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ABSTRACT

Analyzing sequential user behaviors plays an important role to build an effective recommender system and it has
been paid a great deal of attention by researchers. Previous work exploits two types of sequential user behaviors:
Item sequence (each user interacts with items in order) and sequential interactions on an item (e.g. clicking
an item, then adding it to cart, finally purchasing it). While a vast number of studies focus on modeling item
sequence, a few works exploit sequential interactions on an item in recent years. However, there is no work
that focuses on both of them. In our work, we propose a novel model which directly models both the types to
capture user behaviors completely. Our model can combine multiple types of behaviors as a sequence of actions,
moreover, it can model users’ preferences through time with the sequence items which they have interacted in the
past. The intensively experimental results show that our method significantly outperforms the effective baselines
which are designed to learn from either item sequence or sequential user interactions.

Keywords: Recommendation systems, Implicit Feedback, Explicit Feedback, Deep Learning, Collaborative
Filtering.

1. INTRODUCTION

In the age of information technology, e-commerce is growing in popularity. One of main challenges is to help
customers find out suitable items for their preferences. Recommendation Systems (RS) is attracting a lot of
attention to address this challenge. RS aims to predict the “rating” or “preference” which the user would give
to an item. User preferences can be learned from analyzing the past interactions of the user, such as the item
sequence which the user interacted or the sequential interactions (e.g: clicking, adding to cart, purchasing) which
the user does on an item.

Regarding the sequential interactions, traditional methods for RS usually classify these interactions into
two groups: implicit feedback (e.g. clicking, viewing)1,2 and explicit feedback (e.g. rating, purchasing)3 and
manipulate either of them to find out the relationship between users and items. Recently, numerous studies4–7

exploited both implicit and explicit feedback in the recommender system. Liu et al.5 and Shi et al.6 developed
models based on matrix factorization method for implicit and explicit feedback. However, they ignored the order
of user interactions on an item. Neural Multi-Task Recommendation (NMTR)7 directly modeled multiple types
of behavior as multi-task learning, where each task learned a specific type of interaction. NTMR attempted to
keep the sequential relation by using the output of this action as the input to predict the next action. However,
propagating information with only one scalar between two consecutive tasks is too simple, thus NMTR cannot
capture the more complex association between implicit and explicit interactions. Recently, Tuan et al.8 proposed
a novel Implicit-to-Explicit model (ITE) that models the sequential behavior of users in two consecutive phases
in a single task. ITE based on the sequential influences: The preferences of user influence implicit actions and
then the implicit actions influence the explicit actions. The experimental results showed that ITE outperforms
the baselines. However, ITE ignores the order of item sequence that a user interacts.

In terms of the item sequence, various studies9–17 showed that exploiting the sequential data in a session
obtain impressive results. In particular, deep learning emerges as an effective solution to model the item sequence.
Hidasi et al.18 applied Gated Recurrent Unit (GRU)-based RNN for session-based recommendation and used the
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ranking loss as the objective function. It achieved a significant improvement over traditional methods. Tan et
al.16 improved GRURec18 by utilizing data augmentation, embedding dropout and pre-training techniques. Ren
et al.15 proposed the repeated consumption phenomenon as the context of session information and introduced
a repeat-explore mechanism to train the model. Li et al.17 explored an attention mechanism to model the user
item sequence and capture the main user purpose in the current session. Liu et al.19 used the embedding of
the last-click to represent the current user interests and built an attention model to capture the short-term user
intention. These models can learn the user preferences through the sequence items which the user has interacted.
However, they ignored the order of interactions which the user does on an item. Therefore, they cannot model
many types of behaviors, that a user makes on an item, to learn sufficient representation of user preferences in
the real-world.

In this paper, we propose a novel model that directly models both the types (item sequence and sequential
user interactions on an item) to capture user behaviors namely Sequential Implicit To Explicit (SITE). SITE uses
continuous two-phase in a single task to model the multiple types of behavior as a sequence of actions. Therefore,
it is possible to model complex relationships between user interactions on an item. Moreover, our model can
capture the evolution of user preferences through time by exploiting sequence items they have interacted in the
past.

We conduct experiments on two large datasets and the results show that directly modeling sequential user
interactions on an item and the item sequence actually achieves many impressive results. Our method outperforms
the state-of-the-art baselines by significant margin.

The rest of the paper is organized as follows. Section 2 briefly reviews some related works. Section 3 presents
the details of SITE model and discusses several benefits. In Section 4, we conduct extensive experiments and
describe the evaluation results of the proposed model. Finally, we have some conclusions in Section 5.

2. RELATED WORK

2.1 Matrix Factorization

Matrix factorization (MF)20 is one of the most popular methods that aims to learn the latent representations of
each user and each item. It decomposes the user-item interaction matrix into the product of two matrices with
lower dimensions. More specifically, let K dimensional vectors pu and qv be the latent vectors of user u and item
v respectively, the rating of user u for item v is approximated to the inner product of pu and qv:

ŷuv = pTu qv =

K∑
k=1

pukqvk (1)

The target of the MF is to learn those latent vectors. Each latent vector can reveal some intuition of user’s
preferences or item’s features.

The original MF assumes the interaction of user u for the item v is a linear combination of two vectors pu,
qv with the same dimensions’ weights. Xiangnan He et al.13 mentioned the MF’s limitation, they presented
a neural network architecture to model latent features of users and items for collaborative filtering. However,
the original MF only use implicit feedback, therefore, it cannot exploit the wide variety of interactions. The
recent models, which are investigated in the next subsection, are proposed to simultaneously use many kinds of
interactions.

2.2 Exploiting implicit and explicit feedback in recommender system

Combining multiple types of behavior (e.g: implicit, explicit) has been paid a lot of attention by several re-
searchers recently.1,4, 5 These methods combined the kinds of feedback in an unified objective function, however,
they ignored the order of sequential behaviors. Therefore, it cannot naturally model the behavior of the user.
Shi et al.6 and Gao et al.7 attempted to find out the latent relationship between multiple behaviors by using
the neural network architecture to model user-item interactions. However, the way that these models associate
implicit and explicit behaviors is too simple, thus it cannot represent the complex relationship between user and
item.



Figure 1: The architecture of SITE model

2.3 Session-based Recommendation

Session-based recommender systems (SRS) is a subject in the recommendation and aims to recommend the next
item based on the item sequence which a user interacts in history. Accordingly, it can be grouped into two main
approaches: next-item recommendations9,15,16,18,19 that recommend the next item of the current session and
next-session recommendations (e.g: next-basket)21,22 that recommend partial or whole of future sessions. These
models learned the user preferences through the item sequence which a user has interacted in the past but they
cannot model the sequential user interactions on an item.

3. PROPOSED MODEL

In this section, we propose a novel model, namely Sequential Implicit To Explicit, which simultaneously models
two types of user behaviors: the item sequence (which a user interacts in order) and the sequential interactions
on an item (clicking, then adding to cart, finally purchasing). In this paper, we limit the sequential interactions
in scope of two kinds: implicit and explicit behaviors in which a user first does a implicit behavior, then decides
a explicit one based on the result from the implicit.

Throughout this paper, we use the following notations:

• M, N: The number of users and items respectively.

• X = (xui)M×N : Data of implicit behaviors where xui = 1 when user u has implicitly interacted with the
item i; xui = 0 otherwise.

• Y = (yui)M×N : Data of explicit behaviors where yui = 1 when user u has explicitly interacted with the
item i; yui = 0 otherwise.

• u = (α1, α2, α3, . . . αV ) and i = (β1, β2, β3, . . . , βW ): The representations vectors of user u and item i
(where V and W are the dimensions) respectively.

• Session S = {s1, s2, ..., s|S|} with s = {i1, i2, ..., i|s|} is a set of items that a user have interacted in session
s.



Figure 2: Detail architecture of SITE module

3.1 Sequential Implicit to Explicit

In this work, we will exploit both the item sequence and the sequential interactions to model the deep relations
between user and item. We present the architecture of the Sequential Implicit To Explicit (SITE) model
in Fig 1. The input consists of a user u and list of items (i1, i2, ..., in where n is the number of item in the user
session) which are interacted by u. We use the one-hot encoding of user and item for representing the input.
SITE will model multiple types of behavior as a sequence of actions, moreover, it represents the evolution of user
preferences through time with the sequence items they have interacted in the past.

For the sequential interactions on an item, we inherit the architecture of ITE model8 which can well capture
the relations between implict and explicit behaviours. In details, we use an implicit module which includes both
General Matrix Factorization (GMF) and MultiLayer Perceptron (MLP) to learn non-linear combination of a
pair of use and item. The output of this module is implicit feedback. Regading explicit feedback, we utilize an
explicit module which consists of a MultiLayer Perceptron (MLP) network. In order to capture the order of user
interactions, the last hidden layer of the implicit module, which is named as Implicit Layer, is used as the
input of the explicit module (Fig 2). The output of the explicit module is explicit feedback.



In terms of the item sequence in a session, we use an recurrent neural networks (RNN) to propagate the
influences of the user interactions on the previous items upon the user behaviours on the current item. In
particular, each state of RNN is an ITE model to model the user behaviours on an item. Then, we connect the
Implicit Layers of ITE models between two consecutive states. This way helps us remain the orders of both the
item sequence and the sequential user actions on an item.

In details, let pGu , pMu , qkGi , qkMi be the embedding vectors of user u and item ik (which is the kth item in
session of user u) for GMF and MLP Layer respecitively.

φkGMF = pGu � qkGi (2)

where� denotes the pair-wise product. Meanwhile, pMu , qkMi are concatenated and then are fed into a Multi-Layer
Perceptron network including L hidden layers. Particularly, each layer performs the following computation:

φMLP
(l+1) = f(W(l)φ

MLP
(l) + b(l)) (3)

where l is the layer index, f is the activation function (usually ReLU function). At the Implicit Layer of state kth

(Fig. 2), the concatenation of GMF Layer and MLP Layer is combined with the Implicit Layer of the previous
state.

φkI = f(W.concat(φkGMF , φkMLP
(L) ) + W̃ .φ(k−1)I) (4)

where W and W̃ are weight matrices, f is the activation function and φkI is the representation of a pair of user
and item kth at the implicit layer. φ(k−1)I is a zero vector when k = 1. The output of the implicit module x̂kui
denotes the likelihood that u will perform an implicit behavior with item kth:

x̂kui = σ(hT
I φ

kI) (5)

Then, the explicit module receives the representation φkI of the Implicit Layer as a input to propagate
through several hidden layers of MLP. At the hidden layer l of the explicit module performs the following
computation:

φkE(l) = f(U(l−1)φ
kE
(l−1) + b(l−1)) (6)

where φkE(l) is the representation at the layer l, φkE(0) = φkI , and U denotes the weight of the hidden layer. The

last layer of explicit module φkE(Y ) is used to compute the likelihood that u will perform an explicit behavior with
the item i:

ŷkui = σ(hT
Eφ

kE
(Y )) (7)

where h is the edge weight of the output layer.

x̂kui and ŷkui are the predictive score of implicit and explicit behaviors of user u on item kth in the session of
the user u. After learning the model, the probability that user u will relevant with the item i can be computed
by:

r̂ui = x̂kuiŷ
k
ui (8)

It is obvious that r̂ui can achieve high value when both x̂ui, ŷui are high.

3.2 Learning the model

The loss function is defined through the session of user as below:

L =

n∑
k=1

ηLk
I (x̂, x) + Lk

E(ŷ, y) (9)



Dataset RetailRocket Recobell
# Implicit 396923 2285261
# Explicit 18450 52786
# Users 36751 206203
# Items 83274 118293

# Sparsity 99.987% 99.999%

Table 1: Statistics of the Retail Rocket and Recobell datasets

where Lk
I and Lk

E are the objective functions of the implicit and explicit modules respectively, η is a hyperpa-
rameter to balance between the terms. The loss function of the implicit and explicit modules are calculated as
follows:

LI =
∑

(u,i)∈{S+
I

⋃
S−
I }

xui log x̂ui + (1− xui) log(1− x̂ui) (10)

LE =
∑

(u,i)∈{S+
E

⋃
S−
E }

yui log ŷui + (1− yui) log(1− ŷui) (11)

where S+I and S+E denote the sets of observed implicit and explicit interactions in the session S respectively. S−I
and S−E are the sets of negative samples for implicit and explicit behaviors in the session S. We use the Adam
method for optimizing this objective function.

4. EXPERIMENTS

In this section, we conduct experiments to examine the performances of the SITE model.

4.1 Datasets

We perform experiments on the two datasets: Retail rocket and Recobell.

• Retailrocket: is collected from a e-commerce website∗. It contains information about the history of user
interactions collected in 4.5 months with the timestamp. Multiple types of interactions include view, click,
add-to-cart and transaction. In our experiments, view and click actions are considered as implicit behavior,
while add-to-cart and transaction are explicit behavior. Users which have more than 5 interactions are
used to build experimental data.

• Recobell: is an e-commerce dataset† in which data is collected over a period of 2 months from August 2016
to October 2016. User interactions contain view (implicit behavior) and order (explicit behavior). Similar
to Retail rocket dataset, we only use users which have more than 5 interactions to conduct experiments.

Some statistics of these data are presented in Table 1.

4.2 Evaluated scenario and Measures

We use the leave-one-out23 strategy to evaluate the performances of SITE. For each user, the last item, which
the user does explicit action, is used to test, while we train SITE on the remaining interacted items. In the
evaluation phase, we create a set of item candidates to recommend for this user. The set consists of the test
item and 999 random items with which the user has not interacted. We examine how SITE can find out the test
item from candidates.

In experiments, we use two common measures Hit Ratio (HR)24 and Normalized Discounted Cumulative Gain
(NDCG)25 to examine the predictive ability.

∗https://www.kaggle.com/retailrocket/ecommerce-dataset
†http://www.recobell.co.kr/rb/main.php?menu=pakdd2017



Figure 3: Comparison of the various models in Retail Rocket dataset with K varied

Figure 4: Comparison of the various models in Recobell dataset with K varied

Hit Ratio (HR): For each user, HR@K corresponds to whether the test item belongs to the top K items
that SITE recommends to the user. HR@K can be formulated as follows:

HR@K =

{
1, if test item is in top K.
0, otherwise.

(12)

Normalized Discounted Cumulative Gain (NDCG): Instead of checking whether the test item is in
top K recommended items as Hit Ratio, NDCG@K considers the order of the test item in the top K items.
Therefore, the value of NDCG is always smaller than the value of HIT. NDCG@K can be formulated as follows:

NDCG@K =


log(2)

log(i+ 1)
, if test item is ranked at position i.

0, otherwise.
(13)

The final HR@K and NDCG@K are averaged on the HR@K and NDCG@K of all users. We compute HR@K
and NDCG@K with K = 10 to evaluate the model.

4.3 Performance comparison

We use RNN session-based model18 as the baseline.

Parameter Settings: Some hyper-parameters having major impacts to the model are: lr (learning rate),
η (the parameter determine the influence of implicit and explicit module into final loss), K (number of factors
using for the user, item representation). We tune the hyper-parameters with lr ∈ {0.0001, 0.0005, 0.001, 0.005},
η ∈ {0.1, 0.2, 0.5, 1.0, 2.0}. After the tuning process, we select lr = 0.001, η = 0.5 that achieve the best result.
In the experiments, we also consider the impact of number factors into these models with K ∈ {8, 16, 32, 64}.



Figure 5: Comparison of the various models in Retail Rocket when increasing the number of epochs gradually.
From left to right: K = {8; 16; 32; 64}

Performance comparison: Fig. 3 and Fig. 4 show the HR@10 and NDCG@10 with respect to the number
of factors K = {8, 16, 32, 64}. It is obvious that SITE achieves higher results of both HR@10 and NDCG@10
than RNN session-based. Using the deep network to exploit the complex behavior of the user is a main reason
why SITE is better than the RNN session-based model. For the result of Recobell in Fig. 4, the best HIT@10
and NDCG@10 of SITE is 0.8113 and 0.583 (K = 32), while the highest of RNN session-based are 0.559 and
0.442 (K = 64) respectively. In Retail rocket dataset, the ability prediction of SITE increases when the number
of hidden factors increases (Fig. 3), but seemly different from Recobell. Specifically, the HR@10 and NDCG@10
of SITE reaches its maximum value with number factors K = 32 and decreases when the number of factors
K = 64 (Fig. 4).

Fig. 5 and Fig. 6 reveal the performance of SITE on Retail Rocket and Recobell when the number of epochs
increases gradually from 1 to 50. In each epoch, the model learns through the whole training data. As we can see,
SITE still achieves better results than the RNN session-based model in most of the cases. In Recobell dataset,
the SITE model gains high performance in first several epochs, which indicates that we can save training time
for our model.

5. CONCLUSION

We presented a model based on deep learning network architecture to model simultaneously both kinds of
sequential behaviours: The item sequence and the sequential user interactions on an item. Deep learning
architecture is completely effective in modeling the complex user-item relationships and capturing the evolution
of user preferences over time. The experiments showed that the model performed well on the two Retail Rocket
and Recobell datasets.



Figure 6: Comparison of the various models in Recobell when increasing the number of epochs gradually. From
left to right: K = {8; 16; 32; 64 }
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