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ABSTRACT

Image denoising aims for a challenging task of recovering clean images from un-
seen noise, which can follow different distributions depending on scenes and cam-
era settings, such as sensors and ISO settings. Previous works have attempted to
handle unseen noise by adapting denoising neural networks to each given noisy
image. However, a single noisy image can only provide a limited amount of in-
formation for training networks. Therefore, we propose to generate noisy images
with diverse yet realistic noise that is similar to noise in a given input image. Such
noise generation is difficult to achieve given only a single noisy image. To address
the challenge, we propose a normalizing flow (NF) framework that can learn the
latent representation of noise, conditioned on noisy images. We also employ the
Gaussian mixture model to better handle real-world unseen noise by leveraging
multiple noise distributions. Using the proposed NF model, our framework can
generate multiple synthetic noisy images to facilitate the adaptation of denoising
networks to each given image. To further improve the adaptation to unseen noise,
we integrate a meta-learning algorithm into our framework. The experimental
results demonstrate that our framework substantially improves the performance
of several denoising networks on unseen real-world noise across numerous real-
world benchmark datasets.

1 INTRODUCTION

Noise is one of the most common and undesired artifacts in the field of signal processing. There-
fore, denoising has been studied for many decades across many research areas, among which image
denoising is a task to restore a clean image by removing noise from the input image. Recently,
there have been dramatic improvements in image denoising through the development of convolu-
tional neural networks (CNN) (Zhang et al., 2017; Chen et al., 2021b; Anwar & Barnes, 2019;
Zamir et al., 2020b). Despite their impressive achievements, these supervised learning-based algo-
rithms have critical limitations in that they rely on a simple assumption that added noise follows
known simple distributions, such as Gaussian and Poisson. Such assumption hinders the supervised
learning-based algorithms from generalizing to real-world noises that do not follow the well-known,
simple distributions.

To enable supervised learning-based algorithms to deal with real-world noise, there has been several
attempts to collect large datasets consisting of clean-noise image pairs (Plotz & Roth, 2017; Nam
et al., 2016; Xu et al., 2018; Anaya & Barbu, 2018; Abdelhamed et al., 2018; 2020). Among them,
one of widely used datasets for training is SIDD (Abdelhamed et al., 2018) dataset, which consists
of real-world noisy images captured by several smartphone cameras under different ISO, shutter
speed, and aperture settings. However, the acquisition of such images requires a lot of time and cost,
thereby limiting the volume of real noisy datasets in quantity.

To alleviate these constraints, generative models (Yue et al., 2020; Zamir et al., 2020a; Abdelhamed
et al., 2019; Jang et al., 2021; Chang et al., 2020) have been actively studied. Generative approaches
adopt generative adversarial network (GAN) or normalizing flow (NF) to learn the distribution of
real noise to generate realistic noisy images. Although these previous generative models have shown
impressive results, most studies have the limitation that they cannot synthesize real-world noise
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depending on camera settings, which highly affects the noise distribution (Abdelhamed et al., 2018).
Some works (Abdelhamed et al., 2019; Kousha et al., 2022) parameterize the noise types using
gain setting and camera model type to generate specific noise, but they only exploit the parameters
to synthesize in-distributed noise. Furthermore, considering that only noisy images exist in most
realistic scenarios, these approaches have the constraint in a practical view that they require clean
images to generate corresponding noisy images. In contrast, some denoising techniques address the
data shortage problem in a self-supervised manner (Lehtinen et al., 2018; Batson & Royer, 2019;
Krull et al., 2019; Huang et al., 2021). In particular, N2S (Batson & Royer, 2019) and N2V (Krull
et al., 2019) can remove noise with unknown distribution by adapting the denoising networks at
test-time. However, they require a large number of gradient updates for the test-time adaptation and
produce inferior performance compared to supervised learning-based approaches, which can fully
utilize distributions of paired datasets, on conventional benchmark datasets.

In this work, combining the advantages of these approaches, we present a new two-stage denoising
framework to handle real-world noisy images with unknown noise distributions in sRGB space,
which first generates input-noise specific synthetic datasets and then adapts conventional denoising
networks with the synthetic datasets. Unlike conventional generative models, ours can fully leverage
multiple different noise distributions of train datasets at the generation phase given only a single
noisy image, and thus allows us to handle unknown noise distribution. Specifically, we train an NF
to transform noisy images with different noise distributions to latent vectors following corresponding
Gaussian distributions. With the trained NF and a single noisy input image, we synthesize new noisy
images, and then, train denoising networks with the generated noisy images without using ground-
truth clean images. Furthermore, we facilitate the test-time adaptation by integrating with a meta-
learning scheme, demonstrating the superiority of the proposed algorithms on numerous real-world
noise benchmark datasets.

2 RELATED WORK

Deep Image Denoising Many deep learning approaches, including recent transformer-based
IPT (Chen et al., 2021a) and SwinIR (Liang et al., 2021), have shown promising results in removing
noise with known distributions (e.g., Gaussian). Moreover, there has been several attempts to re-
move real-world noise whose distribution is not known (Guo et al., 2019; Anwar & Barnes, 2019).
However, as it is not easy to acquire pairs of real noisy images and corresponding clean images for
training, self-supervised approaches, which do not require clean ground-truth target images, have
been studied. For instance, N2N (Lehtinen et al., 2018) is trained with only differently corrupted
multiple noisy images under an assumption that the expectation of the added random noise is zero,
and N2S (Batson & Royer, 2019) and N2V (Krull et al., 2019) algorithms train the networks with
only a single noisy image in a self-supervised manner. AP-BSN (Lee et al., 2022) expands the ca-
pability of the N2V to remove real-world sRGB noise using a pixel-shuffle operation. Although
these self-supervised approaches can remove noise from unknown distributions, the methodologies
entirely depend on a few statistical assumptions and can utilize only a single training image where
these simple settings are not enough to handle complex real-world noises.

Noisy Image Generation Due to the lack of real-noise datasets, there are several researches to
generate realistic noisy images based on GAN frameworks. CycleISP (Zamir et al., 2020a) presents a
CNN-based framework and exploits the sRGB space rather than RAW by considering camera image
pipelines. C2N (Jang et al., 2021) is trained with unpaired clean and noisy images and generates
synthetic noisy images with adversarial loss. DANet (Yue et al., 2020) learns the joint distribution of
the clean and noisy image pair to map the noisy image to the clean one, enabling simultaneous noise
generation and elimination. CA-NoiseGAN (Chang et al., 2020) encodes camera-dependent noise
information using contrastive learning and generates realistic noise conditioned on that information.
However, these generative models also have limitations in being applied in the real-world scenario
where only noisy images are accessible but corresponding clean images are not available.

Moreover, there are some generative models based on conditional NF rather than GANs since NF
can be trained easily and generate more diverse images. SR Flow (Lugmayr et al., 2020) applies
NF to the super-resolution task to learn the distribution of HR images conditioned on LR images,
and Noise Flow (Abdelhamed et al., 2019) learns noise distribution of images captured by smart-
phone cameras conditioned on the camera type and gain setting (e.g., ISO). Notably, NF can also
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be used as a generative classifier by transforming the input images to corresponding different dis-
tributions (Mackowiak et al., 2021; Izmailov et al., 2020; Ardizzone et al., 2020). In our work, we
extend this capability of NF to learn multiple different noise distributions in real-world datasets, and
we leverage them to handle real noise with unknown distributions.

Test-time Adaptation via Meta-Learning In recent years, interest in the field of meta-learning
has increased significantly. Unlike traditional deep learning algorithms, meta-learning can learn
from experiences in multiple train episodes. It has many advantages (e.g., data and computing
efficiency) and can also improve the deep learning model’s generalization and rapid learning abil-
ity. Meta-learning has opened up many opportunities in the field of computer vision. Particularly,
MAML (Finn et al., 2017) has achieved great success in few-shot classification and has been also
employed in various low-level vision tasks. For instance, MAML has been integrated into a single-
image super-resolution task to handle unknown degradation kernel (Park et al., 2020) and boost the
test-time adaptation speed (Soh et al., 2020). Also, some researches suggest that meta-learning al-
gorithms can be applied to denoising (Lee et al., 2020; Li et al., 2021), and video frame interpolation
problems (Choi et al., 2020). These meta-learned networks can be adapted with only a few number
of gradient updates to a specific test input and elevate the performance of the conventional networks
without changing their original architecture at test-time.

3 PROPOSED METHOD

We propose a two-stage denoising framework that first generates noisy images given noisy input,
then adapts the denoising networks to the specific input using the synthetic images at test-time.

3.1 LEARNING NOISE DISTRIBUTION VIA CONDITIONAL NORMALIZING FLOW

We aim to generate realistic noisy images to solve the real-world denoising problem. To generate
such synthetic noisy images, it is required to learn distributions of real noisy images as in (Zamir
et al., 2020a; Jang et al., 2021; Yue et al., 2020). In this work, we learn the distribution of noisy
images in the SIDD dataset (Abdelhamed et al., 2018) since images in the SIDD dataset are cap-
tured by various smartphone cameras with different ISO settings which allows us to learn multiple
different real-world noise distributions.

To model the noise distribution, we first employ a conditional NF (Rezende & Mohamed, 2015) to
map a noisy image to a latent as:

zc = fθ(yc;x)⇐⇒ yc = f−1
θ (zc;x), (1)

where yc denotes a real noisy image captured with camera configuration c. Notably, our camera
configuration c consists of smartphone model and ISO setting (e.g., iPhone7 with ISO 1600). The
noisy image is mapped to a latent zc by the invertible conditional NF f with parameter θ, and the
condition is given by the corresponding ground truth clean image x. Since noisy images in the SIDD
dataset are captured under various camera settings, there exists multiple different noise distributions
as introduced in (Abdelhamed et al., 2019). Thus, we learn the noise distributions using camera-
configuration specific normal distributions through a single NF as,

zc ∼ N (µc, 1), (2)

where µc denotes the mean of the specific normal distribution for the configuration c and is also
a trainable parameter while assuming unit-variance distribution. Then, we can compute the condi-
tional probability density function of yc given x as:

pθ(yc|x) = N (zc;µc, 1) · |detDfθ(yc;x)|, (3)

where Dfθ(yc;x) denotes Jacobian of fθ, and we train the NF by minimizing the negative log-
likelihood (NLL) function as follows:

LNLL(θ) = −
C∑

c=1

logpθ(yc|x)

= −
C∑

c=1

(logN (zc;µc, 1) + log|detDfθ(yc;x)|),

(4)
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Figure 1: Overview of our proposed framework. (a) The training procedure of our Noise-aware
image generation Network (NaN), which uses conditional normalizing flow (NF) network f to map
noisy images to Gaussian distributions on the latent space, where each Gaussian distribution corre-
sponds to the camera configuration used for capturing images. NaN is conditioned on input noisy
image and pseudo clean image, where pseudo clean image is obtained by a lightweight pseudo clean
generator h. (b) The pipeline of test-time adaptation process during inference. We use Gaussian mix-
ture model to obtain more accurate latent representation of given image with unseen noise. From the
obtained latent representation, NF generates new synthetic noisy images, which are used to adapt
the parameters ϕ of denoising networks g with a standard self-supervised loss function LN2N.

and C means the number of camera configurations available in the SIDD dataset.

Through the trained conditional NF, we can synthesize noisy images which have similar distribution
to yc by taking random samples from N (µc, 1) as an input of the f−1

θ given ground truth clean
image x as the condition. However, in real scenario, ground truth clean image x corresponding to
the noisy input is not available, and thus it is not easy to directly apply the generation process in
Equation 1. Therefore, we use a pseudo clean image x̃ for conditioning of NF where x̃ is acquired
by feeding the noisy input to a pseudo clean generator h (i.e., x̃ = h(yc)). Thus, we minimize the
modified NLL which utilizes x̃ as the condition for our NF as follows:

LPNLL(θ) = −
C∑

c=1

(logN (zc;µc, 1) + log|detDfθ(yc; x̃)|). (5)

Note that conventional denoiser trained on the SIDD dataset can be used for the pseudo clean gen-
erator h, and we use DnCNN (Zhang et al., 2017) in this work by considering both performance and
speed. In Figure 1(a), a sketch of the proposed NF architecture is illustrated.

3.2 NOISE-AWARE IMAGE GENERATION

In this work, we generate noisy images to adapt denoising networks to the given noisy input y
with unknown distribution, and thus, we synthesize images whose noise distributions are similar
to the distribution of the noise within the input. To do so, we utilize the capability of the NF as a
generative classifier (Mackowiak et al., 2021; Izmailov et al., 2020). Specifically, we can obtain a
latent z from the noisy input y through the trained NF and measure the fidelity of that latent z for
each learned normal distribution (i.e., {N (z;µc, 1)}). Then, using these C likelihood values, we
can mix the learned C different noise distributions and generate input-noise specific noisy images
from the mixture model. We dub this algorithm NaN (Noise-aware image generation Network), and
the detail of the proposed NaN method is described in Algorithm 1.
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Algorithm 1 Noise-Aware Image Generation Network (NaN)
Input: noisy input y

1: x̃ = h(y)
2: z = fθ(y; x̃)

3: Sample z̃ ∼ N (µ̃, 1), where µ̃ =
∑

c
N (z;µc,1)∑
c N (z;µc,1)

· µc // Noise-aware sampling

4: return ỹ = f−1
θ (z̃; x̃)

Notably, in this study, we train the latent space by using multiple distinct normal distributions to
learn many different noise distributions. Then, using the Gaussian Mixture Model (GMM) of these
learned distributions in the latent space, we can generate noisy images which follow their mixture
distribution where the mixture coefficients are controllable. In our experiments, we demonstrate that
the proposed NaN algorithm allows us to handle real-world noisy images even with unseen noise
distributions with the aid of our noise-aware generation mechanism.

3.3 TEST-TIME ADAPTATION FOR REAL-WORLD DENOISING

Recent self-supervision-based denoising approaches N2S and N2V have demonstrated that denois-
ing networks can be trained without using the ground-truth clean image. Although these self-
supervised methods present novel mechanisms for test-time adaptation and removing real-world
noise with unseen distribution, they require statistical assumptions and a large number of gradi-
ent updates to adapt the networks parameters to the specific input noise since they use blind-spot
methods to train with a single noisy input. To alleviate this problem, we propose a new two-stage
test-time adaptation technique for real-world denoising. We first synthesize multiple noisy images
with our NaN approach in Algorithm 1 given a single noisy input, and then further update pre-
trained denoising networks using the synthetic noisy images at test-time. Specifically, we can adapt
the network parameter of the denoiser with only synthetic noisy images (i.e., without ground-truth
clean image), and we use the unsupervised loss introduced in N2N (Lehtinen et al., 2018) to train
the denoiser, and it is given by,

LN2N (ϕ) = E[||gϕ(ỹ)− y||], (6)

where y is an input noisy image given at test time, and ỹ denotes our synthetic noisy image generated
by Algorithm 1. Pre-trained denoising network is g and its parameter ϕ can output enhanced
denoising result after the adaptation. Algorithm for our Test-time Parameter Adaptation (TPA) is
described in Algorithm 2. Note that, as we can generate differently corrupted multiple images, we
naturally employ the N2N loss. Therefore, we do not need to use blind-spot methods used in N2S
and N2V to train with only a single noisy input, which greatly reduce training efficiency.

Algorithm 2 Test-time Parameter Adaptation (TPA)
Input: noisy input y
Require: pre-trained denoiser gϕ, adaptation number M , learning rate α

for i← 1 to M do
Generate a noisy image ỹ from Algorithm 1
LN2N (ϕ) = ||gϕ(ỹ)− y||
ϕ← ϕ− α∇ϕLN2N (ϕ)

end
return ϕ // return adapted denoising network parameter

3.4 FAST TEST-TIME ADAPTATION VIA META-LEARNING

Owing to the generation of realistic noise images via our proposed NaN, a denoising network can
adapt to the given noisy image and improve its denoising performance, as discussed in the experi-
mental section. To better facilitate the adaptation process, we employ model-agnostic meta-learning
(MAML) algorithm (Finn et al., 2017), which is known for its capability of adapting to new tasks.
MAML achieves such adaptation ability by learning a common initialization, from which the param-
eters are adapted with a small number of steps to each given task. In this work, we define a task as
removing a certain type of noise that corresponds to each camera configuration c. Thus, we learn an
initialization of denoiser network parameters using C(=34) different tasks (camera configurations)
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from the SIDD dataset. From the learned initialization, the denoiser network parameters are updated
for the adaptation to each new noisy image.

3.4.1 META-TRAIN AND FAST TEST-TIME PARAMETER ADPATATION

We describe our MAML-based training scheme in Algorithm 3. First, we sample a pair of clean and
noisy images (x, yc) with a specific camera configuration c from the SIDD train dataset. MAML
employs a bilevel optimization for training: an inner-loop optimization for adapting parameters to
each task and an outer-loop optimization for updating an initialization. The inner-loop optimization
is similar to Algorithm 2 in that we use NaN to generate new synthetic noisy images ỹc from yc. In
turn, these synthetic images are used to minimize the unsupervised loss in Equation 6 to adapt the
parameters of the denoiser network g. After the inner-loop optimization, the adapted denoiser gϕc

performs denoising on a synthetic noisy image ỹc to obtain an estimated clean image gϕc(ỹc). The
outer-loop optimization updates the initialization ϕ to minimize the difference between input noisy
and ground-truth clean images x across a batch of camera configurations (tasks). In practice, we
observe that using the synthetic noisy image for the outer-loop optimization elevates the denoising
performance slightly, we utilize the generated noisy images for the initialization with probability p,
and we use p=0.5 in our experiments. Moreover, for the inner-loop optimization, we use the fixed
number of update steps (M=5).

Algorithm 3 Meta-train Algorithm
Require: pre-trained denoiser gϕ, adaptation number M , learning rate α and β

while until convergence do
Sample a pair of clean and noisy images (x, yc) from the SIDD traindataset
ϕc ← ϕ
for i← 1 to M do

Generate ỹc from yc with NaN Algorithm 1
LN2N (ϕc) = ||gϕc

(ỹc)− yc||
ϕc = ϕc − α∇ϕc

LN2N (ϕc)
end
Generate ỹc from yc with NaN Algorithm 1
r ∼ Bernoulli(p) // sample 1 with probability p

Loss(ϕc) = ||gϕc(r · yc + (1− r) · ỹc)− x||
ϕ←− ϕ− β∇ϕΣcLoss(ϕc)

end
return ϕ // return meta-trained denoising network parameter

During inference, the meta-learned initialization parameters of denoiser are adapted to the given
input noisy image using our generated noise images via our Fast test-time Parameter Adpatation
(FPA). The adaptation process is the same as inner-loop optimization procedure during meta-
training. The adapted denoiser then performs denoising on the input noisy image to obtain a clean
image.

4 EXPERIMENTAL RESULTS

Please see our supplementary material for more implementation details and results.

Experimental settings Our NaN is implemented based on the conditional NF framework intro-
duced in SRFlow (Lugmayr et al., 2020). For training NaN, we use the SIDD sRGB train dataset
with 34(=C) different camera configurations, and minimize the LPNLL loss in equation 5 using
the Adam optimizer (Kingma & Ba, 2014). Moreover, for the pseudo clean generator h, we use
DnCNN (Zhang et al., 2017) fully-trained on the equivalent dataset (SIDD). For evaluation, we
measure the performance of the proposed methods on the public datasets, including real noisy im-
ages; SIDD (Abdelhamed et al., 2018), SIDD+ (Abdelhamed et al., 2020), Nam (Nam et al., 2016),
and PolyU (Xu et al., 2018).

4.1 QUANTITATIVE AND QUALITATIVE RESULTS

Denoising performance In Table 1, we report the denoising results from our proposed adaptation
algorithm with several g networks: DnCNN (Zhang et al., 2017), RIDNet (Anwar & Barnes, 2019),
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Denosing
Network Method SIDD Test SIDD+ Nam PolyU Avg.

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
DnCNN Fully-pretrained 37.95 0.9440 35.55 0.8883 37.96 0.9502 37.81 0.9539 37.32 0.9341

+ N2S (M=5) 37.71 0.9410 35.44 0.8843 38.23 0.9536 37.89 0.9554 37.32 0.9336
+ N2S (M=10) 37.23 0.9340 35.22 0.8752 38.16 0.9523 37.87 0.9551 37.12 0.9292
+ TPA (M=5) 38.02 0.9450 35.68 0.8933 38.58 0.9563 38.17 0.9595 37.61 0.9385
+ FPA (M=5) 38.04 0.9450 35.78 0.8966 38.67 0.9574 38.23 0.9605 37.68 0.9339

RIDNet Fully-pretrained 39.05 0.9530 36.21 0.9058 37.85 0.9556 37.93 0.9606 37.76 0.9438
+ N2S (M=5) 38.95 0.9530 36.16 0.9029 38.17 0.9558 38.03 0.9601 37.83 0.9430
+ N2S (M=10) 38.53 0.9510 35.78 0.8929 38.16 0.9538 38.00 0.9590 37.62 0.9392
+ TPA (M=5) 39.02 0.9540 36.48 0.9114 38.49 0.9579 38.21 0.9620 38.05 0.9463
+ FTA (M=5) 38.98 0.9530 36.58 0.9140 38.77 0.9610 38.32 0.9630 38.16 0.9478

HINet Fully-pretrained 39.87 0.9600 36.39 0.9016 38.04 0.9554 37.95 0.9606 38.06 0.9444
+ N2S (M=5) 39.72 0.9590 35.62 0.8680 38.23 0.9525 38.10 0.9589 37.92 0.9346
+ N2S (M=10) 39.04 0.9540 34.09 0.8007 38.00 0.9445 37.85 0.9537 37.25 0.9132
+ TPA (M=5) 39.84 0.9600 36.66 0.9045 38.49 0.9563 38.18 0.9615 38.29 0.9456
+ FPA (M=5) 39.87 0.9600 36.84 0.9117 38.53 0.9575 38.19 0.9618 38.36 0.9478

AP-BSN Fully-finetuned 36.91 0.9310 35.84 0.9165 38.37 0.9621 38.19 0.9579 37.40 0.9322

Table 1: Adaptation performance on the SIDD, SIDD+, Nam, PolyU dataset is evaluated in terms of
PSNR and SSIM. Best and second best denoising results are highligted and underlined. Our TPA
approach outperforms conventional self-supervised denoising approach N2S, and our FPA approach
produces the best denoising/adaptation results.

Method GT clean SIDD val. SIDD+ Nam PolyU Avg.
DANet ✓ 0.0932 0.2679 0.2670 0.2758 0.2260
GDANet ✓ 0.1871 0.8273 0.1980 0.1082 0.3302
CycleISP ✓ 0.3897 0.3065 0.7145 0.8373 0.5620
C2N ✓ 0.1638 0.2110 0.4618 0.5904 0.3568
NaN ✗ 0.0389 0.0519 0.2805 0.3094 0.1702

Table 2: Accuracy of generated noisy images
from DANet, CycleISP, C2N, and our NaN
are compared in terms of KLD.

Denoising SIDD val. SIDD+ Nam PoluU Avg.
RIDNet + DANet 39.04/0.9159 36.25/0.9098 38.00/0.9575 38.01/0.9617 37.83/0.9362
RIDNet + GDANet 39.07/0.9154 36.15/0.9070 38.18/0.9605 38.13/0.9637 37.88/0.9367
RIDNet + CycleISP 39.05/0.9160 36.22/0.9071 37.82/0.9549 37.90/0.9604 37.75/0.9346
RIDNet + C2N 39.06/0.9154 36.22/0.9090 38.11/0.9594 38.02/0.9624 37.85/0.9366
RIDNet + TPA 39.12/0.9158 36.48/0.9114 38.49/0.9579 38.21/0.9620 38.08/0.9368

Table 3: Results of RIDNet finetuned by synthetic im-
ages from DANet, GDANet, CycleISP, C2N, and TPA
are compared in terms of PSNR/SSIM values.

and HINet (Chen et al., 2021b). These denoising networks are fully pre-trained on the SIDD train-
set.1 We evaluate the capability of the algorithms while handling unseen real-world noise in the
SIDD Test, SIDD+, Nam, and PolyU datasets. Moreover, we compare our methods against other
self-supervised denoising algorithms: N2S (Batson & Royer, 2019)) and AP-BSN (Lee et al., 2022).
Similar to ours, N2S is model-agnostic and thus can be used to finetune pre-trained networks in a
similar way to our framework, and the denoising results after 5 gradient updates (M=5) and 10 gra-
dient updates (M=10) are reported. On the other hand, AP-BSN requires the dedicated blind-spot
network architecture as the backbone and thus cannot be used across different pre-trained networks
g. Therefore, we use AP-BSN pre-trained on the SIDD trainset and then fully finetune on other
datasets according to (Lee et al., 2022). On average and almost all datasets and pre-trained network
baselines, our algorithm demonstrates substantial performance improvement compared to N2S and
AP-BSN. These experimental results demonstrate the applicability of our algorithm across different
networks and noise adaptation capability across different datasets. This is particularly noticeable in
SIDD+, Nam, and PolyU datasets that contain significantly different noises from those already seen
in the train set. Furthermore, our algorithm is shown to benefit more from MAML-based adaptation
(FPA) than typical finetune adaptation (TPA). Thus, MAML is shown to enable our algorithm to
better adapt to new unseen noise. Moreover, our algorithm is shown to render sharper edges and tiny
details while suppressing the noise in the texture-less regions, as shown with real-world denoising
result visualization (Figure 2).

Noise generation performance The denoising performance of our overall framework hinges on the
quality of generated noisy images. As such, we quantify the noise generation quality in terms of
Kullback-Leibler divergence (KLD) and compare against DANet (Yue et al., 2020), GDANet (Yue
et al., 2020), CycleISP (Zamir et al., 2020a),and C2N (Jang et al., 2021) in Table 2. We use officially
available pre-trained parameters of DANet, CycleISP, and C2N, which are also trained on the SIDD
sRGB trainset. Note that we use official parameters of GDANet, which are obtained after training
on the SIDD, PolyU, and Renoir dataset Anaya & Barbu (2018).

Although previous works need ground-truth clean images to generate noisy images, our NaN uses
only the given noisy input and stills shows better noise generation performance on average. To

1For HINet, we use official parameters of the network trained on the SIDD Dataset.
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(a) Real Noisy (b) AP-BSN (d) RIDNet + TPA (e) RIDNet + FPA (f) Ground Truth(c) RIDNet + N2S
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Figure 2: Qualitative comparison results on SIDD+, Nam and PolyU images.
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Figure 3: Qualitative results on synthesized noisy images in SIDD, SIDD+, NAM, and PolyU
datasets. Our NaN generates more realistic noisy images compared to other generative models.

better assess the performance of noise generation, we visualize noisy images generated by each
different generative model in Figure 3. Other generative models seem to generate similar noise
across different datasets or generate noise that is different from given real noisy input. On the other
hand, our NaN produces realistic noisy images (e) that seem to exhibit noise sampled from the
same distribution as each real noisy image (f). This shows our noise-aware generation algorithm
successfully approximates unknown noise which (a)-(d) cannot produce.

To further compare the noise generation quality against other noise generation models, we finetune
RIDNet (pre-trained on SIDD trainset) with generated noisy images by each model and N2N loss
and compare denoising performance on the SIDD validation, SIDD+, Nam, and PolyU datasets,
as shown in Table 3. The adaptation with noisy images generated by our NaN exhibits higher
performance improvement on average in comparison to other generative models, even though NaN
does not use ground-truth clean images while other generative models do. These results suggest
that our framework can handle unknown noise even in external datasets (e.g., SIDD+, Nam, PolyU),
owing to the capability of our NaN to leverage several different noise distributions.
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4.2 ABLATION STUDY

Effect of noise aware sampling Our NaN is trained by assuming C distinct latent distributions,
and the latent sampling mechanism presented in Algorithm 1 allows us to generate noise-aware (i.e.,
input-specific) synthetic images, and we show the efficacy of our mechanism. To do so, we train the
conditional NF (fθ) to have latents that follow a single normal distribution regardless of the camera
configuration (i.e., µc = 0). In Table 4, we see that noisy images generated from Algorithm 1 when
all µc = 0 are irrelevant to the specific input noise, and thus the KLD value is much higher than the
results by our NaN where {µc} are trainable and not zeros.

Latent distribution SIDD SIDD+ Nam PolyU
Single normal distribution (all µc = 0) 0.0914 0.1436 0.5946 0.6012
Multiple distinct distributions (trainable {µc}) 0.0389 0.0519 0.2805 0.3094

Table 4: Efficacy of noise-aware image generation. Two conditional NFs (fθ) trained under sin-
gle latent distribution and multiple latent distributions are compared. Noisy images are generated
according to Algorithm 1, and we measure the quality of the noisy images in term of KLD on the
SIDD, SIDD+, Nam, and PolyU datasets.

Update step We investigate how the performance changes as we vary the number of update steps
for test-time adaptation in Figure 4. Across all denoising networks and update steps, our adaptation
algorithms bring significantly higher performance improvement than N2S. Notably, our MAML-
based FPA with only 5 update steps shows similar performance to our TPA, which takes around 10
update steps to reach a similar performance. Such results demonstrate the efficacy of MAML in
facilitating the adaptation process.

Figure 4: Averaging test-time adaptation results by changing the number of updates (M ) on SIDD,
SIDD+, Nam, and PolyU datasets. During the 5 gradient updates, our TPA and FPA achieve higher
gain in PSNR. Note that we show the results of our FPA with M = 5 update steps.

5 CONCLUSION AND LIMITATION

In this work, we introduce a new test-time adaptation algorithm that enables denoising networks
to adapt to unseen and realistic noise without the use of ground-truth clean images. In particular,
the proposed adaptation algorithm relies on using synthetic noisy images produced by our noise-
aware noisy image generation network, which we coin as NaN. Our NaN employs normalizing
flow to synthesize realistic noisy images that exhibit the same noise characteristics as newly given
noisy images. Such synthetic noisy images provide rich information of noise present in given noisy
images, thereby aiding the adaptation process. Furthermore, we employ a model-agnostic meta-
learning algorithm, which further facilitates the adaptation of networks to input images with unseen
noise. The experimental results demonstrate the substantial performance improvement brought by
our algorithms across several denoising networks, underlining the flexibility and effectiveness of
our test-time adaptation algorithm. One may argue that one of the limitations with our framework
is the dependence on pseudo clean images and pseudo clean generator. However, as discussed in
the supplementary document, our framework demonstrates the robustness to the quality of pseudo
clean images to some extent. Regardless, the use of pseudo clean generator itself can be regarded
as limitation. Thus, generating diverse noises with only given input noisy image is interesting yet
challenging for future research work.
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