 334

bilities. This block-based evaluation approach typi- 335

cally results in higher acceptance rates compared 336

to token-by-token verification for similar quality. 337

5.1.2 Tree-based Verification 338

Tree-based verification extends the single-pass 339

paradigm by enabling parallel exploration of multi- 340

ple completion paths. Unlike linear verification that 341

processes a single sequence, tree-based methods 342

construct and verify a tree of possible completions 343

simultaneously, making more efficient use of paral- 344

lel compute resources. 345

SpecInfer (Miao et al., 2023) pioneered this ap- 346

proach by developing an efficient tree-based atten- 347

tion masking scheme that enables parallel verifica- 348

tion while maintaining proper token dependencies. 349

This innovation maintains generation quality while 350

significantly increasing the number of tokens that 351

can be verified in parallel. 352

Recent works have focused on optimizing tree 353

structure and size to maximize computational effi- 354

ciency. Sequoia (Chen et al., 2024b) introduces 355

a hardware-aware tree optimizer that can maxi- 356

mize inference performance by selecting appropri- 357

ate tree dimensions based on available computing 358

resources. OPT-Tree (Wang et al., 2024a) searches 359

for optimal tree structures to maximize expected 360

acceptance length per decoding step. DSBD (Qin 361

et al., 2024a) uses a small model to generate multi- 362

ple candidate sequences via beam search, then the 363

large model verifies these sequences layer by layer 364

while dynamically adjusting the beam width based 365

on acceptance probabilities to balance efficiency 366

and quality. DySpec (Xiong et al., 2024) enables 367

dynamic tree expansion during runtime based on 368

prediction confidence, while EAGLE2 (Li et al., 369

2024d) incorporates context-aware tree construc- 370

tion to improve acceptance rates. DDD (Brown 371
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et al., 2024) optimizes EAGLE2 (Li et al., 2024d)372

’s tree drafting method by making the depth dy-373

namic based on draft model confidence.374

Several works have explored hybrid approaches375

that combine tree-based verification with other376

techniques. ProPD (Zhong et al., 2024) integrates377

progressive refinement into the tree structure, while378

RSD (Jeon et al., 2024) employs recursive verifi-379

cation strategies. GSD (Gong et al., 2024) and380

ADED (Liu et al., 2024e) extend tree-based meth-381

ods to handle more complex dependency structures382

through graph-based representations and adaptive383

depth adjustment.384

In terms of verifying multiple candidate draft to-385

kens in parallel (also known as Multi-Draft Specu-386

lative Decoding, MDSD), (Hu et al., 2025) propose387

a hybrid sampling strategy that combines deter-388

ministic selection of high-probability tokens with389

random sampling of the final token, improving ac-390

ceptance rates in certain scenarios. (Khisti et al.,391

2024) introduce a two-phase verification method392

that uses importance sampling to select a candi-393

date token before applying single-draft verification,394

optimizing the process for parallel draft generation.395

5.2 Iterative Decoding396

Iterative decoding methods extend the single-pass397

verification paradigm by allowing multiple refine-398

ment iterations on draft tokens until convergence.399

These approaches draw inspiration from classical400

numerical methods for solving systems of nonlin-401

ear equations, particularly the Jacobi and Gauss-402

Seidel iteration methods.403

In Santilli et al. (2023), the authors reframe AR404

text generation as an iterative optimization prob-405

lem. Their approach expresses token generation406
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as a system where each position must output the 407

most likely token given the current state of all other 408

positions. Starting with a randomly initialized se- 409

quence, they adapt the Jacobi method to update 410

all positions in parallel during each iteration until 411

convergence. The authors prove that this process 412

produces identical output to traditional AR decod- 413

ing under greedy sampling. Fu et al. (2024) builds 414

upon this framework with LOOKAHEAD decod- 415

ing, which combines Jacobi iterations with n-gram 416

verification to accelerate convergence by leverag- 417

ing predictions from earlier steps. 418

CLLMs (Kou et al., 2024) leverages consistency 419

training to accelerate convergence by enabling bet- 420

ter multi-token prediction in early iterations. 421

6 System-Level Optimizations and 422

Implementation Strategies 423

6.1 Parallel Speculative Decoding 424

Traditional SD processes tokens sequentially, with 425

the draft model generating tokens followed by 426

target model verification, creating inherent bot- 427

tlenecks. As shown in Figure 5, parallel ap- 428

proaches overcome this limitation by enabling si- 429

multaneous operation - while the target model 430

verifies earlier tokens, the draft model gener- 431

ates subsequent ones, enabling continuous over- 432

lapped execution. Recent methods build upon this 433

paradigm: CS Drafting (Chen et al., 2023b) em- 434

ploys vertical and horizontal cascade structures 435

for 81% speedup, PaSS (Monea et al., 2023) uses 436

look-ahead embeddings for 30% speedup, and 437

Faster Cascades (Narasimhan et al., 2024) incor- 438

porates deferral rules for improved cost-quality 439

trade-offs. PEARL (Liu et al., 2024d) further 440

advances this through pre-verify and post-verify 441

strategies with adaptive draft lengths, achieving 442

4.43ˆ speedup over AR decoding and 1.50ˆ over 443
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standard SD AMUSD (McDanel, 2024) presents an444

asynchronous multi-device approach to SD, decou-445

pling the draft and verify phases into continuous,446

asynchronous operations.447

6.2 Distributed Speculative Decoding448

Edge computing environments impose stringent449

constraints on memory, compute power, and la-450

tency, necessitating specialized SD approaches to451

deploy LLMs effectively in resource-constrained452

settings. SpecExec (Svirschevski et al., 2024) is453

designed to harness the parallel processing power454

of consumer GPUs to accelerate LLM inference.455

By generating multiple tokens per target model it-456

eration and constructing a “cache” tree of probable457

continuations, SpecExec efficiently validates these458

continuations with the target model in a single pass.459

EdgeLLM (Xu et al., 2024a) further optimizes on-460

device LLM inference through novel techniques461

for resource allocation and error correction, achiev-462

ing great token generation speeds and significantly463

outperforming existing engines. Dovetail (Zhang464

et al., 2024b) represents a significant advancement465

in heterogeneous computing for LLM inference.466

By deploying the draft model on the GPU and the467

target model on the CPU, Dovetail reduces the gran-468

ularity of data transfer and enhances the overall469

inference process. The introduction of Dynamic470

Gating Fusion (DGF) and optimizations for low-471

end hardware further improve the balance between472

latency and performance.473

6.3 Compiler and Hardware Optimization for474

Speculative Decoding475

Efficient implementation of SD requires careful476

optimization of both hardware resources and com-477

piler strategies to maximize throughput and mini-478

mize latency. SpecPIM (Li et al., 2024b) presents479

a novel approach to accelerate speculative infer-480

ence on a Processing-in-Memory (PIM) system481

through co-exploration of architecture and dataflow.482

This method constructs a design space that com-483

prehensively considers algorithmic and architec-484

tural heterogeneity, enabling optimal hardware re-485

source allocation for different models and compu-486

tational patterns. (Wagner et al., 2024) investigates487

improvements in speculative sampling on GPUs,488

achieving significant speed gains by parallelizing489

computations and using sigmoid approximations490

for softmax, though this comes with a minor reduc-491

tion in accuracy.492

Recent studies have focused on enhancing the493

Draft
AR process

Diffusion
process

Target
AR process

Diffusion
process1 32 4

p(x) < q(x) ?
Visual token 
verification

1 32 4

Figure 7: Flow of AR image generation with SD.

throughput of LLMs using SD by optimizing batch 494

processing and scheduling strategies. Figure 6 il- 495

lustrates two scheduling strategies for SD systems: 496

(a) Asynchronous Schedule: The draft stage is 497

followed by the verify stage, with optional stop 498

signals determining further processing. This non- 499

blocking approach enhances system efficiency. (b) 500

Heterogeneous Schedule: Both CPU and GPU de- 501

vices are utilized for different stages of the decod- 502

ing process, enabling parallel processing and op- 503

timizing performance through resource allocation. 504

Using Markov chain theory, (Yin et al., 2024) es- 505

tablishes SD’s optimality among unbiased algo- 506

rithms while highlighting the tradeoff between in- 507

ference speed and output quality. Their analysis 508

reveals that batch processing benefits are limited by 509

the distribution gap between small and large mod- 510

els. MagicDec (Chen et al., 2024a) identifies the 511

shift from compute-bound to memory-bound bot- 512

tlenecks as batch size and sequence length increase, 513

using sparse KV caches in draft models to optimize 514

throughput. BASS (Qian et al., 2024) extends SD 515

to a batched setting with customized CUDA ker- 516

nels for ragged tensors in attention calculations and 517

dynamically adjusts draft lengths for better GPU 518

utilization. SEED (Wang et al., 2024c) accelerates 519

reasoning tree construction through scheduled spec- 520

ulative execution, using a rounds-scheduled strat- 521

egy for conflict-free parallel processing. PipeIn- 522

fer (Butler et al., 2024) addresses single-request 523

latency through pipelined speculative acceleration, 524

reducing inter-token latency via asynchronous spec- 525

ulation and early cancellation. TRIFORCE (Sun 526

et al., 2024a) introduces a hierarchical SD mecha- 527

nism with a dynamic sparse KV cache to achieve 528

lossless acceleration of long sequence generation, 529

significantly improving generation speed and ef- 530

ficiency while maintaining quality. (Zhao et al., 531

2024a) proposes QSPEC, a novel framework that 532

combines weight-shared quantization schemes with 533

SD, achieving up to 1.55× acceleration without 534

quality loss, paving the way for efficient and high- 535

fidelity quantization deployment in diverse and 536
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memory-constrained settings. (Wang et al., 2024b)537

introduces a hardware-aware SD algorithm that ac-538

celerates the inference speed of Mamba and hybrid539

models. Inspired by SD, SKD (Xu et al., 2024b)540

represents a novel, adaptive approach to knowledge541

distillation. By dynamically generating tokens and542

using the teacher model to filter or replace low-543

quality samples, it bridges the gap between super-544

vised KD’s reliance on static data and on-policy545

KD’s susceptibility to low-quality outputs. This546

ensures a better alignment between training and547

inference distributions, and improved performance.548

7 Multimodal Models and Applications549

7.1 Speculative Decoding for Visual Output550

Generation551

Researchers are now using SD to improve the effi-552

ciency of AR image generation (Ding et al., 2021;553

Yu et al., 2022; Li et al., 2024c). As shown in554

Figure 7, this method greatly speeds up the pro-555

cess by reducing the inference steps needed for556

generating visual tokens. For instance, (Wang557

et al., 2024d) proposes a novel continuous SD558

method that designs a novel acceptance criterion for559

the diffusion distributions, significantly improving560

the efficiency of AR image generation. Similarly,561

LANTERN (Jang et al., 2024) presents a relaxed562

acceptance condition for the SD strategy to substan-563

tially speed up the inference process in visual AR564

models. Additionally, Speculative Jacobi Decoding565

(SJD) (Teng et al., 2024) offers a training-free spec-566

ulative Jacobi decoding technique that effectively567

accelerates text-to-image generation tasks.568

7.2 Speculative Decoding for Multimodal569

Output Generation570

Recent advancements in SD have substantially im-571

prove the efficiency and quality of AR generation572

across various modalities. In the domain of speech573

synthesis, VADUSA (Li et al., 2024a) leverages SD574

to accelerate the inference process in AR text-to-575

speech (TTS) systems, which enhances the quality576

speech synthesis as well. Inspired by the flavor of577

SD, (Raj et al., 2024) introduces a multi-token pre-578

diction mechanism, offering substantial improve-579

ments in inference efficiency for speech generation.580

In the context of multimodal large language mod-581

els, (Gagrani et al., 2024) investigates the integra-582

tion of SD into the LLaVA 7B model to optimize in-583

ference efficiency. Their findings indicate that em-584

ploying a lightweight, language-only draft model585

facilitates a memory-constrained acceleration of 586

up to 2.37×. Besides, IbED (Lee et al.) proposes 587

the "In-batch Ensemble Drafting" method to fur- 588

ther enhance the robustness and efficiency of SD. It 589

adopts the ensemble techniques during batch-level 590

inference, requires no additional model parameters 591

and significantly increases the validation probabil- 592

ity of draft tokens, thereby improving performance 593

and robustness across diverse input scenarios. 594

7.3 Recommendation Systems 595

LLM-based recommendation systems have shown 596

great potential in enhancing personalized recom- 597

mendations, but their high inference latency poses 598

a significant challenge for real-world deployment. 599

To address this, recent research has focused on 600

optimizing decoding efficiency to accelerate rec- 601

ommendation generation. (Xi et al., 2024) pro- 602

pose DARE that integrates retrieval-based SD to 603

accelerate recommendation knowledge generation, 604

thereby improving the deployment efficiency of 605

LLM-based recommender systems in industrial set- 606

tings. AtSpeed (Lin et al., 2024) combines strict 607

top-K alignment (AtSpeed-S) and relaxed sampling 608

verification (AtSpeed-R), to significantly acceler- 609

ate LLM-based generative recommendation with 610

speedup from 2ˆ to 2.5ˆ, addressing inference 611

latency challenges in top-K sequence generation. 612

8 Conclusion 613

This survey has presented a comprehensive analy- 614

sis of generation-refinement frameworks for miti- 615

gating sequential dependencies in autoregressive 616

models, highlighting how these approaches are fun- 617

damentally changing efficient neural sequence gen- 618

eration across text, speech, and visual domains. 619

Through examining both algorithmic innovations 620

and system-level implementations, we have demon- 621

strated their broad applicability while providing 622

crucial deployment insights for practitioners. Mov- 623

ing forward, significant challenges persist in con- 624

structing solid theoretical foundations to grasp the 625

balance between parallelism and quality, as well 626

as in developing comprehensive approaches that 627

span different modalities—efforts that could nar- 628

row the divide between the capabilities of large 629

models and their actual implementation. Addition- 630

ally, it remains crucial to examine the scalability 631

of the speculative decoding system as the quantity 632

of draft and target models increases, particularly 633

within large-scale LLM systems. 634
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Limitations635

While this survey provides a comprehensive636

overview of generation-refinement frameworks,637

some limitations should be acknowledged. De-638

tailed performance comparisons across different639

approaches are challenging due to varying experi-640

mental settings, model architectures, and hardware641

configurations used in the original papers. The642

lack of standardized benchmarks for speculative de-643

coding makes it difficult to make definitive claims644

about the relative efficiency of different methods.645

Additionally, while we examine applications across646

different modalities, our analysis may not fully cap-647

ture all domain-specific challenges and optimiza-648

tions, particularly for emerging areas like video649

generation and multimodal reasoning.650
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