
scTree: Discovering Cellular Hierarchies in the Presence of Batch Effects in
scRNA-seq Data

Moritz Vandenhirtz * 1 Florian Barkmann * 1 Laura Manduchi 1 Julia E. Vogt † 1 Valentina Boeva † 1

Abstract
We propose a novel method, scTree, for single-
cell Tree Variational Autoencoders, extending
a hierarchical clustering approach to single-cell
RNA sequencing data. scTree corrects for batch
effects while simultaneously learning a tree-
structured data representation. This VAE-based
method allows for a more in-depth understanding
of complex cellular landscapes independently of
the biasing effects of batches. We show empiri-
cally on seven datasets that scTree discovers the
underlying clusters of the data and the hierarchical
relations between them, as well as outperforms es-
tablished baseline methods across these datasets.
Additionally, we visualize the learned trees to bet-
ter understand the hierarchy and their biological
relevance, thus underpinning the importance of
integrating batch correction directly into the clus-
tering procedure.

1. Introduction
Recent progress in high-throughput sequencing technolo-
gies has enabled single-cell RNA sequencing (scRNA-seq)
to emerge as a powerful approach for investigating cellular
diversity in various tissues and organisms (Sikkema et al.,
2022; Eraslan et al., 2022). This technique offers a com-
prehensive overview of gene expression variation across
multiple individual cells. Clustering analysis is a critical
tool in understanding scRNA-seq data, as it enables the iden-
tification of homogeneous sub-populations of cells (Kiselev
et al., 2019). By analyzing gene expression patterns, cluster-
ing analysis can reveal previously unknown cell identities
and functions and detect both common and rare cell types
(Osumi-Sutherland et al., 2021). Among various clustering
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techniques, hierarchical clustering is a popular tool as it
provides an unsupervised path to find cell sub-populations
and their hierarchical relationships at different granularity
(Žurauskienė & Yau, 2016; Jiang et al., 2018; Zou et al.,
2021).

Despite its potential, traditional hierarchical clustering tech-
niques might lead to sub-optimal results when applied to
scRNA-seq data due to factors like amplification biases,
and high-dimensional input spaces. The presence of batch
effects poses an additional challenge, confounding the ac-
curate identification of cell populations (Lähnemann et al.,
2020). Batch effects refer to the inherent technical variations
across different experimental batches, such as variations in
sample preparation, sequencing platforms, or environmental
conditions.

To overcome this issue, batch integration methods have
been developed to harmonize scRNA-seq data from multiple
experimental batches, thereby reducing or eliminating the
effects of technical variability while preserving biological
signals (Luecken et al., 2022). By aligning and integrating
data from different batches, these methods enable more
robust downstream analyses, such as clustering, differential
expression analysis, and trajectory inference. Current best
practices for analyzing scRNA-seq data involve a two-step
procedure. The first step is dimensionality reduction with
batch integration to compress the data. Then, clustering at
different resolutions is performed on the lower dimensional
data representation (Luecken & Theis, 2019; Hua & Zhang,
2019).

Variational autoencoders (VAEs) are widely utilized in the
realm of scRNA-seq data analysis to leverage large amounts
of available data and learn compressed latent representa-
tions with batch integration (Lopez et al., 2018; Svensson
et al., 2020b; Grønbech et al., 2020; Lotfollahi et al., 2022).
Although clustering on the latent space of VAEs improves
upon clustering on the raw data (Luecken et al., 2022), the
combined optimization of clustering algorithms and VAE’s
representations has demonstrated substantial improvements
in clustering performance (Shin et al., 2019). Among these
works, Tree Variational Autoencoders (TreeVAE) (Man-
duchi et al., 2023) is an end-to-end VAE-based method that
discovers the inherent hierarchical structure of the data by
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learning a tree-based posterior probability of latent vari-
ables.

Building upon the work of TreeVAE, we extend this frame-
work to address the challenges presented by scRNA-seq data.
We propose scTree, a method that integrates hierarchical
clustering with batch correction techniques to enhance the
clustering of scRNA-seq data. Additionally, we introduce a
splitting rule that is able to capture the imbalanced clusters
in the data. Our approach identifies the inherent hierarchi-
cal structure of cellular populations while simultaneously
mitigating batch effects, thereby enabling a more precise
understanding of cell types and states. By jointly optimizing
hierarchical clustering and batch-integrated representation
learning within the VAE framework, we offer a powerful
tool for dissecting complex cellular landscapes and unrav-
eling the intricacies of biological systems at a single-cell
resolution. To the best of our knowledge, this is the first
work that explores hierarchical clustering with VAEs trained
jointly with batch integration for scRNA-seq data.

Our main contributions are as follows: i) We propose
an extension of TreeVAE to scRNA-seq data that simulta-
neously corrects for batch effects and learns a binary tree
to mimic the hierarchies present in the data. Additionally,
we propose a novel splitting rule, removing the assump-
tion of balanced clusters. ii) We evaluate our method on
seven different datasets and compare it to three baselines to
demonstrate its effectiveness. iii) We qualitatively assess
the learned hierarchy and show the correspondence to the
underlying biological systems.

2. Related Work
Hierarchical clustering algorithms are a frequently used
technique for unraveling the intricate hierarchical structures
inherent in biological data. Agglomerative hierarchical clus-
tering algorithms (Sneath, 1957; Ward, 1963; Murtagh &
Contreras, 2012) treat each data point as a separate clus-
ter and progressively merge these clusters based on their
proximity, as defined by a specific distance metric. Diverg-
ing from traditional agglomerative techniques, Bayesian
Hierarchical Clustering (Heller & Ghahramani, 2005) in-
troduces a probabilistic framework that utilizes hypothesis
testing for cluster merging decisions. Divisive hierarchi-
cal clustering algorithms (Kaufman & Rousseeuw, 2009),
the category which TreeVAE falls into, offer an alternative
strategy, starting with a single cluster that encompasses all
data points and iteratively dividing it into smaller clusters.
The Bisecting-K-means algorithm (Steinbach et al., 2000;
Nistér & Stewénius, 2006) repeatedly applies k-means clus-
tering to divide data into two parts. Relatedly, Williams
(1999) learn a hierarchical probabilistic Gaussian mixture
model. Further hierarchical probabilistic clustering methods
include VAE-nCRP (Goyal et al., 2017; Shin et al., 2019)

and the TMC-VAE (Vikram et al., 2018). that use Bayesian
nonparametric hierarchical clustering based on the nested
Chinese restaurant process (nCRP) prior (Blei et al., 2003)
or the time-marginalized coalescent (TMC).

Various hierarchical clustering algorithms have emerged to
address the unique challenges encountered in single-cell
RNA sequencing (scRNA-seq) data analysis. (Lin et al.,
2017) proposed Clustering through Imputation and Dimen-
sionality Reduction (CIDR), leveraging imputation tech-
niques within a hierarchical framework to mitigate the im-
pact of dropouts inherent in scRNA-seq data. (Morelli et al.,
2021) presented Nested Stochastic Block Models (NSBM)
and (Zou et al., 2021) proposed Hierarchical Graph-based
clustering (HGC), both offering methods for hierarchical
clustering directly on the k-nearest neighbor graph of cells,
bypassing the count matrix. Additionally, scDEF, a method
introduced by (Ferreira et al., 2022), employs a two-level
Bayesian matrix factorization model to jointly generate hier-
archical clustering and infer gene signatures for each cluster.
Notably, among these methods, only scDEF has the capabil-
ity to handle batch effects. However, it generates a two-level
hierarchy rather than a binary tree, posing challenges for
comparisons with methods such as scTree.

3. Methodology
We propose scTree, a VAE-based method that uncovers hier-
archical structures in single-cell RNA sequencing data. We
build upon the recently proposed TreeVAE (Manduchi et al.,
2023) and extend it to learn a structured latent space cor-
rected for batch effects, thereby enabling the discovery of
cell types (and subtypes) in an unsupervised way. Figure 1
provides a schematic overview of scTree. In Section 3.1, we
summarize TreeVAE, a method designed to perform hierar-
chical clustering with VAEs. In Section 3.2, we then propose
an extension that allows for the discovery of hierarchies in
scRNA-seq data.

3.1. Tree Variational Autoencoders

This section provides an overview on the Tree Variational
Autoencoder (TreeVAE Manduchi et al., 2023). TreeVAE
is a hierarchical VAE composed of a tree structure of latent
variables, whose structure is learned during training. It thus
learns (i) a hierarchical generative model that permits the
generation of new samples and (ii) a hierarchical clustering
of data points, thus uncovering meaningful patterns in the
data, and a hierarchical categorization of samples.

TreeVAE defines a probabilistic binary tree T , where each
node i is characterized by a sample-specific embedding zi.
The generative path of a sample is as follows: First, the
root node’s latent embedding z0 is sampled from a stan-
dard Gaussian. From this embedding, the probabilities of
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Figure 1. Schematic overview of the proposed method. The input x is passed through an encoder to be consequently reconstructed through
a tree-shaped process. The process consists of probabilistically going left or right in each node, followed by a nonlinear transformation on
the embedding zi. The cluster-specific decoders take as input their leaf-embedding and batch information and reconstruct the gene count
parameters of the negative binomial distribution.

going to the left or right child in the tree are computed
by a multilayer perceptron. The latent embedding of the
selected child zi is sampled from a Gaussian distribution
pθ(zi | z0) = N

(
zi | µp,i (z0) , σ

2
p,i (z0)

)
conditioned on

its parent. This routing–transformation process is repeated
until a leaf node is reached. Each leaf corresponds to one
cluster and includes a decoder through which the observed
sample is generated, conditioned on the sample-specific leaf
embedding. To recover the assumed generative model, the
inference model of TreeVAE matches the tree structure. To
avoid a posterior collapse of the root, they utilize the trick
of LadderVAE (Sønderby et al., 2016) to learn a bottom-
up chain from the sample x to the root z0 with which the
generative model can be guided.

To optimize the parameters of the generative and infer-
ence model and to learn the tree structure, TreeVAE it-
erates two training steps sequentially: model refinement
and tree growing. During the model refinement, it as-
sumes a fixed tree (starting from a root and two chil-
dren) and optimizes the Evidence Lower Bound (ELBO):
L(x | T ) := Eq(zPl

,Pl|x)[log p(x | zPl
,Pl)] −

KL (q (zPl
,Pl | x)∥p (zPl

,Pl)) , where Pl denotes the
path in the tree from the root to leaf l which has been fol-
lowed. A more detailed analysis of the ELBO is omitted,
but intuitively, the loss consists of two parts: The first term
represents the reconstruction loss, which is characterized
by a weighted sum over the reconstruction loss of each
leaf, where each weight is the probability that the sample

reaches this leaf. For each sample encourages that the leaf
with the highest probability has the lowest reconstruction
loss, which, combined with the cluster-specific decoders,
guides the learning of the clusters. The second part is the
Kullback–Leibler divergence (KL), which regularizes the
learned embeddings, as well as the routing probabilities.

In the growing step, the leaf with the highest number of
assigned samples is split by attaching two new leaves. The
new tree is then updated via the model’s refinement step.
This scheme is repeated until the tree is fully grown. This
imposes an inductive bias towards balanced clusters, which
is unsuitable for scRNA-seq data where important cell types
might be underrepresented. For a more detailed description
of TreeVAE, we refer to their work.

3.2. Tree Variational Autoencoders for Single-Cell Data

In this work, we investigate whether TreeVAE can be em-
ployed to discover cell subtypes in scRNA-seq data. To
do so, we propose scTree, which extends TreeVAE by (a)
defining a new reconstruction loss for the new data type, (b)
integrating batch information into the architecture, and (c)
defining a new splitting criterion.

First, to accommodate for the discrete nature of the data
representing read counts, we redefine the loss function.
Instead of assuming Bernoulli or Gaussian data, we now
assume a Negative Binomial distribution x | zPl

,Pl ∼
NB(µl (zl) , θ), where the mean is predicted by the leaf-
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specific decoder µl from the sample-wise latent leaf embed-
dings zl, while the dispersion parameters are learned per
gene and remain the same across leaves. This parameteriza-
tion encourages that samples in each leaf are supposed to
have unique characteristics and, as such, supports meaning-
ful clustering.

A frequent issue in scRNA-seq is the handling of batch
effects. While previous hierarchical clustering methods per-
form batch integration either ante-hoc (Li et al., 2020) or
cluster the data at different resolutions (Luecken & Theis,
2019; Hua & Zhang, 2019), the gradient-based nature of the
clustering in TreeVAE allows for an end-to-end integration
of batch effects into the learning process. As such, we hand
the leaf-specific decoders µl the batch information as addi-
tional input information. Therefore, the learned embeddings
zl do not have to contain this unwanted information, leading
to batch-corrected representations and clustering.

An important question for every divisive clustering algo-
rithm is the finding of an adequate criterion that determines
which leaf to split. For TreeVAE, the split is performed by
splitting the leaf with the highest number of samples falling
into it, which encodes an implicit bias towards balanced
clusters. While this works for balanced imaging bench-
marks, in scRNA-seq data, oftentimes, the target cell types
are distributed unevenly. For this reason, we introduce a
novel splitting rule based on the reconstruction loss. For
each leaf, we grow a proposal subtree with leaves l1, l2 for
10 epochs and compute the average difference in reconstruc-
tion loss ∥log p(x | zPl1

,Pl1)−log p(x | zPl2
,Pl2)∥1 over

the dataset it was trained with. The bigger the difference,
the more specialized the leaves have become, indicating
that a meaningful split has been found. Thus, the proposal
subtree with the highest average difference in reconstruction
loss is selected and trained for a longer time.

4. Experiments
Datasets and Metrics: We assess the clustering and
batch integration capabilities of scTree using seven dis-
tinct scRNA-seq datasets. The first dataset from (Ding
et al., 2019) consists of peripheral blood mononuclear cells
(PBMC) sourced from two healthy donors, which were se-
quenced on seven different sequencing technologies. In this
dataset, the primary challenge lies in harmonizing batches
originating from different donors and sequencing technolo-
gies. The second dataset is the mouse retinal bipolar neu-
ron dataset (Retina) from (Shekhar et al., 2016) which was
also used in (Lopez et al., 2018). Further three dataset,
immune human cell dataset (IHC), Pancreas and Lung At-
las, are taken from (Luecken et al., 2022). In the IHC
dataset, five cell types are only present in three out of ten
batches. On this dataset, we evaluate the method’s capa-
bility to merge cell types consistently found in all batches

without excessively merging cell types that are only present
in a few batches. The remaining two datasets consist of ma-
lignant cells from cancer patients. Specifically, we utilize a
glioblastoma dataset (GBM) from (Neftel et al., 2019) and
a squamous cell carcinoma dataset (SCC) from (Ji et al.,
2020). In datasets derived from malignant cells, strong
patient-specific effects due to genetic differences between
cells pose significant challenges for data integration. For a
detailed description of the datasets, see Appendix B.

To evaluate the biological meaningfulness of the hierarchical
clustering, we compute the Normalized Mutual Information
(NMI) and Adjusted Rand Index (ARI), as well as Den-
drogram Purity (DP) and Leaf Purity (LP), as defined by
(Kobren et al., 2017), using the cell type labels as ground
truth. Furthermore, we calculate the NMI of the batch labels
and the clustering (NMIbatch) to assess the batch integra-
tion performance. We report all metrics for the number of
clusters set equal to the number of cell types in each dataset.

Baselines: We compare scTree to three baselines. Firstly,
we employ Principal Component Analysis (PCA) (Pear-
son, 1901) coupled with Ward’s Agglomerative clustering
(Agg) (Ward, 1963) applied to the first 50 Principal Com-
ponents (PCs). Additionally, we utilize Agg on the latent
representations learned by two commonly used batch inte-
gration method for scRNA-seq data: scVI by Lopez et al.
(2018) + Agg and LDVAE by Svensson et al. (2020a) +
Agg. For all baselines, we used the scikit-learn’s (Pedregosa
et al., 2011) AgglomerativeClustering implementation with
default parameters.

Implementation Details The model architecture of scTree
was determined via datasets that are not included in this
work to prevent biased results. For consistency, we set the la-
tent dimensions for all VAE-based methods to 10 and report
the results for scTree using both the proposed reconstruction-
loss-based and the previous sample-count-based splitting
rules. A full list of scTree’s architecture can be found in
Appendix A.

5. Results & Discussion
Hierarchical Clustering Results As evidenced by Table 1,
on most datasets scTree performs hierarchical clustering
on par or better than the baseline methods. Especially for
the tumor datasets, scTree shows promising performance,
as evidenced by NMI, as well as DP, where DP also takes
the learned hierarchy into account. As the tumor datasets
are the ones that pose the most significant challenge regard-
ing batch integration, we interpret these results that scTree
performs best when there is a strong need to correct for
these patient-specific effects. Incidentally, the clustering of
scTree compared to the baselines has a worse batch NMI.
This worse numerical performance should be interpreted
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Table 1. Hierarchical clustering performances of scTree compared with baselines. Means and standard deviations are computed across 10
runs with different random model initializations. The best-performing methods are bolded.

NMI (↑) ARI (↑) DP (↑) LP (↑) NMIbatch (↓)
Dataset Method

Pancreas Agg 0.75±0.00 0.52±0.00 0.89±0.00 0.90±0.00 0.36±0.00

scVI+Agg 0.76±0.01 0.57±0.04 0.94±0.01 0.94±0.00 0.10±0.01

ldVAE+Agg 0.77±0.01 0.55±0.03 0.94±0.01 0.95±0.00 0.15±0.01

scTree#sample 0.75±0.03 0.56±0.08 0.90±0.08 0.91±0.03 0.21±0.03

scTreereconstruction 0.84±0.04 0.83±0.10 0.92±0.07 0.94±0.02 0.13±0.03

Lung Atlas Agg 0.69±0.00 0.46±0.00 0.54±0.00 0.71±0.00 0.47±0.00

scVI+Agg 0.69±0.01 0.52±0.03 0.65±0.02 0.75±0.01 0.27±0.01

ldVAE+Agg 0.68±0.01 0.50±0.04 0.63±0.03 0.73±0.01 0.30±0.01

scTree#sample 0.70±0.01 0.48±0.02 0.68±0.03 0.74±0.01 0.35±0.01

scTreereconstruction 0.76±0.01 0.58±0.02 0.69±0.03 0.75±0.01 0.32±0.01

PBMC Agg 0.55±0.00 0.40±0.00 0.59±0.00 0.74±0.00 0.34±0.00

scVI+Agg 0.67±0.02 0.56±0.04 0.72±0.02 0.82±0.02 0.05±0.00

ldVAE+Agg 0.69±0.02 0.57±0.04 0.72±0.03 0.82±0.02 0.05±0.00

scTree#sample 0.69±0.03 0.61±0.06 0.75±0.04 0.83±0.02 0.06±0.01

scTreereconstruction 0.71±0.02 0.56±0.08 0.63±0.08 0.73±0.08 0.06±0.01

Retina Agg 0.79±0.01 0.56±0.05 0.95±0.01 0.89±0.00 0.03±0.00

scVI+Agg 0.83±0.01 0.55±0.02 0.96±0.01 0.94±0.01 0.02±0.00

ldVAE+Agg 0.88±0.01 0.74±0.08 0.97±0.01 0.95±0.00 0.02±0.00

scTree#sample 0.87±0.03 0.86±0.10 0.97±0.01 0.91±0.02 0.03±0.00

scTreereconstruction 0.86±0.13 0.87±0.18 0.96±0.04 0.88±0.14 0.03±0.00

IHC Agg 0.66±0.00 0.44±0.00 0.68±0.00 0.74±0.00 0.45±0.00

scVI+Agg 0.75±0.02 0.59±0.05 0.81±0.01 0.85±0.02 0.14±0.00

ldVAE+Agg 0.75±0.01 0.54±0.03 0.78±0.02 0.83±0.01 0.14±0.00

scTree#sample 0.73±0.02 0.53±0.04 0.81±0.01 0.83±0.02 0.18±0.02

scTreereconstruction 0.68±0.07 0.48±0.12 0.60±0.08 0.69±0.07 0.15±0.01

SCC Agg 0.36±0.00 0.47±0.00 0.70±0.00 0.74±0.00 0.25±0.00

scVI+Agg 0.34±0.07 0.42±0.10 0.66±0.08 0.71±0.06 0.07±0.02

ldVAE+Agg 0.46±0.06 0.56±0.10 0.75±0.05 0.77±0.04 0.08±0.03

scTree#sample 0.50±0.09 0.51±0.10 0.80±0.06 0.80±0.05 0.14±0.05

scTreereconstruction 0.56±0.08 0.63±0.11 0.81±0.05 0.81±0.04 0.11±0.05

GBM Agg 0.42±0.00 0.42±0.00 0.58±0.00 0.66±0.00 0.37±0.00

scVI+Agg 0.28±0.03 0.23±0.03 0.43±0.01 0.56±0.03 0.07±0.00

ldVAE+Agg 0.48±0.03 0.44±0.07 0.52±0.05 0.66±0.04 0.15±0.01

scTree#sample 0.53±0.04 0.51±0.07 0.66±0.06 0.77±0.06 0.23±0.02

scTreereconstruction 0.52±0.04 0.47±0.05 0.60±0.03 0.69±0.05 0.22±0.02

with care, as the ground-truth clustering is not independent
of the batch labels as exhibited by non-zero NMIbatch of
celltype labels and batch labels (Pancreas: 0.08, Lung Atlas:
0.37, PBMC: 0.05, Retina: 0.02, IHC: 0.16, SCC: 0.08,
GBM: 0.23). This suggests that scVI and LDVAE might
over-integrate in some cases. Contrarily, scTree’s end-to-
end batch integration can separate irrelevant batch effects
from the ones correlated with clusters, as scTree’s clustering
performance remains high despite worse batch integration.

Discovery of Hierarchies Figure 2 (left) shows that early
in the hierarchy scTree correctly separates Lymphoid and
Myeloid cell types present in both PBMCs and bone marrow

datasets. At first, it inaccurately allocates many Myeloid
cell types exclusive to bone marrow datasets to the Lym-
phoid branch but then rectifies this at a lower hierarchy level.
Notably, scTree segregates bone marrow exclusive cell types
without integrating them with other cell types, as seen in the
leftmost subtree of Figure 2 (right). scTree achieves pure
leaves for most cell types and only struggles with accurate
separation of CD4+ and CD8+ T cells, as well as the small
bone-marrow-specific cell types. This is also evident by the
root node embedding as shown in Figure 3. This suggests
that the encoder is well-suited to accurately split cell types
into distinct clusters while not over-integrating batch effects.
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Figure 2. Visualization of hierarchy discovered by scTree on IHC. The size of each node represents the number of cells assigned to it.
We excluded empty leaves from the tree. Left: Hierarchy of cell types. Lymphoids, Myeloids and HSPCs have distinct colors. The “*”
indicates cell types exclusive to the bone marrow samples. Right: Hierarchy of batches.

6. Conclusion
In this paper, we introduced scTree, a new hierarchical
clustering method that directly integrates batch correction
techniques into the training to enhance the clustering of
scRNA-seq data. We have proposed a novel splitting rule
based on the reconstruction loss that detects small clusters.
We have shown that scTree performs as well as or better
than state-of-the-art methods, especially on data with strong
batch effects, such as cancer datasets. We presented qualita-
tively that scTree learns a biologically plausible hierarchical
structure, thereby facilitating the exploration and analysis
of scRNA-seq data. To the best of our knowledge, scTree is
the first work to explore hierarchical clustering with VAEs
jointly with batch integration, where we have highlighted
the significant potential of such an approach for exciting
advancements in the field.

Limitations & Future Work Having shown that scTree
is equipped to discover hierarchical structures, there are still
many interesting avenues to explore. Finding a stopping cri-
terion is an exciting question, as the ground-truth number of
clusters is usually unknown. Regarding the model architec-
ture, finding a way to reduce the number of hyperparameters
to tune would be beneficial. We believe our proposed con-
figuration in Appendix A can serve as a good starting point
for this. Similarly, the method is currently restricted to a bi-

nary tree, which could be generalized to better represent cell
type hierarchies. Furthermore, as each leaf has a separate
embedding, there is only the root embedding representing
all samples, which hinders simple interpretations of the la-
tent space(s). Lastly, NMIbatch shows that scTree sometimes
does not full correct for batch effects, and regularizing the
learned representations more explicitly to prevent this might
increase clustering performance even more.

Code Availablility
An implementation of scTree is available at https://
github.com/mvandenhi/sctree-public. To re-
produce all results, we provide https://github.com/
mvandenhi/sctree-supplementary-public.
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A. Model Architecture
As TreeVAE, and therefore also scTree, has a large number of important hyperparameters that need to be tuned, we use a
suitable configuration, which is adjusted for the simpler nature of the input data such that it clusters scRNA-seq data in a
meaningful way. All experiments were performed on datasets that are not presented in Section 4 to not bias the results. The
hyperparameters and their determined values are presented in Table 2.

Latent dimensions 10
Bottom-up latent dimensions 128
Encoder Linear layer + Batchnorm + LeakyReLU
Decoder Linear layer
Transformations 1 Hidden Layer
Routers 1 Hidden Layer
Kl-annealing Linear from 0.001 to 1
Subtree training epochs 100
Intermediate finetuning epochs 50
Final finetuning epochs 50
Batch size 128
Optimizer Adam
Learning rate 0.001
Weight decay 0.00001

Table 2. Hyperparameter configuration of scTree

B. Datasets
All datasets used in this paper are publicly available. For all datasets and methods we used the 4000 most highly variable
genes computed with scanpy’s highly_variable_genes (Wolf et al., 2018) function with default parameters. We used the
same preprocessing as proposed by the authors for each dataset and removed all cells not assigned to a celltype.

IHC: The IHC dataset contains 33,506 cells from 10 different batch from five different studies with 16 unique cell types.
The whole dataset is available under https://doi.org/10.6084/m9.figshare.12420968.v8.

PBMC: The PBMC datasets consists of 30,449 cells from two healthy donors sequenced with six different sequencing
technologies (10x Chromium (v2), 10x Chromium (v3), CEL-Seq2, Drop-seq, Seq-Well, and inDrops). Since LDVAE cannot
take additional categorical covariates as input, we generated a new batch column from the donor ID and the sequencing
technology and used it for all methods. The dataset is available at https://singlecell.broadinstitute.org/
single_cell/study/SCP424/single-cell-comparison-pbmc-data.

Pancreas: The Pancreas dataset consists of 16,382 cells, 9 batches and 14 cell types. The dataset is available at https://
figshare.com/ndownloader/files/24539828.

Lung Atlas: The Lung Atlas dataset consists of 32,426 cells, 16 batches and 16 cell types. The dataset is available at
https://figshare.com/ndownloader/files/24539942.

Retina: The Retina dataset consists of 19,829 cells, 2 batches and 15 cell types. The dataset is available at https://
github.com/broadinstitute/BipolarCell2016.

GBM: The GBM dataset contains 6,855 malignant cells from 27 different patient. The authors annotated four cellular stats
(AC-like, MES-like, NPC-like and OPC-like) describing intra-patient heterogeneity. We removed all cycling cells from
the dataset to ensure that we only retain cells assigned to one of the stats. All samples were sequenced using Smart-seq 2.
The dataset is available at https://singlecell.broadinstitute.org/single_cell/study/SCP393/
single-cell-rna-seq-of-adult-and-pediatric-glioblastoma.

SCC: The SCC dataset encompasses 10,529 malignant cells from 8 patients. The authors assigned cells to three cellular stats
(Basel, Differentiated and TSK). We again removed all cycling cells. The dataset is available at https://www.ncbi
.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144240.
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C. Visualization of the IHC dataset

Figure 3. The plots show uniform manifold approximation and projections based on the first 50 PCs computed on the log-transformed
normalized gene expression, the latent representations of scVI and LDVAE, and the Root node representation of scTree with both splitting
rules. The plots are colored by cell type (top), batch (middle), and cluster (bottom).
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