
Under review as submission to TMLR

Input Normalized Stochastic Gradient Descent Training for
Deep Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we propose a novel optimization algorithm for training machine learning
models called Input Normalized Stochastic Gradient Descent (INSGD), inspired by the
Normalized Least Mean Squares (NLMS) algorithm used in adaptive filtering. When train-
ing complex models on large datasets, the choice of optimizer parameters, particularly the
learning rate, is crucial to avoid divergence. Our algorithm updates the network weights
using stochastic gradient descent with ℓ1 and ℓ2-based normalizations applied to the learn-
ing rate, similar to NLMS. However, unlike existing normalization methods, we exclude the
error term from the normalization process and instead normalize the update term using the
input vector to the neuron. Our experiments demonstrate that our optimization algorithm
achieves higher accuracy levels compared to different initialization settings. We evaluate
the efficiency of our training algorithm on benchmark datasets using ResNet-20, WResNet-
18, ResNet-50, and a toy neural network. Our INSGD algorithm improves the accuracy of
ResNet-20 on CIFAR-10 from 92.55% to 92.80%, the accuracy of MobileNetV3 on CIFAR-10
from 90.83% to 91.13%, WResNet-18 on CIFAR-100 from 78.75% to 78.85%, and ResNet-50
on ImageNet-1K from 75.56% to 75.89%.

1 Introduction

Deep Neural Networks (DNNs) have gained immense popularity and have been extensively applied across
various research fields due to their convenience and ease of use in many machine learning tasks LeCun
et al. (1995); He et al. (2016); Krizhevsky et al. (2017); Simonyan & Zisserman (2014); Long et al. (2015).
Researchers from different domains can readily utilize DNN models for their work, as these models can adapt
their parameters to find the best possible solutions for a wide range of problems, particularly in supervised
learning scenarios. The parameters of a DNN model are updated using various optimization algorithms, and
researchers have proposed different algorithms that offer fresh perspectives and address different conditions
Ruder (2016). It is important to note that different optimization algorithms can yield different results in a
given problem depending on the task at hand.

Stochastic Gradient Descent (SGD) is a widely adopted optimization algorithm for supervised learning in
DNN models. It is a simple, efficient, and parallelizable algorithm that can produce very accurate results
on large-scale datasets when appropriate initial conditions are set Bottou (2010). Another popular algo-
rithm, called Adam, can outperform SGD in some cases; however, it is crucial to choose an initial learning
rate carefully, as a relatively high value can lead to divergence Kingma & Ba (2014). While optimization
algorithms play a significant role in training DNN models, ensuring convergence of weights and finding the
optimal solution for a given problem is not always guaranteed. The evaluation of an optimization algorithm
should also consider its limitations. This paper addresses two limitations in the convergence of deep neu-
ral network (DNN) models: the impact of different hyperparameter choices and the strength of the input
signal. To overcome these limitations, we propose a novel optimization algorithm called Input Normalized
Stochastic Gradient Descent (INSGD), which draws inspiration from the Normalized Least Mean Squares
(NLMS) algorithm used in adaptive filtering Mathews & Xie (1993); Chan & Zhou (2010). Our study focuses
on demonstrating how INSGD is inspired by NLMS and how it can effectively address problems caused by
various factors.

1

Under review as submission to TMLR

The organization of the paper is as follows. In the following two subsections, we review the SGD and
NLMS. In Section II, we introduce the Input Normalized Stochastic Gradient Descent (INSGD) algorithm.
In Section III we present simulation examples and conclude the article in Section IV.

1.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an iterative optimization method commonly used in machine learning
to update the weights of a network model. It calculates the gradient of the weights based on the objective
function defined to measure the error in the training of the model and it estimates the new set of weights
using the gradients with a predefined step size. The SGD can converge to the optimal or sub-optimal set
of weights with the correct choice of step size and the initial settings when the cost function is convex Li
& Orabona (2019) The gradual convergence provided by gradient descent helps us to optimize the weights
used in any type of machine learning model.

Assume a pair of (x,y) composed of an arbitrary input x and an output y. Given a set of weights w ∈ W
where W stands for the space of possible weights, a machine learning model predicts the output using a non-
linear function f(x,w) and the optimal weights, w∗, to minimize the objective (loss) function L(y, f(x,w))

w∗ = arg min
w∈W

L(y, f(x,w)). (1)

Due to the highly complex and non-linear nature of machine learning models, it is impossible to find a closed-
form solution for the optimization problem given in Eq. (1) ada (2008). The gradient descent algorithm is
introduced to avoid extensive computation and give an iterative method to estimate the optimal weights.
The formula for SGD is given as:

w(k + 1) = w(k) + λ∇w(k)L(y, f(x,w)), (2)

where w(j) represents the weights at jth step, ∇w(k)L is the gradient of the objective function with respect
to the weights being updated and λ is the step size or the learning rate.

Although SGD is a simple algorithm that can be applied to various tasks, it faces challenges related to
tuning and scalability, which hinder its ability to converge quickly in deep learning algorithms. If the initial
weights are not properly defined, and without preconditioned gradients that consider curvature information,
the algorithm can become trapped in local minima Le et al. (2011); Hinton & Salakhutdinov (2006). To
estimate the minimum of the objective function more effectively, a deeper understanding of the error surface
is required. In addition to using gradients, the exploitation of second-order derivatives can lead to faster
convergence however this requires calculating the Hessian matrix of the objective function. Calculating the
second derivative with respect to each weight is computationally expensive and can lead to memory issues in
deep networks. The Hessian matrix and its approximations are also utilized in the Normalized Least Mean
Squares (NLMS)-type methods, which will be discussed in the following subsection.

1.2 Normalized Least Mean Squares (NLMS)

As pointed out above, the NLMS is widely used to estimate the weights of an adaptive filter, which is
basically a linear neuron. In minimum mean square error filtering, assume u, the input to a system, is a
1×M random vector with zero mean and a positive-definite covariance matrix Ru and d, the desired output
of the system, is a scalar random variable with zero mean and a finite variance σ2

d. The linear estimation
problem is defined as the solution of

min
w

E |d− uw|2 , (3)

where w is a vector containing the filter coefficients to be optimized. The linear estimation problem declares
the cost function as the mean-square error and it is defined as

J(w) = E |d− uw|2 = E(d− uw)(d− uw)T , (4)

where (.)T denotes a transpose. If we expand Eq. (4), it is straightforward to obtain the cost function J(w)
in terms of the covariance and cross-covariance matrices:

J(w) = σ2
d −RT

duw−wT Rdu + wT Ruw, (5)

2

Under review as submission to TMLR

where Rdu = E[du] is the cross-covariance matrix of d and u. The closed-form solution to such a problem
in (3) can be found using the linear estimation theory as Ruwo = Rdu; however, it may not be possible to
obtain a closed-form solution for problems with criteria other than the mean-square-error criterion.

The Least Mean Squares (LMS) algorithm, developed by Widrow et al. in the 1960s Widrow et al. (1960),
computes the stochastic gradient and updates the weight vector iteratively to find a solution for the problem
in (3). The weight vector can be updated using the following iterative process.

w(j) = w(j − 1) + λuT (j)e(j), (6)
where u(j) is j-th observation of the random vector u and e(j) = d(j)− uT w(j − 1) is the error vector at
time j. The updating term is obtained as the negative of the stochastic gradient of the mean squared error
function defined in Eq. (4) with respect to the weights.

The Normalized LMS (NLMS) algorithm has been shown to achieve a better convergence rate compared to
LMS by incorporating a different step-size parameter for each component ui of the vector u Sayed (2008). The
LMS algorithm can encounter scalability issues when the input signal is large or when the step-size parameter
is too large. Since the LMS algorithm uses a gradient-based approach to update the filter coefficients, and
if the step-size parameter is too large, the filter coefficients can diverge. To address this, normalization is
introduced to the update term:

w(j) = w(j − 1) + λ
e(j)
||u(j)||22

u(j), (7)

and the NLMS converges to the Wiener filter solution of the optimization problem in (3) as long as 0 < λ < 2
Theodoridis et al. (2010); Yamada et al. (2002).

Another interpretation of the NLMS algorithm is based on the fact that the error e(j) = d(j)−uT w should
be minimized by selecting an appropriate weight vector w. The equation d(j) = uT w is a hyperplane in
the M dimensional weight space w ∈ RM . When the vector w(j − 1) is projected onto the hyperplane
e(j) = d(j)− uT w, we obtain the update equation:

w(j) = w(j − 1) + e(j)
||u(j)||22

u(j), (8)

as shown in Fig. 1 and the error is minimized by selecting the next weight vector on the hyperplane
d(j) = uT w. The orthogonal projection operation described in Eq. (8) minimizes the Euclidean distance
between the vector w(j − 1) and the hyperplane d(j) = uT wCombettes (1993); Trussell & Civanlar (1984);
Cetin et al. (1997; 2013) The weights converge to the intersection of the hyperplanes as shown in Fig. 1,

Figure 1: Geometric description of the NLMS projection in R2.

provided that the intersection of the hyperplanes is non-empty Combettes (1993); Cetin et al. (2013).

Other distance measures lead to different update equations such as the ℓ1-norm-based updates:

w(j) = w(j − 1) + e(j)
||u(j)||1

u(j), (9)

3

Under review as submission to TMLR

where ||u(j)||1 is the ℓ1 norm of the vector uj Gunay et al. (2012); Sayin et al. (2014); Arikan et al. (1994;
1995); Aydin et al. (1999). The ℓ1-norm-based method is usually more robust to outliers in input.

This article describes a new optimization algorithm inspired by Normalized LMS. It is called Input
Normalized-SGD (INSGD) and utilizes the same approach as in NLMS. INSGD solves the constant learn-
ing rate issue that may cause divergence and obtains better accuracy results on benchmark datasets. The
initialization of the learning rate or step size is crucial in DNN model training as it can greatly impact the
convergence. We believe that incorporating the adaptive nature of NLMS into DNN training is a promising
idea worth exploring. By adapting the concepts of NLMS to deep learning, we can potentially improve the
convergence behavior and overall performance of DNN models.

2 Methodology

2.1 Motivation

Machine learning models commonly utilize the backpropagation method for optimization Rumelhart et al.
(1986); LeCun et al. (1988). Stochastic Gradient Descent (SGD) is a widely used optimization algorithm with
various modifications in the machine learning community. While SGD can provide convergence with proper
initialization, researchers have identified both positive and negative aspects of SGD and have attempted to
enhance it according to their specific objectives Ruder (2016). One issue with SGD is that it updates weights
based solely on the instantaneous gradient, which may lead to a lack of global information and oscillations.
Another challenge is the use of a constant learning rate for all weights in the model. As training progresses,
certain weights become more important than others, requiring different step sizes to ensure effective learning.

In recent years, the Adaptive Gradient (AdaGrad) algorithm was introduced by Duchi et al. as a means to
enhance the update term in optimization Duchi et al. (2011). AdaGrad addresses the issue of choosing an
appropriate learning rate by adapting it individually for each weight based on the cumulative sum of past and
current squared gradients. By dividing the learning rate by the square root of this cumulative sum, AdaGrad
assigns larger updates to weights with smaller gradients and vice versa. This adaptive approach allows for a
more fine-grained adjustment of the learning rate based on the historical behavior of each weight’s gradient.
The formulas for AdaGrad are

w(k + 1)← w(k)− γ√
v(k) + ϵ

∇w(k)L, (10)

v(k)← v(k − 1) +
[
∇w(k)L

]2
, (11)

where, v is the weighted moving average of the squared gradient, γ is the learning rate, and v(−1) = 0.

Hinton et al. introduced the RMSProp algorithm as an enhancement to the AdaGrad optimizer Hinton et al.
(2012). RMSProp incorporates momentum by introducing an exponentially weighted moving average of the
squared gradients. This modification helps to address the issue of diminishing learning rates in AdaGrad,
which can slow down the convergence process. By applying the momentum concept, RMSProp allows for a
smoother and more stable update process by considering not only the current squared gradients but also the
historical information encapsulated in the moving average. As a result, RMSProp strikes a balance between
the adaptability of AdaGrad and the stability provided by momentum, leading to improved optimization
performance. RMSProp’s formulas are

w(k + 1)← w(k)− γ√
v(k) + ϵ

∇w(k)L, (12)

v(k)← βv(k − 1) + (1− β)
[
∇w(k)L

]2
. (13)

Another widely used optimization algorithm, called Adaptive Moment Estimation (Adam), was introduced
by Kingma and Ba in 2014 Kingma & Ba (2014). Adam builds upon the concepts of momentum and the
divisor factor used in RMSProp. In addition to maintaining an exponentially weighted moving average of
the squared gradients like RMSProp, Adam also incorporates the notion of momentum by keeping track

4

Under review as submission to TMLR

of an exponentially weighted moving average of the gradients themselves. This combination of momentum
and the divisor factor makes Adam more adaptive and robust compared to RMSProp and AdaGrad. By
considering both the first and second moments of the gradients, Adam adjusts the learning rate for each
parameter individually, taking into account both the magnitude and direction of the gradients. This enables
Adam to converge faster and handle a wider range of optimization scenarios. The algorithm is implemented
as:

w(k + 1)← w(k)− γ√
v(k) + ϵ

m(k), (14)

v(k)← βv(k − 1) + (1− β)
[
∇w(k)L

]2
, (15)

m(k)← βm(k − 1) + (1− β)∇w(k)L, (16)

where m is the momentum and m(−1) = 0.

Another adaptive learning algorithm proposed by Singh et al. in Singh et al. (2015) presented a Layer-
Specific Adaptive Learning Rate (LSALR). According to Singh et al. (2015), the parameters in the same
layer share similar gradients; therefore, the learning rate of the entire layer should be similar but different
layers should have different learning rates. The work is described to adjust the learning rate to escape from
the saddle points and it uses the ℓ2 norm in gradients:

w(k + 1)← w(k)− γ
(

1 + log
(

1 + 1
||∇w(k)L||2

))
∇w(k)L. (17)

Eq. (17) allows the learning rate to become larger when the gradients are small. The aim is to correct
the update term when the gradients are small in the high error low curvature saddle points. Therefore,
the algorithm escapes from saddle points with a large learning rate. Similarly, it scales the learning rate
to stability if the gradients are too large. The use of the log function provides the scaling under different
conditions.

Adam, AdaGrad, and RMSProp are optimization algorithms that address the limitations of standard stochas-
tic gradient descent (SGD). These algorithms aim to improve the convergence speed in various scenarios,
such as high learning rates or random weight initializations. While they incorporate normalization parame-
ters, the update terms in these algorithms are still input-dependent and gradually decrease over iterations.
In our approach, we propose using a normalization term based on the layer’s input instead of relying on
cumulative sums, which helps to prevent slow convergence. By leveraging input-based normalization, we aim
to enhance the training process and overcome the limitations of existing optimization algorithms.

2.2 Input Normalized Stochastic Gradient Descent Algorithm

Input Normalized Stochastic Gradient Descent (INSGD) utilizes a similar approach as NLMS. The input
scalability issue and the fragile nature of choosing the learning rate are the main issues that we address in
the INSGD optimizer.

In deep learning, we minimize the cost function

F (W) = 1
n

n∑
k=1

Fk(W),

where W represents the parameters of the network, n is the number of training samples, and Fk(W) is the
loss due to the k-th training data. Let us first assume that there are linear neurons in the last layers of the
network and di is the desired value of the i-th neuron. Furthermore, let wi,0 be the initial weights of the
i-th neuron. We want the neuron to satisfy

di = w · x,

where x denotes the input vector to the neuron. During training, we have wi,0 · xk ̸= di where xk is the
input vector due to the k-th training pattern. We select the new set of weights of the neuron by solving

arg min
w
||wi,0 −w||2, (18)

5

Under review as submission to TMLR

s.t. w · xk = di.

One can easily obtain the solution using the Lagrange multiplier method, and the solution to the optimization
problem is the orthogonal projection onto the hyperplane w · xk = di. Solving Eq.(18) gives us an update
equation

wi,1 = wi,0 + λ
ek

ϵ+ ||xk||2
xk, (19)

where the error ek = di − wi,0 · xk, the update parameter λ = 1, and ϵ is a small number to avoid the
division by 0. This selection of weights obviously reduces Fk(W) and it is the same as the gradient descent
with a new step size determined by the length of the input vector. It is also the well-known Normalized
Least Mean Square (NLMS) algorithm used in adaptive filtering and signal processing as shown in Sec 1.2,
Eq. (7). The NLMS algorithm converges for 0 < λ < 2 when the input is a wide-sense stationary random
process. Inspired by the NLMS algorithm we can continue updating the neurons of the inner layers of the
network in the same manner.

When the i-th neuron is not a linear neuron, we have

ψ(w · x) = di, (20)

where ψ(·) is the activation function. In this case, we solve the following problem to update the weights of
the neuron.

arg min
w
||wi,0 −w||2, (21)

s.t. ψ(w · xk) = di,

or
arg min

w
||wi,0 −w||2, (22)

s.t. w · xk = ϕ(di),

where ϕ(·) is the inverse of the ψ(·) function. When ψ(·) is the sigmoid, leaky-RELU, or tanh, ψ(·) has a
well-defined inverse. If the activation function is ReLU, the negative values in the inverse are set to 0. In
this case, the weight update equation will be

wi,1 = wi,0 + λ
(ϕ(di)−wi,0 · xk)

ϵ+ ||xk||2
xk. (23)

By employing the solution described in Eq. (23), the NLMS algorithm can be adapted to optimize the weights
in the final layer to minimize various cost functions. However, extending the INSGD algorithm to deeper
networks with multiple layers poses a challenge in its derivation. We adopt similar assumptions to those used
in the backpropagation algorithm to derive the INSGD algorithm for each weight in a deep-learning model.
These assumptions provide a foundation for developing the INSGD algorithm, allowing us to effectively
optimize the weights across the layers of the deep learning model.

In addition to the final layer, we incorporate the input feature maps of each layer to apply the gradient
term with normalization to the neurons using the backpropagation algorithm. This enables us to propagate
the gradients and update the weights in a layer-wise manner throughout the network. By leveraging the
information from the input feature maps, we enhance the training process by ensuring that the gradients are
appropriately scaled and normalized at each layer. This approach allows for effective gradient propagation
and weight updates, ultimately contributing to improved optimization and performance of the deep learning
model:

wk+1 = wk − µ
∇wk

L(ek)
ϵ+ ||xk||22

, (24)

where xk is the vector of inputs to the neuron and wk are the weights of the neurons. Note that we drop
i in the weight notation that represents the neuron since the algorithm is applicable to every neuron. For
convenience, we also change the notation for the learning rate from λ to µ. A description of how the INSGD
optimizer algorithm works for any layer of a typical deep network is shown in Fig. 2.

6

Under review as submission to TMLR

Figure 2: NSGD algorithm for different layers. It utilizes the input to each layer to update the weights.

The proposed INSGD algorithm, while addressing the input scalability problem, still shares some drawbacks
with SGD. In Eq. (24), we can observe how the weights are updated based on the input and gradient at
each time step. However, the presence of irregular gradients and outlier inputs from the training dataset
can impact the convergence behavior. To overcome this, we incorporate momentum, a technique that aids
in navigating high error and low curvature regions Ruder (2016). In the INSGD algorithm, we introduce an
input momentum term to estimate the power of the dataset, enabling power normalization. By replacing
the denominator term with the estimated input power, we emphasize the significance of power estimation
in our algorithm. Furthermore, the utilization of input momentum allows us to capture the norm of all the
inputs. Denoted as P , the input momentum term accumulates the squared ℓ2 norm of the input instances:

Pk = βPk−1 + (1− β)||xk||22. (25)

While estimating the input power is crucial, we encounter a challenge similar to AdaGrad. The normalization
factor can grow excessively, resulting in infinitesimally small updates. To address this, we draw inspiration
from the Layer Specific Adaptive Learning Rate (LSALR) approach Singh et al. (2015) and employ the log-
arithm function to stabilize the normalization factor. However, the use of the logarithm function introduces
the risk of negative values. If the power is too low, the function could yield a negative value, reversing the
direction of the update. To mitigate this, we employ a function with the rectified linear unit, which avoids
the issue of negative values. Adding a regularizer may not be sufficient to resolve this problem, hence the
choice of the rectified linear unit function. The function is designed as follows:

fϵ(u) =
{
u if u ≥ ϵ,
ϵ if u < ϵ,

(26)

where ϵ is a regularizer to avoid the division by 0. After devising the function in Eq. (26) and the logarithm
approach for the Eq. (25), the optimization algorithm for any weight in any layer in a network becomes

wk+1 = wk −
µ

fϵ(log(Pk))∇wk
L(ek), (27)

where Pk is defined in Eq. (25), and it is the estimate of the input power that is updated with every instance
of x and the proposed ϵ = 0.01. Therefore, we make sure that the update term is always greater than 0 and
stable. The iterative algorithm defined in Eq. (27) is the Input Normalized SGD algorithm.

One can explore different norms, such as the l1 or l∞ norm, as alternatives to the l2 norm. In our experiments,
we also investigated the use of the l1 norm to assess its impact on performance. LMS algorithms based on
the l1 norm are known to be more robust against outliers in the input, which suggests potential benefits in

7

Under review as submission to TMLR

deep neural network training. In this study, we examined both the l2 and l1 norms and their implications.
Since NLMS is based on the l2 norm, the algorithm presented in Eq. (25) utilizes the l2 norm. However, for
broader applicability, we can adapt the power estimation as follows:

Pk = βPk−1 + (1− β)||xk||pp (28)

where ||.||pp is the p power of the p-norm. Extension of the INSGD to convolutional layers is straightforward.
The pseudocode algorithm of INSGD is given in Algorithm 1.

Algorithm 1 Input Normalized Gradient Descent with Momentum
for t← 1 to ... do

gt ← ∇θft(θt−1) ▷ Denote the gradient
if β ̸= 0 then ▷ If input momentum is not 0

if t > 1 then
Pt ← βPt−1 + (1− β)||xt,θ||22 ▷ Accumulate the power of input norm

else
Pt ← ||xt,θ||22

end if
end if
gt ←

gt

f(log(Pt)) ▷ Division by input norm
if λ ̸= 0 then ▷ Weight Decay

gt ← gt + λθt−1

end if
if γ ̸= 0 then ▷ Gradient with Momentum

if t > 1 then
bt ← γbt−1 + (1− τ)gt

else
bt ← gt

end if
gt ← bt

end if
θt ← θt−1 − µgt ▷ Update the Weights

end for

2.3 Models Architecture

In this study, we conducted experiments using five different networks to evaluate the performance of the
INSGD algorithm in the classification tasks of CIFAR-10, CIFAR-100, and ImageNet-1K. We made modifi-
cations to the network architectures and initialization settings to assess the impact of the INSGD algorithm.
In this study, we employed several networks for the classification tasks. Specifically, we utilized ResNet-20 He
et al. (2016) and MobileNetV3 Howard et al. (2019) for CIFAR-10, WResNet-18 Zagoruyko & Komodakis
(2016) for CIFAR-100, ResNet-50 and MobileNetV3 for ImageNet-1K. Additionally, we designed a custom
CNN architecture specifically for CIFAR-10, which consists of four convolutional layers, each followed by a
batch normalization layer. These networks were chosen to provide a diverse set of architectures and enable
a comprehensive evaluation of the INSGD algorithm’s performance across different datasets. The structure
of ResNet-20 and custom-designed CNN used in this study is shown in Tables 1 and 2.

On large benchmark datasets, traditional optimization algorithms often struggle to find the optimum results
if the learning rate is not properly chosen. In such cases, these algorithms may diverge and fail to converge
to the desired solution. However, the INSGD algorithm offers a solution by providing flexibility in learning

8

Under review as submission to TMLR

Layer Output Shape Implementation Details

Conv1 16× 32× 32 3× 3, 16

Conv2_x 16× 32× 32
[

3× 3, 16
3× 3, 16

]
× 3

Conv3_x 32× 16× 16
[

3× 3, 32
3× 3, 32

]
× 3

Conv4_x 64× 8× 8
[

3× 3, 32
3× 3, 64

]
× 3

GAP 64 Global Average Pooling
Output 10 Linear

Table 1: ResNet-20 Structure for CIFAR-10 classification task. Building blocks are shown in brackets, with
the numbers of blocks stacked. Downsampling is performed by Conv3_1 and Conv4_1 with a stride of 2.

Layer Output Shape Implementation Details

Conv1 8× 32× 32 3× 3, 8
Conv2 16× 16× 16 3× 3, 16, stride = 2
Conv3 32× 8× 8 3× 3, 32, stride = 2
Conv4 64× 4× 4 3× 3, 64, stride = 2
Dropout 64× 4× 4 p = 0.2
Flatten 1024 -
Output 10 Linear

Table 2: Structure of the custom network with 4 conv layers for the CIFAR-10 classification task.

rate selection, thereby improving the chances of reaching the global optimum. By adapting the learning rate
dynamically based on the input and gradient information, INSGD enhances the optimization process and
increases the likelihood of achieving superior results on large-scale datasets.

3 Experimental Results

Our experiments are carried out on a workstation with an NVIDIA GeForce GTX 1660 Ti GPU for the
CIFAR-10 and a workstation with an NVIDIA RTX A6000 GPU for the CIFAR-100 and ImageNet-1K.

3.1 CIFAR-10 Classification

We conduct a series of experiments using the CIFAR-10 dataset which consists of 10 classes, initially em-
ploying the custom-designed CNN and ResNet-20 models for training. In certain experiments, we make
modifications to the custom network to explore the algorithm’s capabilities. These experiments aim to
assess the algorithm’s performance under various conditions.

The base setting employed the SGD optimizer with a weight decay of 0.0005 and a momentum of 0.9. The
models are trained using a mini-batch size of 128 for 200 epochs, with an initial learning rate ranging from
0.5 to 0.01. The learning rate is reduced at multiple steps with varying rates. To augment the data, we
perform padding of 4 pixels on the training images, followed by random crops to obtain 32x32 images.
Random horizontal flips are also applied to the images with a probability of 0.5. Normalization is performed
on the images using a mean of [0.4914, 0.4822, 0.4465] and a standard deviation of [0.2023, 0.1994, 0.2010].
Throughout the training process, the best models are saved based on their accuracy on the CIFAR-10 test
dataset. These settings are adopted from He et al. (2016).

9

Under review as submission to TMLR

In the initial experiment, we employ the ResNet-20 model as our baseline. The independent parameter in
this experiment is the learning rate, which is varied across different settings. The batch size is fixed at
128. We compare the accuracy results of our algorithm against those of other commonly used optimization
algorithms, which are discussed in Section 2.1. The detailed accuracy results are presented in Table 3.

Optimizer Initial Learning Rate Test Accuracy

SGD 0.01 90.95%
SGD 0.1 92.55%

Adam 0.001 91.39%

Adagrad 0.01 87.29%
Adagrad 0.1 89.41%

Adadelta 0.1 89.33%

INSGD-ℓ1 0.01 90.80%
INSGD-ℓ1 0.1 92.64%

INSGD-ℓ2 0.01 91.28%
INSGD-ℓ2 0.1 92.77%

Table 3: Accuracy results of ResNet-20 on the CIFAR-10 dataset with different initial learning rates using
different optimization algorithms.

In addition to showcasing the testing accuracy results, understanding the behavior of each optimizer through-
out the training process is crucial. Figure 3 visually represents the progression of testing set errors for each
optimizer over 200 epochs. By training the ResNet-20 model with each optimizer, we can observe the corre-
sponding testing set error depicted in the plot. This visualization offers valuable insights into the convergence
speed and overall behavior of each optimizer, enabling a comprehensive analysis of their performance and
effectiveness.

As depicted in Figure 3, the INSGD algorithm with both norms consistently exhibits lower error rates in the
testing set, outperforming the other optimizers. This indicates the superior performance and effectiveness of
INSGD in optimizing the model’s parameters and minimizing the testing set errors. The ability of INSGD to
adaptively adjust the learning rates for each individual parameter contributes to its remarkable performance
in achieving lower errors during the training process. Such results further validate the efficacy of the INSGD
algorithm and its potential as an efficient optimizer for deep learning tasks.

Table 3 clearly illustrates the significant improvement in accuracy achieved by the INSGD algorithm com-
pared to other traditional optimization algorithms, resulting in better convergence during the CIFAR-10
training. It is important to note that INSGD consistently performs at a high level across various initial
learning rates. The superior performance of INSGD highlights its potential as a robust optimization algo-
rithm for deep learning tasks, showcasing its effectiveness in addressing the challenge of tuning learning rates
and achieving improved convergence.

In the second experiment, we explore the impact of varying batch sizes on the normalization factor to
understand how input size affects the training process. Analyzing the results across different batch sizes is
crucial due to the trade-off between time and memory usage. While larger datasets may benefit from larger
batch sizes to expedite training time, it is important to consider the increased memory requirements. If
our algorithm produces comparable results with larger batch sizes, it demonstrates its scalability. Table 4
presents the accuracy results of other algorithms and INSGD when training the model with different batch
sizes. To accommodate the increased batch size, we adjust the learning rate according to the linear scaling
rule described in Goyal et al. (2017).

To enhance the diversity of models utilized in our experiments, we incorporate the MobileNetV3 model for
comparative analysis. A batch size of 256 is used in MobileNetV3 training. As depicted in Table 5, the results

10

Under review as submission to TMLR

Figure 3: Testing set error of each optimizer over 200 epochs

Optimizer Batch Learning Rate Test Accuracy

SGD 128 0.1 92.55%
INSGD-ℓ1 128 0.1 92.64%
INSGD-ℓ2 128 0.1 92.77%

SGD 256 0.2 92.46%
INSGD-ℓ1 256 0.2 92.19%
INSGD-ℓ2 256 0.2 92.56%

SGD 512 0.2 92.20%
INSGD-ℓ1 512 0.2 92.39%
INSGD-ℓ2 512 0.2 92.80%

Table 4: Accuracy results of the ResNet-20 on the CIFAR-10 dataset with different batch sizes.

11

Under review as submission to TMLR

clearly demonstrate that the INSGD algorithm outperforms other conventional optimization algorithms in
terms of performance. This finding highlights the superior capabilities of INSGD in achieving improved
outcomes across the evaluated metrics.

Optimizer Initial Learning Rate Test Accuracy

Adam 0.001 89.93%
Adagrad 0.1 87.23%
Adadelta 0.1 86.32%

SGD 0.1 90.83%
INSGD-ℓ1 0.1 90.94%
INSGD-ℓ2 0.1 91.13%

Table 5: Accuracy results of MobileNetV3 on the CIFAR-10 dataset with different initial learning rates using
different optimization algorithms.

We also conduct experiments using the custom network for the CIFAR-10 training to validate our algorithm.
We employed similar settings to those used in ResNet-20. The accuracy results of the custom network with
different initial learning rates are presented in Table 6.

Optimizer Initial Learning Rate Test Accuracy

SGD 0.1 78.63%
INSGD-ℓ1 0.1 79.35%
INSGD-ℓ2 0.1 78.76%

SGD 0.25 64.34%
INSGD-ℓ1 0.25 70.64%
INSGD-ℓ2 0.25 73.06%

SGD 0.05 79.19%
INSGD-ℓ1 0.05 79.11%
INSGD-ℓ2 0.05 79.62%

SGD 0.01 77.51%
INSGD-ℓ1 0.01 78.79%
INSGD-ℓ2 0.01 79.26%

Table 6: Accuracy results of the custom-designed CNN on the CIFAR-10 dataset with different initial learning
rates and reduction rates.

The toy network, used as a simplified representation of the model, plays a crucial role in evaluating the
effectiveness of our algorithm. The results obtained from training the toy network confirm the robustness
of INSGD, as it consistently improves the accuracy regardless of the network architecture or the learning
rate used. This highlights the flexibility of INSGD as an optimizer, allowing for the utilization of various
learning rates. Notably, when compared to SGD with momentum, INSGD consistently achieves superior
performance across various learning rates, underscoring its efficacy in optimizing model training. Given the
overlap in the experiments conducted with the custom network and ResNet-20, we opted not to replicate the
ResNet-20 experiments using the toy network. This decision was made to avoid redundancy in our findings
and to focus on exploring the direct impact of INSGD

3.2 CIFAR-100 Experiment

We further extend our research by conducting experiments on the CIFAR-100 dataset. CIFAR-100 is a
more challenging dataset compared to CIFAR-10 as it contains 100 classes instead of 10, requiring models

12

Under review as submission to TMLR

to have a higher level of discrimination and classification capability. The increased class diversity in CIFAR-
100 poses additional difficulty in achieving high accuracy and generalization performance. It is crucial to
ensure that each class is adequately represented in the training process. Hence, we also opted to increase
the batch size to 256 for this particular experiment. Before our study, Wide ResNet-18 was recognized for
its convergence capabilities and satisfactory results Zagoruyko & Komodakis (2016). In alignment with the
settings outlined in the Wide ResNet paper, we replaced the optimizer algorithm with INSGD. Similar to our
CIFAR-10 experiment, the model was trained for 200 epochs, and we report the highest accuracy achieved
on the testing data.

Optimizer LR Batch Top-1 Acc. Top-5 Acc.

SGD 0.1 128 78.75% 94.20%
INSGD-ℓ1 0.1 128 78.52% 94.66%
INSGD-ℓ2 0.1 128 78.85% 94.34%

SGD 0.1 256 77.22% 93.79%
INSGD-ℓ1 0.1 256 78.15% 94.54%
INSGD-ℓ2 0.1 256 77.89% 93.98%

Table 7: Accuracy results of the Wide ResNet-18 on the CIFAR-100 dataset.

The results presented in Table 7 provide compelling evidence of the effectiveness of the INSGD algorithm
in achieving improved convergence on complex datasets across a range of learning rates. The superior
performance of INSGD, as evidenced by its higher Top-1 and Top-5 accuracy, establishes its utility in
training sophisticated models on challenging datasets. These findings underscore the algorithm’s capability
to handle intricate data distributions and optimize model performance, thereby showcasing its potential for
advancing the state-of-the-art in deep learning.

3.3 ImageNet-1K Results

In this subsection, we present the test accuracy results on the ImageNet-1K dataset. We utilize the ResNet-50
model, as discussed in Section 2.3. The training process is conducted using the official PyTorch ImageNet-1K
training code Ima (2022). Specifically, we employ the SGD and INSGD optimizers with a weight decay of
0.0001 and a momentum of 0.9.

The ImageNet-1K dataset consists of 1.2 million images and is known for its difficulty in training. Due to
the image resolution and resource constraints, adopting larger batch sizes is not feasible in our environment.
As a result, we train the models with a mini-batch size of 256, an initial learning rate of 0.1 for 90 epochs,
and a learning rate reduction of 1/10 after every 30 epochs.

To augment the data, we perform random cropping and horizontal flipping with a probability of 0.5, resulting
in 224 × 224 images. The images are then normalized using a mean of [0.485, 0.456, 0.406] and a standard
deviation of [0.229, 0.224, 0.225].

The accuracy of the best models is presented in Table 8, based on the center-crop top-1 accuracy and top-5
accuracy on the ImageNet-1K validation dataset. These accuracies are obtained from the model with the
highest center-crop top-1 accuracy, providing a comprehensive evaluation of the model’s performance on the
ImageNet-1K dataset.

The results presented in Table 8 highlight the improved top-1 accuracy achieved by the INSGD algorithm on
the ImageNet-1K dataset. This improvement is particularly significant considering the scale of the dataset,
demonstrating the effectiveness of INSGD in handling large and complex datasets. By leveraging the input
normalization factor, INSGD enables the model to converge more effectively by aligning the gradient direction
and appropriate magnitude.

The power estimation obtained through momentum in INSGD indicates that the optimization algorithm
can benefit from considering the entire input sequence. It suggests that the algorithm can capture long-

13

Under review as submission to TMLR

Optimizer Learning Rate Top-1 Acc. Top-5 Acc.

Model: ResNet-50

SGD 0.05 75.20% 92.49%
SGD 0.1 75.56% 92.53%

INSGD-ℓ1 0.05 75.59% 92.74%
INSGD-ℓ1 0.1 75.77% 92.71%

INSGD-ℓ2 0.05 75.67% 92.66%
INSGD-ℓ2 0.1 75.89% 92.81%

Model: MobileNetV3

SGD 0.05 66.94% 87.48%

INSGD-ℓ2 0.05 68.15% 88.12%

Table 8: Accuracy results of ResNet-50 and MobileNetV3 on the ImageNet-1K dataset.

term dependencies and utilize them for better optimization performance. Furthermore, it is worth noting
that the batch size used in our experiments is relatively small compared to the number of images in the
dataset. Exploring the algorithm’s behavior with larger batch sizes would be an interesting avenue for future
investigation.

4 Conclusion

In this paper, we proposed a novel neural network training method called INSGD, which incorporates ideas
from the widely used NLMS algorithm in adaptive filtering. INSGD introduces a normalization step to
the weight update term that normalizes the update term using only the input vector to the neurons. The
normalization can be performed using both the l1 and l2 norms.

To evaluate the effectiveness of INSGD, we conducted experiments on various datasets using different mod-
els. Notably, our algorithm consistently demonstrated improvements in testing accuracy across multiple
datasets. For example, on the CIFAR-10 dataset, INSGD achieved a significant boost in accuracy compared
to traditional stochastic gradient algorithms. We observed similar positive outcomes on other datasets, such
as CIFAR-100 and ImageNet-1K, when employing different models like ResNet-20 and ResNet-50.

Traditional optimization algorithms often lack flexibility when it comes to selecting hyperparameters, which
can limit their effectiveness. However, the INSGD (Input Normalized Stochastic Gradient Descent) algorithm
overcomes this limitation by leveraging input normalization. By normalizing the input data, INSGD enables
greater flexibility in tuning hyperparameters, leading to more robust and stable performance.

The promising results obtained across diverse datasets and models validate the effectiveness of INSGD
in enhancing the training process. By incorporating the normalization factor into the stochastic gradient
algorithm, INSGD effectively leverages the benefits of the NLMS algorithm, leading to improved performance
in various object recognition scenarios.

References
Steepest–Descent Technique, chapter 8, pp. 138–147. John Wiley & Sons, Ltd, 2008. ISBN 9780470374122.

doi: https://doi.org/10.1002/9780470374122.ch15. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/9780470374122.ch15.

Imagenet training in pytorch. https://github.com/pytorch/examples/tree/main/imagenet, 2022. Ac-
cessed: 2022-12-27.

14

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470374122.ch15
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470374122.ch15
https://github.com/pytorch/examples/tree/main/imagenet

Under review as submission to TMLR

O. Arikan, A. Enis Cetin, and E. Erzin. Adaptive filtering for non-gaussian stable processes. IEEE Signal
Processing Letters, 1(11):163–165, 1994. doi: 10.1109/97.335063.

O. Arikan, M. Belge, A.E. Cetin, and E. Erzin. Adaptive filtering approaches for non-gaussian stable
processes. In 1995 International Conference on Acoustics, Speech, and Signal Processing, volume 2, pp.
1400–1403 vol.2, 1995. doi: 10.1109/ICASSP.1995.480503.

G. Aydin, O. Arikan, and A.E. Cetin. Robust adaptive filtering algorithms for /spl alpha/-stable random
processes. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 46(2):
198–202, 1999. doi: 10.1109/82.752953.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT’2010: 19th International Conference on Computational StatisticsParis France, August 22-27, 2010
Keynote, Invited and Contributed Papers, pp. 177–186. Springer, 2010.

A Enis Cetin, Omer N Gerek, and Yasemin Yardimci. Equiripple fir filter design by the fft algorithm. IEEE
Signal Processing Magazine, 14(2):60–64, 1997.

A Enis Cetin, Alican Bozkurt, Osman Gunay, Yusuf Hakan Habiboglu, Kivanc Kose, Ibrahim Onaran,
Mohammad Tofighi, and Rasim Akin Sevimli. Projections onto convex sets (pocs) based optimization by
lifting. In 2013 IEEE Global Conference on Signal and Information Processing, pp. 623–623. IEEE, 2013.

SC Chan and Yi Zhou. Convergence behavior of nlms algorithm for gaussian inputs: Solutions using gen-
eralized abelian integral functions and step size selection. Journal of Signal Processing Systems, 59(3):
255–265, 2010.

Patrick L Combettes. The foundations of set theoretic estimation. Proceedings of the IEEE, 81(2):182–208,
1993.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7), 2011.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017.

Osman Gunay, Behçet Ugur Toreyin, Kivanc Kose, and A. Enis Cetin. Entropy-functional-based online
adaptive decision fusion framework with application to wildfire detection in video. IEEE Transactions on
Image Processing, 21(5):2853–2865, 2012. doi: 10.1109/TIP.2012.2183141.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks.
science, 313(5786):504–507, 2006.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60(6):84–90, 2017.

15

Under review as submission to TMLR

Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew Y Ng. On opti-
mization methods for deep learning. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, pp. 265–272, 2011.

Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for back-propagation. In
Proceedings of the 1988 connectionist models summer school, volume 1, pp. 21–28, 1988.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The handbook
of brain theory and neural networks, 3361(10):1995, 1995.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive stepsizes.
In The 22nd international conference on artificial intelligence and statistics, pp. 983–992. PMLR, 2019.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmenta-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440,
2015.

V John Mathews and Zhenhua Xie. A stochastic gradient adaptive filter with gradient adaptive step size.
IEEE transactions on Signal Processing, 41(6):2075–2087, 1993.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,
2016.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Ali H. Sayed. Normalized LMS Algorithm, chapter 11, pp. 178–182. John Wiley & Sons, Ltd, 2008.
ISBN 9780470374122. doi: https://doi.org/10.1002/9780470374122.ch18. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/9780470374122.ch18.

Muhammed O. Sayin, N. Denizcan Vanli, and Suleyman Serdar Kozat. A novel family of adaptive filtering
algorithms based on the logarithmic cost. IEEE Transactions on Signal Processing, 62(17):4411–4424,
2014. doi: 10.1109/TSP.2014.2333559.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Bharat Singh, Soham De, Yangmuzi Zhang, Thomas Goldstein, and Gavin Taylor. Layer-specific adaptive
learning rates for deep networks. In 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), pp. 364–368. IEEE, 2015.

Sergios Theodoridis, Konstantinos Slavakis, and Isao Yamada. Adaptive learning in a world of projections.
IEEE Signal Processing Magazine, 28(1):97–123, 2010.

H Trussell and M Civanlar. The feasible solution in signal restoration. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 32(2):201–212, 1984.

Bernard Widrow, Marcian E Hoff, et al. Adaptive switching circuits. In IRE WESCON convention record,
volume 4, pp. 96–104. New York, 1960.

Isao Yamada, Konstantinos Slavakis, and Kenyu Yamada. An efficient robust adaptive filtering algorithm
based on parallel subgradient projection techniques. IEEE Transactions on Signal Processing, 50(5):
1091–1101, 2002.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

16

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470374122.ch18
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470374122.ch18

	Introduction
	Stochastic Gradient Descent
	Normalized Least Mean Squares (NLMS)

	Methodology
	Motivation
	Input Normalized Stochastic Gradient Descent Algorithm
	Models Architecture

	Experimental Results
	CIFAR-10 Classification
	CIFAR-100 Experiment
	ImageNet-1K Results

	Conclusion

