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Unsupervised Image-to-Video Adaptation via Category-aware
Flow Memory Bank and Realistic Video Generation

Anonymous Author(s)

ABSTRACT
Image-to-Video adaptation is proposed to train a model using la-
beled images and unlabeled videos to facilitate the classification
of unlabeled videos. The latest work synthesizes videos using still
images to mitigate the modality gap between images and videos.
However, the synthesized videos are not realistic due to the camera
movements are only simulated in 2D space. Therefore, we gener-
ate realistic videos by simulating arbitrary camera movements in
3D scenes, and then the model can be trained using the generated
source videos. Unfortunately, the optical flows from the generated
videos have unexpected negative impacts, resulting in suboptimal
performance. To address this issue, we propose the Category-aware
Flow Memory Bank, which replaces optical flows in source videos
with real target flows, and the new composed videos are beneficial
for training. In addition, we leverage the video pace prediction task
to enhance the speed awareness of the model in order to solve the
problem that the model performs poorly in handling some cate-
gories with similar appearances but significant speed differences.
Our method achieves state-of-the-art performance and comparable
performance on three Image-to-Video benchmarks.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding.

KEYWORDS
Image-to-Video Adaptation, Category-aware Flow Memmory Bank,
Realitic Video Generation, Speed Awareness Enhancement, Action
Recognition
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1 INTRODUCTION
Video recognition is currently an active research direction in the
field of multimedia due to its wide-ranging applications, such as
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Figure 1: Generating a video from a single source image is
achieved through the Depthstillation [1] pipeline. Initially,
we project the pixels in the input image I into 3D space,
guided by the corresponding estimated depth map D. Sub-
sequently, we move the camera along a virtual motion path
from P0 to P1. Finally, this process yields a new view I′. By
combining these synthesized views, we can construct a more
realistic source video.

video retrieval [11, 42], intelligent video surveillance [33, 46], and
video captioning [28, 32]. However, training a high-performance
video classifier requires collecting and annotating a large amount
of video data, which is costly and time-consuming. As images are
easier to annotate than videos, and there are numerous labeled
image datasets accessible, image-to-video domain adaptation meth-
ods [4, 21, 22, 30, 51] that leverage the labeled images and unlabeled
videos for training high performance video classifier appear as a
challenging task and attract much attention.

The first challenge of image-to-video adaptation is the modality
gap between images and videos. This gap refers to the fact that
the temporal information in videos does not exist in source images.
Bridging this modality gap is necessary for transferring knowledge
from source domain to target domain effectively. Another challenge
arises from domain discrepancy caused by variations in scenes, im-
age styles and so on between source images and target video frames.
Domain discrepancy is a key factor causing models trained in the
source domain to perform poorly in the target domain. Overcoming
these two key challenges of modality gap and domain discrepancy
is crucial for achieving effective image-to-video adaptation.

Existing approaches [47, 48] predominantly employ a two-stage
paradigm to address the challenges of domain discrepancy and
modality gap. The first stage involves frame-level adaptation to
reduce domain discrepancies between source images and target
video frames. The second stage entails learning a spatio-temporal
model to bridge the modality gap and incorporate temporal in-
formation. For example, Wei et al. [21] first employs DANN [9]
for frame-level alignment and then leverages pseudo-labels from
the first stage for self-supervised learning on the target videos.
Recently, Zhuo et al. [51] proposes a single stage method ST-I2V
by synthesizing source videos from static images with the help of

https://doi.org/XXXXXXX.XXXXXXX
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Figure 2: We employ TV-L1 [49] to extract optical flows from
both source and target videos for category ‘jump’, as shown
in (a) and (b) respectively. It is evident that there is a sig-
nificant discrepancy between the flows of the source and
target videos. Specifically, the flows of the source video ex-
hibit more interference and noise, while those of the target
video appear cleaner.

Grad-CAM [35], and solve the image-to-video adaptation problems
with video-to-video domain adaptation methods.

Though being simple and effective, ST-I2V [51] randomly selects
regions within image as intermediate frames to simulate camera
displacement in 2D space which results in unrealistic synthesized
video with improper temporal information. To address this issue,
we rethink the imaging process in 3D space. As shown in Fig. 1, by
recovering the position of camera, we can simulate the arbitrary
movement of camera and generate realistic frame. Compared with
ST-I2V [51], our method is simpler as it does not require training an
additional classifier to locate major objects for an action. Besides,
the complete original images are retained, avoiding any loss of
crucial appearance information. The generated source video pre-
serves static appearance and dynamic motion information, which
is beneficial for training a discriminative spatio-temporal model.

Utilizing the generated source videos, we can train a simple but
effective spatio-temporal baseline model through cross entropy loss
with labels of source domain. However, we observe an unfavorable
phenomenon that the optical flows extracted from generated videos
are not helpful for training a discriminative model and even lead
to suboptimal performance. As shown in Fig. 2, the optical flows
from generated source videos exhibit more noise and interference
compared with those of the target videos. Consequently, there is a
noticeable distribution gap between the source and target videos,
resulting in suboptimal performance.

To address the significant discrepancies between the flows in
source and target videos, we construct a Category-aware Flow
Memory Bank (CFB). The memory bank stores real flow data for
each category within the real videos from target domain, where
the category is determined by the pseudo label of target video. For
a source video with ground-truth label 𝑙 , we randomly select a flow
of corresponding category 𝑙 from the CFB. Then the selected flow
is used to replace the original flow in the source video. As the new
source video is more similar to the target video, the performance
of the model is greatly improved.

Nevertheless, it is still difficult for the trained spatio-temporal
model to distinguish categories with similar visual appearances but
significant differences in speeds, such as ‘walk’ and ‘run’. So we
leverage the video pace prediction task [41] to enhance the model’s
perception of speed by altering video playback speeds. Specifically,
we sample video clips at varying pace rates and treat the pace rates
as labels. Subsequently, the spatio-temporal model is also trained
with cross-entropy loss with video playback speed labels. Addition-
ally, integrating video playback speed prediction task prevents the
model overfitting on the source domain and enables the model to
better generalize to target domain.

We validate our method on three widely used image-to-video
adaptation benchmarks. The experimental results show that our
method performs favorably against the current state-of-the-art ap-
proaches. We achieve the best-published results on the challenging
E→H and B→U benchmarks, and competitive results on the S→U
benchmark. Ablation studies are presented to verify the contribu-
tion of each key component in our approach.

In a nutshell, our contributions are as follows:

• To generate realistic source videos, we simulate cameramovements
in a 3D scene and capture new camera views that serve as source
video frames, inspired by [1]. The generated source videos are very
promising in training a discriminative spatio-temporal model.

• We propose a Category-aware Flow Memory Bank (CFB) to com-
pensate the improper temporal information of the generated videos
in source domain. By replacing the original flows of source videos
with the retrieved flows from CFB for training, a remarkable im-
provement in the performance of model is achieved.

• We integrate video pace prediction task [41] to enhance themodel’s
perception of speed, which enables the model to distinguish cate-
gories with similar visual appearances but differences in speeds.

• Extensive experimental results show that our method achieves the
best performance on the challenging E→H and B→U benchmarks
and attains comparable results on the S→U benchmark.

2 RELATEDWORK
Image-to-video adaptationmethods focus on transferring knowl-
edge from the image domain to the video domain. Existing unsuper-
vised image-to-video adaptation tasks assume that only the labels of
images are accessible, while the labels of the target videos are inac-
cessible. Mitigating the modality gap and reducing the distribution
discrepancy are the primary objectives of image-to-video adapta-
tion approaches [16, 20, 47]. For example, generative adversarial
network (GAN) [12] is used to learn the mapping between image
features and video features in HiGAN [48] and SymGAN [47]. The
spatio-temporal causal graph [4] pursues similar goals. In order
to mitigate the inherent modality gap between images and videos
during domain adaptation, these methods leverage the strong gen-
erative modeling capabilities of GANs to transfer knowledge across
modalities. CycDA [21] employs a four-stage method for adapta-
tion. Class-agnostic alignment is performed in the first stage to
derive pseudo-labels for training an independent spatio-temporal
model in the second stage. The next two stages conduct iterative
spatial alignment and spatio-temporal learning, with bidirectional
knowledge transfer between the two components. Zhuo et al. [51]
propose a new framework ST-I2V which synthesizes videos from
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source static images, thereby converting the image-to-video adapta-
tion task into video-to-video adaptation task. ST-I2V only simulates
the transformation of the camera position in the 2D space, resulting
in suboptimal performance. In contrast, we generate more realistic
video frames by adjusting camera viewpoints at different positions
in the 3D space. Additionally, we adopt both RGB and flow branches
to construct our spatio-temporal model.

Video-to-video adaptation. Different from image-to-video
adaptation, video-to-video adaptation methods are proposed to
adapt labeled source videos to unlabeled target videos [6, 18, 25, 29],
with their primary focus on addressing the challenges of domain
alignment. Discrepancy-based methods are introduced to explicitly
minimize domain discrepancies. For example, PTC [10] minimizes
the Maximum Mean Discrepancy (MMD) [13] loss across both RGB
and optical flow modalities to reduce the domain shift, resulting in
improved performance. DVM [43] employs MixUp [50] to mitigate
the domain-wise gap. This is achieved by progressively fusing the
target videos with the source videos at the pixel-level, allowing
for better alignment and adaptation between the domains. In our
method, we propose a category-aware flowmemory bank to replace
the flow data in the generated videos in source domain, thereby
reducing the domain gap.

Video self-supervised learning offers a promising annotation-
free approach for representation learning in video domain. How-
ever, learning video representations is challenging due to temporal
dynamics, motion, and other environmental factors. One key mo-
tivation behind defining pretext tasks is the idea that if a model
can perform well on a complex task that requires a high-level un-
derstanding of video content, then it will learn more generalizable
representations. For example, Jing et al. [15] and Wang et al. [40]
design a task that applies appearance augmentations to video clips,
and then the model is asked to classify the specific augmentation
method that is applied. Fernando et al. [8] and Xu et al. [44] both
design their approaches in a way that involves shuffling the order
of video frames and having the model predict whether the video
segment has been frame-shuffled. In order to enhance the model’s
awareness of speed and avoid overfitting problem in source domain,
we introduce another simple video self-supervised learning method
called video pace prediction [41].

3 METHODOLOGY
The goal of ourmethod is to train amodel that can achieves effective
classification performance on target videos where the ground-truth
annotations come from the labeled source image domain only. We
train and evaluate our model in closed-set setting which means
only the data from common categories in source and target domains
will be used. It is supposed that there are a labeled source image
domain 𝐼𝑠 = {(𝑥𝑠

𝑖
, 𝑦𝑠
𝑖
)}𝑛𝑠
𝑖=1 and an unlabeled target video domain

𝑉𝑡 = {𝑣𝑡
𝑗
}𝑛𝑡
𝑗=1. Both domains contain the same 𝐶 classes.

Our overall framework is shown in Fig. 3. Since a large modality
gap exists between images and videos, we first convert the image-
to-video task into a video-to-video task. To simply construct a
spatio-temporal model, we employ the I3D [3] network pretrained
on the Kinetics dataset [17] as the backbone for both the RGB and
flow branches. Following the instructions of I3D, we extract optical
flows from generated source videos and real target videos. The

extracted flows are denoted by 𝑓𝑠 in source domain and 𝑓𝑡 in target
domain. We address the issue of suboptimal performance caused
by utilizing the original flows from the generated videos, with our
proposed CFB. Furthermore, we enhance the model’s ability to
perceive speed by applying video pace prediction task [41].

3.1 Source video generation
Although Zhuo et al. [51] have provided an effective method for
source video generation, the generated videos may not be suffi-
ciently realistic. This is because the approach only simulates the
movement of the camera’s viewpoint in 2D space, neglecting the
fact that the body actions within the video should exist in 3D space.

To address this issue, we first generate source videos from source
images via a virtual camera motion engine module, inspired by [1].
For a given source image I, we employ MiDaS [34] to estimate the
depth map D. The estimated D is then utilized to project pixels
in I into 3D space based on the inverse intrinsic matrix M−1 (the
intrinsic matrix is used to transform 3D world coordinates into
2D image coordinates captured by a camera). Assuming that I is
captured by the camera at 3D location P0, we apply an arbitrary
virtual motion to the camera, moving it to a new position P1. Specif-
ically, we generate a rotation matrix R and a translation vector ®𝑡
by sampling a random triplet of Euler angles and a random 3D
vector, respectively. The transformation matrix is then defined as
T0→1 = (R|®𝑡) which is corresponding to the virtual motion path
P0 → P1. For each pixel with coordinate 𝑝 in I, the coordinate 𝑝′
of its corresponding pixel in I′ acquired from the new viewpoint
P1 can be obtained by:

𝑝′ ∼ MT0→1D(𝑝)M−1𝑝. (1)

where D(𝑝) is the depth value with coordinate 𝑝 . Finally, the new
image I′ is obtained through forward warping.

Following these steps, we alternately generate the subsequent
video frame by utilizing the previously generated frame, thereby
generating a source video 𝑣𝑠

𝑖
with continuous action. Subsequently,

we utilize the TV-L1 algorithm [49] to compute optical flow 𝑓 𝑠
𝑖
from

the i-th source video 𝑣𝑠
𝑖
and optical flow 𝑓 𝑡

𝑖
from the i-th target

video 𝑣𝑡
𝑖
, respectively. Therefore, the source domain is denoted by

𝑉𝑠 = {(𝑣𝑠
𝑖
, 𝑓 𝑠
𝑖
, 𝑦𝑠
𝑖
)}𝑛𝑠
𝑖=1, and the target domain is denoted by 𝑉𝑡 =

{(𝑣𝑡
𝑖
, 𝑓 𝑡
𝑖
)}𝑛𝑡
𝑖=1.

Given the source video (𝑣𝑠
𝑖
, 𝑓 𝑠
𝑖
, 𝑦𝑠
𝑖
), we use the cross-entropy loss

as the classification loss at the frame-level and video-level referring
to I3D [3] and ST-I2V [51]. The frame-level classification entropy
loss named local loss L𝑙𝑜𝑐 is defined as below,

L𝑙𝑜𝑐 =
1
𝐵

𝐵∑︁
𝑖=1

𝐾∑︁
𝑘=1

CE(𝑝 (𝑣𝑠𝑖 )𝑘 , 𝑦
𝑠
𝑖 ) . (2)

Here, CE(·, ·) represents the cross-entropy loss, and 𝑝 (𝑣𝑠
𝑖
) ∈ R𝐾×𝐶

corresponds to the network’s logits over 𝐾 RGB frames from a
generated video 𝑉 𝑠

𝑖
. The variable 𝐵 denotes the batch size.

Following the instructions in I3D [3], we train the RGB branch
and the flow branch individually. So the video-level classification
entropy loss L𝑐 is defined as below,

L𝑐 =
1
𝐵

𝐵∑︁
𝑖=1

(CE(𝑝 (𝑣𝑠
𝑖
), 𝑦𝑠𝑖 ) + CE(𝑝 (𝑓 𝑠

𝑖
), 𝑦𝑠𝑖 )), (3)
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Figure 3: The overall framework of our approach begins by generating videos from static images for source domain. Subsequently,
we replace the flow input of the generated source video with the retrieved flow data from the proposed category-aware memory
bank. We sample a new video segment from the target video, for instance, by applying a 2× speedup (i.e. VP=2) from the original
video clip. Then, the RGB frames and the optical flows are fed input into the RGB branch and flow branch separately. Finally,
the representations from source domain are used to compute the cross-entropy losses for classification (i.e. CE Loss). And the
representations from target domain are used to calculate the cross-entropy loss for video pace prediction task (i.e. VC Loss).

where 𝑝 (𝑣𝑠
𝑖
) ∈ R𝐾×𝐶 is an average over logits of 𝐾 RGB frames

from video 𝑉 𝑠
𝑖
and 𝑝 (𝑓 𝑠

𝑖
) ∈ R𝐾×𝐶 is an average over logits of 𝐾

flows from video 𝑉 𝑠
𝑖
.

During the inference phase, the class logits 𝑝 (𝑣𝑠
𝑖
) and 𝑝 (𝑓 𝑠

𝑖
)

obtained from both RGB and flow branches are normalized via soft-
max activation function. The normalized results are then summed
together, yielding probabilities for each action category. Finally,
the action category with the highest probability is selected as the
predicted category for the current video sample.

3.2 Category-aware flow memory bank
As shown in Fig. 2, the optical flow frames extracted from gener-
ated source videos contain more interference in comparison to the
cleaner optical flow frames present in target videos. This phenome-
non indicates the significant distribution gap between the source
and target domains.

To address the negative impacts of the original flows from source
videos on the performance of model, we propose a Category-aware
Flow memory Bank (CFB). As shown in Fig. 3, we train the model
using the original source videos 𝑣𝑠 and 𝑓𝑠 during the warm-up
epochs. After the warm-up phase, we utilize the trained model to
assign pseudo label for each target video sample. Subsequently, we
sort the samples based on the confidences of these pseudo-labels
and retain only the top 𝑁 samples for each pseudo category. In
this manner, we construct a memory bank of size 𝐶 × 𝑁 , where 𝐶
represents the number of categories. We denote the 𝑛-th flow of
category 𝑐 as F𝑛𝑐 .

Given the 𝑖-th generated video sample𝑉 𝑠
𝑖
= (𝑣𝑠

𝑖
, 𝑓 𝑠
𝑖
, 𝑦𝑠
𝑖
) in source

domain, we replace the original flow 𝑓 𝑠
𝑖
in 𝑉 𝑠

𝑖
with a randomly

selected flow F𝑛𝑐 , resulting in a new video sample𝑉 𝑠
𝑖
= (𝑣𝑠

𝑖
, F𝑛𝑐 , 𝑦𝑠𝑖 )

where 𝑐 is equal to 𝑦𝑠
𝑖
. Then the Eqn. (3) is modified as below,

L′
𝑐 =

1
𝐵

𝐵∑︁
𝑖=1

(CE(𝑝 (𝑣𝑠
𝑖
), 𝑦𝑠𝑖 ) + CE(𝑝 (F𝑛𝑐 ), 𝑦𝑠𝑖 )), (4)

where 𝑝 (F𝑛𝑐 ) ∈ R𝐾×𝐶 is an average over logits of K flows of
selected flow F𝑛𝑐 .

3.3 Speed awareness enhancement
Distinguishing categories with similar visual appearances but sig-
nificant differences in speeds, such as ‘walk’ and ‘run’, poses a
challenge for the model. To address this issue, we leverage video
pace prediction task [41] to empower the model with the capability
to perceive speed by altering video playback speeds.When provided
with a video in its natural pace containing 𝐾 frames, we sample
video segments �̃�𝑡 by various video pace rates 𝑟 . These pace rates
correspond to labels from a predefined pace label space R𝐶𝑣𝑝 . For
example, we produce three pace rate candidates {normal, fast, super
fast}, where the corresponding pace labels 𝑟 are {1, 2, 3}, respec-
tively. We randomly choose the starting frame over 𝐾 frames for
each target video and then loop over the video at a regular interval
𝑟 until we obtain the desired number of frames for training.

With the video segment �̃�𝑡 which is sampled by pace rate 𝑟 , the
objective of pace prediction task is to understand the content of
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the video segment and predict the correct pace rate. Subsequently,
we utilize the video pace labels to train our model using the cross-
entropy loss L𝑣𝑐 , which is defined as follows:

L𝑣𝑐 =
1
𝐵

𝐵∑︁
𝑖=1

CE(𝑟 (�̃�𝑡𝑖 ), 𝑟𝑖 ), (5)

where 𝑟𝑖 denotes the video pace label of 𝑖-th video, 𝑟 ∈ R𝐶𝑣𝑝 is the
predicted pace logits and 𝐶𝑣𝑝 denotes the size of pace label space.

Overall, all loss functions mentioned above form the complete
objective:

L = L′
𝑐 + 𝜆1L𝑙𝑜𝑐 + 𝜆2L𝑣𝑐 , (6)

where 𝜆1 and 𝜆2 are trade-off parameters.

4 EXPERIMENTS
4.1 Datasets and setup
We evaluate our method through experiments on three standard
image-to-video adaptation benchmarks: E→H, B→U and S→U.
In the case of the E→H, we utilize the EADs [5] dataset, which
comprises Stanford40 [45] and the HII dataset [37], as the source
image domain, and HMDB51 [19] as the target video domain. There
are 13 common classes between EADs and HMDB51 for image-
to-video adaptation. The labeled source images and the unlabeled
target videos are used to train a model. Regarding B→U, we em-
ploy the BU101 [26] dataset as the labeled source image domain
and UCF101 [36] as the unlabeled target video domain. We use a
total of 101 classes for the image-to-video adaptation task, as the
classes in BU101 completely correspond to those in UCF101. For the
S→U benchmark, we substitute the source image domain from the
B→U benchmark with the Stanford40 [45] dataset. To perform the
image-to-video adaptation task, the 12 common classes between
Stanford40 and UCF101 are selected for training and evaluation.

4.2 Implementation details
To generate videos for source domain, we utilize MiDaS [34] whose
backbone is pretrained BEIT-Large-512 [2] to extract depth maps
from still images in source domain. Subsequently, we utilize Depth-
stillation [1] to generate 16 video frames using the extracted depth
maps and still images. The coefficient of translation vector ®𝑡 is set
to 0.01. Some generated frames can be found in Supplementary ma-
terial. We use all 16 frames of the generated source videos during
training following ST-I2V [51] for fair comparison.

For constructing a category-aware memory bank with high-
quality pseudo-labels, we train the model for 10 epochs as warm-up
phase. We then employ the model to assign pseudo-labels for target
videos in each subsequent training epoch. We select the top 𝑁 = 60
samples with the highest confidence for each category based on
the confidences of the pseudo-labels and store their flow data in
the memory bank. The influence of number of selected samples 𝑁
can be found in Parameter sensitivity analysis of subsection 4.4.

For building a spatio-temporal model, we use I3D model [3] with
both RGB and flow branches pretrained on the Kinetics dataset [17].
We replace the last classifier layer with a fully connected layer
that includes 𝐶 neurons. We freeze the first three Unit3D blocks
following ST-I2V [51] to accelerate the training process.

We train the model with mini-batch stochastic gradient descent
optimizer where the momentum and weight decay are set to 0.9
and 0.0001, respectively. The initial learning rates, batch sizes and
total epochs are set to (0.05, 0.1, 0.015), (16, 32, 32) and (60, 30,
20) for E→H, B→U and S→U benchmarks, respectively. We also
adopt multistep decaying learning rate with a 0.1 decay rate where
the milestones are half of the total epochs and the 2/3 of the total
epochs. After the warm-up training phase, CFB is applied when
the pseudo labels of target videos are more accurate. Following
ST-I2V [51], the values of hyper-parameter 𝜆1 are set to (1, 20, 1)
for E→H, B→U and S→U benchmarks, respectively.

We set the size of video pace label space to 5 for all benchmarks,
which includes five video pace labels {1, 2, 3, 4, 5}. We randomly
select a beginning frame for each target video and loop over the
video at the generated video pace rate until the training video clip
contains 16 frames. The generated video pace rate is treated as the
pace label. For example, if there are 30 frames in the video, and
loop over it starting from the 20th frame at 2× speed, the indices
of the selected frames are {20, 22, 24, 26, 28, 30, 2, 4, 6, 8, 10, 12,
14, 16, 18, 20}. And the 2× pace is regarded as pace label. During
inference, we follow the approach of ST-I2V [51] and extract 32
frames uniformly from each target video for fair comparison. The
values of hyper-parameter 𝜆2 are set to (0.2, 0.001, 0.01) for E→H,
B→U and S→U benchmarks, respectively.

4.3 Competitors and results
In our experiments, we conduct comparative evaluations against
several prevailing approaches: The DANN [9] pioneers domain
adversarial training for classical image-level adaptation. JAN [24]
reduces the image-level domain shift by aligning the joint distri-
butions of multiple domain-specific layers. DAL [27] is another
image-level domain adaptation method that introduces a novel
domain adaptation layer to align source and target distributions
with a reference distribution. MEDA [39] minimizes structural risk
to train a domain-agnostic classifier on the Grassmann manifold
and dynamically aligns the distributions of multiple domains while
evaluating the significance of marginal and conditional distribu-
tions. HiGAN [48] and SymGAN [47] attempt at bridging the modal
gap by mapping image embeddings to video space using GAN [12].
DANN+I3D baseline leverages DANN adapted image features to
train an I3D architecture with pseudo-labels which is implemented
by Lin et al. [21]. CycDA [21] is a four-stage method that reduces
domain discrepancies by using both class-agnostic and class-aware
domain alignment techniques. It also utilizes pseudo labels to train a
I3D model, effectively bridging the modality gap. ST-I2V [51] is the
recent state-of-the-art approach, which employs Grad-CAM [35]
and an additional classifier to generate source videos. It transforms
the image-to-video domain adaptation task into a video-to-video
domain adaptation task. Additionally, for reference, we include the
lower bound (SO (Img), where SO stands for Source-only.) and the
upper bound (ground truth supervised target) from works [21, 51].

In Tab. 1, we present comparison results. Our approach achieves
new state-of-the-art performances on the E→H and B→U bench-
marks and demonstrates comparable result on the S→U benchmark.
Specifically, our method outperforms ST-I2V [51] by 6.1% and 2.2%
on the E→H and B→U benchmarks, respectively. It’s important to
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Table 1: Results on E→H, B→U and S→U, averaged over 3
random trials.

method E→H B→U S→U

SO (Img) 37.2 54.8 76.8
DANN [9] 39.6 55.3 80.3
JAN [24] 40.9 - 91.4
HiGAN [48] 44.6 - 95.4
DAL [27] 45.5 - 97.6
MEDA [39] 43.1 - 94.3
SymGAN [47] 55.0 - 97.7
DANN+I3D 53.8 68.3 97.9
CycDA [21] 62.0 72.6 99.1
ST-I2V [51] 71.3 78.9 98.6

Ours 77.4 81.1 97.3
supervised target 83.2 93.1 99.3

Table 2: Ablation study results on E→H, B→U, and S→U,
averaged over 3 random trials.

method E→H B→U S→U

SO ([51]) 59.0 60.2 96.3
SO (RGB) 59.8 76.4 96.6
SO (RGB+flow) 60.7 74.6 96.3
SO (RGB+flow) + CFB 74.1 80.2 97.2
Full Model 77.4 81.1 97.3

note that the E→H benchmark is considerably more challenging
than B→U and S→U, given the difficulties in distinguishing cate-
gories within the HMDB51 dataset. Nevertheless, the performance
of our model on the S→U benchmark still lags behind the current
state-of-the-art method. This gap may arise from the fact that our
approach primarily focuses on enhancing temporal information,
while S→U benchmark relies less on temporal information which
can be verified from the superior performance of SO (RGB) in Tab. 2.
On the other hand, we can adopt some existing domain adaptation
techniques like BNM [7] and MCC [14] to further improve our
model on S→U benchmark, achieving new state-of-the-art result,
as shown in Tab. 4.

The experimental results indicate the effectiveness of our source
video generation method, the proposed category-aware flow mem-
ory bank and the speed awareness enhancement approach, in the
context of image-to-video domain adaptation learning.

4.4 Ablation study
To study the contribution of each component in our approach
towards the overall performance, we conduct the ablation study
of our proposed approach. We evaluate the following variants of
model: (1) SO (RGB), which denotes the model that contains RGB
branch only and is trained with the labeled generated source videos.
(2) SO (RGB+flow), the model is trained simultaneously using
both the RGB branch and the flow branch with source data. (3) SO
(RGB+flow) + CFB, is the model trained by replacing the original

flow data in source generated video samples with the retrieved flow
data from CFB after the warm-up phase. (4) Full Model, that is
trained with incorporating VPT (video pace prediction task) into
the baseline model SO (RGB+flow) + CFB. Additionally, we include
the performance of SO ([51]) for reference, which is trained with
synthesized videos generated by Zhuo et al. [51].

The ablation study results are shown in Tab. 2. Comparing with
SO ([51]), we can observe that ourmodel SO (RGB), when using only
the RGB branch (the same as SO ([51])), has brought improvements
of 0.8%, 16.2% and 0.3% on E→H, B→U and S→U, respectively.
This means that our video generation approach is more effective to
learn a discriminative spatio-temporal model against ST-I2V [51].
When training the flow branch using the original flow data from
source videos, it still provides some improvements on the E→H
benchmark but has negative effects on S→U and B→U benchmarks.
This phenomenon demonstrates the improper flow from source
video is one of the key factors contributing to the poor performance
of spatio-temporal models.

Our proposed Category-aware Flow Memory Bank (CFB) aims
to address this issue. The results of SO (RGB+flow) + CFB show
that our approach brings performance improvements across three
benchmarks, is specially with gains of 13.4% and 5.6% in E→H and
B→U benchmarks, respectively. After enhancing the model’s per-
ception of speed by introducing VPT, the performance of Full Model
is further improved, validating the effectiveness of our approach.
Parameter sensitivity analysis. To evaluate the parameter sensi-
tivity, we conduct a series of experiments on the E→H benchmark.
Fig. 4 reports the results of parameter sensitivity analysis, and more
results can be found in Supplementary material.

The weight 𝜆1 is one of the key factors that influences the per-
formance of the model. We evaluate the impact of different values
of 𝜆1 using the baseline SO (RGB) and present the results in Fig. 4
(a). As observed, a small 𝜆1 leads to the model ignoring appearance
characteristics of video frames, while a large 𝜆1 results in the model
excessively focusing on appearance characteristics at the expense
of temporal features. This further hinders the model’s ability to
comprehend the content of the video.

An appropriate dimension of CFB is a critical factor in deter-
mining the performance of model. So we investigate the impact
on performance by setting different numbers of flow samples 𝑁
for each category in baseline SO (RGB+flow) + CFB and the results
are shown in Fig. 4 (b). It is evident that the value of 𝑁 can signifi-
cantly influences the performance of model. An excessively large 𝑁
may introduces noisy flow samples with low-quality pseudo labels,
which leads to inferior performance. Conversely, a small 𝑁 may
leads to insufficient model generalization.

To investigate the proper settings for VPT, we explore different
video pace prediction loss weights 𝜆2 and sizes of video pace label
space 𝐶𝑣𝑝 based on baseline SO (RGB+flow) and the results are
shown in Fig. 4 (c) and Fig. 4 (d) respectively. From the above exper-
imental results, it is observed that employing video pace prediction
task on SO (RGB+flow) can achieves competitive results under a
appropriate range of 𝜆2 values. Additionally, the small size of the
video pace label space restricts the model’s ability to perceive speed.
On the other hand, a over-sized video pace label space increases
the difficulty of the speed prediction task, making it challenging
for the model to learn meaningful semantic representations.
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(a) Acc. of SO (RGB)
w.r.t 𝜆1.

(b) Acc. of SO (RGB+flow) + CFB
w.r.t 𝑁 .

(c) Acc. of SO (RGB+flow) + VPT
w.r.t 𝜆2.

(d) Acc. of SO (RGB+flow) + VPT
w.r.t𝐶𝑣𝑝 .

Figure 4: The plots of parameter sensitivity analysis. We obtain the results on E→H benchmark.

(a) SO (RGB+flow) (b) SO (RGB+flow) + CFB

Figure 5: t-SNE visualizations of video representations (colored w.r.t. ground truth) from source and target domain in E→H
benchmarks. We plot the representations of SO (RGB+flow) (a) and the representations of SO (RGB+flow) + CFB (b). We use 13
different colors to represent each category. We use ‘o’ and ‘+’ to represent source representations and target representations
respectively.

Table 3: Accuracies of different aggregation methods on
E→H, averaged over 3 random trials.

method E→H

SO (RGB+flow) 60.7
Mean 60 59.0
SimW Sum60 59.6
SimW Mean top5 63.8
SimW Sum top5 64.0
SimW top1 72.5
SimW Random 1/top5 73.2
Random 1/60 74.1

Different aggregation methods for retrieved flows. Based on
SO (RGB+flow) + CFB, we conduct a study to investigate the impact
of different retrieved flow aggregation methods on the performance
of model. We conduct these experiments on E→H benchmark. The
results are presented in Tab. 3. After constructing a CFB which
stores top 60 flows with the highest confidence for each category,

we first investigate the impact of aggregating all retrieved flows
using mean pooling (denoted by Mean 60) on the performance of
model. Next, we design various aggregation methods that automate
the selection of retrieved flows through the cosine similarity of
source and target RGB features. The cosine similarity is considered
as the weight of each retrieved flow data. And we represent these
methods using ‘SimW’ as the prefix. We evaluate the following
methods: (1) SimW Sum60, means that we perform a weighted
summation of all retrieved flows by using the weights assigned to
each flow. (2) SimW Mean top5, we perform mean pooling on the
top 5 retrieved flows with the highest weights. And then replace
the source flow with the pooled flow. (3) SimW Sum top5, which
denotes that we perform weighted summation of top 5 retrieved
flows with the highest weights. (4) SimW top1, which means that
we only choose the retrieved flow which own the highest weight.
(5) SimW Random 1/top5, we randomly select one flow from the
top 5 retrieved flows with the highest weights. At last, Random 1/60
represents the same aggregation setting as SO (RGB+flow) + CFB
in Tab. 2, which is the one we used in the manuscript. For reference,
we also include the result of SO (RGB+flow).
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Table 4: Accuracies on E→H and S→U after combining with
DA Method, averaged over 3 random trials.

method E→H S→U

SO (RGB+flow) + CFB 74.1 97.2
SO (RGB+flow) + CFB + DAN 74.7 97.3
SO (RGB+flow) + CFB + MCC 75.0 99.2
SO (RGB+flow) + CFB + BNM 74.5 99.3

The results indicate that regardless of using mean pooling or
weighted summation to aggregate retrieved flows, the constructed
flows lead to suboptimal results or even have significant negative
impacts on the performance of model. This could be due to that the
aggregated flows lose too much information and dissimilar to real
flow data. With less (top5) flows for aggregation, the performance is
improved.With only top1 flow, the performance is further improved.
So we only use 1 flow without aggregation. We use Random 1/60 as
we think that randomly choosing 1 flow may boosts the robustness
of the model and the experimental result verifies our conjecture. So
we use Random 1/60 in our manuscript.

4.5 Further remarks
Integrating domain adaptation techniques. We employ several
typical domain adaptation techniques into the constructed baseline
SO (RGB+flow) + CFB, including DAN [23], MCC [14] and BNM [7].
Specifically, we use L′ = L′

𝑐 + 𝜆1L𝑙𝑜𝑐 + 𝜆3L𝑡 𝑓 to train the model.
L𝑡 𝑓 is the transfer loss likes MMD [23] loss, and BNM [7] loss.

The values of hyper-parameter 𝜆3 are set to (0.05, 0.3) for E→H
and S→U, respectively. The results on E→H and S→U are shown
in Tab. 4 and we also report the results of SO (RGB+flow) + CFB
for better demonstration.

It is observed that the performance of our model can still be
greatly improved by applying typical domain adaptation meth-
ods on our constructed video-to-video domain adaptation baseline
which involves generating source videos and utilizing CFB. With
recent state-of-the-art domain adaptation techniques MCC [14]
and BNM [7], our method outperforms CycDA [21] on S→U bench-
mark, achieving new state-of-the-art performance. In addition, the
results also demonstrate that the combination of our method with
DA techniques shows good adaptability on E→H.
Compatibility with CLIP.We replace the network of RGB branch
in sec. 4.2 with visual encoder of CLIP [31] whose backbone architec-
ture is VIT-B/32. Different from the experimental hyper parameter
settings described in sec. 4.2, we set total epochs to (40, 20) and
the number of warm-up training phase to (10, 5) for E→H and
S→U benchmarks respectively. And setting the batch size to 8, the
learning rate of CLIP to 5e-5 and the prompt for text encoder to ‘a
video of a person {}.’ for both benchmarks. {} in prompt indicates
category names like ‘climb’, ‘run’ and so on.

For reference, we include the results of our approach employing
the I3D network in RGB backbone. The results shown in Tab. 5
indicates that the performance improvements can be attributed
to the robust representation learning capability and the powerful
knowledge base of CLIP itself. By integrating CLIP into our method,

Table 5: Accuracies on E→H and S→U after integrating with
CLIP, averaged over 3 random trials.

RGB backbone method E→H S→U

I3D SO (RGB) 59.8 96.6
Full Model 77.4 97.3

CLIP SO (RGB) 66.8 97.7
Full Model 78.0 98.3

we can leverage its knowledge and capabilities to enhance the per-
formance. Additionally, the compatibility between our method and
CLIP is crucial for achieving further performance gains. The ability
of our method to effectively incorporate CLIP’s features and merge
them with the existing framework allows for a synergistic effect,
especially resulting in improved performance on E→H benchmark.
Our approach’s compatibility with prevailing large multimodal
models like CLIP showcases its strength and demonstrates its abil-
ity to achieve better results.
T-SNE visualization.We visualize the representations of the base-
line models, SO (RGB+flow) and SO (RGB+flow) + CFB, in Fig. 5
using t-SNE [38]. We project the source and target videos of E→H
benchmark into 2-dimensional representations. Intuitively, there
aremore confusions among the representations from SO (RGB+flow)
(Fig. 5 (a)), which can be improved by incorporating CFB, as shown
in Fig. 5 (b). Specifically, for categories like ‘pour’, ‘kick’, and ‘push’,
the incorporation of CFB enables the model to learn more discrimi-
native representations, enabling better differentiation from others.

Moreover, for categories of ‘talk’, ‘smoke’, ‘climb’ and ‘wave’, the
representations from both the source and target domains become
closer after replacing the flows retrieved from CFB, as depicted in
Fig. 5 (b). It is suggested that our proposed CFB further reduces
the distribution discrepancies between source and target domains,
which is beneficial for training a model with great generalization.

5 CONCLUSION
We overcome the challenges of image-to-video domain adaptation
task, aiming to enhance the spatio-temporal model’s discrimina-
tive ability for unlabeled video classification in the target domain.
To mitigate the modality gap between labeled source images and
unlabeled target videos, we generate realistic source videos by
simulating diverse camera movements in 3D scenes and the new
perspectives are served as frames. To further mitigate the negative
influences of the flows extracted from the generated source videos,
we propose the category-aware flow memory bank (CFB). By re-
placing the optical flow in a generated source video with real target
flow which is retrieved from CFB, we create a new video sample
that closely resembles the target video. Additionally, we leverage
the video pace prediction task to enhance the model’s perception
of speed. Our proposed method demonstrates promising results
compared with the current state-of-the-art approaches. In our cur-
rent method, the domain discrepancy is not fully concerned, which
could be further improved with video-to-video domain adaptation
methods in the future work.
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