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Abstract

We present a Chinese BERT model dubbed001
MarkBERT that uses word information in this002
work. Existing word-based BERT models re-003
gard words as basic units, however, due to004
the vocabulary limit of BERT, they only cover005
high-frequency words and fall back to charac-006
ter level when encountering out-of-vocabulary007
(OOV) words. Different from existing works,008
MarkBERT keeps the vocabulary being Chi-009
nese characters and inserts boundary markers010
between contiguous words. Such design en-011
ables the model to handle any words in the012
same way, no matter they are OOV words013
or not. Besides, our model has two addi-014
tional benefits: first, it is convenient to add015
word-level learning objectives over markers,016
which is complementary to traditional charac-017
ter and sentence-level pretraining tasks; sec-018
ond, it can easily incorporate richer seman-019
tics such as POS tags of words by replacing020
generic markers with POS tag-specific mark-021
ers. MarkBERT pushes the state-of-the-art of022
Chinese named entity recognition from 95.4%023
to 96.5% on the MSRA dataset and from024
82.8% to 84.2% on the OntoNotes dataset, re-025
spectively. Compared to previous word-based026
BERT models, MarkBERT achieves better ac-027
curacy on text classification, keyword recogni-028
tion, and semantic similarity tasks.1029

1 Introduction030

Chinese words can be composed of multiple Chi-031

nese characters. For instance, the word地球 (earth)032

is made up of two characters地 (ground) and球033

(ball). However, there are no delimiters (i.e., space)034

between words in written Chinese sentences. Tra-035

ditionally, word segmentation is an important first036

step for Chinese natural language processing tasks037

(Chang et al., 2008). Instead, with the rise of pre-038

trained models (Devlin et al., 2018), Chinese BERT039

1All the codes and models will be made publicly available
at https://github.com/

models are dominated by character-based ones (Cui 040

et al., 2019a; Sun et al., 2019; Cui et al., 2020; Sun 041

et al., 2021b,a), where a sentence is represented 042

as a sequence of characters. There are several at- 043

tempts at building Chinese BERT models where 044

word information is considered. Existing studies 045

tokenize a word as a basic unit (Su, 2020), as multi- 046

ple characters (Cui et al., 2019a) or a combination 047

of both (Zhang and Li, 2020; Lai et al., 2021; Guo 048

et al., 2021). However, due to the limit of the vo- 049

cabulary size of BERT, these models only learn for 050

a limited number (e.g., 40K) of words with high 051

frequency. Rare words below the frequency thresh- 052

old will be tokenized as separate characters so that 053

the word information is neglected. 054

In this work, we present a simple framework, 055

MarkBERT, that considers Chinese word informa- 056

tion. Instead of regarding words as basic units, we 057

use character-level tokenizations and inject word 058

information via inserting special markers between 059

contiguous words. The occurrence of a marker 060

gives the model a hint that its previous character is 061

the end of a word and the following character is the 062

beginning of another word. Such a simple model 063

design has the following advantages. First, it avoids 064

the problem of OOV words since it deals with com- 065

mon words and rare words (even the words never 066

seen in the pretraining data) in the same way. Sec- 067

ond, the introduction of marker allows us to de- 068

sign word-level pretraining tasks (such as replaced 069

word detection illustrated in section 3), which are 070

complementary to traditional character-level pre- 071

training tasks like masked language modeling and 072

sentence-level pretraining tasks like next sentence 073

prediction. Third, the model is easy to be extended 074

to inject richer semantics of words. For example, 075

we can inject information such as POS tags into 076

pretrained model by simply replacing the generic 077

word marker [S] with POS tag-specific markers 078

(e.g., [SNN] for markers of nouns and [SV V ] for 079

markers of verbs) as illustrated in Figure 1. 080
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这

Translation in English:

些 学 会生 游 泳

这些学生会游泳

Standard BERT

1 2 3 54 6 7

Input in Chinese:

These / students / can / swim.

Word:

Position:

这些 / 学生 /会 /游泳Word Segmentation:

Pos Tagging: DT /  NN / VV / VV

这 些 学 会生 游 泳

MarkBERT-base

[S] [S] [S] [S]

1 2 3 54 6 7 8 9 10 11

Word:

Position:

这 些 学 会生 游 泳

MarkBERT-pos

1 2 3 54 6 7 8 9 10 11

Word:

Position:

[SDT] [SNN] [SVV] [SVV]

(a)

(b)

(c)

(d)

Figure 1: An illustrative example of our model. Box (a) gives the original input written in Chinese, its translation
in English, word segmentation results given by an off-the-shell text analyzer, and the POS tags of words. Box (b)
shows a traditional character-level Chinese BERT. Box (c) shows the base model of MarkBERT, in which generic
word boundary markers [S] are inserted between words. In box (d), the POS tag version of MarkBERT replaces
the generic markers [S] with POS tag specific ones such as [SNN] and [SV V ] .

In the pretraining stage, we force the markers to081

understand the contexts around them while serving082

as separators between words. We train our model083

with two pretraining tasks. The first task is masked084

language modeling. We also mask markers such085

that word boundary knowledge can be learned. The086

second task is replaced word detection. We replace087

a word with an artificially generated one, take re-088

placed contextual representation of the marker fol-089

lowing the word, and ask the model to distinguish090

whether the marker follows a correct word or not.091

On the task of named entity recognition (NER),092

we demonstrate that MarkBERT achieves the new093

state-of-the-art on both MSRA and OntoNotes094

datasets (Huang et al., 2015; Zhang and Yang,095

2018), surpassing previous systems. Compared096

with other word-level Chinese BERT models, we097

show that MarkBERT performs better on text clas-098

sification, keyword recognition, and semantic simi-099

larity tasks. We summarize the major contributions100

of this work as follows.101

• We present a simple and effective Chinese pre-102

trained model MarkBERT that considers word103

information without aggravating the problem104

of OOV words.105

• We demonstrate that our model achieves state-106

of-the-art performance on Chinese NER while107

performs better than previous word-based Chi-108

nese BERT models on three natural language109

understanding tasks.110

2 Related Work 111

We describe related work on injecting word infor- 112

mation to Chinese BERT and the use of marker in 113

natural language understanding tasks. 114

2.1 Chinese BERT 115

Pre-trained models exemplified by BERT (Devlin 116

et al., 2018) and RoBERTa (Cui et al., 2019a) have 117

been proved successful in various Chinese NLP 118

tasks (Xu et al., 2020; Cui et al., 2019b). Existing 119

Chinese BERT models that incorporate word infor- 120

mation can be divided into two categories. The first 121

category uses word information in the pretraining 122

stage but represents a text as a sequence of charac- 123

ters when the pretrained model is applied to down- 124

stream tasks. For example, Cui et al. (2019a) use 125

the whole-word-masking strategy that masks word 126

spans and predicts continuously multiple masked 127

positions. Lai et al. (2021) incorporate lexicon in- 128

formation by concatenating the lexicons along with 129

character-level context. The second category uses 130

word information when the pretrained model is 131

used in downstream tasks. For example, Su (2020) 132

uses a word-level vocabulary instead of characters. 133

If a word 地球 is included in the vocabulary, its 134

constitutes 地 and 球 will not be considered as 135

input tokens. Zhang and Li (2020) go one step fur- 136

ther by constructing two independent encoders that 137

encode character-level and word-level information 138

separately and concatenate them at the top layers of 139

two encoders. Similarly, Guo et al. (2021) encode 140

both character-level and word-level information. 141
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They move the information aggregation stage to142

the embedding level.143

2.2 Marker Insertion in NLU144

The idea of inserting markers is explored in entity-145

related natural language understanding tasks, espe-146

cially in relation classification. Given a subject en-147

tity and an object entity as the input, existing work148

inject untyped markers (Sun et al., 2019; Soares149

et al., 2019) or entity-specific markers (Zhong and150

Chen, 2020) around the entities, and make better151

predictions of the relations of the entities.152

3 MarkBERT Pre-training153

In this section, we first introduce the background154

of character level Chinese pre-trained models; then155

we introduce the structure of our MarkBERT model.156

After describing the structure of MarkBERT, we157

introduce the training process of the MarkBERT.158

In addition, MarkBERT can be extended with rich159

semantics such as pos-tags, therefore we introduce160

a MarkBERT-POS model. Finally, we provide de-161

tails of the entire training process.162

3.1 Character Level Chinese BERT163

In language model pre-training, BERT (Devlin164

et al., 2018) first introduced the masked language165

modeling strategy to learn the context informa-166

tion by replacing tokens with masks and assign167

the model to predict the masked tokens based on168

the contexts around them using the self-attention169

transformers structure (Vaswani et al., 2017). In170

Chinese language model pre-training, the encoding171

unit is different from the widely used BPE encod-172

ing in English: Chinese pre-trained models are173

usually character-level and word level information174

is typically neglected.175

3.2 MarkBERT Model176

To make better use of word-level information in177

Chinese pre-training, we introduce a simple frame-178

work called MarkBERT. We insert markers be-179

tween word spans to give explicit boundary infor-180

mation for the model pre-training.181

As seen in Figure 1, we first use a segmentation182

tool to obtain word segmentations, then we insert183

special markers between word spans as separators184

between characters. These markers are treated as185

normal characters so they take positions in the trans-186

formers structure. Plus, they can also be masked for187

the mask language modeling task to predict, there-188

fore the encoding process needs to be aware of189

predicting word boundaries rather than simply fill- 190

ing in masks from the context. The mask prediction 191

task becomes more challenging since predicting the 192

masks correctly requires a better understanding of 193

the word boundaries. In this way, the model is still 194

character-level encoded while it is aware of word 195

boundaries since word-level information is given 196

explicitly. 197

3.3 Replaced Word Detection 198

Inserting special markers allows the pre-trained 199

model to recognize word boundaries while main- 200

taining a character-level model. Further, these spe- 201

cial markers can be used to construct a word-level 202

pre-training task which can be complementary to 203

the character-level masked language modeling task. 204

We construct a replaced word detection task as 205

an auxiliary task to the masked language modeling 206

task. We construct a bipolar classification task that 207

detects whether the word span is replaced by a 208

confusion word. Specifically, given a word span, 209

we take the representations of the marker after it 210

and make binary prediction. 211

When a word span is replaced by a confusion 212

word, as seen in Figure 2, the marker is supposed 213

to make a "replaced" prediction labeled as "False". 214

When the word spans are not changed, the marker 215

will make an "unchanged" prediction labeled as 216

"True". Therefore, suppose the representation of 217

the ith marker is xi with label ytrue and yfalse, the 218

replaced word detection loss is: 219

L = −
∑
i

[ytrue · log(xiy) + yfalse · log(xiy)]

(1)

220

We add this loss term to the masked language mod- 221

eling loss as a multi task training process. 222

The construction of the confusions could be var- 223

ious. We adopt two simple strategies: (1) we use 224

synonyms as confusions; (2) we use words that are 225

similar in phonetics (pinyin) in Chinese. To obtain 226

the synonyms, we use an external word embedding 227

provided by Zhang and Yang (2018). We calculate 228

the cosine similarity between words and use the 229

most similar ones as the synonyms confusions. To 230

obtain the phonetic-based confusions, as seen in 231

Figure 2, we use an external tool to get the pho- 232

netics of the word and select a word that share the 233

same phonetics as its confusions. 234

In this way, the markers can be more sensitive 235

to the word span in the context since these markers 236
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这 些 学 会生 游 泳

MarkBERT-base

[S] [S] [S] [S]

1 2 3 54 6 7 8 9 10 11

Word:

Position:

这 些 学 会生 有 用

MarkBERT-base

[S] [S] [S] [S]

1 2 3 54 6 7 8 9 10 11

游 泳 有 用

word pinyin
you yong

word

Label = True Label = FalseReplaced Word Detection

这 些 学 会 游 泳

MarkBERT-base

1 2 3 54 6 7 8 9 10 11

Word:

Position:

[S] [S] [S]

生 [S]

[MASK] [MASK]

Mask Language Modeling 

Figure 2: Illustration of the predicting tasks of Masked Language Modeling and Replaced Word Detection. Here,
[S] is the inserted markers.

are assigned to discriminate the representation type237

of the word spans before them. This process is238

similar to an ELECTRA (Clark et al., 2020) frame-239

work. MarkBERT uses the inserted markers to run240

the discrimination process inside the encoder and241

use external confusions instead of using another242

generator to build texts for the discriminator.243

3.4 MarkBERT-POS Model244

In addition, we can improve the MarkBERT model245

by using richer-semantic markers instead of sim-246

ply a special token. Similar to the MarkBERT247

model, we use part-of-speech tags as markers to248

insert between word spans to construct a richer-249

semantic model called MarkBERT-POS. In this250

way, the model can be given clearer information251

for understanding the context. As seen in Figure252

1(d), these special markers can be replaced by POS-253

tags acquired externally. These POS-tag markers254

can also be masked as well, so the mask language255

modeling task also needs to predict correct POS-256

tags.257

The idea of using pos-tags is a naive usage of258

expanding markers. Our model can be further ex-259

panded with more helpful information as the in-260

serted special markers.261

3.5 Pre-Training 262

The pre-training process is a multi task framework 263

consisting of mask language modeling task and 264

replaced word detection task. 265

In the masked language modeling task, we em- 266

ploy both the masked language modeling strategy 267

and the whole-word-masking strategy. In the re- 268

placed word detection task, as seen in Figure 2, 269

when the word span is replaced by confusion words, 270

the model is supposed to correct the confusions. 271

This correction process is similar to MacBERT 272

(Cui et al., 2020). For the confusion generation, we 273

use synonyms and pinyin-based confusions. The 274

synonyms are obtained by a synonym dictionary 275

based on calculating the cosine similarity between 276

the Chinese word-embeddings provided by Zhang 277

and Yang (2018). 278

In our MarkBERT pre-training, the mask ratio 279

is still 15% of the total characters. For 30% of 280

the time, we do not insert any markers so that 281

the model can also be used in a no-marker set- 282

ting which is the vanilla BERT-style model. For 283

50% of the time we run a whole-word-mask pre- 284

diction and for the rest we run a traditional masked 285

language model prediction. In the marker inser- 286

tion, for 30% of the time, we replace the word 287

span with a phonetic(pinyin)-based confusion or 288

a synonym-based confusion word and the marker 289
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MSRA(Test) OntoNotes(Dev) OntoNotes(Test)
Acc. Recall F1 Acc. Recall F1 Acc. Recall F1

BERT (Devlin et al., 2018) 94.9 94.1 94.5 74.8 81.8 78.2 78.0 75.7 80.3
RoBERTa (Cui et al., 2019a) 95.3 94.9 95.1 76.8 80.7 78.7 77.6 83.5 80.5
FLAT-BERT (Li et al., 2020) - - 96.1 - - - - - 81.8
Soft-Lexicon (Ma et al., 2019) 95.8 95.1 95.4 - - - 83.4 82.2 82.8

RoBERTa (ours) 95.7 94.8 95.2 80.3 76.4 78.3 78.8 83.4 81.1
MarkBERT (ours) 96.5 96.5 96.5 84.1 83.5 83.8 83.5 85.4 84.2

Table 1: NER results on the MSRA and OntoNotes dataset.

will predict a phonetic(pinyin)-confusion marker290

or a synonym-confusion marker; for the rest of291

the time, the marker will predict a normal-word292

marker.293

We need to notice that most of the time the294

marker is a normal marker if the normal markers295

are not POS-tag enhanced. Therefore, we only cal-296

culate 15 % percent of loss on these normal markers297

to avoid imbalance labels of the marker learning298

process. During fine-tuning on downstream tasks,299

we use the markers in the input texts. Also, we300

can save the markers and downgrade the model to301

a vanilla BERT-style model for easier usage. We302

give implementation details in the appendix.303

4 Experiments304

To test the performance of our proposed Mark-305

BERT, we conduct experiments on the NER and306

other natural language understanding tasks.307

4.1 NER Task308

In the NER task, we use the MSRA (Levow, 2006)309

and Ontonotes (Weischedel et al., 2013) datasets310

with the same data-split as in Ma et al. (2019) and311

Li et al. (2020).312

We establish several strong baselines to explore313

the effectiveness of our MarkBERT. In language un-314

derstanding tasks, we compare with the RoBERTa-315

wwm-ext (Cui et al., 2019a) baseline, which is a316

whole-word-mask trained Chinese pre-trained mod-317

els. We also further pre-train the RoBERTa model318

denoted as RoBERTa (ours) and the WoBERT319

model denoted as WoBERT (ours) based on our320

collected data which is the same data used in pre-321

training MarkBERT to make fair comparisons with322

our model. In the NER task, we compare with323

FLAT-BERT (Li et al., 2020) and Soft-Lexicon324

(Ma et al., 2019) which are state-of-the-art models325

on the NER task which incorporate lexicons in the326

transformers/LSTM structure.327

4.2 Language Understanding Task 328

We also conduct experiments on language under- 329

standing tasks. We use various types of tasks from 330

the CLUE benchmark (Xu et al., 2020). We use 331

classification tasks such as TNEWS, IFLYTEK; 332

semantic similarity task (AFQMC); coreference 333

resolution task(WSC); keyword recognition (CSL); 334

natural language inference task (OCNLI). 335

Besides the BERT-style baselines used in the 336

NER task, we also use the word-level information 337

enhanced models as baselines to make comparisons 338

in the language understanding tasks. We use: 339

- WoBERT (Su, 2020): a word-level Chinese pre- 340

trained model initialized from the BERT BASE pre- 341

trained weights. It has a 60k expanded vocabulary 342

containing commonly used Chinese words. 343

- AMBERT (Zhang and Li, 2020): a multi- 344

granularity Chinese pre-trained model with two 345

separated encoders for words and characters. The 346

encoding representation is the character-level rep- 347

resentation concatenated by the word-level repre- 348

sentation; 349

- LICHEE (Guo et al., 2021): a multi-granularity 350

Chinese pre-trained model that incorporates word 351

and character representations at the embedding 352

level. 353

- Lattice-BERT (Lai et al., 2021): the state-of- 354

the-art multi-granularity model that uses lexicons 355

as word-level knowledge concatenated to the origi- 356

nal input context. 357

4.3 Downstream Task Implementations 358

We use the Huggingface Transformers (Wolf et al., 359

2020) to implement all experiments. 360

For the NER task, we follow the implementation 361

details given in the Transformers toolkit. 2 For the 362

language understanding tasks, we follow the imple- 363

mentation details used in the CLUE benchmark of- 364

ficial website and the fine-tuning hyper-parameters 365

2https://github.com/huggingface/transformers
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Datasets
TNEWS IFLYTEK AFQMC OCNLI WSC CSL

DEVELOPMENT

BERT (Devlin et al., 2018) 56.09 60.37 74.10 74.70 79.22 81.02
RoBERTa (Cui et al., 2019a) 57.51 60.80 73.80 75.01 82.20 81.22
RoBERTa (ours) 57.95 60.85 74.58 75.32 84.02 81.85
WoBERT (ours) 57.01 61.10 72.80 75.00 82.72 -

MarkBERT (ours) 58.40 60.68 74.89 75.88 84.60 -

TEST

BERT (Devlin et al., 2018) 56.58 60.29 73.70 - 62.00 80.36
RoBERTa (Cui et al., 2019a) 56.94 60.31 74.04 - 67.80 81.00
AMBERT (Zhang and Li, 2020) - 59.73 73.86 - 78.27 85.70
LICHEE (Guo et al., 2021) - 60.94 73.65 - 81.03 84.51

BERT (Lai et al., 2021) - 62.20 74.00 - 79.30 81.60
Lattice-BERT (Lai et al., 2021) - 62.90 74.80 - 82.40 84.00

RoBERTa (ours) 57.42 61.00 73.63 72.67 79.86 81.83
MarkBERT (ours) 58.05 62.57 74.87 73.06 81.72 85.73

Table 2: Evaluation results on the language understanding tasks.

used in Lattice-BERT (Lai et al., 2021).366

In the NER task, we use the marker-inserted in-367

puts in the MarkBERT since we intend to incorpo-368

rate the word boundary information in recognizing369

entities. We use the model with the best develop-370

ment performance to obtain the test set result. We371

make a thorough discussion on this topic in the372

later section. For the TNEWS task, we run the raw373

classification results without using the keywords374

augmentation which is no longer a natural context.375

For the IFLYTEK task, we split the context and use376

the average of the split texts prediction since the377

average sequence exceeds the max sequence length.378

We leave the experiment results ’-’ if they are not379

listed in the official website. 3380

4.4 Results on NER Task381

In Table 1, our proposed boundary-aware Mark-382

BERT outperforms all baseline models including383

pre-trained models and lexicon-enhanced models.384

Compared with the baseline methods, our pro-385

posed MarkBERT with markers inserted between386

words can lift performances by a large margin.387

When we insert markers using the same tokeniza-388

tion process used in pre-training MarkBERT in389

fine-tuning the MarkBERT in the NER task, we390

obtain a considerable performance improvement,391

indicating that the inserted markers catch some392

important fine-grained information that helps im-393

prove entity understanding. Further, when com-394

pared with previous state-of-the-art methods such395

3https://github.com/CLUEbenchmark/CLUE

as Soft-Lexicon (Ma et al., 2019) and FLAT (Li 396

et al., 2020) which use a combination of lexicon- 397

enhanced LSTMs/transformers and BERT, our 398

model can also achieve higher performance. The 399

improvement proves the effectiveness of inserting 400

markers for better understanding word boundaries 401

while maintaining the character-level encoding unit. 402

In addition, we use the pos-tags as markers in 403

the NER task and find out that the performance 404

is slightly better than normal markers (0.1 points 405

improvements on the F1 score on both MSRA and 406

OntoNotes datasets), indicating that pos-tag infor- 407

mation can be helpful but not by a large margin. 408

4.5 Results on Language Understanding 409

Table 2 shows that comparing with the RoBERTa 410

model that uses the same pre-training data, Mark- 411

BERT is superior in all tasks. This indicates that 412

the learned representations contain more useful 413

information for the downstream task fine-tuning. 414

The word-level model WoBERT (ours) trained with 415

the same data used in MarkBERT only achieves a 416

slightly higher accuracy in the IFLYTEK dataset 417

which might because the IFLYTEK dataset con- 418

tains very long texts where word-level model is 419

superior since it can process more contexts while 420

the total sequence lengths of character level and 421

word level model are both 512. 422

When comparing with previous works that focus 423

on word-level information, MarkBERT achieves 424

higher performances than the multi-grained encod- 425

ing method AMBERT as well as LICHEE which 426
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Datasets
MSRA Ontonotes TNEWS IFLYTEK AFQMC

DEVELOPMENT F1 F1 Acc. Acc. Acc.

MarkBERT 96.5 83.8 58.4 60.6 74.8
MarkBERT-rwd-pho 96.2 83.4 58.0 60.8 74.3
MarkBERT-rwd-syn 96.2 83.5 58.0 60.9 74.5
MarkBERT-MLM 96.0 83.3 58.0 60.7 74.6
MarkBERT-w/o marker 95.5 79.2 58.2 61.0 74.5
RoBERTa (ours) 95.1 78.2 57.9 60.8 74.5

Table 3: Ablation Studies on the NER and the language understanding tasks using dev set results.

incorporates word information as an additional em-427

bedding. We can assume that adding word-level428

information through horizontal markers is more ef-429

fective than vertically concatenating word-level in-430

formation. When comparing with the LatticeBERT431

model, our method can still reach a competitive432

level of performance, meanwhile the relative im-433

provements of our model is larger than the improve-434

ments of the LatticeBERT model. Please note that435

the lexicons used in LatticeBERT training actually436

contains more segmentation possibilities which can437

significantly increase the downstream task perfor-438

mance over the word segmentation based methods439

(Zhang and Yang, 2018). The basic idea of incorpo-440

rating lexicons is parallel with the marker insertion441

framework. MarkBERT makes use of word-level442

information in a different perspective.443

4.6 Model Analysis444

In this section, we conduct ablation experiments445

to explore the effectiveness of each parts in our446

MarkBERT framework in different tasks. We test447

different variants of MarkBERT:448

- MarkBERT-MLM only considers the MLM449

task without the replaced word detection task; the450

masked language model will predict masked tokens451

as well as inserted markers.452

- MarkBERT-rwd is a version that removes pho-453

netics words or synonyms separately in the re-454

placed word detection process.455

- MarkBERT-w/o marker is a version that re-456

moved markers which is the same as the vanilla457

BERT model.458

4.6.1 MarkBERT-MLM without RWD459

To explore which parts in MarkBERT is more ef-460

fective, we conduct an experiment as seen in Table461

3. We only use the masked language modeling task462

while inserting markers without using the replaced463

word detection task. The model only considers464

inserted markers and masked language modeling465

tasks, while the markers will be masked and pre- 466

dicted as well. 467

As seen, the MarkBERT -MLM model gains 468

significant boost in the NER task, indicating that 469

word boundary information is important in the fine- 470

grained task. 471

In the CLUE benchmark, the situation becomes 472

different: in the IFLYTEK task, inserting markers 473

will hurt the model performance which is because 474

the sequence length exceeds the maximum length 475

of the pre-trained model. Therefore, inserting mark- 476

ers will results in a lost of contexts. Generally, in- 477

serting markers is important in downstream task 478

fine-tuning. The explicit word boundary informa- 479

tion helps MarkBERT learn better contextualized 480

representations. 481

4.6.2 Replaced Word Detection 482

We also test the effectiveness of the additional re- 483

placed word detection task. Specifically, we sepa- 484

rate two confusion strategies and use phonetics and 485

synonyms confusions solely. 486

As seen in Table 3, When the marker learning 487

only includes phonetic (pinyin) confusions, the per- 488

formances in the fine-tuning tasks are similar with 489

the MarkBERT -MLM model, indicating that the 490

phonetic confusions have a slight improvement 491

based on the inserted markers. When the word 492

spans are replaced by synonyms only, the perfor- 493

mances are slightly lower than using both phonetic 494

and synonym confusions, indicating that augmen- 495

tation using various types of confusions is helpful. 496

4.6.3 MarkBERT -w/o marker 497

Further, without inserting markers, MarkBERT-w/o 498

marker can still achieve similar performances with 499

the baseline methods in the language modeling 500

tasks, indicating that MarkBERT can also be used 501

as a vanilla BERT model for easy usage in lan- 502

guage understanding tasks. As for the NER task, 503

inserting markers is still important, indicating that 504

7



(a) (b) (c) (d)

Figure 3: Visualization of attentions of the markers selected from a random layer. We use [unused1] in the
BERT vocabulary as the inserted marker.
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Figure 4: Results on different MarkBERT versions.

MarkBERT structure is effective in learning word505

boundaries for tasks that requires such fine-grained506

representations.507

4.6.4 Visualization of Marker Attentions508

To further explore how the markers work in the509

encoding process, we use the attention visualiza-510

tion tool to show the attention weights of the in-511

serted markers. We explore the attention weights512

on the pre-trained MarkBERT and the fine-tuned513

model based on the Ontonotes NER task. As seen514

in Figure 3, the pre-trained representations of the515

markers are focusing on the local semantics of the516

word-level information. These markers are also517

connected to other special tokens indicating that518

the markers play important roles in learning the519

context representations. Further, the special tokens520

are the mostly focused as seen in 3 (d).521

4.6.5 Influence of Different Sementation 522

Tools in MarkBERT 523

The quality of the pre-processed segmentation re- 524

sults may play a vital role, therefore, we use a 525

different version of segmentation in the Texsmart 526

toolkit (Zhang et al., 2020) where the segmenta- 527

tions are more fine-grained to train a MarkBERT- 528

seg-v2 model as a comparison. 529

As seen in figure 4, segmentation quality is triv- 530

ial to MarkBERT. The performances of MarkBERT 531

(seg-v1) is similar to a variant MarkBERT-seg-v2 532

using a different segmentation tool, which indicates 533

that the training framework helps rather than the 534

information from an external segmentation tool. 535

Combined with results in Table 3, we can con- 536

clude that introducing segmentation tools and use 537

mark-style encoding is important while the quality 538

of the segmentation is trivial. 539

5 Conclusion and Future Work 540

In this paper, we have introduced MarkBERT, a 541

simple framework for Chinese language model 542

pre-training. We insert special markers between 543

word spans in the character-level encodings in pre- 544

training and fine-tuning to make use of word-level 545

information in Chinese. We test our proposed 546

model on the NER tasks as well as natural lan- 547

guage understanding tasks. Experiments show that 548

MarkBERT makes significant improvements over 549

baseline models. In the future, we are hoping to 550

incorporate more information to the markers based 551

on the simple structure of MarkBERT. 552
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