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ABSTRACT

Recently, models such as OpenAI-o1 and DeepSeek-R1 have demonstrated remark-
able performance on complex reasoning tasks through Long Chain-of-Thought
(Long-CoT) reasoning. Although distilling this capability into student models sig-
nificantly enhances their performance, this paper finds that fine-tuning LLMs with
full parameters or LoRA with a low rank on long CoT data often leads to Cyclical
Reasoning, where models repeatedly reiterate previous inference steps until the
maximum length limit. Further analysis reveals that smaller differences in represen-
tations between adjacent tokens correlates with a higher tendency toward Cyclical
Reasoning. To mitigate this issue, this paper proposes Shift Feedforward Networks
(Shift-FFN), a novel approach that edits the current token’s representation with the
previous one before inputting it to FFN. This architecture dynamically amplifies
the representation differences between adjacent tokens. Extensive experiments on
multiple mathematical reasoning tasks demonstrate that LoRA combined with Shift-
FFN achieves higher accuracy and a lower rate of Cyclical Reasoning across various
data sizes compared to full fine-tuning and standard LoRA. Our data and code are
available at https://anonymous.4open.science/r/Shift-FFN.

1 INTRODUCTION

In recent years, Large Reasoning Models (LRMs) such as OpenAI-o1 Jaech et al. (2024), DeepSeek-
R1DeepSeek-AI et al. (2025), and Qwen3 Yang et al. (2024) have achieved significant advancements
in mathematical, coding, and other complex reasoning tasks. A key factor behind their success lies in
extending the traditional Chain-of-Thought (CoT) Wei et al. (2023) approach into long CoT, which
incorporates detailed step-by-step reasoning, multiple solution strategies and self-reflection processes
Chen et al. (2025).

Long Chain-of-Thought (CoT) demonstrates remarkable reasoning abilities, but training language
models to exhibit such complex reasoning requires substantial computational resources. Consequently,
knowledge distillation (Xu et al., 2024b; Ye et al., 2025; Li et al., 2025; Luo et al., 2025) has emerged
as a prevalent approach to impart this extended reasoning capabilities to smaller models by training
them on instruction-response instances enriched with short/long CoT (short/long CoT datasets for
short). Therefore, how to enable student models to effectively learn from these long CoT datasets has
emerged as a fundamental scientific problem.

One potential method could be Parameter-Efficient Fine-Tuning (PEFT) (Han et al., 2024) such as
LoRA Hu et al. (2021), which achieves performance comparable to full fine-tuning on several tasks
such as commonsense reasoning Clark et al. (2019), and instruction following Li et al. (2023), despite
updating only a minimal subset of parameters. However, these tasks typically do not involve long
CoT reasoning and generally maintain output lengths within only 1k tokens, whereas long CoT data
frequently exceed 16k tokens. This discrepancy naturally raises a critical research question: Is the
PEFT approach still effective when applied to learning long CoT reasoning?

This paper first investigates this question by constructing parallel datasets containing short CoT and
long CoT solutions for identical questions, respectively. The short and long CoT datasets are sourced
from Numina Math dataset LI et al. (2024) and DeepSeek-R1 outputs, respectively. Two student
models are trained separately using LoRA Hu et al. (2021) and full fine-tuning, respectively. This
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Question:  Find the largest possible real part of the expression  where  is a

complex number with .

<|begin_of_thought|>\n\nOkay, so I need to find the largest possible real part of the expression
 where  is a complex number with .

...
Therefore, there's a contradiction.\n\nThis suggests that the Cauchy-Schwarz approach is incorrect. But
this is impossible. Therefore, the only possible conclusion is that the problem is ill-posed ... But
according to the Cauchy-Schwarz approach, the real part is 324cosθ -432sinθ, which gives a maximum
of 540. (Repeat N times)
...
Therefore, there's a contradiction.\n\nThis

Result: False (Reaching the maximum length limit of 32k)

Distill Qwen2.5-7B-Instruct (Full fine-tuning)

Figure 1: (Left), performance comparison of LoRA and Full Fine-Tuning (Full FT) on Accuracy
(%) and Length Exceed (%) metrics for short CoT and long CoT datasets. "Accuracy" represents the
average accuracy across four mathematical tasks. "Length Exceed" indicates the percentage of model
outputs that exceed the maximum length limit. (Right), an example of Cyclical Reasoning.

paper observes that with a rank of 32, LoRA achieves comparable performance to full fine-tuning
on short CoT dataset. However, a noticeable performance gap emerges between LoRA and full
fine-tuning in long CoT scenarios, as shown in Figure 1 (left). This paper finds that both LoRA
and full fine-tuned models tend to exhibit Cyclical Reasoning, where they repeatedly generate
paragraphs or reiterate previous inference steps until reaching the maximum length limit of 32k
tokens, Figure 1 (right). This phenomenon is more pronounced in LoRA with lower rank, contributing
to the performance gap compared to full fine-tuning. Further analysis reveals that low divergence
of adjacent tokens correlates with a higher tendency toward Cyclical Reasoning. Specifically, this
paper finds that: (1) For the same model, answers exhibiting Cyclical Reasoning show smaller
internal representation differences between adjacent tokens compared to normal answers. (2) For
LoRA fine-tuned models, a higher rank reduces the rate of Cyclical Reasoning while simultaneously
increases the internal representation differences between adjacent tokens (more details in Section
3.1).

Based on these observations, the paper proposes Shift Feedforward Network (Shift-FFN), which
introduces an Editor module before the FFN. The Editor module uses the preceding token’s represen-
tation to edit the current token’s representation, thereby dynamically amplifying the representation
differences between adjacent tokens within the model, as shown in Figure 3. Experimental results
demonstrate that LoRA combined with Shift-FFN achieves higher accuracy and a lower rate of
Cyclical Reasoning across various data sizes compared to full fine-tuning and standard LoRA.

The main contributions of this work are as follows:

1. This paper finds that fine-tuning LLMs with full parameters or LoRA with a low rank on long
CoT data often leads to Cyclical Reasoning, and observes smaller differences in representations
between adjacent tokens correlates with a higher tendency toward Cyclical Reasoning.

2. This paper proposes Shift-FFN, which edits the current token’s representation with the previous
one before FFN, thereby dynamically amplifying differences between adjacent tokens.

3. Experimental results show that introducing Shift-FFN into LoRA improves model accuracy and
reduces the ratio of Cyclical Reasoning.

2 RELATED WORK

Parameter-Efficient Fine-Tuning methods (PEFTs). PEFT methods adapt models to downstream
tasks by updating only a small subset of parameters. Existing PEFT methods can be categorized into
the following three categories Han et al. (2024):

1. Addition based methods train additional lightweight modules that are positioned within the
frozen model. Adapters insert small adapter layers between LM attention or MLP layers

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(Houlsby et al., 2019; Wang et al., 2022; He et al., 2022). Prompt tuning inserts randomly-
initialized soft tokens at the beginning of the input texts and trains their embeddings while
keeping the LM weights frozen (Lester et al., 2021; Li & Liang, 2021).

2. LoRA Hu et al. (2021) and its variants Zhang et al. (2023); Liu et al. (2023b) employ low-
rank matrix approximations for weight updates during training, while introducing no inference
overhead as the updates can be directly merged into the base model parameters.

3. Representation editing based methods are motivated by representation engineering which
demonstrates that adding "steering vectors" to the representation of each hidden layer can
control pretrained LM generations Subramani et al. (2022); Liu et al. (2023a); Tang et al. (2025).
Therefore, these methods learn to modify the hidden representations generated by multi-head
attentions or FFNs (Liu et al., 2023c; Wu et al., 2024a;b)

Our proposed Shift-FFN can be viewed as a representation editing-based method, but it incorporates
preceding token information in the updating of representation.

Long CoT Distillation. Extensive studies have demonstrated that distilling long CoT data from
powerful reasoning models into student models can significantly enhance the students’ reasoning
capabilities DeepSeek-AI et al. (2025); Yang et al. (2024); Wen et al. (2025). Furthermore, LIMO
Ye et al. (2025) reveals that a small set of carefully selected examples suffices to elicit the model’s
complex mathematical reasoning capabilities. Li et al. (2025) finds that the structure of long
CoT proves essential for effective learning, while the specific content within individual reasoning
steps exhibits minimal impact. DLCoT Luo et al. (2025) proposes to optimize long CoT through
segmentation, redundancy elimination, and error correction. Their experimental results demonstrated
that eliminating redundant reasoning paths leads to improvements in distillation efficiency. While
existing approaches primarily investigate from a data perspective, this paper focuses on model
architecture, enabling Shift-FFN to be complementary with such methods.

Token Shift. RWKV Peng et al. (2023) introduces time-mixing and channel-mixing by computing
linear projections from weighted combinations of the current and previous input representations
within each block. KV shift Xu et al. (2024a) performs linear combinations of the current token’s
key/value vectors with those of the preceding token, and demonstrates that Shift-KV attention exhibits
enhanced capability in learning induction heads. Fox Lin et al. (2025) dynamically computes the
weighting coefficient for the preceding token in the shift operation, followed by RMSNorm (Root
Mean Square Normalization) Zhang & Sennrich (2019) of the weighted results. These methods focus
on training a model from scratch, whereas this paper studies how to fine-tune a model better by
shifting tokens.

3 METHOD

3.1 MOTIVATION

Feature Definition. Wang et al. (2025) explores the internal workings of LLMs by treating the
sequence of hidden states as a Chain-of-Embedding (CoE), representing the model’s latent thought
process. Their analysis reveals distinct patterns in these CoE features when LLMs produced correct
versus incorrect answers. Motivated by this work, we pose the question: Can the internal hidden
states of a model be leveraged to detect instances of Cyclical Reasoning?

Instead of averaging token representations per layer and forming an embedding trajectory from these
layer-wise averages (Wang et al., 2025; 2024), we utilize the sequence of token representations
from each layer as our embedding trajectory. The embedding trajectory at layer l, denoted as X l, is
formalized as follows:

X l = xl
0 −→ xl

1 −→ ... −→ xl
I−1 −→ xl

I (1)

where xl
i denotes the hidden state of the i-th token after attention in the l-th layer, I is the length of

the generated sequence. We measure the LLMs’ thinking process by using the relative change in
hidden states at each time step.

s(xl
i−1,x

l
i) =

∥xl
i − xl

i−1∥2
∥xl

i−1∥2
(2)
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Then we define the overall relative change of the embedding trajectories, denoted as M(X), as
the average of the relative changes between every adjacent tokens across all layers. This can be
formalized as follows:

M(X) =
1

L× I

L∑
l=1

I∑
i=1

s(xl
i−1,x

l
i) (3)

where L is the total number of layers in the LLM, I is the length of the generated sequence.

LoRA (r=64), Exceed: 11.7% Full, Exceed: 8.0%

Figure 2: Distribution of the M(X) for Exceed
and Normal samples, comparing LoRA and Full
fine-tuned models. The dashed red line represents
the mean value.

Analysis Setup and Findings. We train two
models on a 20k long CoT using LoRA and
full fine-tuning, respectively. We evaluate these
models on a randomly selected set of 100
questions from the MATH500 Hendrycks et al.
(2021), with a sampling of eight times, and ex-
clude questions where all eight generated re-
sponses exceed the maximum length limit. For
the remaining length-exceeded responses, we
truncate them to the average length of the normal
(non-length-exceeded) responses and remove
all repeated text segments. Finally, we calcu-
late the M(X) values for both the normal and
the length-exceeded responses. The results are
shown in Figure 2, we can find that the "Exceed"
samples tend to exhibit a lower mean relative
change compared to the "Normal" samples in
both models, as indicated by the lower median and mean (dashed red line) of the "Exceed" box plots.
This suggests that when the models engage in Cyclical Reasoning (section 4.2 elaborates on the
rationale for using the Length Exceeded Percentage to measure Cyclical Reasoning), the relative
change in their adjacent hidden states tends to be less pronounced on average. Furthermore, this paper
finds that the full fine-tuned model exhibits a lower proportion of Exceed samples, and concurrently,
the M(X) value across all its generated samples is also higher.

Based on these findings, a natural research question arises: Can we mitigate models’ Cyclical
Reasoning issues and consequently enhance its performance by dynamically amplifying repre-
sentation differences between adjacent tokens?

3.2 SHIFT FEEDFORWARD NETWORK

Motivated by the aforementioned considerations, we propose Shift Feedforward Network (Shift-FFN),
an architecture that introduces an Editor module before the FFN. This module uses the preceding
token’s representation to edit the current token’s representation, thereby dynamically amplifying the
representation differences between adjacent tokens. The mathematical formulation of this process is
as follows:

Shift-FFN(xi) = FFN(xi + fs(xi−1,xi)) (4)

where FFN is the original feedforward layer, fx(·) represents shift function, which is defined as:

fs(xi−1,xi) = Wc [ReLU(Wb [xi−1;xi])⊙ (Wa xi−1)] (5)

where xi ∈ Rd is the representation of token i after attention, [; ] denotes concatenate operation,
Wb ∈ Rr×2d, Wa ∈ Rr×d and Wc ∈ Rd×r are parameter matrices in the Editor module, and they
are trained from scratch. To maintain a manageable increase in the number of parameters, we set
the dimensionality r to be significantly smaller than d (r ≪ d), In LoRA fine-tuning, the value of r
corresponds to the rank of the LoRA. To ensure training stability in the initial stages, we initialize
the matrix Wc as an all-zero matrix. This initialization causes the Shift-FFN to degenerate into the
original FFN during the early phase of training.

3.3 ANALYSIS

From simplicity, we use the standard FFN(xi) = Wdown[σ(Wup xi)] and simplify fs(xi−1,xi) as
follows.

4
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Attention

2 × Feedforward
Layers

Editor

⊙

Hidden Representation

Concat Operation

Editor

Attention

2 × Feedforward
Layers

Editor

Attention

2 × Feedforward
Layers

Editor

Figure 3: The architecture of Shift-FFN, the left side describes the process of shifting token, the right
side demonstrates the detail of the Editor module. σ is the ReLU function. ⊙ and ⊕ are element-wise
multiplication and addition, respectively.

fs(xi−1,xi) = Wc Wb xi−1 = Ws xi−1 = x̂i−1 (6)

From the Perspective of Self Attention. As defined previously, the output of the Shift-FFN can be
expressed as:

hl+1
i = Wdown[σ(Wup(xi + x̂i−1)] = hi + ĥi (7)

where hi is the original FFN output, ĥi = Wdown[σ(Wupx̂i−1)] is introduced by Shift-FFN addi-
tionally. Then, the attention score αi,j between token i and j at layer l + 1 is calculated as follows
(residual connections and normalization are omitted):

αi,j = [Wq(hi + ĥi)]
T [Wk(hj + ĥj)] (8)

= α′
i,j + (Wqhi)

T (Wkĥj) + (Wqĥi)
T (Wkhj) + (Wqĥi)

T (Wkĥj)

where Wq and Wk denote the Query and Key parameter matrices at layer l + 1, α′
i,j =

(Wqhi)
T (Wkhj) is the original attention score, and we have

(Wqhi)
T (Wkĥj) = hT

i W
T
q WkWdown[σ(Wupx̂j−1)] (9)

Let Ai = hT
i W

T
q WkWdown. Finally, neglecting the higher-order infinitesimal terms, and substituting

x̂i−1 = Ws xi−1, we can express αij as:

αi,j = α′
i,j +Ai[σ(Wup Ws xj−1)] +Aj [σ(Wup Ws xi−1)] (10)

As evident from the derived formulas, the Shift-FFN effectively augments the original attention score
with a correction term that is contingent on the (i− 1)-th and (j − 1)-th tokens.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Training Data. To compare the models’ performance under short CoT and long CoT conditions,
we specifically select the mathematics portion of the OpenThoughts dataset Team (2025), which

5
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Table 1: Performance of models on mathematical reasoning benchmarks with different training setups.
Each cell presents the Accuracy followed by the Length Exceeded Percentage PE (in parentheses)
which indicates the percentage of generated responses exceeding the 32k token limit. The "Param"
column indicates the number of trainable parameters. The best performance within each LoRA
configuration is highlighted in bold.

Method Param AIME24 AMC23 MATH500 Olympiad Avg

Qwen2.5-3B

Full 3.09B (100%) 3.1 (80.3) 29.4 (53.2) 51.2 (34.8) 20.2 (55.5) 26.0 (55.9)

LoRA (r=128) 0.24B (7.8%) 4.3 (62.3) 30.6 (40.1) 54.4 (25.1) 21.9 (41.7) 27.8 (42.3)

LoRA+Shift-FFN (r=128) 0.28B (9.1%) 4.6 (57.1) 31.5 (34.7) 55.0 (21.2) 23.7 (37.0) 28.7 (37.5)

LoRA (r=256) 0.48B (15.6%) 5.4 (49.4) 32.7 (31.6) 57.6 (17.2) 24.1 (31.3) 30.0 (32.3)

LoRA+Shift-FFN (r=256) 0.55B (18.2%) 7.0 (43.2) 35.2 (24.9) 60.2 (13.9) 25.6 (28.2) 32.0 (27.5)

Llama3.1-8B

Full 8.03B (100%) 6.7 (23.3) 41.4 (13.5) 63.2 (5.3) 30.7 (12.6) 35.5 (13.7)

LoRA (r=128) 0.34B (4.2%) 4.6 (35.7) 34.0 (22.1) 58.2 (9.3) 26.0 (22.2) 30.7 (22.4)

LoRA+Shift-FFN (r=128) 0.40B (5.0%) 3.6 (34.5) 34.3 (17.6) 60.2 (9.0) 27.0 (18.3) 31.3 (19.8)

LoRA (r=256) 0.67B (8.4%) 5.4 (25.9) 37.8 (15.1) 62.5 (6.6) 29.3 (15.7) 33.7 (15.8)

LoRA+Shift-FFN (r=256) 0.81B (10.0%) 5.1 (22.8) 38.0 (12.1) 63.2 (5.1) 29.4 (13.7) 34.0 (13.4)

Qwen2.5-7B

Full 7.62B (100%) 20.0 (42.3) 58.1 (17.3) 78.7 (8.0) 42.1 (23.6) 49.3 (24.7)

LoRA (r=128) 0.32B (4.2%) 17.8 (42.5) 54.7 (20.2) 76.1 (8.2) 39.9 (24.1) 47.1 (23.7)

LoRA+Shift-FFN (r=128) 0.37B (4.9%) 18.2 (35.6) 55.6 (15.3) 78.1 (7.0) 41.0 (19.1) 48.2 (19.2)

LoRA (r=256) 0.64B (8.4%) 21.0 (28.6) 58.5 (10.9) 79.1 (5.2) 43.0 (15.2) 50.4 (15.0)

LoRA+Shift-FFN (r=256) 0.75B (9.8%) 21.8 (23.5) 59.1 (9.9) 79.9 (4.1) 43.8 (13.1) 51.2 (12.7)

collects long CoT from DeepSeek-R1 DeepSeek-AI et al. (2025). Our short CoT data is from
the Numina-Math dataset LI et al. (2024). Additionally, we exclude OpenThoughts samples with
response lengths exceeding 16k to prevent our models from learning incomplete reasoning processes.
After this filtering, we retain a total of 89k training examples, from which we randomly sample 20k
for our main experiment.

Training Setup. We utilize the LlamaFactory framework Zheng et al. (2024) and LoRA Hu et al.
(2021) to fine-tune the Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct and Llama3.2-8B-Instruct with
a batch size of 96 and a learning rate of 1e-4, employing a warm-up ratio of 0.1 and a linear
learning rate decay schedule, similar to Li et al. (2025). For full fine-tuning, we maintain the same
hyperparameters except for a learning rate of 1e-5. The max sequence length is set to 16k for all
training. All experiments are conducted on 8 × 80G L20 GPUs.

Evaluation Setup. We evaluate our models on four mathematical reasoning datasets: AIME24,
AMC23, MATH500 Hendrycks et al. (2021), and OlympiadBench He et al. (2024). We use a sampling
temperature of 0.6 and set the maximum generation length to 32k tokens. To mitigate the impact of
randomness in the results, we average over 32 runs for AIME and AMC, and 4 runs for the other
tasks.

4.2 MAIN RESULTS

Table 1 presents the results of full fine-tuning and LoRA fine-tuning (with and without Shift-FFN)
for various models. The results reveal several findings as follows:

Long CoT Learning Requires Higher LoRA Rank. We find that in long CoT scenarios, achieving
performance with LoRA comparable to full fine-tuning necessitates a higher LoRA rank, such as 256,
in contrast to simpler tasks like common-sense reasoning where a much lower rank (e.g., 32) often
suffices to approximate full fine-tuning performance.

Cyclical Reasoning. We quantify the Cyclical Reasoning by using the Length Exceeded Percentage
(denoted as PE) – the proportion of generated samples exceeding the 32k token limit. Given the
maximum training sequence length of 16k, a 32k limit during inference is ample for generating
correct answers; therefore, exceeding this limit is considered indicative of the model getting stuck
in a loop. We further analyze the proportion of repetitive output within these length-exceeded
samples, where the model repeatedly generates the same segment of text until the maximum limit

6
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Table 2: Comparison of models’ performance w.t./w.o. Shift-FFN under comparable trainable
parameters. Each cell presents the Accuracy followed by the Length Exceeded Percentage PE (in
parentheses) which indicates the percentage of generated responses exceeding the 32k token limit.

Method Param AIME24 AMC23 MATH500 Olympiad Avg

LoRA (r=128) 0.32B (4.2%) 17.8 (42.5) 54.7 (20.2) 76.1 (8.2) 39.9 (24.1) 47.1 (23.7)

LoRA (r=148) 0.37B (4.9%) 17.5 (40.9) 55.3 (18.2) 76.8 (8.6) 40.6 (22.1) 47.5 (22.4)

LoRA+Shift-FFN (r=128) 0.37B (4.9%) 18.2 (35.6) 55.6 (15.3) 78.1 (7.0) 41.0 (19.1) 48.2 (19.2)

LoRA (r=256) 0.64B (8.4%) 21.0 (28.6) 58.5 (10.9) 79.1 (5.2) 43.0 (15.2) 50.4 (15.0)

LoRA (r=296) 0.75B (9.8%) 21.2 (28.4) 58.5 (13.6) 79.3 (6.0) 43.2 (15.5) 50.6 (15.9)

LoRA+Shift-FFN (r=256) 0.75B (9.8%) 21.8 (23.5) 59.1 (9.9) 79.9 (4.1) 43.8 (13.1) 51.2 (12.7)
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Figure 4: Proportion of length-exceeded and rep-
etition samples in different models.
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Figure 5: Pass@K of models with different train-
ing setups on AIME24 and OlympiadBench.

is reached. The results of this analysis are presented in Figure 4. We find that over 80% of the
length-exceeded samples exhibit exact textual repetition. While the remaining 20% do not show
identical text repetition, they still demonstrate patterns of Cyclical Reasoning, such as repeatedly
verifying the same step or iterating through the same few inference steps, concrete examples can be
found in Appendix C. Therefore, utilizing the PE as a metric for Cyclical Reasoning is a justifiable
approach. Using this metric, we find that models trained on long CoT data tend to exhibit Cyclical
Reasoning. Even the full fine-tuned Qwen2.5-7B-Instruct shows a 24.7% Cyclical Reasoning ratio.
When using LoRA fine-tuning, this ratio decreases as the rank increases. Interestingly, we find
that LoRA fine-tuned Qwen2.5-7B-Instruct with a rank of 256 significantly reduces the Cyclical
Reasoning ratio by 12% compared to full fine-tuning.

Effectiveness of Shift-FFN. It can be found that the integration of Shift-FFN consistently yields
performance improvements across all settings. Specifically, the Qwen2.5-7B-Instruct model trained
with LoRA at rank 256 already achieves an average accuracy 0.9% higher than the full fine-tuned
model. Upon introducing Shift-FFN, the model’s average performance further improves by 0.8%
to 51.2%, surpassing the full fine-tuned baseline and the original LoRA model across all datasets.
Furthermore, Shift-FFN not only enhances performance but also significantly reduces Cyclical
Reasoning, which is reflected by the decreasing of PE from 15.0% to 12.7%.

4.3 COMPARED TO LORA WITH THE SAME NUMBER OF PARAMETERS

As Shift-FFN introduces extra parameters, to compare it more fairly with standard LoRA, we increase
LoRA’s rank (e.g., from 256 to 296) in the training of Qwen2.5-7B-Instruct. This makes the total
number of parameters the same as LoRA+Shift-FFN. Table 2 shows the experimental results. It can be
found that compared to simply increasing the rank, introducing Shift-FFN brings a larger improvement
with a similar number of added parameters. Specifically, when the rank is 256, increasing it to 296
only slightly improves the average performance from 50.4% to 50.6% and also increases the PE .
However, introducing Shift-FFN raises it to 51.2% and also further reduces the PE . A possible
explanation is that at a rank of 256, LoRA is nearing its performance limit, so further increasing
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Figure 6: Comparison of Mean Relative Change M(X) and Length Exceeded Percentage PE for
non-length-exceeded samples across models trained with different settings on four datasets.

the rank yields diminishing returns. However, introducing Shift-FFN can further improve the
model’s performance limit from the perspective of representation learning.

To further validate the effectiveness of Shift-FFN, we evaluate the pass@K metric on the AMIE 24
and OlympiadBench datasets. For computational efficiency, we select the first 64 questions from
OlympiadBench and set the maximum generation length to 16k. The results of these experiments are
presented in Figure 5. It demonstrates that incorporating Shift-FFN leads to improvements across all
pass@K metrics. Specifically, on the AIME 24 dataset, pass@256 increases from 70.0% to 76.7%
with the addition of Shift-FFN. A potential reason for this is that Shift-FFN reduces the tendency of
the model to engage in Cyclical Reasoning (PE decreases from 28.4% to 23.5%), thereby enhancing
the model’s exploration efficiency. On OlympiadBench, the PE only decreases by 2.1% with the
integration of Shift-FFN. Consequently, the difference in pass@K is not significant for K ≤ 64. The
performance gap only becomes more apparent as K increases further. Shift-FFN also consistently
achieves the best performance across different sampling temperatures, more details can be found in
Appendix B.

4.4 MEAN RELATIVE CHANGES WITH SHIFT-FFN

To further investigate the relationship between Mean Relative Change M(X) and Length Exceeded
Percentage PE , as well as the impact of Shift-FFN, we analyze these metrics for Qwen2.5-7B-
Instruct with different training settings across the datasets, as shown in Figure 6. We find that as
the LoRA rank increases, the model’s M(X) also increases, while PE decreases correspondingly.
This indicates a negative correlation between M(X) and PE . Specifically, for the AIME24 dataset,
when the rank increases from 64 (light blue point) to 256 (dark blue point), M(X) increases from
80.31% to 80.98%, and PE correspondingly decreases from 60.9% to 30.4%. This suggests that as
the model has more trainable parameters in the LoRA settings, it becomes less prone to generating
Cyclical Reasoning, and the relative changes between its internal adjacent tokens become more
pronounced. The introduction of Shift-FFN consistently achieves the lowest PE and the highest
M(X). For example, on the AIME24 dataset, introducing Shift-FFN increases M(X) from 80.98%
to 81.24%,and also further reduces PE from 30.4% to 25.1%. Furthermore, we find that the higher
the original PE of the model on a dataset, the greater the benefit brought by introducing Shift-FFN.
This indicates that Shift-FFN effectively mitigates the issue of Cyclical Reasoning by enabling a
dynamic amplifying the representation differences between adjacent tokens.

4.5 PERFORMANCE OF SHIFT-FFN WITH VARYING TRAINING DATA SIZES

To evaluate the performance of Shift-FFN with varying training data sizes, we randomly sample
10k, 20k, 40k, and 80k examples from OpenThoughts for training. For each data size, we train three
models: Full fine-tuning, LoRA (r=296), and LoRA+Shift-FFN (r=256). The results are depicted
in Figure 7. We notice that as the training sample size increases, the performance of all models
improves, and the PE decreases. Interestingly, LoRA fine-tuned models consistently outperform
the full fine-tuned model across all data scales and are less prone to generating length-exceeded
outputs, particularly with smaller training datasets. Specifically, with only 10k training samples,
the full fine-tuned model shows a 38.0% of PE , while the LoRA fine-tuned model exhibits only
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Figure 7: The Accuracy (left) and the Length Exceeded Percentage PE (right) of different fine-tuned
models under varying training sample sizes. Accuracy and Length Exceeded Percentage are the
average values obtained on four datasets.

31.9%. This gap narrows as the training data increases to 80k. Furthermore, incorporating Shift-FFN
consistently enhances the performance of the original LoRA model across all data sizes. Even with
80k training samples, the LoRA+Shift-FFN model achieves an average accuracy 0.6% higher than
the full fine-tuned model and demonstrates superior performance on all datasets. This experiment
further illustrates the scalability of Shift-FFN.

4.6 ABLATION STUDIES

Table 3: Ablation Studies on Qwen2.5-7B-Instruct.

Accuracy (↑) Exceed (↓)
LoRA 50.4 15.0
LoRA+Shift-FFN 51.2 12.7
- w/o xi−1 50.2 14.2
- w/o xi in gate 49.8 13.8
- w/o gate 49.3 14.3
- w/o MLP 50.3 17.0

Table 3 presents the results of ablation stud-
ies, where we evaluate four configurations: (1)
w/o xi−1, which removes the preceding to-
ken’s participation in the Editor module, fs =
Wc [ReLU(Wb xi) ⊙ (Wa xi)]; (2) w/o xi in
gate, which only use the xi−1 in the gat-
ing mechanism, fs = Wc [ReLU(Wb xi−1) ⊙
(Wa xi−1)]; (3) w/o gate, which disables the
gating mechanism, fs = Wc (Wa xi−1); (4)
w/o MLP, which directly performs a linear com-
bination of adjacent tokens, fs = tanh(wTxi−1)xi−1. The experimental results demonstrate that
excluding the preceding token leads to performance nearly identical to standard LoRA, indicating
that traditional representation learning offers negligible improvement under the LoRA. Furthermore,
we find that the gate mechanism that considering both xi−1 and xi is crucial in the Editor module.
Without it, performance is even lower than standard LoRA. Thus, dynamically editing representations
based on adjacent tokens is vital. It can also be found that performing a linear combination of adjacent
tokens without applying MLP to the preceding token doesn’t bring any benefit.

5 CONCLUSION

This work finds that fine-tuning LLMs with full parameters or LoRA with a low rank on long CoT
data often leads to Cyclical Reasoning, where models repeatedly reiterate previous inference steps
until the maximum length limit. Investigating the models’ internal states, this paper finds that Cyclical
Reasoning is more likely when the representation differences between adjacent tokens are small.
To address this, we propose Shift-FFN, an architecture that introduces an Editor module before the
FFN. This module uses the preceding token’s representation to edit the current token’s representation,
thereby dynamically amplifying the representation differences between adjacent tokens. Experimental
results demonstrate that LoRA combined with Shift-FFN achieves higher accuracy and a lower rate
of Cyclical Reasoning across various data sizes compared to full fine-tuning and standard LoRA.
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6 ETHICS STATEMENT

Our approach does not introduce ethical concerns. The datasets and models we used are public, and
there are no privacy issues.

7 REPRODUCIBILITY STATEMENT

In this work, we use open-source LLMs and publicly available datasets to conduct our experiments.
To ensure reproducibility, we provide the implementation details in the Section 3 and the full code in
https://anonymous.4open.science/r/Shift-FFN
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Figure 8: The Accuracy (left) and the Length Exceeded Percentage (right) of different fine-tuned
models for under varying sampling temperatures on AIME24.
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Figure 9: The Pass@K of different fine-tuned models for under varying sampling temperatures on
AIME24.

A FEEDFORWARD NETWORK

A Transformer language model Vaswani et al. (2017) consists of layers of multi-head self-attention
(MHSA) and position-wise feedforward networks (FFN). Each feedforward layer operates indepen-
dently on individual position vectors in the sequence. The standard FFN can be expressed as follows
(bias terms are omitted):

FFN(xi) = Wdown[σ(Wup xi)] (11)

where Wdown ∈ Rdm×d and Wup ∈ Rd×dm are parameter matrices, xi ∈ Rd is the representation of
token i after MHSA and σ represents a nonlinear activation function.

An alternative to the standard FFN is the Gated Linear Unit Shazeer (2020) variant, which has shown
improved performance in some scenarios. The GLU-FFN is defined as (bias terms are omitted):

FFNGLU(xi) = Wdown(σ(Wgate xi)⊙ (Wup xi)) (12)

where ⊙ denotes element-wise multiplication, and Wgate,Wup ∈ Rd×dm , Wdown ∈ Rdm×d are
parameter matrices. This gating mechanism allows for more flexible information flow and has better
performance Shazeer (2020). Contemporary models such as LLaMA Grattafiori et al. (2024) and
Qwen Yang et al. (2024) predominantly employ GLU-FFN. Our Shift-FFN can be applied to any
type of FFN.

B PERFORMANCE UNDER VARYING SAMPLING TEMPERATURES

We also further investigate the impact of sampling temperature on model performance and the rate of
Cyclical Reasoning. Specifically, we examine the performance of Qwen2.5-7B-Instruct, fine-tuned
with different strategies, at sampling temperatures of 0.2, 0.4, 0.6, 0.8, and 1.0. The maximum
generation length is set to 16k for computational efficiency. The experimental results are shown
in Figure 8. We observe that at lower sampling temperatures, the models exhibit not only lower
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accuracy but also a higher Length Exceeded Percentage, indicating a greater tendency for Cyclical
Reasoning. The overall performance of the models appears optimal within the sampling temperature
range of 0.6 to 0.8; further increases beyond this range tend to result in a decline in performance.
Notably, LoRA+Shift-FFN (r=256) consistently achieves the highest accuracy across all tested
sampling temperatures. Based on Figure 9, we also investigate the Pass@K performance of the
models at different sampling temperatures. The trend in Pass@K values aligns with the average
accuracy observed earlier, with peak performance generally occurring at a temperature of 0.6. In the
temperature range of 0.2 to 0.6, LoRA+Shift-FFN (r=256) exhibits a clear advantage in Pass@K.
However, this advantage diminishes at higher sampling temperatures (0.8 and 1.0). A potential
explanation for this reduction is that the difference in Length Exceeded Percentage between the
models decreases at these higher temperatures, leading to similar exploration efficiency. Nevertheless,
at the optimal sampling temperature of 0.6, LoRA+Shift-FFN (r=256) still demonstrates a significant
improvement in Pass@K, validating the effectiveness of our proposed method.

C Cyclical Reasoning EXAMPLES

Table 4 and 5 show examples of Cyclical Reasoning in full fine-tuned Qwen2.5-7B-Instruct on
AIME24 and MATH500, alongside correct answers generated by the model with Shift-FFN. It can
be found that these problems can actually be solved after generating around 10k tokens, but if the
model falls into Cyclical Reasoning, it will keep generating tokens until it reaches the 32k length
limit, which not only reduces the average accuracy but also seriously affects the reasoning efficiency.
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Table 4: Generation comparison of Qwen2.5-7B-Instruct under full and LoRA fine-tuning, where the
full fine-tuned model shows Cyclical Reasoning.

Instruction
(AIME24)

Find the largest possible real part of (75+117i)z+ 96+144i
z where z is a complex

number with |z| = 4.

Full <|begin_of_thought|>\n\nOkay, so I need to find the largest possible real part of
the expression \[(75+117i)z + \frac96+144iz\] where \( z \) is a complex number
with \( |z| = 4 \). Hmm, let’s start by understanding what the problem is asking.
...
Therefore, the correct answer is 540.\n\nBut according to the Lagrange
multiplier method, it’s 518.4. Therefore, there’s a contradiction.\n\nThis
suggests that the Cauchy-Schwarz approach is incorrect.
...
Therefore, the correct answer is 540.\n\nBut according to the Lagrange
multiplier method, it’s 518.4. Therefore, there’s a contradiction.\n\nThis
suggests that the Cauchy-Schwarz approach is incorrect.
...
Therefore, the correct answer is 540.\n\nBut according

Generation Length: 32768
Result: Wrong (Reaching the maximum length limit)

LoRA+Shift-
FFN
(rank=256)

<|begin_of_thought|>|\n\nOkay, so I need to find the largest possible real part
of the expression (75 + 117i)z + (96 + 144i)/z, where z is a complex number
with |z| = 4. Hmm, let’s see. First, I remember that when dealing with complex
numbers,
...
Expanding and combining like terms, this paper finds the real part of the expres-
sion:\n\n\[\n324\cos\theta - 432\sin\theta\n\]\n\nThis real part can be written in
the form \(C\cos(\theta + \phi)\), where \(C = \sqrt{3242̂ + (-432)2̂} = 540\). The
maximum value of this expression is therefore \(540\).\n\nTo verify, we check
specific values of \(\theta\) that align the coefficients with the vector \((324,
-432)\). This confirms that the maximum real part is indeed \(540\).\n\nThus, the
largest possible real part is \(\boxed{540}\).\n\n<|end_of_solution|>

Generation Length: 9902
Result: Correct
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Table 5: Generation comparison of Qwen2.5-7B-Instruct under full and LoRA fine-tuning, where the
full fine-tuned model shows Cyclical Reasoning.

Instruction
(MATH500)

The expression 2 · 3 · 4 · 5 + 1 is equal to 121, since multiplication is carried
out before addition. However, we can obtain values other than 121 for this
expression if we are allowed to change it by inserting parentheses. For example,
we can obtain 144 by writing (2 · (3 · 4)) · (5 + 1) = 144.In total, how many
values can be obtained from the expression 2·3·4·5+1 by inserting parentheses?
(Note that rearranging terms is not allowed, only inserting parentheses).

Full <|begin_of_thought|>\n\nOkay, so I need to figure out how many different
values can be obtained from the expression 2·3·4·5 + 1 by inserting parentheses.
The key here is that changing the grouping with parentheses can alter the order
of operations, which might lead to different results. Let me start by recalling the
original expression and how parentheses can affect the calculation.
...
Wait, no, they are the same. Wait, 2·(3·4·5) = 2·60 = 120, same as (2·3)·4·5
= 6·20 = 120. So different groupings can lead to the same product.\n\nBut
inserting parentheses around different parts can lead to different products. For
example, 2·(3·4·5) = 120, but (2·3)·(4·5) = 120, but 2·(3·4·5) is different.
Wait, no, they are the same. Wait, 2·(3·4·5) = 2·60 = 120, same as (2·3)·4·5
= 6·20 = 120. So different groupings can lead to the same product.\n\nBut
inserting parentheses around different parts can lead to different products. For
example, 2·(3·4·5) = 120, but (2·3)·(4·5) = 120, but 2·(3·4·5) is different. Wait,
no, they are the same. Wait, 2

Generation Length: 32768
Result: Wrong (Reaching the maximum length limit)

LoRA+Shift-
FFN
(rank=256)

<|begin_of_thought|>|\n\nOkay, so I need to figure out how many different
values can be obtained from the expression 2×3×4×5 +1 by inserting parentheses.
The problem says that rearranging terms isn’t allowed, so we have to keep the
original order but group the operations differently with parentheses.
...
*7. (2·3·4·5) +1**: \n \[\n 120 + 1 = 121.\n \]\n\n - **8. (2·(3·(4·5))) +1**: \n
\[\n 2 \cdot (120) + 1 = 241.\n \]\n\n - **9. (2·3·4) + (5·1)**: \n \[\n 24 + 5 =
29.\n \]\n\n - **10. (2·3)·(4·(5+1))**: \n \[\n 6 \cdot (4 \cdot 6) = 6 \cdot 24
= 144.\n \]\n\n - **11. (2·(3·4))·(5+1)**: \n \[\n 24 \cdot 6 = 144.\n \]\n\n -
**12. 2·((3·4)·(5+1))**: \n \[\n 2 \cdot (12 \cdot 6) = 2 \cdot 72 = 144.\n \]\n\n3.
**Distinct Values**: \n The distinct results from the valid parenthesizations are:
\n - \(121\), \n - \(241\), \n - \(29\), \n - \(144\). \n\nThus, the total number of
distinct values obtainable is \(\boxed{4}\).\n\n<|end_of_solution|>

Generation Length: 11053
Result: Correct
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