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ABSTRACT

We propose a post-hoc adaptive conformal anomaly detection method for mon-
itoring time series that leverages predictions from pre-trained foundation mod-
els without requiring additional fine-tuning. Our method yields an interpretable
anomaly score directly interpretable as a false alarm rate (p-value), facilitating
transparent and actionable decision-making. It employs weighted quantile confor-
mal prediction bounds and adaptively learns optimal weighting parameters from
past predictions, enabling calibration under distribution shifts and stable false
alarm control, while preserving out-of-sample guarantees. As a model-agnostic
solution, it integrates seamlessly with foundation models and supports rapid de-
ployment in resource-constrained environments. This approach addresses key
industrial challenges such as limited data availability, lack of training expertise,
and the need for immediate inference, while taking advantage of the growing ac-
cessibility of time series foundation models. Experiments on both synthetic and
real-world datasets show that the proposed approach delivers strong performance,
combining simplicity, interpretability, robustness, and adaptivity.

1 INTRODUCTION

A common challenge in industrial applications such as predictive maintenance and signal monitoring
is the scarcity of sufficient quality data and infrastructure to train robust models Cook et al. (2019);
Ajami & Daneshvar (2012); Kanawaday & Sane (2017); Beghi et al. (2016); Shah & Tiwari (2018);
Moghaddass & Wang (2017). This limitation can hinder the ability to make accurate and reliable
predictions, which are essential to detect anomalies and ensure operational efficiency. Foundation
models, particularly in the time series domain Liang et al. (2024), offer a promising solution. These
models excel at leveraging prior knowledge and historical observations, enabling them to provide
good enough initial estimates of expected values and statistical characteristics of monitored signals,
even in data-scarce environments. This capability is invaluable for industries aiming to enhance
their monitoring systems without the need for extensive datasets.

In the context of time series anomaly detection, an adaptive approach is crucial for monitoring and
maintaining the reliability of signals. Anomalies, or deviations from expected behavior, can manifest
in different forms, such as point anomalies, where an individual observation significantly deviates
from normal patterns, and contextual anomalies, where a value is only considered anomalous within
a specific temporal context Boniol et al. (2024). Detecting these effectively requires models that
capture underlying temporal dependencies and adapt to non-stationary data distributions.

A prominent class of anomaly detection methods relies on predictive modeling, where a forecast-
ing model learns normal time series behavior, and deviations between predicted and actual values
could indicate anomalies in operations or shifts in operational modes that require expert attention
Basseville (1993); Choudhary et al. (2017); Gama et al. (2014); Saurav et al. (2018). However,
many existing approaches assume access to large amounts of training data, making them impractical
in settings where only a few samples are initially available. This motivates the use of pretrained
Time Series Foundation Models (TSFMs) Rasul et al. (2023; 2024); Ansari et al. (2024); Liang
et al. (2024), which have been trained on large-scale datasets and can generalize to new time series
with minimal adaptation. Furthermore, existing anomaly detection systems often lack interpretabil-
ity, relying on thresholding mechanisms that assume a fixed data distribution Schmidl et al. (2022);
Paparrizos et al. (2022b); Goswami et al. (2022), which limits their adaptability to evolving time
series data. In this setting, a robust system must balance sensitivity and adaptability, minimizing
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false alarms while effectively detecting significant behavioral transitions. This ensures timely iden-
tification of suspicious patterns without overwhelming experts with noise, fostering a more efficient
and reliable monitoring framework Cook et al. (2019).

To address these limitations, we propose a conformal-based anomaly detection method that inte-
grates the predictions of pretrained TSFMs with conformal prediction techniques Vovk et al. (2005);
Angelopoulos & Bates (2021) to produce an interpretable, adaptive anomaly score directly linked
to a desired alarm rate. Conformal methods offer model-agnostic and distribution-free uncertainty
quantification with finite-sample guarantees, making them highly suitable for real-world anomaly
detection. However, standard conformal approaches rely on the assumption of exchangeability,
which is often violated in time series due to temporal dependencies. Furthermore, existing con-
formal methods for anomaly detection primarily focus on thresholding arbitrary anomaly scores
derived from non-anomalous data while assuming exchangeability Angelopoulos & Bates (2021);
Guan (2019); Bates et al. (2023), limiting their applicability in dynamic, non-stationary settings.

Main Contributions We propose W1-ACAS, a post-hoc adaptive conformal anomaly detection
framework that leverages predictions from pretrained forecasters (e.g., TSFMs) to monitor signals
without requiring fine-tuning. This is particularly valuable in industrial settings, where users of-
ten lack sufficient data, data-cleaning pipelines, or specialized expertise Cook et al. (2019). Our
approach provides a practical solution for immediate anomaly monitoring. Figure 1 illustrates the
method: (a) anomaly scores are derived as conformal p-values from forecaster errors across multiple
horizons and aggregated into a single score; (b) anomalies are flagged when adaptive p-values fall
below a threshold on real signals; and (c) the learned adaptive weights emphasize past errors with
similar distributions, capturing recurring patterns such as periodicity, thereby improving detection
while offering direct control over the alarm rate. Our framework offers the following properties:

• Interpretability: The anomaly score corresponds directly to an alarm rate (p-value), pro-
viding a transparent and probabilistic basis for decisions.

• Distribution-Agnostic: Built on quantile conformal prediction, the method is robust to
heavy-tailed and complex error distributions.

• Adaptivity: By weighting past nonconformity scores via the Wasserstein distance, the
framework adapts online to distribution shifts, reducing false alarms while preserving cali-
bration Barber et al. (2023).

• Post-Hoc and Model-Agnostic: The method applies directly to pretrained TSFMs or any
anomaly score, requiring no retraining while inheriting the guarantees of weighted confor-
mal prediction. Its effectiveness is proved through integration with TSFM forecasters.

2 RELATED WORK

Time Series Anomaly Detection Prediction-based methods detect anomalies by comparing ob-
served values against forecasts (Giannoni et al., 2018; Boniol et al., 2024). Recent TSFMs (Rasul
et al., 2023; 2024; Ansari et al., 2024; Liang et al., 2024) are well suited for online detection in data-
scarce scenarios, offering accurate zero-shot forecasting performance. Recent benchmark studies
(Paparrizos et al., 2022b; Liu & Paparrizos, 2024) show that classical distance- and density-based
methods (Li et al., 2007; Ramaswamy et al., 2000; Aggarwal & Aggarwal, 2017; Paparrizos & Gra-
vano, 2015; 2017; Boniol et al., 2021) often outperform more complex models, but they typically
require access to the full dataset (non-causal), lack robustness across temporal patterns, and are un-
suitable for streaming settings. Moreover, many anomaly scores lack clear probabilistic meaning,
and common thresholding strategies rely on full-dataset statistics (Ahmad et al., 2017), limiting real-
time applicability. In practice, anomaly detection systems must not only achieve high accuracy but
also provide interpretable confidence scores while maintaining low false alarm rates (Cook et al.,
2019). Our work addresses these challenges by combining TSFMs with adaptive conformal scoring,
yielding interpretable and calibrated thresholds for reliable streaming anomaly detection.

Conformal Prediction. Conformal prediction provides distribution-free uncertainty quantifica-
tion with finite-sample guarantees (Vovk et al., 2005; Shafer & Vovk, 2008; Angelopoulos & Bates,
2021). A widely used variant, split conformal prediction (SCP) (Papadopoulos et al., 2002), is
post-hoc and model-agnostic, relying only on model predictions and a calibration set. While ef-
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(a) Adaptive Anomaly Score Pipeline.

(b) Anomaly Detection Example.

(c) Non-conformity Scores vs Conformal Weights.

Figure 1: Illustration of our proposed W1-ACAS method. (a) Anomaly scoring pipeline: conformal
p-values are computed across forecast horizons from forecaster errors and aggregated. The mapping
is adapted online by weighting past nonconformity scores, with weights evolving to capture distri-
butional shifts or recurring patterns. (b) Example signal (blue) with ground-truth anomaly labels,
where detected outliers (red dots) occur when adaptive p-values (orange) fall below a threshold. (c)
Converged adaptive weights (orange) over past errors (blue), averaged across horizons, shows how
W1-ACAS captures error patterns with similar distributions, here reflecting its periodic behavior.

fective under exchangeability 1, this assumption is often violated in time series settings, motivating
adaptive extensions. Recent works (Gibbs & Candes, 2021; Zaffran et al., 2022; Gibbs & Candès,
2024) adjust conformal quantiles online to handle distribution shifts, but typically optimize for a
single error rate. Weighted conformal methods offer adaptation by reweighting calibration or past
scores based on some notion of similarity to new observations (Lei & Wasserman, 2014; Guan,
2019; Tibshirani et al., 2019; Sesia & Romano, 2021; Han et al., 2022; Guan, 2023; Ghosh et al.,
2023; Mao et al., 2024) improving local coverage. Bounds for non-exchangeable sequences (Barber
et al., 2023) further suggest emphasizing calibration samples that are nearly exchangeable with the
test point. This motivates our approach, which leverages weighted adaptive conformal quantiles
to remain calibrated across time. Conformal prediction has also been applied to anomaly detec-
tion by thresholding arbitrary anomaly scores under exchangeability (Angelopoulos & Bates, 2021;
Guan, 2019; Bates et al., 2023). However, existing methods do not simultaneously provide inter-
pretable, distribution-agnostic anomaly scores, directly control alarm rates, and adapt robustly to
non-exchangeable time series. Our work addresses this gap by developing a conformal anomaly
detection framework that is both interpretable and resilient to real-world distribution shifts.

3 BACKGROUND

Consider S 2 R a nonconformity score variable that quantifies the performance of a predictive
model h : X ! Ŷ on a joint distribution PX,Y using a nonconformity function e : Y ⇥ Ŷ ! R.
The input X 2 X represents the model’s input space, Y 2 Y denotes the true target variable, and
Ŷ corresponds to the output space of the model, which may include predictions or derived statistics
over Y . The nonconformity function e measures the degree of disagreement between the true target

1informally, a sequence of observations is exchangeable if any permutation of the observations has the same
joint probability
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and the model’s predictions, enabling S = e(Y, h(X)) to capture how atypical a prediction is within
the given distribution. An example of a nonconformity function for a point prediction model is
absolute error e(Y, Ŷ ) = |Y � Ŷ |.

3.1 CONFORMAL OUTLIER DETECTION.

In the context of anomaly detection we characterize the distribution of the non-conformity score
variable S ⇠ PS where S = e(Y, h(X)) 2 R under non-anomalous conditions X,Y ⇠ PX,Y .
2 Observations are flagged as outliers (or anomalies) when the composition of the nonconformity
function e and the predictive model h produces unusually high scores.3 Given a significance level ↵,
which controls the tolerated false positive rate, an anomaly detection function C↵ : X ,Y ! {0, 1}
should satisfy the following property:

P(C↵(Xn+1, Yn+1) = 1)  ↵ (1)

where P is the probability over unseen test data sampled from the non-anomalous distribution,
Xn+1, Yn+1 ⇠ PX,Y . In the standard split-conformal setting, we observe s = S1, . . . , Sn non-
conformity scores derived from non-anomalous data, Si = e(Yi, h(Xi)) with Xi, Yi ⇠ PX,Y .
Non-conformity scores need not be independent of each other; the following conformal anomaly
detection function satisfies, under echangeability conditions4, the false positive bound in equation 1:

C↵(Xn+1, Yn+1) = 1[Sn+1 > q̂↵], q̂↵ = Q1�↵(
Pn

i=1
1

n+1�Si +
1

n+1�1). (2)

Here q̂↵ is the empirical conformal quantile, conservatively adjusted with a point mass at infinity.

Conformal Outlier Detection Beyond Exchangeability To account for heterogeneity in the non-
conformity scores across the input space or potential temporal drift, we consider the generalized
weighted conformal quantile estimate q̂w↵ = Q1�↵(s,w) defined as:

Q1�↵(s,w) = Q1�↵(
nX

i=1

wi

||w||1 + 1
�Si +

1

||w||1 + 1
�1). (3)

where w = {wi 2 [0, 1]}ni=1 is a weighting vector applied to the calibration points. The standard
result in Eq. 2 is recovered when wi = 1, 8i = 1, . . . , n.

This weighted conformal quantile estimate produces a generalization of the conformal anomaly
detector from equation 2. This conformal anomaly detection has false alarm rate guarantees even in
non-exchangeable settings as described in the following proposition 3.1.
Proposition 3.1. (Direct application of Theorem 2 and 3 in Barber et al. (2023) Given ↵ 2 (0, 1),
s = {Si}n+1

i=1 a set of non-conformity scores where Sn+1 corresponds to the test point, and a vector
of weights w = {wi 2 [0, 1]}ni=1 for the previous n observations the detector

An+1 = C↵,w(Xn+1, Yn+1) = 1[Sn+1 > q̂w
↵] (4)

based on the weighted conformal quantile estimate in Eq.3 satisfies the false alarm rate guarantees

P(An+1 = 1)  ↵+
Pn

i=1
wi

||w||1+1dTV (s, si)
� ↵+

Pn
i=1

wi
||w||1+1dTV (s, si) + 1

||w||1+1 .
(5)

Here dTV (s, si) is the distance in total variation between the sequence s (n previously observed
point and the test point n + 1) and si which denotes the sequence of non-conformity scores after
swapping the test point n + 1 with the i-th previously observation. The lower bound is valid under
the assumption that the non-conformity scores take equal values with probability 0.

Intuitively, Proposition 3.1 indicates that one would like to assign higher weights to previous obser-
vations that are, pairwise, most exchangeable with the test sample (i.e., P (S1, . . . , Si, . . . , Sn+1) '
P (S1, . . . , Sn+1, . . . , Si), and lower weights otherwise. Additionally, the lower bound encourages

2Although X and Y are treated as separate spaces, they may overlap, as in reconstruction-error-based scores
where Y = X .

3Unusually low scores can be handled similarly, nonconformity scores need not be positive
4The sequence S1, . . . , Sn+1 is exchangeable if P (S1, . . . , Sn+1) = P (S�(1), . . . , S�(n+1)) for any per-

mutation �
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the maximization of ||w||1 and therefore keeping the weights as close to one as possible. One
could decide w if given access to prior knowledge about the values or reasonable upper bounds of
dTV (s, si). In the context of time series, previous works such as Barber et al. (2023) have set w to
exponentially decay with time (wi = �n�i); in non-time-series settings, other works such as (Lei &
Wasserman, 2014; Guan, 2019; Sesia & Romano, 2021; Han et al., 2022; Guan, 2023; Ghosh et al.,
2023; Mao et al., 2024) decide the weights based on criteria such as distance in covariate space, or
optimize them to guarantee a particular false positive rate coverage ↵, (Han et al., 2022; Amoukou
& Brunel, 2023). Next, we present our adaptive conformal score method, which learns w with the
objective of providing scores that are calibrated for every feasible false alarm across time.

4 ADAPTIVE CONFORMAL ANOMALY SCORE

The conformal outlier detection framework provides a principled way to define a binary anomaly
decision variable based on a preselected ↵ with generalization guarantees. However, the underlying
nonconformity score S may not itself be an interpretable indicator of anomaly, particularly in se-
quential settings where its distribution may drift over time. To address this, we aim to learn an adap-
tive mapping that assigns each score an approximate probability of observing a more extreme value
under prior (ideally normal) conditions, yielding a distribution-agnostic p-value estimate. Formally,
we consider a time series setting with a sequence of nonconformity scores S1, . . . , St. In prediction-
based anomaly detection, these are derived from a forecasting model h : Rnc⇥nf ! Yd, which maps
a context of length nc with nf features to a d-step-ahead forecast Ŷ d

t+1 = hd(Xt�nc�d:t�d+1). The
nonconformity score for sample t+1 at horizon d is Sd

t+1 = |Yt+1� Ŷ d
t+1|. For clarity, we omit the

index d in the following section, since the analysis applies independently to each prediction horizon,
and reintroduce it later when needed.

4.1 CONFORMAL ANOMALY SCORE

We wish to learn a parametric mapping �w : R,Rt ! [0, 1] of the previous nonconformity scores
s = {Si}ti=1 and the test sample St+1; this mapping �w should be such that it can be directly com-
pared to any ↵ threshold to produce an anomaly detector with the same false alarm rate guarantees
as the one described in equations equation 1 and equation 2. Given a set of non-conformity scores
derived from past, ideally non-anomalous data 5, their associated weights ~w = {wi 2 [0, 1]}ti=1,
and a non-conformity score test sample St+1 we propose the following score normalization

�w(St+1) = sup{↵ 2 [0, 1] : St+1  Q1�↵(s,w)}. (6)

Here �w(St+1) can be interpreted as the weighted, conformalized p-value, �w(St+1) = �t+1 (we
omit the explicit dependence on s for clarity). The proposed function automatically maps an anomaly
score S, which can take arbitrary real values, into a normalized score that directly relates to the
desired false alarm rate. The decision of an anomaly detection threshold becomes interpretable for
the end user (it directly translates into the desired false alarm level) and preserves the guarantees of
the original conformal outlier detector as shown in Proposition 4.1.

Proposition 4.1. Given ↵ 2 [0, 1], {Si}t+1
i=1 a set of exchangeable non-conformity scores, and their

weights w = {wi =2 [0, 1]}ti=1 the detector C�w(Xt+1, Yt+1) = 1[�w(St+1) < ↵] based on the
�w(·) mapping defined in equation 6 is equivalent to equation 4 and therefore satisfies the conformal
false alarm rate guarantees presented in equation 5 in Proposition 3.1 . Proof in Appendix B.

4.2 ADAPTIVE WEIGHTED ANOMALY SCORES UNDER NON-EXCHANGEABILITY

Our proposed conformal anomaly score mapping �w(·) in equation 6 depends on the weights w
assigned to the previously observed scores. Therefore, given a new observation St+1 the mapping
can be directly expressed as a function of w, �w(St+1) = �t+1(w) such that

�t+1(w) :=
1+

nP
k=jt+1

w⇡�1(k)

|w|+1 , jt+1 =
Pt

i=1 1[St+1  Si].
(7)

5For sequences containing a known fraction of anomalous samples below some upper bound ↵0, the deriva-
tion follows similarly, but the interpretation of �w(St+1) is ↵ + ↵0 where ↵ is the lower bound of the p-value
of the sample.
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Where ⇡ : [n]! [n] represents a sorted mapping of the previous n nonconformity scores such that
⇡(i) = k 2 [n], 8i 2 [n] where ⇡(i) < ⇡(j) if Si  Sj , 8i 6= j. ⇡�1(k) is the inverse sorting
operation, mapping k to the index of the observation corresponding to the k largest value.

We want our proposed conformal score to be well calibrated across time, meaning P(�w(St+1) 
↵) ⇡ ↵, for all ↵ 2 [0, 1] and t. In lieu of that, we require �w(St+1) to be a conservative estimate
such that P(�w(St+1)  ↵)  ↵. Such calibration ensures that the conformalized scores adapts
effectively to distributional shifts over time. The ideal condition under non-anomalous distributions
for St+1, P(�w(St+1)  ↵) = ↵, 8↵ 2 [0, 1] is achieved when �w(St+1) ⇠ U[0,1]. We also note that
�w(St+1) cannot produce non-trivial quantile estimates below its effective sample size ↵c =

1
|w|+1 .

We therefore seek to learn a set of feasible weights w satisfying these conditions by minimizing
the 1-Wasserstein distance (W1) between the cumulative density function (CDF) of the proposed
score variable F�t+1(w), where �t+1(w) = �w(St+1) as in equation 7, and the CDF of the uniform
distribution FU , subject to an effective sample size constraint determined by our critical false alarm
rate ↵c. Namely

minw W1(F�t+1(w), FU ) s.t. |w| > 1
↵c
� 1, wi 2 [0, 1], 8i 2 [n]. (8)

Here ↵c is the user-defined critical false alarm rate. From the dual definition of W1 we have

W1(F�t+1(w), FU ) =
R 1
0 |F�1

�t+1(w)(p)� F�1
U (p)|dp

=
R 1
0 |F�t+1(w)(↵)� FU (↵)|d↵

= E↵⇠U[0,1]
|P(�t+1(w)  ↵)� ↵|,

(9)

which indicates that minimizing W1(F�t+1(w), FU ) is equivalent to minimizing the calibration gap
|P(�t+1(w)  ↵)� ↵| uniformly across all false alarm rates. We next approximate the objective in
equation 8 using finite samples and give the corresponding algorithm.

5 OPTIMIZATION

In practice, we need to approximate F�t+1(w)(↵) in equation 8 with a finite number of samples nb,
which results in the following empirical CDF based on the scores {�t+j}nb

j=1

F̂�t+1(w)(↵) =
1

nb

nbX

j=1

1[�t+j(w)  ↵]. (10)

Then, the W1 objective in equation 8 can be empirically approximated as follows

W1(F̂�t+1(w), FU ) =
nbX

k=1

Z k
nb

k�1
nb

|�t+⇡̂�1(k)(w)� ↵|d↵, (11)

where ⇡̂ is the sort mapping of {�t+j(w)}nb
j=1 scores such that �t+⇡̂�1(k)(w)  �t+⇡̂�1(k+1)(w).

Note that the expression in equation 11 is a sum of integrals of piecewise linear functions. Therefore,
it is differentiable w.r.t. to each �t+j(w), and consequenlty w.r.t. to each w (see equation 4) and also
computable in closed form. Then the weights can be updated using projected gradient descent

wt+nb+1 = wt+nb � �
nPnb

i=1
@W1
@�t+i

@�t+i(wt+nb
)

@wk

on

k=1

wt+nb+1 =
Q

w2[0,1]n,|w|> 1
↵c

�1

h
wt+nb+1

i (12)

Note that here wt denotes our current estimate of the entire weighting vector w at time t. The partial
derivatives can be expressed in closed form as

@W1

@�t+i
=

8
>><

>>:

� 1
nb
, if �t+i <

⇡̂(i)�1
nb

,

2�t+i � 2 ⇡̂(i)�1
nb

, if ⇡̂(i)�1
nb

 �t+i  ⇡̂(i)
nb

,

+ 1
nb
, if �t+i >

⇡̂(i)
nb

.

(13)

and
@�t+i(w)

@wk
=
��t+i(w) + 1[jt+i  ⇡(k)]

||w||1 + 1
(14)
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The derivatives themselves have a simple interpretation. The derivative of @W1
@�t+i

pushes a normalized

score �t+i to lie within the ranges of its empirical quantile bucket [ ⇡̂(i)�1
nb

, ⇡̂(i)
nb

], and is minimized
when �t+i =

2 ⇡̂(i)�1
2nb

. The derivative @�t+i(w)
@wk

establishes that one can increase �t+i by decreasing
the weight of scores higher than the currently-observed score St+1 or by globally decreasing the
overall sample size ||w||1.

Algorithm 1 1-Wasserstein Adaptive Conformal Anomaly Score
Require: {St}Tt=1: Scores, ↵c: min false alarm rate, n max past samples, nb min batch size

Output: : � 2 [0, 1]T�nc normalized score vector
nc =

1
↵c
� 1, w = {wi = 1[i  nc]}ni=1. # Compute critical samples and init weights

J�(w) {0}nb⇥n, ib = 0, �  {} # Initialize score Jacobian, batch counter and output
for t = nc : T � nc do
s = {Si}ti=max(t�n,1) , ŵ = {ŵi = w|s|+1�i}

|s|
i=1# Get past scores and corresponding weights

⇡  ARGSORT(s) # sort past scores in ascending order

jt+1 =
P

s2s 1[St+1 < s] , �t+1 =
P|s|

k=jt+1
ŵ⇡�1(k)+1

||ŵ||1+1 # Compute p-value score for St+1

�  � [ �t+1, ib  ib + 1
J�(w)ib,n�k = {@�t+1

@ŵk
} for k = 1, ..., |s|, using equation 14 # Compute partial derivatives

if ib = nb then
⇡̂  ARGSORT(�t+1�nb:t+1) #Sort last nb normalized scores and compute gradient
Compute { @W1

@�t+i
}nb
i=1 using ⇡̂, equation 13, rW1(w) = {

Pnb

i=1
@W1
@�t+i

J�(w)i,k}nk=1

w 
Q

w2[0,1]n,|w|>nc

h
w � �rW1(w)

i
, ib  0

end if
end for

We propose W1-ACAS (Algorithm 1), which operates by sequentially estimating normalized scores
�t using the current weight estimates. The weights w are then periodically updated to minimize the
objective in Eq. 8, based on the online sample buffer and the update rules in Eqs. 12, 13 and 14.

Aggregation Across Multiple Forecast Horizons We extend Algorithm 1 to operate across multi-
ple forecast horizons. Specifically, we run D parallel instances of the algorithm, each associated with
a d-step ahead prediction error, Sd

t+1 =
��Yt+1 � Ŷ d

t+1

��, with Ŷ d
t+1 = hd(Yt�nc�d:t�d+1), d 2 [D].

This produces a set of D conformal p-values for each observation t+ 1, denoted {�d
t+1}d2[D]. The

final anomaly score is the median across horizons,

�̄t+1 = mediand2[D] �
d
t+1, �d

t+1 = �wd(Sd
t+1). (15)

This requires an observation to be identified as a significant outlier by more than half of the horizon-
specific detectors. In the streaming setting, we maintain a buffer of forecasts at different horizons.
When a new sample Yt+1 is observed, we collect its aligned forecasts {Ŷ d

t+1}d2[D], compute the
corresponding errors {Sd

t+1}d2[D], and update each horizon-specific instance of Algorithm 1 to
obtain the adaptive p-values, {�d

t+1}d2[D]. In Appendix C.2.4 we describe how Algorithm 1 extends
to multivariate time series anomaly detection in a similar manner.

6 EXPERIMENTS

We evaluate the proposed conformalized anomaly score W1-ACAS (Algorithm 1) by analyzing its
calibration and anomaly detection performance on time series data. Synthetic experiments (Ap-
pendix C.1) validate its ability to remain calibrated under both gradual and abrupt distribution
shifts, where ground-truth p-values are available. Our main empirical study focuses on real-world
anomaly detection datasets, where we assess detection accuracy using both threshold-independent
and threshold-dependent metrics.

Anomaly Detection Datasets. We evaluated the performance of our proposed method (W1-
ACAS, Algorithm 1) for unsupervised univariate time series anomaly detection when applied to a
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pre-trained time series foundation model. Experiments are conducted on seven benchmark datasets:
YAHOO (Laptev et al., 2015), NEK (Si et al., 2024), NAB (Ahmad et al., 2017), MSL (Lai et al.,
2021), IOPS (IOPS, n.d.), STOCK (Tran et al., 2016), and WSD (Zhang et al., 2022), all part of the
curated anomaly detection benchmark of Liu & Paparrizos (2024). For the multivariate experiments,
we additionally use the curated subsets of TAO (Laboratory, 2024), GECCO (Rehbach et al., 2018),
LTDB (Goldberger et al., 2000), and Genesis (von Birgelen & Niggemann, 2018) released as part
of the benchmark in Liu & Paparrizos (2024). Each dataset consists of an initial segment without
anomalies used for training or calibration, followed by a test split that may contain anomalies.

W1-ACAS + TSFM. We integrate W1-ACAS with three pre-trained TSFMs: Tiny Time Mix-
ers (TTM) (Ekambaram et al., 2024), Chronos-Bolt-Small (Chronos) (Ansari et al., 2024), and
TiRex (Auer et al., 2025). All models use a context length of 52 and a forecast horizon of D = 15.
For Algorithm 1, we set the critical false alarm rate to ↵c = 0.01, batch size nb = 10, and learning
rate � = 0.001. We use ADAM (Kingma & Ba, 2015) to perform an adaptive gradient descent
on the weights w. Appendix C.2.3, Fig. 8, analyzes the impact of aggregating forecast horizons,
showing that D = 15 provides a reasonable balance between performance and sample efficiency.
Figures 9, 10, and 11 show the sensitivity of W1-ACAS to the learning rate �, batch size nb, and
↵c. The method shows low variability for small � and nb. The parameter ↵c controls the maxi-
mum acceptable p-value resolution: smaller values require a larger number of in-distribution past
observations nc, but do not impose a lower bound on the detectable anomaly level.

Baseline Methods. We compare W1-ACAS against two TSFM-based baselines: a Gaussian
model that fits the mean absolute forecast error across d steps using calibration data, and a Confor-
mal offline approach that learns p-value mappings per horizon and aggregates them by the median.
We also include top-performing classical methods from Liu & Paparrizos (2024): KShape (Paparri-
zos & Gravano, 2015; 2017; Boniol et al., 2021), POLY (Li et al., 2007), Sub-PCA (Aggarwal &
Aggarwal, 2017), Sub-KNN (Ramaswamy et al., 2000), and SAND (Boniol et al., 2021). We further
include strong semi-supervised deep learning–based anomaly detection methods (Audibert et al.,
2022), namely CNN (Munir et al., 2018), USAD (Audibert et al., 2020), and OmniAnomaly (Su
et al., 2019), as well as the recent general purpose TSFM MOMENT (Goswami et al., 2024), which
provides zero-shot anomaly scoring. Additional details are provided in Appendix C.2.1.

Evaluation Metrics. We report both point-wise (AUC, PA-F1) (Wu et al., 2022; Wang et al.,
2024; Liu & Paparrizos, 2024) and range-wise metrics (VUS (Paparrizos et al., 2022a), Affiliation-
F1 (Huet et al., 2022)). For threshold-dependent scores (PA-F1, Affiliation-F1), we follow the oracle
strategy of Liu & Paparrizos (2024), selecting the best threshold in [0, 1] and reporting the associated
False Positive Rate (FPR) and calibration error (CalErr). Further details are in Appendix C.2.2.

Table 1: Performance Summary across univariate datasets. Entries indicate the mean ± standard
deviation computed by first averaging within each dataset group, then averaging across groups (equal
weight). Higher numbers are better for PA-F1, Affiliation-F, AUC-PR, VUS-PR; lower numbers are
better for FPR, and calibration error (CalErr). Underlined results indicate best post-hoc methods
applied to the same base forecaster, while bold indicate best results overall.

Forecaster AD Method PA-F1 " Affiliation-F " FPR # CalErr # AUC-PR " VUC-PR "

Chronos W1-ACAS 0.912 ± 0.066 0.893 ± 0.060 0.077 ± 0.114 0.025 ± 0.029 0.355 ± 0.261 0.440 ± 0.272
Chronos Conformal 0.863 ± 0.109 0.891 ± 0.063 0.111 ± 0.130 0.038 ± 0.055 0.310 ± 0.240 0.420 ± 0.248
Chronos Gaussian 0.716 ± 0.260 0.842 ± 0.066 0.123 ± 0.109 0.075 ± 0.061 0.265 ± 0.250 0.438 ± 0.245

TTM W1-ACAS 0.889 ± 0.108 0.886 ± 0.058 0.082 ± 0.120 0.029 ± 0.031 0.342 ± 0.261 0.449 ± 0.245
TTM Conformal 0.851 ± 0.124 0.885 ± 0.062 0.120 ± 0.145 0.044 ± 0.056 0.317 ± 0.247 0.448 ± 0.250
TTM Gaussian 0.733 ± 0.240 0.849 ± 0.067 0.128 ± 0.115 0.081 ± 0.065 0.270 ± 0.261 0.450 ± 0.249

TiRex W1-ACAS 0.925 ± 0.048 0.897 ± 0.064 0.084 ± 0.113 0.025 ± 0.031 0.344 ± 0.269 0.438 ± 0.272
TiRex Conformal 0.878 ± 0.085 0.890 ± 0.063 0.107 ± 0.137 0.038 ± 0.055 0.308 ± 0.257 0.429 ± 0.256
TiRex Gaussian 0.714 ± 0.264 0.837 ± 0.068 0.119 ± 0.103 0.090 ± 0.071 0.270 ± 0.264 0.432 ± 0.250

- POLY 0.527 ± 0.276 0.848 ± 0.072 0.334 ± 0.269 0.282 ± 0.130 0.044 ± 0.031 0.377 ± 0.207
- Sub-KNN 0.479 ± 0.291 0.786 ± 0.074 0.451 ± 0.276 0.174 ± 0.124 0.118 ± 0.106 0.321 ± 0.234
- KShape 0.533 ± 0.299 0.789 ± 0.096 0.508 ± 0.291 0.176 ± 0.132 0.125 ± 0.135 0.303 ± 0.262
- PCA 0.536 ± 0.332 0.826 ± 0.097 0.374 ± 0.297 0.248 ± 0.131 0.100 ± 0.093 0.417 ± 0.274
- SAND 0.460 ± 0.309 0.790 ± 0.079 0.511 ± 0.296 0.134 ± 0.048 0.101 ± 0.117 0.289 ± 0.190

- CNN 0.858 ± 0.138 0.881 ± 0.059 0.083 ± 0.103 0.643 ± 0.227 0.269 ± 0.292 0.423 ± 0.289
- OmniAnomaly 0.674 ± 0.282 0.855 ± 0.068 0.209 ± 0.171 0.571 ± 0.187 0.166 ± 0.087 0.429 ± 0.317
- USAD 0.498 ± 0.333 0.809 ± 0.099 0.425 ± 0.298 0.324 ± 0.161 0.088 ± 0.088 0.398 ± 0.262
- MOMENT ZS 0.596 ± 0.305 0.867 ± 0.088 0.261 ± 0.292 0.417 ± 0.198 0.110 ± 0.075 0.461 ± 0.162
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Results Table 1 reports the average performance of W1-ACAS, applied to different TSFM mod-
els, compared against the described baselines on the univariate datasets. Our method achieves the
strongest performance on threshold-dependent metrics (PA-F1, Affiliation-F),including when com-
pared with semi-supervised methods such as CNN, USAD, and OmniAnomaly, while remaining
competitive on threshold-independent metrics (AUC, VUS). When conditioned on the same TSFM
model, W1-ACAS shows clear improvements over the Gaussian and Conformal baselines. Fig-
ure 2 shows the average performance per univariate dataset for a subset of the methods, extended
per-dataset results are provided in Tables 2, 3 and 4 in Appendix C.2.3. Table 5 shows that TSFM
models have similar prediction errors across datasets, consistent with their comparable anomaly de-
tection performance. Results for the multivariate datasets are presented in Table 6 in Appendix C.2.4,
where we demonstrate how our approach naturally extends to the multivariate setting via p-value ag-
gregation, achieving top performance relative to the corresponding baselines.

(a) PA-F1 " per dataset (b) CalErr # per dataset

(c) Affiliation-F " per dataset (d) AUC-PR " per dataset

Figure 2: Performance across univariate datasets for a subset of anomaly detection methods.
Heatmaps show the average per-dataset performance for PA-F1, Affiliation-F, AUC-PR, and Calibra-
tion Error (CalErr) across a selected subset of methods. Higher values indicate better performance
for PA-F1, Affiliation-F, and AUC-PR, while lower values are preferred for CalErr. Overall, the pro-
posed W1-ACAS combined with Chronos or TiRex yields consistently low calibration error while
remaining among the top-performing approaches. Note that CNN, OmniAnomaly and USAD are
semi-supervised methods trained on the non-anomalous training datasplit.

Figure 3 shows the FPR–threshold curves in the low-FPR regime, where W1-ACAS (blue) yields
the most conservative thresholds, staying closer to or below the identity line compared to compet-
ing methods, while also exhibiting the lowest variance. Figure 4 shows representative detection
examples along with the final learned weights. We observe that W1-ACAS is adapted to capture
underlying temporal patterns in errors if present. Moreover, our method effectively identifies a tran-
sition in score distributions (e.g., in the vicinity of an anomalous region) but then quickly adapts to
the new anomalous distribution; this helps minimize the number of alarms in the end-to-end system.

Additional examples are provided in Appendix C.2.3: Figure 6 shows more detection cases, and
Figure 7 illustrates the trade-offs between FPR and F1 scores (PA-F1, Affiliation-F) across datasets.
The operating points of W1-ACAS (blue), in most cases, achieve both the highest F1 score and
lowest FPR, especially for PA-F1. Within each TSFM model, our method dominates its Gaussian
(green) and Conformal (orange) counterparts in nearly all cases. Furthermore, it produces better-
calibrated scores (low CalErr), making threshold selection more reliable in practice.
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(a) NEK (b) YAHOO (c) IOPS (d) NAB

Figure 3: FPR vs. threshold in the low-FPR regime. Curves shows the mean false positive rate
(FPR) across datasets for a given method, with shaded inter-quartile range (IQR) bands. The dashed
gray line indicates ideal calibration (FPR = �). Curves above the line reflect over-confident
scoring (FPR larger than threshold), while curves below the line reflect conservative scoring. In
most cases, W1-ACAS (blue) yields the most conservative thresholds, staying closer to or below
the identity line compared to competing methods, while also having the lowest variance.

(a) NEK-Detection (b) WSD-Detection (c) YAHOO-Detection

(d) NEK-W1-ACAS-Weights (e) WSD-W1-ACAS-Weights (f) YAHOO-W1-ACAS-Weights

Figure 4: Example signals (blue) with ground-truth anomaly labels (red shading) are shown in the
first row, where detected outliers (red dots) occur when adaptive p-values (orange) fall below a
threshold under our proposed W1-ACAS method. The second row shows the final adaptive weights
(orange) over past errors (blue), averaged across horizons, illustrating how W1-ACAS adapts to and
captures underlying error patterns

7 CONCLUSION

In this paper, we presented W1-ACAS, a post-hoc adaptive conformal anomaly detection framework
that leverages predictions from pretrained TSFMs to provide interpretable, distribution-agnostic, and
well-calibrated anomaly scores without requiring retraining or large datasets. Experiments on bench-
mark datasets show that our method consistently outperforms competing baselines. W1-ACAS
yields more conservative and stable thresholds, its a principled and easily applicable approach that
adapts online to temporal error patterns, and minimizes false alarms by adjusting to distributions
shifts. These properties make it especially suited for online monitoring in industrial and data-scarce
environments. Future work will explore refining conformal weighting with contextual features, with
straightforward extensions to multivariate anomalies via horizon-style aggregation.
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