

ADAPTIVE CONFORMAL ANOMALY DETECTION WITH TIME SERIES FOUNDATION MODELS FOR SIGNAL MONITORING.

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

012 We propose a post-hoc adaptive conformal anomaly detection method for monitoring time series that leverages predictions from pre-trained foundation models without requiring additional fine-tuning. Our method yields an interpretable anomaly score directly interpretable as a false alarm rate (p-value), facilitating transparent and actionable decision-making. It employs weighted quantile conformal prediction bounds and adaptively learns optimal weighting parameters from past predictions, enabling calibration under distribution shifts and stable false alarm control, while preserving out-of-sample guarantees. As a model-agnostic solution, it integrates seamlessly with foundation models and supports rapid deployment in resource-constrained environments. This approach addresses key industrial challenges such as limited data availability, lack of training expertise, and the need for immediate inference, while taking advantage of the growing accessibility of time series foundation models. Experiments on both synthetic and real-world datasets show that the proposed approach delivers strong performance, combining simplicity, interpretability, robustness, and adaptivity.

1 INTRODUCTION

027 A common challenge in industrial applications such as predictive maintenance and signal monitoring is the scarcity of sufficient quality data and infrastructure to train robust models Cook et al. (2019); Ajami & Daneshvar (2012); Kanawaday & Sane (2017); Beghi et al. (2016); Shah & Tiwari (2018); Moghaddass & Wang (2017). This limitation can hinder the ability to make accurate and reliable predictions, which are essential to detect anomalies and ensure operational efficiency. Foundation models, particularly in the time series domain Liang et al. (2024), offer a promising solution. These models excel at leveraging prior knowledge and historical observations, enabling them to provide good enough initial estimates of expected values and statistical characteristics of monitored signals, even in data-scarce environments. This capability is invaluable for industries aiming to enhance their monitoring systems without the need for extensive datasets.

038 In the context of time series anomaly detection, an adaptive approach is crucial for monitoring and maintaining the reliability of signals. Anomalies, or deviations from expected behavior, can manifest in different forms, such as point anomalies, where an individual observation significantly deviates from normal patterns, and contextual anomalies, where a value is only considered anomalous within a specific temporal context Boniol et al. (2024). Detecting these effectively requires models that capture underlying temporal dependencies and adapt to non-stationary data distributions.

044 A prominent class of anomaly detection methods relies on predictive modeling, where a forecasting model learns normal time series behavior, and deviations between predicted and actual values could indicate anomalies in operations or shifts in operational modes that require expert attention Basseville (1993); Choudhary et al. (2017); Gama et al. (2014); Saurav et al. (2018). However, many existing approaches assume access to large amounts of training data, making them impractical in settings where only a few samples are initially available. This motivates the use of pretrained Time Series Foundation Models (TSFMs) Rasul et al. (2023, 2024); Ansari et al. (2024); Liang et al. (2024), which have been trained on large-scale datasets and can generalize to new time series with minimal adaptation. Furthermore, existing anomaly detection systems often lack interpretability, relying on thresholding mechanisms that assume a fixed data distribution Schmidl et al. (2022); Paparrizos et al. (2022b); Goswami et al. (2022), which limits their adaptability to evolving time series data. In this setting, a robust system must balance sensitivity and adaptability, minimizing

054 false alarms while effectively detecting significant behavioral transitions. This ensures timely identification
 055 of suspicious patterns without overwhelming experts with noise, fostering a more efficient
 056 and reliable monitoring framework Cook et al. (2019).

057 To address these limitations, we propose a conformal-based anomaly detection method that integrates
 058 the predictions of pretrained TSFMs with conformal prediction techniques Vovk et al. (2005);
 059 Angelopoulos & Bates (2021) to produce an interpretable, adaptive anomaly score directly linked
 060 to a desired alarm rate. Conformal methods offer model-agnostic and distribution-free uncertainty
 061 quantification with finite-sample guarantees, making them highly suitable for real-world anomaly
 062 detection. However, standard conformal approaches rely on the assumption of exchangeability,
 063 which is often violated in time series due to temporal dependencies. Furthermore, existing conformal
 064 methods for anomaly detection primarily focus on thresholding arbitrary anomaly scores
 065 derived from non-anomalous data while assuming exchangeability Angelopoulos & Bates (2021);
 066 Guan (2019); Bates et al. (2023), limiting their applicability in dynamic, non-stationary settings.

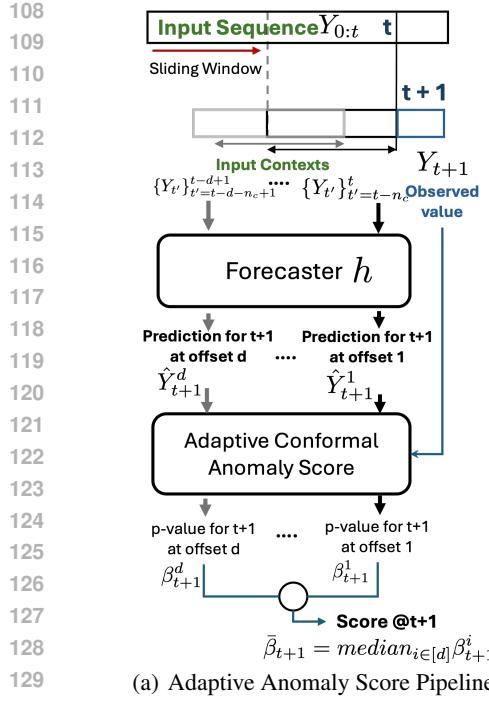
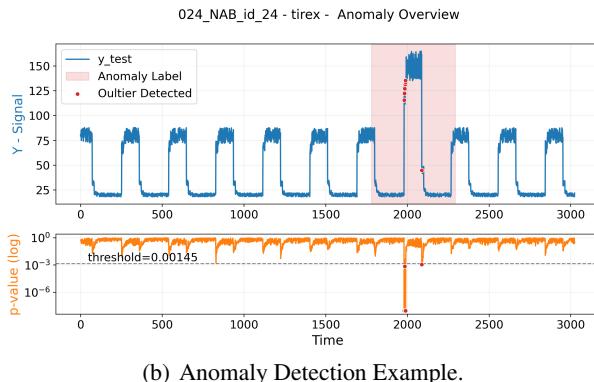
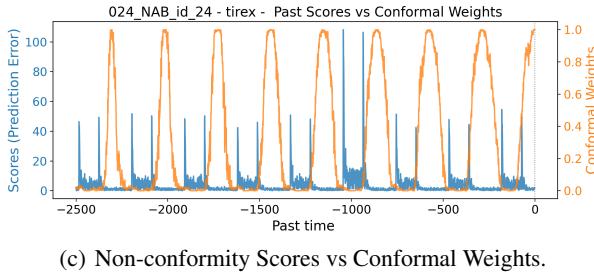
067 **Main Contributions** We propose \mathcal{W}_1 -ACAS, a post-hoc adaptive conformal anomaly detection
 068 framework that leverages predictions from pretrained forecasters (e.g., TSFMs) to monitor signals
 069 without requiring fine-tuning. This is particularly valuable in industrial settings, where users often
 070 lack sufficient data, data-cleaning pipelines, or specialized expertise Cook et al. (2019). Our
 071 approach provides a practical solution for immediate anomaly monitoring. Figure I illustrates the
 072 method: (a) anomaly scores are derived as conformal p -values from forecaster errors across multiple
 073 horizons and aggregated into a single score; (b) anomalies are flagged when adaptive p -values fall
 074 below a threshold on real signals; and (c) the learned adaptive weights emphasize past errors with
 075 similar distributions, capturing recurring patterns such as periodicity, thereby improving detection
 076 while offering direct control over the alarm rate. Our framework offers the following properties:

- 077 • **Interpretability:** The anomaly score corresponds directly to an alarm rate (p -value), providing
 078 a transparent and probabilistic basis for decisions.
- 079 • **Distribution-Agnostic:** Built on quantile conformal prediction, the method is robust to
 080 heavy-tailed and complex error distributions.
- 081 • **Adaptivity:** By weighting past nonconformity scores via the Wasserstein distance, the
 082 framework adapts online to distribution shifts, reducing false alarms while preserving cali-
 083 bration Barber et al. (2023).
- 084 • **Post-Hoc and Model-Agnostic:** The method applies directly to pretrained TSFMs or any
 085 anomaly score, requiring no retraining while inheriting the guarantees of weighted confor-
 086 mal prediction. Its effectiveness is proved through integration with TSFM forecasters.

089 2 RELATED WORK

091 **Time Series Anomaly Detection** Prediction-based methods detect anomalies by comparing ob-
 092 served values against forecasts Giannoni et al. (2018); Boniol et al. (2024). Recent TSFMs (Rasul
 093 et al., 2023, 2024; Ansari et al., 2024; Liang et al., 2024) are well suited for online detection in data-
 094 scarce scenarios, offering accurate zero-shot forecasting performance. Recent benchmark studies
 095 (Paparrizos et al., 2022b; Liu & Paparrizos, 2024) show that classical distance- and density-based
 096 methods (Li et al., 2007; Ramaswamy et al., 2000; Aggarwal & Aggarwal, 2017; Paparrizos & Gra-
 097 vano, 2015, 2017; Boniol et al., 2021) often outperform more complex models, but they typically
 098 require access to the full dataset (non-causal), lack robustness across temporal patterns, and are un-
 099 suitable for streaming settings. Moreover, many anomaly scores lack clear probabilistic meaning,
 100 and common thresholding strategies rely on full-dataset statistics (Ahmad et al., 2017), limiting real-
 101 time applicability. In practice, anomaly detection systems must not only achieve high accuracy but
 102 also provide interpretable confidence scores while maintaining low false alarm rates Cook et al.,
 103 2019. Our work addresses these challenges by combining TSFMs with adaptive conformal scoring,
 104 yielding interpretable and calibrated thresholds for reliable streaming anomaly detection.

105 **Conformal Prediction.** Conformal prediction provides distribution-free uncertainty quantifica-
 106 tion with finite-sample guarantees (Vovk et al., 2005; Shafer & Vovk, 2008; Angelopoulos & Bates,
 107 2021). A widely used variant, split conformal prediction (SCP) (Papadopoulos et al., 2002), is
 108 post-hoc and model-agnostic, relying only on model predictions and a calibration set. While ef-



131 Figure 1: Illustration of our proposed \mathcal{W}_1 -ACAS method. (a) Anomaly scoring pipeline: conformal
132 p -values are computed across forecast horizons from forecaster errors and aggregated. The mapping
133 is adapted online by weighting past nonconformity scores, with weights evolving to capture distri-
134 butional shifts or recurring patterns. (b) Example signal (blue) with ground-truth anomaly labels,
135 where detected outliers (red dots) occur when adaptive p -values (orange) fall below a threshold. (c)
136 Converged adaptive weights (orange) over past errors (blue), averaged across horizons, shows how
137 \mathcal{W}_1 -ACAS captures error patterns with similar distributions, here reflecting its periodic behavior.

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

fective under exchangeability¹, this assumption is often violated in time series settings, motivating adaptive extensions. Recent works (Gibbs & Candes [2021], Zaffran et al. [2022], Gibbs & Candes [2024]) adjust conformal quantiles online to handle distribution shifts, but typically optimize for a single error rate. Weighted conformal methods offer adaptation by reweighting calibration or past scores based on some notion of similarity to new observations (Lei & Wasserman [2014], Guan [2019], Tibshirani et al. [2019], Sesia & Romano [2021], Han et al. [2022], Guan [2023], Ghosh et al. [2023], Mao et al. [2024]) improving local coverage. Bounds for non-exchangeable sequences (Barber et al. [2023]) further suggest emphasizing calibration samples that are nearly exchangeable with the test point. This motivates our approach, which leverages weighted adaptive conformal quantiles to remain calibrated across time. Conformal prediction has also been applied to anomaly detection by thresholding arbitrary anomaly scores under exchangeability (Angelopoulos & Bates [2021], Guan [2019], Bates et al. [2023]). However, existing methods do not simultaneously provide interpretable, distribution-agnostic anomaly scores, directly control alarm rates, and adapt robustly to non-exchangeable time series. Our work addresses this gap by developing a conformal anomaly detection framework that is both interpretable and resilient to real-world distribution shifts.

3 BACKGROUND

Consider $S \in \mathbb{R}$ a nonconformity score variable that quantifies the performance of a predictive model $h : \mathcal{X} \rightarrow \hat{\mathcal{Y}}$ on a joint distribution $P_{X,Y}$ using a nonconformity function $e : \mathcal{Y} \times \hat{\mathcal{Y}} \rightarrow \mathbb{R}$. The input $X \in \mathcal{X}$ represents the model's input space, $Y \in \mathcal{Y}$ denotes the true target variable, and $\hat{\mathcal{Y}}$ corresponds to the output space of the model, which may include predictions or derived statistics over Y . The nonconformity function e measures the degree of disagreement between the true target

¹informally, a sequence of observations is exchangeable if any permutation of the observations has the same joint probability

162 and the model’s predictions, enabling $S = e(Y, h(X))$ to capture how atypical a prediction is within
 163 the given distribution. An example of a nonconformity function for a point prediction model is
 164 absolute error $e(Y, \hat{Y}) = |Y - \hat{Y}|$.
 165

166 3.1 CONFORMAL OUTLIER DETECTION. 167

168 In the context of anomaly detection we characterize the distribution of the non-conformity score
 169 variable $S \sim P_S$ where $S = e(Y, h(X)) \in \mathbb{R}$ under non-anomalous conditions $X, Y \sim P_{X,Y}$.
 170 ² Observations are flagged as outliers (or anomalies) when the composition of the nonconformity
 171 function e and the predictive model h produces unusually high scores.³ Given a significance level α ,
 172 which controls the tolerated false positive rate, an anomaly detection function $C_\alpha : \mathcal{X}, \mathcal{Y} \rightarrow \{0, 1\}$
 173 should satisfy the following property:
 174

$$\mathbb{P}(C_\alpha(X_{n+1}, Y_{n+1}) = 1) \leq \alpha \quad (1)$$

175 where \mathbb{P} is the probability over unseen test data sampled from the non-anomalous distribution,
 176 $X_{n+1}, Y_{n+1} \sim P_{X,Y}$. In the standard split-conformal setting, we observe $\mathbf{s} = S_1, \dots, S_n$ non-
 177 conformity scores derived from non-anomalous data, $S_i = e(Y_i, h(X_i))$ with $X_i, Y_i \sim P_{X,Y}$.
 178 Non-conformity scores need not be independent of each other; the following conformal anomaly
 179 detection function satisfies, under exchangeability conditions⁴, the false positive bound in equation 1:
 180

$$C_\alpha(X_{n+1}, Y_{n+1}) = \mathbf{1}[S_{n+1} > \hat{q}_\alpha], \quad \hat{q}_\alpha = Q_{1-\alpha}(\sum_{i=1}^n \frac{1}{n+1} \delta_{S_i} + \frac{1}{n+1} \delta_\infty). \quad (2)$$

182 Here \hat{q}_α is the empirical conformal quantile, conservatively adjusted with a point mass at infinity.
 183

184 **Conformal Outlier Detection Beyond Exchangeability** To account for heterogeneity in the non-
 185 conformity scores across the input space or potential temporal drift, we consider the generalized
 186 weighted conformal quantile estimate $\hat{q}_\alpha^w = \mathbb{Q}_{1-\alpha}(\mathbf{s}, \mathbf{w})$ defined as:
 187

$$\mathbb{Q}_{1-\alpha}(\mathbf{s}, \mathbf{w}) = Q_{1-\alpha}(\sum_{i=1}^n \frac{w_i}{\|\mathbf{w}\|_1 + 1} \delta_{S_i} + \frac{1}{\|\mathbf{w}\|_1 + 1} \delta_\infty). \quad (3)$$

190 where $\mathbf{w} = \{w_i \in [0, 1]\}_{i=1}^n$ is a weighting vector applied to the calibration points. The standard
 191 result in Eq. 2 is recovered when $w_i = 1, \forall i = 1, \dots, n$.
 192

193 This weighted conformal quantile estimate produces a generalization of the conformal anomaly
 194 detector from equation 2. This conformal anomaly detection has false alarm rate guarantees even in
 195 non-exchangeable settings as described in the following proposition 3.1.
 196

Proposition 3.1. (Direct application of Theorem 2 and 3 in Barber et al. (2023)) Given $\alpha \in (0, 1)$,
 197 $\mathbf{s} = \{S_i\}_{i=1}^{n+1}$ a set of non-conformity scores where S_{n+1} corresponds to the test point, and a vector
 198 of weights $\mathbf{w} = \{w_i \in [0, 1]\}_{i=1}^n$ for the previous n observations the detector

$$A_{n+1} = C_{\alpha, \mathbf{w}}(X_{n+1}, Y_{n+1}) = \mathbf{1}[S_{n+1} > \hat{q}_\alpha^w] \quad (4)$$

200 based on the weighted conformal quantile estimate in Eq. 3 satisfies the false alarm rate guarantees
 201

$$\begin{aligned} \mathbb{P}(A_{n+1} = 1) &\leq \alpha + \sum_{i=1}^n \frac{w_i}{\|\mathbf{w}\|_1 + 1} d_{TV}(\mathbf{s}, \mathbf{s}^i) \\ &\geq \alpha + \sum_{i=1}^n \frac{w_i}{\|\mathbf{w}\|_1 + 1} d_{TV}(\mathbf{s}, \mathbf{s}^i) + \frac{1}{\|\mathbf{w}\|_1 + 1}. \end{aligned} \quad (5)$$

204 Here $d_{TV}(\mathbf{s}, \mathbf{s}^i)$ is the distance in total variation between the sequence \mathbf{s} (n previously observed
 205 point and the test point $n+1$) and \mathbf{s}^i which denotes the sequence of non-conformity scores after
 206 swapping the test point $n+1$ with the i -th previously observation. The lower bound is valid under
 207 the assumption that the non-conformity scores take equal values with probability 0.
 208

209 Intuitively, Proposition 3.1 indicates that one would like to assign higher weights to previous obser-
 210 vations that are, pairwise, most exchangeable with the test sample (i.e., $P(S_1, \dots, S_i, \dots, S_{n+1}) \simeq$
 211 $P(S_1, \dots, S_{n+1}, \dots, S_i)$), and lower weights otherwise. Additionally, the lower bound encourages

212 ² Although \mathcal{X} and \mathcal{Y} are treated as separate spaces, they may overlap, as in reconstruction-error-based scores
 213 where $Y = X$.

214 ³ Unusually low scores can be handled similarly, nonconformity scores need not be positive

215 ⁴ The sequence S_1, \dots, S_{n+1} is exchangeable if $P(S_1, \dots, S_{n+1}) = P(S_{\sigma(1)}, \dots, S_{\sigma(n+1)})$ for any per-
 216 mutation σ

the maximization of $\|\mathbf{w}\|_1$ and therefore keeping the weights as close to one as possible. One could decide \mathbf{w} if given access to prior knowledge about the values or reasonable upper bounds of $d_{TV}(\mathbf{s}, \mathbf{s}^i)$. In the context of time series, previous works such as [Barber et al. \(2023\)](#) have set \mathbf{w} to exponentially decay with time ($w_i = \gamma^{n-i}$); in non-time-series settings, other works such as [Lei & Wasserman \(2014\)](#), [Guan \(2019\)](#), [Sesia & Romano \(2021\)](#), [Han et al. \(2022\)](#), [Guan \(2023\)](#), [Ghosh et al. \(2023\)](#), [Mao et al. \(2024\)](#) decide the weights based on criteria such as distance in covariate space, or optimize them to guarantee a particular false positive rate coverage α , [\(Han et al., 2022\)](#), [Amoukou & Brunel \(2023\)](#). Next, we present our adaptive conformal score method, which learns \mathbf{w} with the objective of providing scores that are calibrated for every feasible false alarm across time.

4 ADAPTIVE CONFORMAL ANOMALY SCORE

The conformal outlier detection framework provides a principled way to define a binary anomaly decision variable based on a preselected α with generalization guarantees. However, the underlying nonconformity score S may not itself be an interpretable indicator of anomaly, particularly in sequential settings where its distribution may drift over time. To address this, we aim to learn an adaptive mapping that assigns each score an approximate probability of observing a more extreme value under prior (ideally normal) conditions, yielding a distribution-agnostic p -value estimate. Formally, we consider a time series setting with a sequence of nonconformity scores S_1, \dots, S_t . In prediction-based anomaly detection, these are derived from a forecasting model $h : \mathbb{R}^{n_c \times n_f} \rightarrow \mathcal{Y}^d$, which maps a context of length n_c with n_f features to a d -step-ahead forecast $\hat{Y}_{t+1}^d = h_d(X_{t-n_c-d:t-d+1})$. The nonconformity score for sample $t+1$ at horizon d is $S_{t+1}^d = |Y_{t+1} - \hat{Y}_{t+1}^d|$. For clarity, we omit the index d in the following section, since the analysis applies independently to each prediction horizon, and reintroduce it later when needed.

4.1 CONFORMAL ANOMALY SCORE

We wish to learn a parametric mapping $\beta_{\mathbf{w}} : \mathbb{R}, \mathbb{R}^t \rightarrow [0, 1]$ of the previous nonconformity scores $\mathbf{s} = \{S_i\}_{i=1}^t$ and the test sample S_{t+1} ; this mapping $\beta_{\mathbf{w}}$ should be such that it can be directly compared to any α threshold to produce an anomaly detector with the same false alarm rate guarantees as the one described in [equation 1](#) and [equation 2](#). Given a set of non-conformity scores derived from past, ideally non-anomalous data [1](#), their associated weights $\vec{w} = \{w_i \in [0, 1]\}_{i=1}^t$, and a non-conformity score test sample S_{t+1} we propose the following score normalization

$$\beta_{\mathbf{w}}(S_{t+1}) = \sup\{\alpha \in [0, 1] : S_{t+1} \leq \mathbb{Q}_{1-\alpha}(\mathbf{s}, \mathbf{w})\}. \quad (6)$$

Here $\beta_{\mathbf{w}}(S_{t+1})$ can be interpreted as the weighted, conformalized p -value, $\beta_{\mathbf{w}}(S_{t+1}) = \beta_{t+1}$ (we omit the explicit dependence on \mathbf{s} for clarity). The proposed function automatically maps an anomaly score S , which can take arbitrary real values, into a normalized score that directly relates to the desired false alarm rate. The decision of an anomaly detection threshold becomes interpretable for the end user (it directly translates into the desired false alarm level) and preserves the guarantees of the original conformal outlier detector as shown in [Proposition 4.1](#).

Proposition 4.1. *Given $\alpha \in [0, 1]$, $\{S_i\}_{i=1}^{t+1}$ a set of exchangeable non-conformity scores, and their weights $\mathbf{w} = \{w_i \in [0, 1]\}_{i=1}^t$ the detector $C_{\beta_{\mathbf{w}}}(X_{t+1}, Y_{t+1}) = \mathbf{1}[\beta_{\mathbf{w}}(S_{t+1}) < \alpha]$ based on the $\beta_{\mathbf{w}}(\cdot)$ mapping defined in [equation 6](#) is equivalent to [equation 4](#) and therefore satisfies the conformal false alarm rate guarantees presented in [equation 5](#) in [Proposition 3.1](#). Proof in [Appendix B](#).*

4.2 ADAPTIVE WEIGHTED ANOMALY SCORES UNDER NON-EXCHANGEABILITY

Our proposed conformal anomaly score mapping $\beta_{\mathbf{w}}(\cdot)$ in [equation 6](#) depends on the weights \mathbf{w} assigned to the previously observed scores. Therefore, given a new observation S_{t+1} the mapping can be directly expressed as a function of \mathbf{w} , $\beta_{\mathbf{w}}(S_{t+1}) = \beta_{t+1}(\mathbf{w})$ such that

$$\beta_{t+1}(\mathbf{w}) := \frac{1 + \sum_{k=j+1}^n w_{\pi^{-1}(k)}}{|\mathbf{w}|+1}, \quad j+1 = \sum_{i=1}^t \mathbf{1}[S_{t+1} \leq S_i]. \quad (7)$$

⁵For sequences containing a known fraction of anomalous samples below some upper bound α' , the derivation follows similarly, but the interpretation of $\beta_{\mathbf{w}}(S_{t+1})$ is $\alpha + \alpha'$ where α is the lower bound of the p -value of the sample.

270 Where $\pi : [n] \rightarrow [n]$ represents a sorted mapping of the previous n nonconformity scores such that
 271 $\pi(i) = k \in [n], \forall i \in [n]$ where $\pi(i) < \pi(j)$ if $S_i \leq S_j, \forall i \neq j$. $\pi^{-1}(k)$ is the inverse sorting
 272 operation, mapping k to the index of the observation corresponding to the k largest value.
 273

274 We want our proposed conformal score to be well calibrated across time, meaning $\mathbb{P}(\beta_{\mathbf{w}}(S_{t+1}) \leq$
 275 $\alpha) \approx \alpha$, for all $\alpha \in [0, 1]$ and t . In lieu of that, we require $\beta_{\mathbf{w}}(S_{t+1})$ to be a conservative estimate
 276 such that $\mathbb{P}(\beta_{\mathbf{w}}(S_{t+1}) \leq \alpha) \leq \alpha$. Such calibration ensures that the conformalized scores adapts
 277 effectively to distributional shifts over time. The ideal condition under non-anomalous distributions
 278 for S_{t+1} , $\mathbb{P}(\beta_{\mathbf{w}}(S_{t+1}) \leq \alpha) = \alpha, \forall \alpha \in [0, 1]$ is achieved when $\beta_{\mathbf{w}}(S_{t+1}) \sim U_{[0,1]}$. We also note that
 279 $\beta_{\mathbf{w}}(S_{t+1})$ cannot produce non-trivial quantile estimates below its effective sample size $\alpha_c = \frac{1}{|\mathbf{w}|+1}$.
 280 We therefore seek to learn a set of feasible weights \mathbf{w} satisfying these conditions by minimizing
 281 the 1-Wasserstein distance (\mathcal{W}_1) between the cumulative density function (CDF) of the proposed
 282 score variable $F_{\beta_{t+1}(\mathbf{w})}$, where $\beta_{t+1}(\mathbf{w}) = \beta_{\mathbf{w}}(S_{t+1})$ as in equation 7 and the CDF of the uniform
 283 distribution F_U , subject to an effective sample size constraint determined by our critical false alarm
 284 rate α_c . Namely

$$\min_{\mathbf{w}} \mathcal{W}_1(F_{\beta_{t+1}(\mathbf{w})}, F_U) \quad s.t. \quad |\mathbf{w}| > \frac{1}{\alpha_c} - 1, w_i \in [0, 1], \forall i \in [n]. \quad (8)$$

285 Here α_c is the user-defined critical false alarm rate. From the dual definition of \mathcal{W}_1 we have
 286

$$\begin{aligned} \mathcal{W}_1(F_{\beta_{t+1}(\mathbf{w})}, F_U) &= \int_0^1 |F_{\beta_{t+1}(\mathbf{w})}^{-1}(p) - F_U^{-1}(p)| dp \\ &= \int_0^1 |F_{\beta_{t+1}(\mathbf{w})}(\alpha) - F_U(\alpha)| d\alpha \\ &= \mathbb{E}_{\alpha \sim U_{[0,1]}} |\mathbb{P}(\beta_{t+1}(\mathbf{w}) \leq \alpha) - \alpha|, \end{aligned} \quad (9)$$

291 which indicates that minimizing $\mathcal{W}_1(F_{\beta_{t+1}(\mathbf{w})}, F_U)$ is equivalent to minimizing the calibration gap
 292 $|\mathbb{P}(\beta_{t+1}(\mathbf{w}) \leq \alpha) - \alpha|$ uniformly across all false alarm rates. We next approximate the objective in
 293 equation 8 using finite samples and give the corresponding algorithm.

294 5 OPTIMIZATION

297 In practice, we need to approximate $F_{\beta_{t+1}(\mathbf{w})}(\alpha)$ in equation 8 with a finite number of samples n_b ,
 298 which results in the following empirical CDF based on the scores $\{\beta_{t+j}\}_{j=1}^{n_b}$

$$\hat{F}_{\beta_{t+1}(\mathbf{w})}(\alpha) = \frac{1}{n_b} \sum_{j=1}^{n_b} \mathbf{1}[\beta_{t+j}(\mathbf{w}) \leq \alpha]. \quad (10)$$

302 Then, the \mathcal{W}_1 objective in equation 8 can be empirically approximated as follows

$$\mathcal{W}_1(\hat{F}_{\beta_{t+1}(\mathbf{w})}, F_U) = \sum_{k=1}^{n_b} \int_{\frac{k-1}{n_b}}^{\frac{k}{n_b}} |\beta_{t+\hat{\pi}^{-1}(k)}(\mathbf{w}) - \alpha| d\alpha, \quad (11)$$

307 where $\hat{\pi}$ is the sort mapping of $\{\beta_{t+j}(\mathbf{w})\}_{j=1}^{n_b}$ scores such that $\beta_{t+\hat{\pi}^{-1}(k)}(\mathbf{w}) \leq \beta_{t+\hat{\pi}^{-1}(k+1)}(\mathbf{w})$.
 308 Note that the expression in equation 11 is a sum of integrals of piecewise linear functions. Therefore,
 309 it is differentiable w.r.t. to each $\beta_{t+j}(\mathbf{w})$, and consequently w.r.t. to each \mathbf{w} (see equation 4) and also
 310 computable in closed form. Then the weights can be updated using projected gradient descent

$$\begin{aligned} \mathbf{w}_{t+n_b+1} &= \mathbf{w}_{t+n_b} - \gamma \left\{ \sum_{i=1}^{n_b} \frac{\partial \mathcal{W}_1}{\partial \beta_{t+i}} \frac{\partial \beta_{t+i}(\mathbf{w}_{t+n_b})}{\partial w_k} \right\}_{k=1}^n \\ \mathbf{w}_{t+n_b+1} &= \prod_{\mathbf{w} \in [0,1]^n, |\mathbf{w}| > \frac{1}{\alpha_c} - 1} [\mathbf{w}_{t+n_b+1}] \end{aligned} \quad (12)$$

315 Note that here \mathbf{w}_t denotes our current estimate of the entire weighting vector \mathbf{w} at time t . The partial
 316 derivatives can be expressed in closed form as

$$\frac{\partial \mathcal{W}_1}{\partial \beta_{t+i}} = \begin{cases} -\frac{1}{n_b}, & \text{if } \beta_{t+i} < \frac{\hat{\pi}(i)-1}{n_b}, \\ 2\beta_{t+i} - \frac{2\hat{\pi}(i)-1}{n_b}, & \text{if } \frac{\hat{\pi}(i)-1}{n_b} \leq \beta_{t+i} \leq \frac{\hat{\pi}(i)}{n_b}, \\ +\frac{1}{n_b}, & \text{if } \beta_{t+i} > \frac{\hat{\pi}(i)}{n_b}. \end{cases} \quad (13)$$

322 and

$$\frac{\partial \beta_{t+i}(\mathbf{w})}{\partial w_k} = \frac{-\beta_{t+i}(\mathbf{w}) + \mathbf{1}[j_{t+i} \leq \pi(k)]}{\|\mathbf{w}\|_1 + 1} \quad (14)$$

324 The derivatives themselves have a simple interpretation. The derivative of $\frac{\partial \mathcal{W}_1}{\partial \beta_{t+i}}$ pushes a normalized
 325 score β_{t+i} to lie within the ranges of its empirical quantile bucket $[\frac{\hat{\pi}(i)-1}{n_b}, \frac{\hat{\pi}(i)}{n_b}]$, and is minimized
 326 when $\beta_{t+i} = \frac{2\hat{\pi}(i)-1}{2n_b}$. The derivative $\frac{\partial \beta_{t+i}(\mathbf{w})}{\partial w_k}$ establishes that one can increase β_{t+i} by decreasing
 327 the weight of scores higher than the currently-observed score S_{t+1} or by globally decreasing the
 328 overall sample size $\|\mathbf{w}\|_1$.
 329

Algorithm 1 1-Wasserstein Adaptive Conformal Anomaly Score

332 **Require:** $\{S_t\}_{t=1}^T$: Scores, α_c : min false alarm rate, n max past samples, n_b min batch size
 333 **Output:** $\beta \in [0, 1]^{T-n_c}$ normalized score vector
 334 $n_c = \frac{1}{\alpha_c} - 1$, $\mathbf{w} = \{w_i = \mathbf{1}[i \leq n_c]\}_{i=1}^n$. # Compute critical samples and init weights
 335 $\mathbf{J}\beta(\mathbf{w}) \leftarrow \{0\}^{n_b \times n}$, $i_b = 0$, $\beta \leftarrow \{\}$ # Initialize score Jacobian, batch counter and output
 336 **for** $t = n_c : T - n_c$ **do**
 337 $\mathbf{s} = \{S_i\}_{i=\max(t-n, 1)}^t$, $\hat{\mathbf{w}} = \{\hat{w}_i = w_{|\mathbf{s}|+1-i}\}_{i=1}^{|\mathbf{s}|}$ # Get past scores and corresponding weights
 338 $\pi \leftarrow \text{ARGSORT}(\mathbf{s})$ # sort past scores in ascending order
 339 $j_{t+1} = \sum_{s \in \mathbf{s}} \mathbf{1}[S_{t+1} < s]$, $\beta_{t+1} = \frac{\sum_{k=j_{t+1}}^{|\mathbf{s}|} \hat{w}_{\pi^{-1}(k)+1} + 1}{\|\hat{\mathbf{w}}\|_1 + 1}$ # Compute p-value score for S_{t+1}
 340 $\beta \leftarrow \beta \cup \beta_{t+1}$, $i_b \leftarrow i_b + 1$
 341 $\mathbf{J}\beta(\mathbf{w})_{i_b, n-k} = \{\frac{\partial \beta_{t+1}}{\partial w_k}\}$ for $k = 1, \dots, |\mathbf{s}|$, using equation 14 # Compute partial derivatives
 342 **if** $i_b = n_b$ **then**
 343 $\hat{\pi} \leftarrow \text{ARGSORT}(\beta_{t+1-n_b:t+1})$ #Sort last n_b normalized scores and compute gradient
 344 Compute $\{\frac{\partial \mathcal{W}_1}{\partial \beta_{t+i}}\}_{i=1}^{n_b}$ using $\hat{\pi}$, equation 13, $\nabla \mathcal{W}_1(\mathbf{w}) = \{\sum_{i=1}^{n_b} \frac{\partial \mathcal{W}_1}{\partial \beta_{t+i}} \mathbf{J}\beta(\mathbf{w})_{i,k}\}_{k=1}^n$
 345 $\mathbf{w} \leftarrow \prod_{\mathbf{w} \in [0, 1]^n, |\mathbf{w}| > n_c} [\mathbf{w} - \gamma \nabla \mathcal{W}_1(\mathbf{w})]$, $i_b \leftarrow 0$
 346 **end if**
 347 **end for**
 348

350 We propose \mathcal{W}_1 -ACAS (Algorithm 1), which operates by sequentially estimating normalized scores
 351 β_t using the current weight estimates. The weights \mathbf{w} are then periodically updated to minimize the
 352 objective in Eq. 8 based on the online sample buffer and the update rules in Eqs. 12, 13 and 14.
 353

354 **Aggregation Across Multiple Forecast Horizons** We extend Algorithm 1 to operate across multiple
 355 forecast horizons. Specifically, we run D parallel instances of the algorithm, each associated with
 356 a d -step ahead prediction error, $S_{t+1}^d = |Y_{t+1} - \hat{Y}_{t+1}^d|$, with $\hat{Y}_{t+1}^d = h_d(Y_{t-n_c-d:t-d+1})$, $d \in [D]$.
 357 This produces a set of D conformal p -values for each observation $t+1$, denoted $\{\beta_{t+1}^d\}_{d \in [D]}$. The
 358 final anomaly score is the median across horizons,
 359

$$\bar{\beta}_{t+1} = \text{median}_{d \in [D]} \beta_{t+1}^d, \quad \beta_{t+1}^d = \beta_{\mathbf{w}^d}(S_{t+1}^d). \quad (15)$$

360 This requires an observation to be identified as a significant outlier by more than half of the horizon-
 361 specific detectors. In the streaming setting, we maintain a buffer of forecasts at different horizons.
 362 When a new sample Y_{t+1} is observed, we collect its aligned forecasts $\{\hat{Y}_{t+1}^d\}_{d \in [D]}$, compute the
 363 corresponding errors $\{S_{t+1}^d\}_{d \in [D]}$, and update each horizon-specific instance of Algorithm 1 to
 364 obtain the adaptive p -values, $\{\beta_{t+1}^d\}_{d \in [D]}$. In Appendix C.2.4 we describe how Algorithm 1 extends
 365 to multivariate time series anomaly detection in a similar manner.
 366

6 EXPERIMENTS

368 We evaluate the proposed conformalized anomaly score \mathcal{W}_1 -ACAS (Algorithm 1) by analyzing its
 369 calibration and anomaly detection performance on time series data. Synthetic experiments (Ap-
 370 pendix C.1) validate its ability to remain calibrated under both gradual and abrupt distribution
 371 shifts, where ground-truth p -values are available. Our main empirical study focuses on real-world
 372 anomaly detection datasets, where we assess detection accuracy using both threshold-independent
 373 and threshold-dependent metrics.
 374

375 **Anomaly Detection Datasets.** We evaluated the performance of our proposed method (\mathcal{W}_1 -
 376 ACAS, Algorithm 1) for unsupervised univariate time series anomaly detection when applied to a
 377

378 pre-trained time series foundation model. Experiments are conducted on seven benchmark datasets:
 379 YAHOO (Laptev et al., 2015), NEK (Si et al., 2024), NAB (Ahmad et al., 2017), MSL (Lai et al.,
 380 2021), IOPS (IOPS, n.d.), STOCK (Tran et al., 2016), and WSD (Zhang et al., 2022), all part of the
 381 curated anomaly detection benchmark of Liu & Paparrizos (2024). For the multivariate experiments,
 382 we additionally use the curated subsets of TAO (Laboratory, 2024), GECCO (Rehbach et al., 2018),
 383 LTDB (Goldberger et al., 2000), and Genesis (von Birgelen & Niggemann, 2018) released as part
 384 of the benchmark in Liu & Paparrizos (2024). Each dataset consists of an initial segment without
 385 anomalies used for training or calibration, followed by a test split that may contain anomalies.
 386

387 **\mathcal{W}_1 -ACAS + TSFM.** We integrate \mathcal{W}_1 -ACAS with three pre-trained TSFMs: Tiny Time Mix-
 388 ers (TTM) (Ekambaram et al., 2024), Chronos-Bolt-Small (Chronos) (Ansari et al., 2024), and
 389 TiReX (Auer et al., 2025). All models use a context length of 52 and a forecast horizon of $D = 15$.
 390 For Algorithm 1, we set the critical false alarm rate to $\alpha_c = 0.01$, batch size $n_b = 10$, and learning
 391 rate $\gamma = 0.001$. We use ADAM (Kingma & Ba, 2015) to perform an adaptive gradient descent
 392 on the weights w . Appendix C.2.3 Fig. 8 analyzes the impact of aggregating forecast horizons,
 393 showing that $D = 15$ provides a reasonable balance between performance and sample efficiency.
 394 Figures 9, 10, and 11 show the sensitivity of \mathcal{W}_1 -ACAS to the learning rate γ , batch size n_b , and
 395 α_c . The method shows low variability for small γ and n_b . The parameter α_c controls the maximum
 396 acceptable p -value resolution: smaller values require a larger number of in-distribution past
 397 observations n_c , but do not impose a lower bound on the detectable anomaly level.
 398

399 **Baseline Methods.** We compare \mathcal{W}_1 -ACAS against two TSFM-based baselines: a **Gaussian**
 400 model that fits the mean absolute forecast error across d steps using calibration data, and a **Confor-
 401 mal** offline approach that learns p -value mappings per horizon and aggregates them by the median.
 402 We also include top-performing classical methods from Liu & Paparrizos (2024): **KShape** (Papari-
 403 zos & Gravano, 2015, 2017), **Boniol et al., 2021**, **POLY** (Li et al., 2007), **Sub-PCA** (Aggarwal &
 404 Aggarwal, 2017), **Sub-KNN** (Ramaswamy et al., 2000), and **SAND** (Boniol et al., 2021). We further
 405 include strong semi-supervised deep learning-based anomaly detection methods (Audibert et al.,
 406 2022), namely **CNN** (Munir et al., 2018), **USAD** (Audibert et al., 2020), and **OmniAnomaly** (Su
 407 et al., 2019), as well as the recent general purpose TSFM **MOMENT** (Goswami et al., 2024), which
 408 provides zero-shot anomaly scoring. Additional details are provided in Appendix C.2.1
 409

410 **Evaluation Metrics.** We report both point-wise (AUC, PA-F1) (Wu et al., 2022; Wang et al.,
 411 2024; Liu & Paparrizos, 2024) and range-wise metrics (VUS (Paparrizos et al., 2022a), Affiliation-
 412 F1 (Huet et al., 2022)). For threshold-dependent scores (PA-F1, Affiliation-F1), we follow the oracle
 413 strategy of Liu & Paparrizos (2024), selecting the best threshold in $[0, 1]$ and reporting the associated
 414 False Positive Rate (FPR) and calibration error (CalErr). Further details are in Appendix C.2.2
 415

416 **Table 1: Performance Summary across univariate datasets.** Entries indicate the mean \pm standard
 417 deviation computed by first averaging within each dataset group, then averaging across groups (equal
 418 weight). Higher numbers are better for PA-F1, Affiliation-F, AUC-PR, VUS-PR; lower numbers are
 419 better for FPR, and calibration error (CalErr). Underlined results indicate best post-hoc methods
 420 applied to the same base forecaster, while bold indicate best results overall.
 421

Forecaster	AD Method	PA-F1 \uparrow	Affiliation-F \uparrow	FPR \downarrow	CalErr \downarrow	AUC-PR \uparrow	VUC-PR \uparrow
Chronos	\mathcal{W}_1 -ACAS	0.912 ± 0.066	0.893 ± 0.060	0.077 ± 0.114	0.025 ± 0.029	0.355 ± 0.261	0.440 ± 0.272
Chronos	Conformal	0.863 ± 0.109	0.891 ± 0.063	0.111 ± 0.130	0.038 ± 0.055	0.310 ± 0.240	0.420 ± 0.248
Chronos	Gaussian	0.716 ± 0.260	0.842 ± 0.066	0.123 ± 0.109	0.075 ± 0.061	0.265 ± 0.250	0.438 ± 0.245
TTM	\mathcal{W}_1 -ACAS	0.889 ± 0.108	0.886 ± 0.058	0.082 ± 0.120	0.029 ± 0.031	0.342 ± 0.261	0.449 ± 0.245
TTM	Conformal	0.851 ± 0.124	0.885 ± 0.062	0.120 ± 0.145	0.044 ± 0.056	0.317 ± 0.247	0.448 ± 0.250
TTM	Gaussian	0.733 ± 0.240	0.849 ± 0.067	0.128 ± 0.115	0.081 ± 0.065	0.270 ± 0.261	0.450 ± 0.249
TiReX	\mathcal{W}_1 -ACAS	0.925 ± 0.048	0.897 ± 0.064	0.084 ± 0.113	0.025 ± 0.031	0.344 ± 0.269	0.438 ± 0.272
TiReX	Conformal	0.878 ± 0.085	0.890 ± 0.063	0.107 ± 0.137	0.038 ± 0.055	0.308 ± 0.257	0.429 ± 0.256
TiReX	Gaussian	0.714 ± 0.264	0.837 ± 0.068	0.119 ± 0.103	0.090 ± 0.071	0.270 ± 0.264	0.432 ± 0.250
-	POLY	0.527 ± 0.276	0.848 ± 0.072	0.334 ± 0.269	0.282 ± 0.130	0.044 ± 0.031	0.377 ± 0.207
-	Sub-KNN	0.479 ± 0.291	0.786 ± 0.074	0.451 ± 0.276	0.174 ± 0.124	0.118 ± 0.106	0.321 ± 0.234
-	KShape	0.533 ± 0.299	0.789 ± 0.096	0.508 ± 0.291	0.176 ± 0.132	0.125 ± 0.135	0.303 ± 0.262
-	PCA	0.536 ± 0.332	0.826 ± 0.097	0.374 ± 0.297	0.248 ± 0.131	0.100 ± 0.093	0.417 ± 0.274
-	SAND	0.460 ± 0.309	0.790 ± 0.079	0.511 ± 0.296	0.134 ± 0.048	0.101 ± 0.117	0.289 ± 0.190
-	CNN	0.858 ± 0.138	0.881 ± 0.059	0.083 ± 0.103	0.643 ± 0.227	0.269 ± 0.292	0.423 ± 0.289
-	OmniAnomaly	0.674 ± 0.282	0.855 ± 0.068	0.209 ± 0.171	0.571 ± 0.187	0.166 ± 0.087	0.429 ± 0.317
-	USAD	0.498 ± 0.333	0.809 ± 0.099	0.425 ± 0.298	0.324 ± 0.161	0.088 ± 0.088	0.398 ± 0.262
-	MOMENT_ZS	0.596 ± 0.305	0.867 ± 0.088	0.261 ± 0.292	0.417 ± 0.198	0.110 ± 0.075	0.461 ± 0.162

Results Table 1 reports the average performance of \mathcal{W}_1 -ACAS, applied to different TSFM models, compared against the described baselines on the univariate datasets. Our method achieves the strongest performance on threshold-dependent metrics (PA-F1, Affiliation-F), including when compared with semi-supervised methods such as CNN, USAD, and OmniAnomaly, while remaining competitive on threshold-independent metrics (AUC, VUS). When conditioned on the same TSFM model, \mathcal{W}_1 -ACAS shows clear improvements over the Gaussian and Conformal baselines. Figure 2 shows the average performance per univariate dataset for a subset of the methods, extended per-dataset results are provided in Tables 2, 3 and 4 in Appendix C.2.3. Table 5 shows that TSFM models have similar prediction errors across datasets, consistent with their comparable anomaly detection performance. Results for the multivariate datasets are presented in Table 6 in Appendix C.2.4, where we demonstrate how our approach naturally extends to the multivariate setting via p -value aggregation, achieving top performance relative to the corresponding baselines.

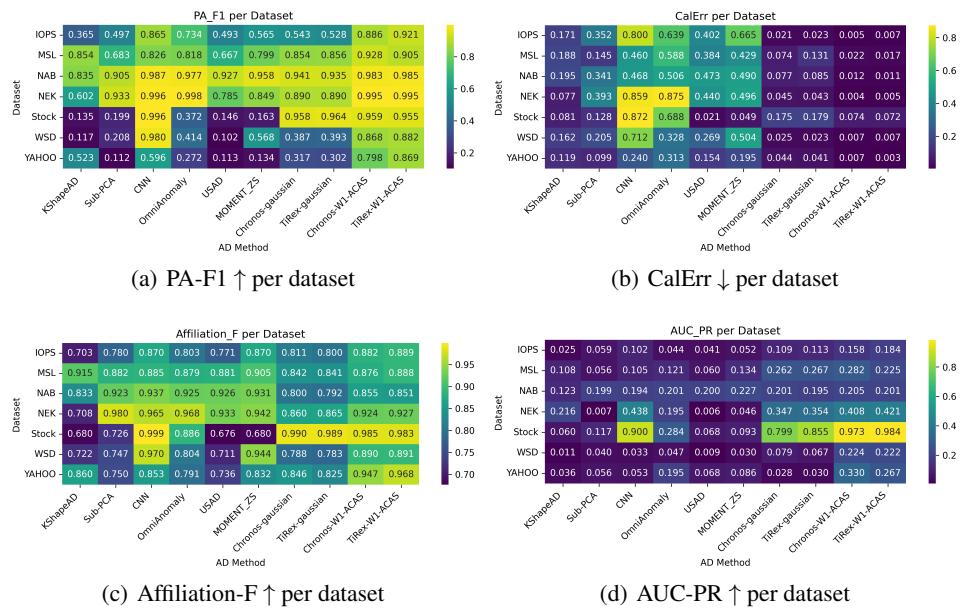


Figure 2: **Performance across univariate datasets for a subset of anomaly detection methods.** Heatmaps show the average per-dataset performance for PA-F1, Affiliation-F, AUC-PR, and Calibration Error (CalErr) across a selected subset of methods. Higher values indicate better performance for PA-F1, Affiliation-F, and AUC-PR, while lower values are preferred for CalErr. Overall, the proposed \mathcal{W}_1 -ACAS combined with Chronos or TiReX yields consistently low calibration error while remaining among the top-performing approaches. Note that CNN, OmniAnomaly and USAD are semi-supervised methods trained on the non-anomalous training datасplit.

Figure 3 shows the FPR-threshold curves in the low-FPR regime, where \mathcal{W}_1 -ACAS (blue) yields the most conservative thresholds, staying closer to or below the identity line compared to competing methods, while also exhibiting the lowest variance. Figure 4 shows representative detection examples along with the final learned weights. We observe that \mathcal{W}_1 -ACAS is adapted to capture underlying temporal patterns in errors if present. Moreover, our method effectively identifies a transition in score distributions (e.g., in the vicinity of an anomalous region) but then quickly adapts to the new anomalous distribution; this helps minimize the number of alarms in the end-to-end system.

Additional examples are provided in Appendix C.2.3. Figure 6 shows more detection cases, and Figure 7 illustrates the trade-offs between FPR and F1 scores (PA-F1, Affiliation-F) across datasets. The operating points of \mathcal{W}_1 -ACAS (blue), in most cases, achieve both the highest F1 score and lowest FPR, especially for PA-F1. Within each TSFM model, our method dominates its Gaussian (green) and Conformal (orange) counterparts in nearly all cases. Furthermore, it produces better-calibrated scores (low CalErr), making threshold selection more reliable in practice.

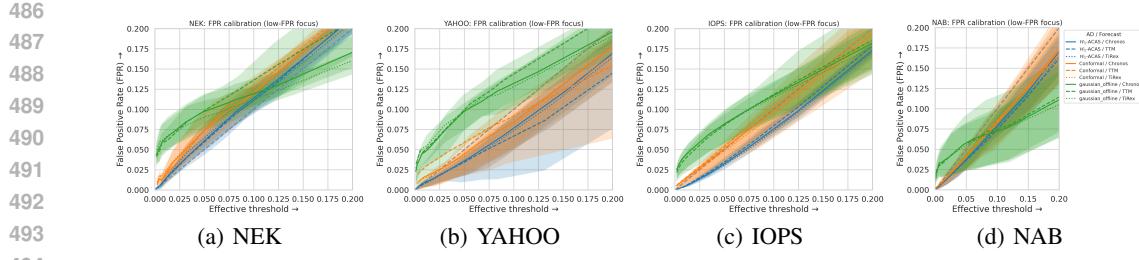


Figure 3: **FPR vs. threshold in the low-FPR regime.** Curves shows the mean false positive rate (FPR) across datasets for a given method, with shaded inter-quartile range (IQR) bands. The dashed gray line indicates ideal calibration ($FPR = \beta$). Curves above the line reflect over-confident scoring (FPR larger than threshold), while curves below the line reflect conservative scoring. In most cases, \mathcal{W}_1 -ACAS (blue) yields the most conservative thresholds, staying closer to or below the identity line compared to competing methods, while also having the lowest variance.

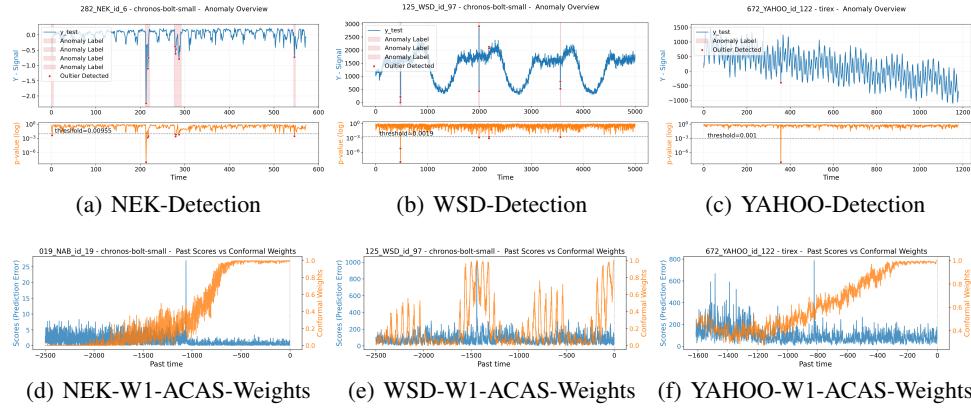


Figure 4: Example signals (blue) with ground-truth anomaly labels (red shading) are shown in the first row, where detected outliers (red dots) occur when adaptive p -values (orange) fall below a threshold under our proposed \mathcal{W}_1 -ACAS method. The second row shows the final adaptive weights (orange) over past errors (blue), averaged across horizons, illustrating how \mathcal{W}_1 -ACAS adapts to and captures underlying error patterns

7 CONCLUSION

In this paper, we presented \mathcal{W}_1 -ACAS, a post-hoc adaptive conformal anomaly detection framework that leverages predictions from pretrained TSFMs to provide interpretable, distribution-agnostic, and well-calibrated anomaly scores without requiring retraining or large datasets. Experiments on benchmark datasets show that our method consistently outperforms competing baselines. \mathcal{W}_1 -ACAS yields more conservative and stable thresholds, its a principled and easily applicable approach that adapts online to temporal error patterns, and minimizes false alarms by adjusting to distributions shifts. These properties make it especially suited for online monitoring in industrial and data-scarce environments. Future work will explore refining conformal weighting with contextual features, with straightforward extensions to multivariate anomalies via horizon-style aggregation.

REFERENCES

- Charu C Aggarwal and Charu C Aggarwal. *An introduction to outlier analysis*. Springer, 2017.
- Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-time anomaly detection for streaming data. *Neurocomputing*, 262:134–147, 2017.
- Ali Ajami and Mahdi Daneshvar. Data driven approach for fault detection and diagnosis of turbine in thermal power plant using independent component analysis (ica). *International Journal of Electrical Power & Energy Systems*, 43(1):728–735, 2012.

540 Salim I Amoukou and Nicolas JB Brunel. Adaptive conformal prediction by reweighting noncon-
 541 formity score. *arXiv preprint arXiv:2303.12695*, 2023.

542

543 Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
 544 distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*, 2021.

545 Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
 546 Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
 547 Chronos: Learning the language of time series. *arXiv preprint arXiv:2403.07815*, 2024.

548 Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. Usad:
 549 Unsupervised anomaly detection on multivariate time series. In *Proceedings of the 26th ACM
 550 SIGKDD international conference on knowledge discovery & data mining*, pp. 3395–3404, 2020.

551

552 Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. Do deep
 553 neural networks contribute to multivariate time series anomaly detection? *Pattern Recognition*,
 132:108945, 2022.

554

555 Andreas Auer, Patrick Podest, Daniel Klotz, Sebastian Böck, Günter Klambauer, and Sepp Hochre-
 556 iter. Tirex: Zero-shot forecasting across long and short horizons with enhanced in-context learn-
 557 ing. *arXiv preprint arXiv:2505.23719*, 2025.

558 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
 559 prediction beyond exchangeability. *The Annals of Statistics*, 51(2):816–845, 2023.

560 Michele Basseville. Detection of abrupt changes: Theory and application. *Prentice-Hall google
 561 schola*, 2:3–11, 1993.

562

563 Stephen Bates, Emmanuel Candès, Lihua Lei, Yaniv Romano, and Matteo Sesia. Testing for outliers
 564 with conformal p-values. *The Annals of Statistics*, 51(1):149–178, 2023.

565 A Beghi, R Brignoli, Luca Cecchinato, Gabriele Menegazzo, Mirco Rampazzo, and F Simmini.
 566 Data-driven fault detection and diagnosis for hvac water chillers. *Control Engineering Practice*,
 567 53:79–91, 2016.

568

569 Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J Franklin. Sand: streaming subse-
 570 quence anomaly detection. *Proceedings of the VLDB Endowment*, 14(10):1717–1729, 2021.

571

572 Paul Boniol, Qinghua Liu, Mingyi Huang, Themis Palpanas, and John Paparrizos. Dive into time-
 573 series anomaly detection: A decade review. *arXiv preprint arXiv:2412.20512*, 2024.

574

575 Dhruv Choudhary, Arun Kejariwal, and Francois Orsini. On the runtime-efficacy trade-off of
 576 anomaly detection techniques for real-time streaming data. *arXiv preprint arXiv:1710.04735*,
 2017.

577

578 Andrew A Cook, Göksel Mısırlı, and Zhong Fan. Anomaly detection for iot time-series data: A
 579 survey. *IEEE Internet of Things Journal*, 7(7):6481–6494, 2019.

580

581 Vijay Ekambaram, Arindam Jati, Nam H Nguyen, Pankaj Dayama, Chandra Reddy, Wesley M
 582 Gifford, and Jayant Kalagnanam. Ttms: Fast multi-level tiny time mixers for improved zero-shot
 583 and few-shot forecasting of multivariate time series. *arXiv preprint arXiv:2401.03955*, 2024.

584

585 Ronald Aylmer Fisher. Statistical methods for research workers. In *Breakthroughs in statistics:
 586 Methodology and distribution*, pp. 66–70. Springer, 1970.

587

588 João Gama, Indrē Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A
 589 survey on concept drift adaptation. *ACM computing surveys (CSUR)*, 46(4):1–37, 2014.

590

591 Subhankar Ghosh, Taha Belkhouja, Yan Yan, and Janardhan Rao Doppa. Improving uncertainty
 592 quantification of deep classifiers via neighborhood conformal prediction: Novel algorithm and
 593 theoretical analysis. *arXiv preprint arXiv:2303.10694*, 2023.

594

595 Federico Giannoni, Marco Mancini, and Federico Marinelli. Anomaly detection models for iot time
 596 series data. *arXiv preprint arXiv:1812.00890*, 2018.

597

598 Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. *Ad-
 599 vances in Neural Information Processing Systems*, 34:1660–1672, 2021.

594 Isaac Gibbs and Emmanuel J Candès. Conformal inference for online prediction with arbitrary
 595 distribution shifts. *Journal of Machine Learning Research*, 25(162):1–36, 2024.

596

597 Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional guar-
 598 antees. *arXiv preprint arXiv:2305.12616*, 2023.

599 Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
 600 Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
 601 physiotookit, and physionet: components of a new research resource for complex physiologic
 602 signals. *circulation*, 101(23):e215–e220, 2000.

603 Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, and Andrey Kan. Unsuper-
 604 vised model selection for time-series anomaly detection. *arXiv preprint arXiv:2210.01078*, 2022.

605

606 Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
 607 Moment: A family of open time-series foundation models. *arXiv preprint arXiv:2402.03885*,
 608 2024.

609 Leying Guan. Conformal prediction with localization. *arXiv preprint arXiv:1908.08558*, 2019.

610

611 Leying Guan. Localized conformal prediction: A generalized inference framework for conformal
 612 prediction. *Biometrika*, 110(1):33–50, 2023.

613 Xing Han, Ziyang Tang, Joydeep Ghosh, and Qiang Liu. Split localized conformal prediction. *arXiv
 614 preprint arXiv:2206.13092*, 2022.

615 Nicholas A Heard and Patrick Rubin-Delanchy. Choosing between methods of combining-values.
 616 *Biometrika*, 105(1):239–246, 2018.

617

618 Alexis Huet, Jose Manuel Navarro, and Dario Rossi. Local evaluation of time series anomaly detec-
 619 tion algorithms. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
 620 and Data Mining*, pp. 635–645, 2022.

621 IOPS. IOPS Dataset, n.d. URL http://iops.ai/dataset_detail/?id=10. Accessed:
 622 [DATE].

623

624 Ameeth Kanawaday and Aditya Sane. Machine learning for predictive maintenance of industrial
 625 machines using iot sensor data. In *2017 8th IEEE international conference on software engineer-
 626 ing and service science (ICSESS)*, pp. 87–90. IEEE, 2017.

627 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *International
 628 Conference on Learning Representations (ICLR)*, 2015.

629

630 NOAA Pacific Marine Environmental Laboratory. Tropical atmosphere ocean (TAO) project dataset.
 631 <https://www.pmel.noaa.gov/>, 2024. Data retrieved from the TAO Project maintained by
 NOAA PMEL.

632

633 Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting
 634 time series outlier detection: Definitions and benchmarks. In *Thirty-fifth conference on neural
 635 information processing systems datasets and benchmarks track (round 1)*, 2021.

636 N. Laptev, S. Amizadeh, and Y. Billawala. S5 - A Labeled Anomaly Detection Dataset, version
 637 1.0(16M), March 2015.

638

639 Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric regression.
 640 *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 76(1):71–96, 2014.

641

642 Zhi Li, Hong Ma, and Yongbing Mei. A unifying method for outlier and change detection from data
 643 streams based on local polynomial fitting. In *Advances in Knowledge Discovery and Data Mining:
 644 11th Pacific-Asia Conference, PAKDD 2007, Nanjing, China, May 22-25, 2007. Proceedings 11*,
 645 pp. 150–161. Springer, 2007.

646

647 Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and
 648 Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In *Proceedings
 649 of the 30th ACM SIGKDD conference on knowledge discovery and data mining*, pp. 6555–6565,
 650 2024.

648 Qinghua Liu and John Paparrizos. The elephant in the room: Towards a reliable time-series anomaly
 649 detection benchmark. In *The Thirty-eighth Conference on Neural Information Processing Systems*
 650 *Datasets and Benchmarks Track*, 2024.

651 Huiying Mao, Ryan Martin, and Brian J Reich. Valid model-free spatial prediction. *Journal of the*
 652 *American Statistical Association*, 119(546):904–914, 2024.

653 Ramin Moghaddass and Jianhui Wang. A hierarchical framework for smart grid anomaly detection
 654 using large-scale smart meter data. *IEEE Transactions on Smart Grid*, 9(6):5820–5830, 2017.

655 Mohsin Munir, Shoaib Ahmed Siddiqui, Andreas Dengel, and Sheraz Ahmed. Deepant: A deep
 656 learning approach for unsupervised anomaly detection in time series. *Ieee Access*, 7:1991–2005,
 657 2018.

658 Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
 659 machines for regression. In *Machine Learning: ECML 2002: 13th European Conference on*
 660 *Machine Learning Helsinki, Finland, August 19–23, 2002 Proceedings 13*, pp. 345–356. Springer,
 661 2002.

662 John Paparrizos and Luis Gravano. k-shape: Efficient and accurate clustering of time series. In
 663 *Proceedings of the 2015 ACM SIGMOD international conference on management of data*, pp.
 664 1855–1870, 2015.

665 John Paparrizos and Luis Gravano. Fast and accurate time-series clustering. *ACM Transactions on*
 666 *Database Systems (TODS)*, 42(2):1–49, 2017.

667 John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S Tsay, Aaron Elmore, and Michael J
 668 Franklin. Volume under the surface: a new accuracy evaluation measure for time-series anomaly
 669 detection. *Proceedings of the VLDB Endowment*, 15(11):2774–2787, 2022a.

670 John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S Tsay, Themis Palpanas, and Michael J Franklin.
 671 Tsb-uad: an end-to-end benchmark suite for univariate time-series anomaly detection. *Proceed-
 672 ings of the VLDB Endowment*, 15(8):1697–1711, 2022b.

673 Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining outliers
 674 from large data sets. In *Proceedings of the 2000 ACM SIGMOD international conference on*
 675 *Management of data*, pp. 427–438, 2000.

676 Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos,
 677 Rishika Bhagwatkar, Marin Biloš, Hena Ghonia, Nadhir Hassen, Anderson Schneider, et al. Lag-
 678 llama: Towards foundation models for time series forecasting. In *R0-FoMo: Robustness of Few-
 679 shot and Zero-shot Learning in Large Foundation Models*, 2023.

680 Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian
 681 Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir
 682 Hassen, et al. Lag-llama: Towards foundation models for probabilistic time series forecasting.
 683 *Preprint*, 2024.

684 Frederik Rehbach, Steffen Moritz, Sowmya Chandrasekaran, Margarita Rebollo, Martina Friese,
 685 and Thomas Bartz-Beielstein. Gecco 2018 industrial challenge: Monitoring of drinking-water
 686 quality. *Accessed: Feb, 19:2019*, 2018.

687 Sakti Saurav, Pankaj Malhotra, Vishnu TV, Narendhar Gugulothu, Lovekesh Vig, Puneet Agarwal,
 688 and Gautam Shroff. Online anomaly detection with concept drift adaptation using recurrent neural
 689 networks. In *Proceedings of the acm india joint international conference on data science and*
 690 *management of data*, pp. 78–87, 2018.

691 Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series: a
 692 comprehensive evaluation. *Proceedings of the VLDB Endowment*, 15(9):1779–1797, 2022.

693 Matteo Sesia and Yaniv Romano. Conformal prediction using conditional histograms. *Advances in*
 694 *Neural Information Processing Systems*, 34:6304–6315, 2021.

695 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning*
 696 *Research*, 9(3), 2008.

702 Gauri Shah and Aashis Tiwari. Anomaly detection in iiot: A case study using machine learning. In
 703 *Proceedings of the ACM India joint international conference on data science and management of*
 704 *data*, pp. 295–300, 2018.

705 Haotian Si, Jianhui Li, Changhua Pei, Hang Cui, Jingwen Yang, Yongqian Sun, Shenglin Zhang,
 706 Jingjing Li, Haiming Zhang, Jing Han, et al. Timeseriesbench: An industrial-grade benchmark for
 707 time series anomaly detection models. In *2024 IEEE 35th International Symposium on Software*
 708 *Reliability Engineering (ISSRE)*, pp. 61–72. IEEE, 2024.

709 Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
 710 multivariate time series through stochastic recurrent neural network. In *Proceedings of the 25th*
 711 *ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 2828–2837,
 712 2019.

713 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal pre-
 714 diction under covariate shift. *Advances in neural information processing systems*, 32, 2019.

715 Luan Tran, Liyue Fan, and Cyrus Shahabi. Distance-based outlier detection in data streams. *Pro-*
 716 *ceedings of the VLDB Endowment*, 9(12):1089–1100, 2016.

717 Alexander von Birgelen and Oliver Niggemann. Anomaly detection and localization for cyber-
 718 physical production systems with self-organizing maps. In *IMPROVE-Innovative Modelling Ap-*
 719 *proaches for Production Systems to Raise Validatable Efficiency: Intelligent Methods for the*
 720 *Factory of the Future*, pp. 55–71. Springer Berlin Heidelberg Berlin, Heidelberg, 2018.

721 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*,
 722 volume 29. Springer, 2005.

723 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
 724 time series models: A comprehensive survey and benchmark. *arXiv preprint arXiv:2407.13278*,
 725 2024.

726 Daniel J Wilson. The harmonic mean p-value for combining dependent tests. *Proceedings of the*
 727 *National Academy of Sciences*, 116(4):1195–1200, 2019.

728 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
 729 *730* poral 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*,
 731 2022.

732 Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut. Adaptive
 733 conformal predictions for time series. In *International Conference on Machine Learning*, pp.
 734 25834–25866. PMLR, 2022.

735 Shenglin Zhang, Zhenyu Zhong, Dongwen Li, Qiliang Fan, Yongqian Sun, Man Zhu, Yuzhi Zhang,
 736 Dan Pei, Jiyan Sun, Yinlong Liu, et al. Efficient kpi anomaly detection through transfer learning
 737 for large-scale web services. *IEEE Journal on Selected Areas in Communications*, 40(8):2440–
 738 2455, 2022.

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755