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ABSTRACT
Graph Neural Networks (GNNs) frequently face class im-

balance issues, especially in heterogeneous graphs. Existing
GNNs often assume balanced class sizes, which isn’t true in
many cases. Applying them directly to imbalanced data can
lead to sub-optimal performance. Traditional oversampling
methods, while effective, risk overfitting and face difficul-
ties in reintegrating synthetic samples into the original graph.
In this study, we introduce Framework of Imbalanced Node
Classification on heterogeneous graph neural network with
GAN (FincGAN), a new framework that utilizes oversam-
pling techniques to address class imbalance in heterogeneous
graphs. Instead of duplicating existing samples, FincGAN
employs a Generative Adversarial Network (GAN) to create
synthetic samples and uses deep learning-based edge genera-
tors to connect them back to the original graph. Our evalua-
tions on spam user detection in the Amazon and Yelp Review
datasets show that FincGAN outperforms baseline models in
all essential metrics, including F-score and AUC-PRC score,
showing its effectiveness in addressing class imbalance.

Index Terms— Class Imbalance, Generative Adversarial
Network, Graph Neural Network, Heterogeneous Graph

1. INTRODUCTION
Advances in Graph Neural Networks (GNNs) have enabled
success in tasks like spam and fraud detection [1]. However,
class imbalance remains a challenge, particularly in hetero-
geneous graphs. Traditional solutions for class imbalance in
non-graph data are inadequate for GNNs as they ignore graph
structure. Recent works have attempted to address this using
various graph-based techniques [2, 3]. Most rely on weight
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reassignment, which limits their effectiveness, especially for
heterogeneous graphs.

In this work, we present FincGAN, a novel framework
for tackling class imbalance in heterogeneous GNNs. It uses
Generative Adversarial Networks (GAN) [4] to generate qual-
ity nodes and edges, avoiding overfitting. Our evaluation of
the Amazon datasets shows that FincGAN, compared to the
original baselines, has a 9% and 10% improvement in AUC-
PRC and F-score, respectively; whereas on the Yelp dataset,
it shows a 3.3% and 3.2% improvement.

The contributions of our work are summarized as follows:
(1) We propose FincGAN, a novel GAN-based framework to
handle the class imbalance problem for heterogeneous graph-
structured data. The generation ability of GAN synthesizes
high-quality samples for minority classes in the target dataset.
(2) We introduce sparsity-aware edge generators to support
edge generation for heterogeneous edge types, linking syn-
thetic nodes back to the original graph.
(3) FlashGAN outperforms other baselines on critical metrics
in the experiments, validating the effectiveness of our frame-
work on the imbalanced dataset and demonstrating its advan-
tages in most real-world scenarios targeting minority classes.

2. RELATED WORKS
Graph Neural Networks GNNs, such as GCN [5], primar-
ily focus on homogeneous graphs, while extensions like HGT
[6] tackle heterogeneous graphs. However, they often neglect
class imbalance issues.

Generative Adversarial Networks GANs [4] offer adver-
sarial training with variants like WGAN [7], LSGAN [8], and
Conditional GAN [9] allowing controlled sample generation
for minority classes.

Class Imbalance The class imbalance problem is pervasive,
often addressed through data-level methods like oversampling
and SMOTE [10] or loss-level approaches [11]. Oversam-
pling risks overfitting, while undersampling discards valuable
data. GANs have been used to balance classes, but many
methods assume independent samples, which isn’t suitable

5750979-8-3503-4485-1/24/$31.00 ©2024 IEEE ICASSP 2024

IC
A

SS
P 

20
24

 - 
20

24
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

9-
8-

35
03

-4
48

5-
1/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

84
85

.2
02

4.
10

44
80

64

Authorized licensed use limited to: ACADEMIA SINICA. Downloaded on February 05,2025 at 18:37:37 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Overview of FincGAN

for GNNs. Other methods include G2GNN [12], which lo-
cally augments minority graphs using Graph of Graph con-
struction, and DR-GCN [13], addressing multi-class imbal-
anced graphs with dual regularization.

3. PROBLEM DEFINITION

We address class imbalance in node classification on hetero-
geneous GNNs in a transductive and heterogeneous graph set-
ting. We denote G ={V, E} as a heterogeneous graph. Each
node ν∈ V is associated with the node type mapping function
ϕ (ν) : V → A. Each edge e∈ E is associated with the edge
type mapping function ψ (e) : E → R. A denotes the set
of node types. The R indicates the collection of edge types.
AT means the target node type. The Y represents the class
information of nodes in G.

During training, only partial label information YL is avail-
able, where YL defines the labels of nodes in the training set
VL. The |Ci| indicates the size of i-th class, which means the
sample size of classCi, and theCM denotes the majority class
with most samples. We use mini(|Ci|)

maxi(|Ci|) as the imbalance ratio
to evaluate the class imbalance problem. The formal problem
definition is as follows:

Given G with the class imbalance problem and labels of
VL, we focus on learning a classifier F that can perform node
classification on the whole graph, F (V, E) → Y.

4. METHODOLOGY

In this section, we discuss the components of FincGAN, illus-
trated in Figure 1. FincGAN comprises four parts: (i) a fea-
ture extractor for node representation, (ii) a GAN-based node
generator for minority classes in latent space, (iii) sparsity-
aware edge generators to link generated nodes to the original
graph, and (iv) a GNN classifier for node classification on the
augmented graph.

4.1. Feature Extractor
We employ a feature extractor to learn compact node embed-
dings capturing both inter-class and intra-class correlations
along with graph structure. These embeddings feed into the
node generator to create synthetic nodes. We choose HGT

Fig. 2: Architecture of node generator

as our feature extractor, a state-of-the-art option suitable for
any heterogeneous GNN. Formally, HGT classifies nodes on
graph G, providing the final layer output as the node embed-
ding: HGT (V, E) → H , where H represents the node em-
beddings of the graph. The HAi

indicates the node embed-
dings of node type Ai.

4.2. Node Generator

In our framework, we employ DCGAN[14] as the node gen-
erator to produce new nodes with embeddings similar to the
considered class, illustarated in Figure 2.

In our GeneratorG, a noise vector z from N (0, 1) is con-
catenated with source node embedding hs. This combined
input and label ys are fed into G to produce synthetic node
embedding h̃. Node generation relies onG and is conditioned
on node representation, label, and noise. For the discrimina-
tor, it receives the node embedding h and label y to output a
reality score. Formally, the objective function is:

min
G

max
D

V (D,G) = Eh∼pdata [logD (h, y)]

+E z∼N(0,1)
hs∼pdata

[log (1−D (z, hs, ys))]
(1)

where pdata denotes the distribution of the node embed-
ding. Therefore, the generator can produce nodes belonging
to the assigned class, and we can produce nodes of minority
classes to adjust the sample distribution.

4.3. Edge Generator

Next, we link the synthetic nodes back to the original graph
G, from which they were initially isolated, enabling subse-
quent GNNs to leverage these nodes during training. While
GraphSMOTE offers a straightforward edge generator for ho-
mogeneous edges, we customize it for dense-distributed edge
types and introduce a new generator for sparse edge types in
heterogeneous graphs.

Dense edge generator The dense edge generator uses weighted
inner products of node embeddings to predict the connection
of nodes [2]. Formally, the structure is as follows:

Ev,u = σ (hv · S · hu) ∀v, u (2)
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where Ev,u indicates the probability of v and u having a con-
nection and S is a learnable matrix. For training the edge
generator, we apply the loss function

LDedge = ∥E − A∥2F , (3)

where E denotes predicted node connections and A means
the adjacency matrix of the edge type. By optimizing the
weight matrix S, the edge generator can learn the distribu-
tion of node connections. With the edge generator, we can
use the node embedding of the synthetic node v

′
to generate

edges by setting a threshold η. If Ev′,u > η, we connect v′

and u; otherwise, they remain unconnected.

Sparse edge generator For the sparse edge distribution, we
apply a Multilayer Perceptron (MLP) to this task:

MLP (concat (hv, hu)) → Ev,u ∀v, u∈ V, (4)

LSedge = −
∑

(Av,u log (Ev,u) + (1−Av,u) log (1− Ev,u)) ,

(5)

where Av,u indicates whether v and u are connected. Same
way as the dense edge generator, we can use the node embed-
ding of the synthetic node v

′
to generate edges by setting a

threshold η, connect v′ and u if Ev′,u > η.

4.4. GNN Classifier
Let Ẽ and Ṽ be the augmented edges and nodes containing
information of real and synthetic nodes. Now, we can form
an augmented graph G̃ = {Ṽ, Ẽ} with a balanced class distri-
bution. Since the sample size of different classes in G̃ is bal-
anced, we train an unbiased GNN classifier through the aug-
mented graph. Here we adopt HGT on G̃: HGT

(
Ṽ, Ẽ

)
→ Y .

4.5. Training Procedure
The FincGAN method starts with node embedding extraction
using a feature extractor. We then train node and edge gener-
ators with these embeddings. The node generator creates syn-
thetic nodes for minority classes, and the edge generator links
them to the original graph, forming an augmented graph. By
incorporating synthetic nodes, the augmented graph can ad-
dress class imbalance in downstream tasks. Finally, a node
classifier is trained on the augmented graph for evaluation.

5. EXPERIMENTS
We apply FincGAN to real-world datasets to evaluate its per-
formance. Particularly, we would like to investigate: (1) Is
FincGAN effective on node classification tasks with the class
imbalance issue? (2) Would different up-sampling scales af-
fect the performance of FincGAN? (3) How does the edge
generator affect FincGAN?

5.1. Experimental Settings
Datasets We apply FincGAN to address the class imbalance
problem in two datasets: Amazon reviews [15] and Yelp-
Fishers. In the Amazon dataset, focused on Musical Instru-
ments reviews, we detect spam users based on the ratio of

Table 1: Graph statistics

Amazon
Type # Nodes (Fraud%) Edge Type # Edges
User 7,017 (9.7%) U-U 535,244

Product 4,684 U-P 12,169
P-P 101,678

Yelp
Type # Nodes (Fraud%) Edge Type # Edges
User 13,050 (20.5%) U-U 14,245,842

Review 25,319 U-P 24,400
Product 570 P-P 76,852

U-R 25,319
R-P 25,319

helpful votes [16]. Users with over 70% helpful votes are la-
beled as benign. For the Yelp-Fishers dataset, we label users
as benign if their reviews average useful scores above 0.1.

Graph Construction In the Amazon review graph, we have
two node types, user and product, and three edge types: U-P
for user-product ratings, U-U for users with similar ratings or
review text, and P-P for products with similar descriptions or
mutual ’Also Buy’ listings. For the Yelp dataset, our graph
has three node types: user, review, and product, along with
five edge types: U-P for user-product reviews, U-U for users
with shared reviews or similar text, P-P for same-category
products, U-R, and R-P linking reviews to users and products.
Graph statistics are detailed in Table 1.

Baselines To validate our graph augmentation method, we
replace the node and edge generators with several data im-
balance techniques. These include Oversampling, which
duplicates minority nodes; Reweight, which adjusts class
weights in the loss function; Noise, an extension of Over-
sampling adding noise to samples; SMOTE [10], which inter-
polates samples and their nearest neighbors; GraphSMOTE
[2], a SMOTE variant for homogeneous graphs; ImGAGN
[17], a GAN-based approach that simulates minority node
attributes and network structures; and PC-GNN [18], which
uses label-balanced and neighborhood samplers for sub-graph
construction. All methods are integrated into the graph while
maintaining original connections and tested on homogeneous
graphs constructed by meta-paths to report the best results.

Evaluation Metrics We use the following metrics for evalu-
ations: AUC-ROC [19], AUC-PRC [20], F-Score, and Preci-
sion. AUC-PRC is preferred for imbalanced datasets as AUC-
ROC can overrate models in such cases.

Configurations We use FincGAN to create a balanced aug-
mented graph, generating spam nodes and edges via node and
edge generators. For Amazon, thresholds for U-U and U-P
edge generators are 0.91 and 0.99, respectively, with an im-
balance ratio of 0.7. For Yelp, the thresholds are 0.999 and
0.95, with an imbalance ratio of 0.82. Experiments are re-
peated 30 times to average out randomness.
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Table 2: Experimental Results: Imbalanced Classification

Amazon
Method AUC-PRC AUC-ROC F-Score Precision
Original 0.4051 0.8457 0.4018 0.5083

Oversampling 0.3461 0.8348 0.3357 0.5406
SMOTE 0.3453 0.8530 0.3682 0.4508
Reweight 0.3624 0.8291 0.4170 0.3709

Noise 0.3514 0.8472 0.3443 0.5711
GraphSMOTE 0.3513 0.8364 0.3499 0.4889

ImGAGN 0.2725 0.5518 0.1812 0.3502
PC-GNN 0.3381 0.8521 0.2923 0.4049
FincGAN 0.4374 0.8709 0.4505 0.5712

Yelp
Method AUC-PRC AUC-ROC F-Score Precision
Original 0.5005 0.8296 0.4541 0.5828

Oversampling 0.4890 0.8285 0.4083 0.5878
SMOTE 0.4963 0.8306 0.4537 0.6005
Reweight 0.4859 0.8253 0.4991 0.5333

Noise 0.5132 0.8315 0.4449 0.5976
GraphSMOTE 0.5130 0.8348 0.4505 0.5947

ImGAGN 0.4361 0.4975 0.2800 0.1736
PC-GNN 0.4860 0.8431 0.4961 0.2037
FincGAN 0.5173 0.8365 0.4688 0.6061

5.2. Imbalanced Classification Performance

Table 2 shows FincGAN surpassing all baselines on most
metrics, including significant gains in AUC-PRC and AUC-
ROC scores. Particularly, FincGAN excels in Precision,
making it ideal for high false-positive risk scenarios like rec-
ommendation systems and spam detection. FincGAN also
shows improvements in AUC-PRC and AUC-ROC for the
Yelp dataset. Overall, FincGAN is highly effective for im-
balanced node classification, primarily demonstrated on the
Amazon dataset.

5.3. Influence of Up-sampling Scale

In this subsection, we analyze the impact of varying the num-
ber of synthetic nodes in different approaches while maintain-
ing the up-sampling scale to achieve target imbalance ratios.
The experimental results are shown in Figure 3.

We observed that FincGAN’s performance is robust to
varying up-sampling scales, especially when the target imbal-
ance ratio is above 0.5. While there may be an optimal ratio,
FincGAN is generally insensitive to scale changes. Noise ex-
cels in Precision score, but its F-score is significantly lower
than FincGAN’s, indicating FincGAN is generally more ef-
fective in detecting positive cases.

Since Reweight and PC-GNN don’t address data imbal-
ance by adding synthetic minority nodes to the original graph,
and ImGAGN is designed for homogeneous graphs, they re-
ceive less information with homogeneous graphs constructed
by meta-paths. Hence, we exclude these three baselines from
the experiment.
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5.4. Influence of Edge Generators: Dense and Sparse

In FincGAN, both the dense and sparse edge generators uti-
lize thresholds to filter qualified edges and nodes. These
thresholds control edge quality and, consequently, graph
augmentation. For the dense edge generator, we set fixed
values for various parameters such as the node qualification
threshold at 0.81 and adjusted the edge qualification thresh-
old. We fixed the U-U edge generator threshold at 0.91 for
the sparse edge generator while varying the U-P threshold.
Experimental outcomes are depicted in Figures 4a and 4b.

No significant difference in AUC-ROC score was ob-
served for the dense edge generator, with optimal AUC-PRC
scores achieved at a threshold of 0.91. The sparse edge gen-
erator’s performance improved with higher U-P thresholds,
emphasizing the importance of edge quality in both cases.

6. CONCLUSIONS

We address the class imbalance in heterogeneous graphs
by integrating traditional oversampling with deep learning
through our novel framework, FincGAN. It utilizes GAN’s
generative capabilities to create node embeddings, links them
to the original graph using sparsity-dependent edge gener-
ators, and trains a classifier on the augmented graph. Ex-
perimental results on real-world data confirm FincGAN’s
effectiveness, outperforming baseline methods on key met-
rics.
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