
Seeing and Solving: An Interpreter-Solver Framework for Geometric
Reasoning with Large Vision and Language Models

Anonymous ACL submission

Abstract001

Geometrical Problem Solving (GPS), which in-002
volves interpreting diagrams and text to solve003
problems using logical reasoning and mathe-004
matical principles, has gained significant at-005
tention with the advancement of Multimodal006
Large Language Models (MLLMs). However,007
solving these problems in a zero-shot setting008
has received comparatively little attention, de-009
spite the growing improvements in AI reason-010
ing for visual mathematics understanding. In011
this study, we propose Interpreter-Solver, a012
two-stage pipeline that seamlessly integrates013
Vision Language Models (VLMs) and Large014
Language Models (LLMs) to address these is-015
sues. Our approach harnesses the VLM’s vi-016
sual understanding to extract formal textual de-017
scriptions of geometric relationships, which are018
then processed by the LLM for its outstand-019
ing reasoning capabilities. This entire process020
employs a zero-shot prompting strategy to re-021
solve the previous challenges. Without any022
fine-tuning, it establishes itself as a new state-023
of-the-art by achieving accuracies of 83.19%024
on the Geometry3K dataset and 69.67% on025
the MathVerse dataset. It surpasses leading026
methods like InterGPS, GeoDRL, and Auto-027
GPS while requiring 5× and 2.8× fewer pa-028
rameters than the top models on these bench-029
marks. You can find all the codes, data, and rea-030
soning files here https://anonymous.4open.031
science/r/Interpreter-Solver/.032

1 Introduction033

Solving geometric problems from diagrams and034

natural language text remains a challenging task035

at the intersection of visual understanding and036

symbolic reasoning. Previous studies have under-037

scored the superiority of neuro-symbolic frame-038

works, wherein transformer-based models such as039

BART (Lewis et al., 2020), LLaVA (Liu et al.,040

2024), and Qwen (Bai et al., 2025) have demon-041

strated significant efficacy in learning shared em-042

bedding spaces to solve geometrical problems ef-043

Question:
In the figure below, \angle A B C is intersected
by parallel lines l and m. What is the measure of
\angle A B C? Express your answer in degrees.
Choices:
A. 33
B. 38
C. 61
D. 71
Answer:
D

Ground Truth Predicates

Equals(MeasureOf(Angle(H, C, B)), 33)
Equals(MeasureOf(Angle(B, A, D)), 38)

PointLiesOnLine(A, Line(D, F))
PointLiesOnLine(C, Line(E, H))
PointLiesOnLine(A, Line(B, G))
PointLiesOnLine(C, Line(B, I))
Parallel(Line(D, A), Line(C, H))

Point(A), Point(B), Point(C)
Line(D), Line(H)

Parallel(Line(D), Line(H))
Angle(D,A,B), Angle(B,C,H)
MeasureOf(Angle(D,A,B), 38)
MeasureOf(Angle(B,C,H), 33)
PointLiesOnLine(A,Line(D))
PointLiesOnLine(C,Line(H))

Line(A,B), Line(B,C)

Gemini 2.0 Flash Predicates

Figure 1: Data example of a geometry problem anno-
tated with formal language predicates for both ground
truth and Gemini 2.0 Flash-generated predicates.

fectively. In a similar context, theorem-based ge- 044

ometry solver frameworks have also shown strong 045

performances (Lu et al., 2021). Furthermore, ar- 046

chitectural refinements, such as the enhanced joint 047

alignment for improved image understanding pro- 048

posed by Gao et al. (2023), have yielded favorable 049

results. 050

However, domain-specific supervised fine- 051

tuning is resource-intensive and does not always 052

achieve optimal performance, even with extensive 053

resource usage, as noted in similar work by Gao 054

et al. (2023). Moreover, the challenge of reduc- 055

ing overestimation bias in theorem prediction is 056

not addressed in the work of Peng et al. (2023). 057

Another notable approach by Ping et al. (2025) 058

has found impressive outcomes using ground-truth 059

formal language for geometrical diagrams. A sub- 060

stantial drawback, however, is that its dependence 061

on human expertise for generating this formal lan- 062

guage requires extensive manual labor. This raises 063

a key question: Can modern VLMs and LLMs work 064

together effectively to solve geometry problems in 065

a zero-shot setting without task-specific training or 066

1

https://anonymous.4open.science/r/Interpreter-Solver/
https://anonymous.4open.science/r/Interpreter-Solver/
https://anonymous.4open.science/r/Interpreter-Solver/

manual formalization? Consequently, this study067

aims to harness the capabilities of state-of-the-art068

VLMs for this purpose. We initiate an investiga-069

tion into their unexplored potential for both forging070

formal language and solving geometrical problems071

directly in a zero-shot context, thereby addressing072

a key opening in the current research landscape.073

In this study, we propose an multi-agent074

pipeline for geometry problem solving, named075

Interpreter-Solver. This pipeline leverages a076

uniquely tailored two-stage process, combining077

an Interpreter Agent and a Solver Agent to opti-078

mize the balance between solving complexity and079

computational efficiency. The contributions of this080

study are summarized below:081

• An efficient two-stage framework called082

Interpreter-Solver is proposed, which splits083

the visual perception and reasoning tasks in084

geometric problem-solving, using VLMs for085

formal language generation and LLMs for086

problem-solving.087

• Interpreter-Solver is benchmarked on the088

Geometry3K and MathVerse datasets, show-089

casing state-of-the-art performance in zero-090

shot settings. It even outperforms state-of-091

the-art models by a significant margin on the092

MathVerse dataset even with 4-bit quantized093

models. We thoroughly examined important094

research questions (RQs) and provided potent095

examples to firmly support our findings.096

• The efficacy of using VLMs to automate the097

generation of formal language from diagrams098

in a zero-shot context is showcased, address-099

ing the limitations of previous methods that100

required extensive manual labor.101

• An ablation study analyzes the impact of pred-102

icates on the performance of vision-language103

models. It shows that while predicates benefit104

open-source models, they can slightly impede105

the performance of more advanced enterprise106

models such as Gemini 2.0 Flash.107

2 Related Work108

The task of solving geometrical problems has109

gained significant attention due to its complex-110

ity, requiring both an understanding of abstract111

concepts and symbolic reasoning along with112

multimodal comprehension, which leads to the113

emergence of novel insights within methods and114

datasets. Recent research has focused on de- 115

veloping robust models and datasets to address 116

the challenges of geometrical problem-solving. 117

Our comprehensive analysis has identified sev- 118

eral modern approaches, including neural-based 119

(Gao et al., 2023; Huang et al., 2025a; Cho et al., 120

2025), symbolic-based (Lu et al., 2021), and neuro- 121

symbolic-based methods (Kazemi et al., 2023; 122

Zhuang et al., 2025; Xu et al., 2024; Ping et al., 123

2025), that are devoted to geometrical tasks. 124

Among symbolic approaches, Lu et al. (2021) 125

proposed a novel framework that takes problem text 126

and diagrams as input and decodes them into for- 127

mal language descriptions utilizing an automatic 128

parser. The framework includes theorem knowl- 129

edge as conditional rules and performs symbolic 130

reasoning step by step, acquiring an accuracy of 131

57.5 132

The advent of MMLMs has led to the widespread 133

adoption of transformer-based architectures, where 134

Qwen (Bai et al., 2025), PaLI (Chen et al., 2023), 135

LLaVA (Liu et al., 2023), Gemini (Comanici et al., 136

2025), and GPT (Achiam et al., 2023) have been uti- 137

lized to combine vision and language. Zhuang et al. 138

(2025) proposed Progressive Multimodal Align- 139

ment, a three-stage training framework designed 140

to improve the mathematical reasoning capabilities 141

of MMLMs. Pan et al. (2025) developed an auto- 142

mated pipeline for developing step-wise reasoning 143

paths from geometry diagrams, while GeoLogic is 144

introduced to specifically translate between natu- 145

ral language and formal geometric representations. 146

Xu et al. (2024) sought a homogeneous strategy, 147

integrating in-context learning. Zhang et al. (2025) 148

introduced MATHVERSE, a comprehensive bench- 149

mark for assessing visual mathematical reasoning 150

in MMLMs, and conducted ample experiments 151

across popular model families. In parallel, Kazemi 152

et al. (2023) took a similar approach. 153

Our study also reveals that neural models show 154

encouraging advances in complex reasoning tasks. 155

Leveraging contrastive learning (Radford et al., 156

2021), Gao et al. (2023) enhanced the alignment 157

phase of state-of-the-art vision–language trans- 158

formers to enhance image understanding for step- 159

by-step answer generation. Similarly, Huang et al. 160

(2025b) and Cho et al. (2025) introduced diverse 161

image–text paired datasets tailored to geometric 162

problem solving. In contrast, Cheng et al. (2025) 163

proposed a unified multimodal geometry proficient 164

model that incorporates problem solving, precise 165

diagram generation, and automated problem design 166

2

based on key knowledge points. Specifically, Wang167

et al. (2025) and Deng et al. (2025) developed rein-168

forcement learning frameworks that train smaller169

large language models to effectively unify auxil-170

iary construction with robust geometric reasoning.171

Finally, Li et al. (2025) presented a simple visual172

augmentation framework to enhance perceptual ro-173

bustness in multimodal LLMs.174

3 Methodology175

3.1 Problem Formulation & Overview176

Consider a geometric image denoted as177

IMG = {img1, img2, . . . , imgn}, where each imgi178

illustrates a geometric problem. Each correspond-179

ing question is denoted by Q = {q1, q2, . . . , qn},180

where qi is a question related to the geometric181

diagram of imgi. The pipeline begins with182

a vision–language model VL(·), which takes183

a diagram image alongside an input of text184

sequence Xvl = [Q,P1], where P1 acts as the185

zero-shot diagram parsing prompt. The image186

is encoded using an image tokenizer Tvlimg
(·),187

while the text sequence Xvl is tokenized by a188

text tokenizer Tvltext(·). Both modalities are189

projected into a shared embedding space Semb =190

[V (img1, X
1
vl), V (img2, X

2
vl), . . . , V (imgn, X

n
vl)],191

where V (·, ·) denotes the joint embedding. After192

passing through the subsequent layers, the model193

autoregressively generates geometric literals194

L = {l1, l2, . . . , ln}, which represent formalized195

illustrations of the diagrams in textual format196

by leveraging shared embeddings and prior197

generated tokens. Mathematically, the complete198

process can be depicted using this equation 1.199

The generated literals L, the actual question Q,200

and another prompt for zero-shot geometrical201

problem solving P2, are fed into a language model202

LM(·). The input sequence Xlm = [L,Q, P2] is203

tokenized using a pre-trained tokenizer Tlm(·),204

producing a contextualized vector representation205

V = [V1, V2, . . . , Vd], where d is the dimentional-206

ity. The L autoregressively generates a reasoning207

process over this representation and prior tokens to208

derive the final answer Ŷ . The entire procedure209

can mathematically be abbreviated as follows 2210

and illustrated in Fig. 2:211

Ŷvl = V L((Tvl[IMG], Tvl[Xvl]), V Lt−1
out),W

vl⋆)
(1)212

Ŷ = LM((Tlm[Ŷvl, Xlm], LM t−1
out),W

lm⋆

) (2)213

Here, W vl⋆ and W lm⋆
denote the frozen param- 214

eters of the vision-language model and LLM, re- 215

spectively 216

3.2 Interpreter Agent 217

Given a multimodal input pair consisting of a text 218

sequence T = {t1, t2, . . . , tn} and an image I , the 219

pre-trained visual language model uses a distinct 220

feature extraction strategy. The image I is first 221

partitioned into a sequence of fixed-size patches 222

P = {p1, p2, . . . , pm}, which are processed by a 223

dedicated vision encoder. A subsequent resampling 224

mechanism then distills these patch features into a 225

fixed-size set of continuous visual embeddings EV . 226

Concurrently, each token ti in the text sequence 227

undergoes an embedding layer to convert discrete 228

inputs into continuous vector representations, such 229

that ET
i = Embed(ti). The visual embeddings 230

EV and textual embeddings ET are combined to 231

create a unified input sequence. These combined 232

embeddings are subsequently enriched with posi- 233

tional encodings PE to account for token order. 234

This unified sequence is then fed into a decoder- 235

only transformer, which consists of a stack of K 236

identical layers. Each layer is composed of two 237

main sub-layers: a multi-head causal self-attention 238

mechanism and a position-wise feedforward net- 239

work. The causal self-attention mechanism com- 240

putes weighted representations for each token by 241

attending to all preceding tokens in the interleaved 242

sequence using non-learnable query Q, key K, and 243

value V vectors. This attention mechanism is de- 244

fined as follows (Vaswani et al., 2017): 245

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V

(3) 246

The causal nature of the attention ensures that the 247

prediction for a token at a given position depends 248

only on the available outputs at prior positions en- 249

compassing the full set of input visual tokens. The 250

position-wise feedforward networks introduce non- 251

linearity, which additionally refines the represen- 252

tations by utilizing the non-linear activation func- 253

tion. The outputs of each layer are then propagated 254

through K identical layers, resulting in refined rep- 255

resentations that capture both local and global de- 256

pendencies. These vector representations provide 257

rich contextual portrayals of the input, leading to re- 258

fined formalized text literals, L = {l1, l2, . . . , ln}, 259

of the geometrical image. 260

3

33

G

I

E

FD

H Accuracy

LLM-JudgeFree Form

Question: In the figure
below, \angle A B C is

intersected by parallel lines
l and m. What is the measure
of \angle A B C? Express your

answer in degrees.

T =
{t1,
...,
tn}

Description

Ground Truth
Predicates

Gemini
Predicates

Qwen
Predicates

Large Language
Models (LLMs) for
Solving Problems

VLMs for Description
Generation from Both
Image and Question

Text Only GT (Image Only) Qwen

t-SNE of Text Only and Predicate Embeddings

Point(A)
Point(B)
Point(C)
Line(D)
Line(H)

Parallel(Line(D), Line(H))
Angle(D,A,B)
Angle(B,C,H)

MeasureOf(Angle(D,A,B), 38)
MeasureOf(Angle(B,C,H), 33)
PointLiesOnLine(A,Line(D))
PointLiesOnLine(C,Line(H))

Line(A,B)
Line(B,C)

38

A

C

B

Multiple
Choice

Free
Form

Question

Multiple Choice

Input
Interpreter

P =
{p1,
...,
pm}

Vision-Language
Models (VLMs) for
Literal Generation

from the Image

Predicates
Question &
Multiple

Choice/Free-Form Solver

Text
Embeddings

Cosine Similarity
Between the

Description and
the Predicates

Solution

(a) (b)

(c)

GT (Image+Question) Gemini GPT

t-
SN
E
Co
mp
on
en
t
2

t-SNE Component 1

Figure 2: (a) An Interpreter Agent generates formal predicates from images and questions using VLMs. (b)A
Solver Agent then solves the problem using these predicates as LLM input. (c) The 2D t-SNE plot visualizes the
semantic similarity of generated description and predicate embeddings, indicating the Interpreter’s comprehension
of predicate generation.

3.3 Solver Agent261

Firstly, the literals generated by Interpreter Agent,262

denoted as L = {l1, l2, . . . , lm}, where m is the263

number of literals, along with the question Q and264

the prompt P , are concatenated into a sequence265

Y = [L,Q, P]. This sequence is embedded into266

a latent space using non-learnable token embed-267

dings E(yi) = Embed(yi), followed by rotary268

position embeddings (RoPE) to encode positional269

information. The final input representations are270

computed as Zyi = E(yi)⊕RoPE(yi), where ⊕271

denotes the positional rotations. These representa-272

tions are passed through a stack of L transformer273

decoder layers. Each layer employs grouped-query274

self-attention (GQA), upholding robustness in cap-275

turing long-range dependencies. The masked multi-276

head self-attention operation (as given in Equation277

3) is adapted to GQA, with queries projected into278

h heads and keys/values grouped into g smaller279

groups (g < h). This is followed by SwiGLU acti-280

vation in the position-wise feedforward networks281

(FFN), which improves expressiveness by intro-282

ducing multiplicative non-linearities. The decoder283

layers also integrate parallel attention and MLP pre-284

normalization using RMSNorm. Representations285

are iteratively refined through the stack of decoder286

layers, pinnacling in the final answer Y .287

4 Experimental Analysis 288

In this section, we outline the experimental setup, 289

which includes the model configuration, datasets, 290

and evaluation metrics. 291

4.1 Datasets 292

To meticulously evaluate our proposed framework, 293

we utilized two comprehensive benchmark datasets: 294

Geometry3K and MATHVERSE. 295

• Geometry3K (Lu et al., 2021) Geometry3K 296

is a large-scale benchmark dataset designed 297

for solving geometry problems. It consists 298

of 3,001 multiple-choice geometry problems 299

accumulated from high-school textbooks, in- 300

cluding both text and a diagram. We evaluated 301

our framework on the official test set, which 302

comprises 601 multiple-choice problems. 303

• MATHVERSE (Zhang et al., 2025) Addi- 304

tionally, we evaluated our framework on the 305

MATHVERSE dataset, which comprises 2,612 306

high-quality visual math problems. For our 307

evaluation, we sourced the question from the 308

text-only version of the dataset and the affili- 309

ated image from the vision-dominant version. 310

We present our evaluation on the test mini sub- 311

set, which contains 788 problems. This subset 312

4

consists of 436 multiple-choice problems and313

352 free-form problems.314

4.2 Models315

We evaluated a range of state-of-the-art LLMs and316

VLMs to estimate their reasoning and diagram pars-317

ing abilities. Due to computational constraints,318

all open-source models were deployed using 4-bit319

precision using the unsloth library. We selected320

powerful open-source models like Qwen-8B (LLM)321

and Qwen-2.5-7B/32B (VLMs) for their well-322

documented zero-shot reasoning and advanced im-323

age understanding. We also incorporated Phi-4,324

an efficient Small Language Model (SLM) known325

for elegant performance despite its smaller number326

of parameters. To benchmark these against lead-327

ing solutions, we included the high-performance328

proprietary model Gemini 2.0 Flash for both329

LLM and VLM tasks for comparing open-source330

evaluation results with an enterprise-grade model.331

4.3 Evaluation Metrics332

To facilitate an exhaustive performance compari-333

son, our evaluation methodology employs a dis-334

tinct accuracy metric for both multiple-choice and335

free-form questions. For multiple-choice tasks, a336

response is considered correct if the model’s output337

either straight matches an option or, in the case of338

a numerical response, is most comparable in value339

to one of the given choices. For the more nuanced340

free-form tasks, answers are rigorously validated341

for numerical equivalence against ground-truth val-342

ues. This validation is conducted by leveraging the343

concept of LLM as a judge, powered by Gemini344

2.0 Flash (see Appendix 22, 23). The entire345

judgment process can be formally represented us-346

ing the mathematical notation 4 provided below:347

J : (Allm, Agt) 7→ (R, [∥v(Allm)−v(Agt)∥ ≤ ϵ])
(4)348

Here, the judge function, J , takes Interpreter-349

Solver’s answer (Allm) and the actual ground truth350

(Agt) as input. It uses a valuation function, v, to351

transform them to their true mathematical values352

and determines if the distance between them, cal-353

culated by the norm ∥·∥, is within a predefined354

tolerance, ϵ. The function returns a tuple contain-355

ing thorough reasoning for the decision (R) and a356

binary score (1 for correct, 0 for incorrect). Any357

cases that cannot be resolved are conservatively358

categorized as incorrect. Performance for tasks in-359

volving MLLMs and LLMs is evaluated using the360

Method #Params. Accuracy
Geometry3K

Inter-GPS (Lu et al., 2021) 406M 57.5%
GeoDRL (Peng et al., 2023) 44M 68.4%
AutoGPS (Ping et al., 2025) ≈200B 81.6%

Interpreter-Solver-Phi-4 (Ours) 14B-4bit 70.05%
Interpreter-Solver-Qwen-3 (Ours) 8B-4bit 79.53%

Interpreter-Solver-Gemini-2.0-Flash (Ours) ≈40B 83.19%
MathVerse

G-LLaVa (Gao et al., 2023) 13B 16.6%
MathVerse (Zhang et al., 2025) 7B 25.9%

OpenVLThinker (Deng et al., 2025) 7B 47.9%
Interpreter-Solver-Qwen-3 (Ours) 8B-4bit 69.67%

Table 1: Comparison of Interpreter-Solver accu-
racy on the Geometry3K and MathVerse datasets.

Pass@3 metric, which represents success as achiev- 361

ing a solution in at least one of three independent 362

attempts. 363

5 Results and Analysis 364

5.1 Quantitative Reults 365

We scrutinize the performance of our proposed 366

method, Interpreter-Solver, as shown in Table 1, 367

which integrates our Thinker and Solver agents 368

across two geometric benchmark datasets. On 369

the Geometry3k dataset, Interpreter-Solver demon- 370

strates state-of-the-art performance in zero-shot 371

settings. When employing a 4-bit quantized, open- 372

source model, our framework works with a pa- 373

rameter size that is 4.7× smaller than the current 374

state-of-the-art, demonstrating only a ≈2% drop 375

in performance. In contrast, when integrating an 376

enterprise model Gemini 2.0 Flash that is 5× 377

smaller than the state-of-the-art, this performance 378

gap increases to ≈2%. Furthermore, the efficacy 379

of our method is particularly enunciated on the 380

MathVerse dataset, showcasing a substantial im- 381

provement of ≈44% in overall accuracy. Addi- 382

tionally, our Interpreter-Solver(Qwen) model 383

achieved 79.03% accuracy on reannotated Auto- 384

GPS(Ping et al., 2025) images. All experiments 385

were conducted in a zero-shot setting with con- 386

trolled prompting (see Appendix 4 − 9) for both 387

multiple-choice (see Appendix 10 − 12) and free- 388

form (see Appendix 13, 14, 15) questions. 389

5.2 Predicate Alignment and Quality 390

To see how good the generated predicates are, 391

we first generated a natural language descrip- 392

tion from both the image and the question using 393

Gemini-2.5-Flash model. Then, we obtained text 394

embeddings using the gemini-embedding-001 395

model. Finally, we computed the cosine simi- 396

larity between the description and the predicate 397

5

embeddings to assess their semantic alignment, il-398

lustrated in Figure 2. Our results show that the399

average cosine similarity between the description400

and the predicates generated by the Interpreter401

(Gemini: 0.646, Qwen: 0.641, GPT: 0.637) is402

higher than that with the ground-truth predicates403

(Image+Question: 0.644, Image-only: 0.639) indi-404

cating their ability to produce high-quality predi-405

cates that are comparable to manual annotations,406

shown in Figure 3.407

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
PCA Component 1 (24.38% variance)

0.4

0.3

0.2

0.1

0.0

0.1

PC
A

Co
m

po
ne

nt
 2

 (6
.7

5%
 v

ar
ia

nc
e)

2D PCA of Text Only and Predicate Embeddings

Text Only
Ground Truth (Image+Question)

Ground Truth (Image only)
Gemini Predicates

Qwen Predicates
GPT Predicates

Figure 3: This 2D PCA plot visualizes predicate em-
beddings, showing text-only embeddings for Ground
Truth (Image+Question), Ground Truth (Image only),
and model-generated predicates (Gemini, Qwen, GPT).

5.3 Analysis of Interpreter-Solver’s Reasoning408

How does the presence of a list of possible an-409

swers influence the Solver’s reasoning when410

faced with ambiguous problems? Providing pre-411

defined answer choices greatly enhances Solver’s412

ability to tackle ambiguous problem statements.413

When faced with contradictions in free-form set-414

tings, the Solver frequently struggles to find a so-415

lution. However, multiple-choice options guide416

the Solver to explore different interpretations, of-417

ten leading to explicit statements like, "But since418

the problem provides the angle, we must use that,"419

frequently leading to the correct answer (see Ap-420

pendix 16). This also leads to more concise rea-421

soning. Our empirical results on the MathVerse422

dataset support this: we achieved 81.88% accuracy423

on 436 multiple-choice questions versus 54.55%424

on 352 free-form questions.425

The Conundrum of LLM Self-Doubt: When426

Internal Logic Meets External Constraints. Our427

detailed analysis showed that when an LLM consis-428

tently produces reasoning that contradicts a prob-429

lem’s external constraints, it can develop a state 430

of recursive self-doubt. This type of behaviour 431

is noticed where the predicate contains multiple 432

color denoting internal relationships of a geomet- 433

rical problem. Instead of discarding its reasoning, 434

the model repeatedly re-examines its calculations 435

and reinterprets key terms, often without adding 436

new information (see Appendix 17). This looping 437

behavior arises when the model detects a mismatch 438

in inital attempts: its computed answer seems valid 439

but doesn’t fit the given options. This leads to cy- 440

cles of verification and reinterpretation that, despite 441

minor adjustments, result in the same unsatisfac- 442

tory conclusion. 443

How can LLMs identify and disrupt self- 444

reinforcing reasoning loops that are triggered 445

by contradictory assumptions? Our analysis of 446

Solver’s (Phi-4) performance on geometric rea- 447

soning tasks reveals a vital susceptibility in cur- 448

rent language model architectures. When initial 449

assumptions possess fundamental errors (such as 450

incorrect similarity ratios in triangle problems or 451

contradictory angle measurements), models enter 452

self-reinforcing reasoning loops instead of identi- 453

fying and fixing foundational mistakes. Similarly, 454

in some triangle problems, Phi-4 repeatedly mis- 455

calculated ratios while cycling through different 456

variations without questioning the erroneous steps. 457

Likewise, the model oscillated between angle calcu- 458

lations despite the problem’s internal inconsistency, 459

producing disconnected results that eventually set- 460

tled on an incorrect answer (see Appendix 18). 461

These patterns suggest that language models lack 462

meta-cognitive monitoring capabilities to detect 463

when their reasoning has become circular, instead 464

treating each iteration as progressive despite identi- 465

cal logical foundations. 466

How does the "reassessment" process in the 467

phi-4 model expose fundamental deficits in ap- 468

plying geometric theorems and logical valida- 469

tion? Our study indicates that the Solver’s (phi-4) 470

reassessment mechanism fails to correct initial er- 471

rors in specific types of geometry problems due 472

to a core insufficiency in applying and verifying 473

foundational theorems, rather than serving as a gen- 474

uine logical re-evaluation (see Appendix 18). The 475

pattern appears most clearly in problems requir- 476

ing a robust understanding of angle relationships 477

and the ability to resolve contradictions. For exam- 478

ple, the model misapplied inscribed angle theorems 479

in circle geometry, repeatedly failed to correctly 480

use angle properties of parallelogram diagonals, 481

6

Geometry3K

Methods #Params. Interpreter-Solver (VLM) Single Agent

Qwen 2.5 VL 7B 60.07% 53.24%
Qwen 2.5 VL 32B 72.05% 68.72%
Gemini 2.0 Flash ≈40B 83.86% 85.19%

MathVerse

Methods #Param Interpreter-Solver (VLM) Single Agent

Multiple Choice Free Form Overall Accuracy Multiple Choice Free Form Overall Accuracy

Qwen 2.5 VL 7B 53.67% 36.93% 46.19% 58.94% 43.75% 52.16%
Qwen 2.5 VL 32B 78.44% 54.55% 67.77% 76.38% 54.55% 66.67%

Table 2: Predicate influence on zero-shot geometrical problem-solving with Interpreter-Solver(VLM).

and ultimately mistrusted its correct calculation for482

a regular polygon. This suggests the model’s re-483

assessment is not a process of re-reasoning from484

first principles but a simple check that falters when485

its internal logic conflicts with external constraints,486

exposing a vital failure in its capability for robust487

mathematical validation.488

What are the key failure modes in Qwen 2.5-489

32B’s reasoning that lead to its significant per-490

formance gap with Gemini on visual geometry491

tasks? Gemini outperforms Qwen 2.5-32B on ge-492

ometry reasoning tasks due to superior OCR, logi-493

cal consistency, and contradiction handling. Gem-494

ini accurately identifies key visual elements such as495

angles and lines, whereas Qwen often misreads or496

omits critical information, such as misidentifying497

vertical angles, leading to unsupported conclusions.498

In reasoning, Qwen frequently shifts between ge-499

ometric rules without justification; for instance,500

it begins with an angle-sum around a point, then501

switches to a triangle sum rule mid-reasoning and502

incorrectly concludes, while ignoring essential re-503

lationships. In contrast, Gemini maintains logical504

coherence and selectively applies relevant geomet-505

ric principles. Its ability to detect contradictions is506

also notable; for example, when a problem leads to507

an impossible result like negative angle measures,508

Gemini flags the inconsistency and re-evaluates the509

answer contextually. Gemini also avoids overcom-510

plication, unlike Qwen, which prematurely applies511

superficial heuristics. However, Gemini is not with-512

out flaws: in one case involving a centroid, it claims513

“Since M is the centroid, CM = 2×MR,” with514

given values CM = 7 and MR = 4 (implying515

2 ×MR = 8 ̸= 7), recognizes the contradiction,516

but proceeds with the incorrect assumption. Still,517

Gemini’s strong extraction and contradiction de-518

tection make it better for complex geometry than519

Qwen.520

How does the quality of literals affect the per- 521

formance of different LLMs on geometry tasks? 522

We observe a notable divergence in model behavior 523

when comparing performance on Gemini-extracted 524

versus ground-truth literals: Phi-4 improves when 525

using Gemini-extracted literals, while Qwen-8B 526

sees a performance drop under the same condi- 527

tions. This contrast arises from fundamental dif- 528

ferences in how the models handle symbolic rea- 529

soning and input structure. Gemini-extracted lit- 530

erals, though occasionally noisy, repetitive, and 531

biased toward simple function-like forms, provide 532

detailed and explicit representations that seem to 533

compensate for Phi-4’s limitations in symbolic in- 534

terpretation (see Appendix 20). Phi-4 struggles 535

with symbolic correspondence in angle reasoning 536

(see Appendix 21), but benefits from explicit, even 537

imperfect, input. On the other hand, Qwen-8B 538

performs best with ground-truth literals, which 539

are concise, well-structured, and symbolically ac- 540

curate. However, Qwen’s performance declines 541

with Gemini-extracted literals due to increased ver- 542

bosity, redundant constraints, and symbolic incon- 543

sistencies. These introduce noise, obscure key logi- 544

cal relationships, and mislead Qwen’s prioritization 545

of predicates. For instance, overloaded expressions 546

cause confusion in resolving dependencies, and mi- 547

nor naming inconsistencies reduce symbolic clarity. 548

Thus, while Phi-4 benefits from explicitness, even 549

if imperfect, Qwen is more sensitive to clutter and 550

performs optimally with clean, structured symbolic 551

input. 552

Why did Gemini perform worse with its own 553

literals than without? Both Gemini (Image + 554

Gemini-extracted Literals + Question + Choices) 555

and Gemini (Image + Question + Choices) config- 556

urations performed well, achieving accuracies of 557

83.86% and 85.19% respectively, indicating that 558

the model is generally effective at using images 559

7

to reason about geometric problems. While the560

GL component was intended to provide structured561

information to aid reasoning, it often introduced562

errors such as inaccurate predicates, misinterpreted563

angle measures, or contradictions not reflected in564

the diagram. These flawed predicates frequently565

misled the model, causing it to abandon correct566

mathematical reasoning to match incorrect con-567

straints or make arbitrary guesses when its con-568

clusions didn’t align with the provided answer569

choices. In contrast, the (I-Q-C) setup allowed the570

model to rely more directly on the visual content571

and the question structure, which allows to focus572

only on the relevant information—often extracting573

just what was necessary to answer the question.574

Thus, while both approaches effectively utilized575

image and language inputs, the cleaner and less576

constrained reasoning in (I-Q-C) enabled it to sur-577

pass the more error-prone (I-GL-Q-C) configura-578

tion. However, it is worth noting that in some579

cases where the image alone was ambiguous, the580

GL component provided valuable information that581

helped guide the reasoning more effectively.582

5.4 Ablation Study583

Table 2 elucidates the performance of open-source584

and enterprise Interpreter-Solver VLM mod-585

els under two distinct circumstances: with and586

without the inclusion of predicates as additional587

information. For open-source models, the inclu-

Interpreter #Params. Solver
Phi-4 Qwen 3

Qwen-2.5 7B 35.77% 42.26%
Qwen-2.5 32B 56.74% 61.23%

GPT-4o mini ≈8B 58.24% 63.23%
Gemini ≈40B 70.05% 79.53%

Table 3: Comparison of the accuracy of different
Interpreter-Solver settings on the Geometry3K and
MathVerse datasets.

588
sion of predicates resulted in a notable perfor-589

mance increase. Particularly, on the Geometry3K590

dataset, the Interpreter-Solver(Qwen 2.5-7B)’s ac-591

curacy improved by ≈8%, while the Interpreter-592

Solver(Qwen 2.5-32B) showed an improvement593

of ≈3.5%. A similar pattern was observed for594

the Interpreter-Solver(Qwen 2.5-32B) on the595

MathVerse dataset. Besides, our experimental re-596

sults confirm that models with a larger number597

of parameters typically outperform their smaller598

counterparts. In contrast, the enterprise model,599

Single Agent(Gemini), achieved ≈1.5% better600

when predicates were excluded from the input se- 601

quence. This suggests that for advanced multi- 602

modal models, additional text guidance can hin- 603

der, rather than help, image understanding, re- 604

sulting in poorer outcomes. To identify the op- 605

timal Interpreter-Solver configuration, we evalu- 606

ated various Interpreter-Solver pairs depicted in 607

Table 3, uncovering that predicates from GPT-4o 608

mini, while unsatisfactory to Gemini’s, still barely 609

exceeded the 4-bit quantized Qwen model. Our 610

comprehensive ablation demonstrates that our 611

two-stage Interpreter-Solver framework overcomes 612

the performance degradation typical in open- 613

source Single Agent on visual mathematical rea- 614

soning tasks. Interpreter-Solver(Gemini-Gemini) 615

setup achieves state-of-the-art results. It of- 616

fers competitive performance with the quantized 617

Interpreter-Solver(Gemini-Qwen) variant, and sur- 618

passes the AutoGPS (Ping et al., 2025) bench- 619

mark via our zero-shot strategy on a 4-bit 620

quantized Single AgentQwen 2.5 VL. More- 621

over, with ground-truth predicates, Interpreter- 622

Solver(Gemini)’s reasoning (89.18%) proved 623

exceptional, significantly surpassing Interpreter- 624

Solver(Qwen 2.5-7B) (55.07%) and Interpreter- 625

Solver(Qwen 2.5-32B) (46.26%). Conversely, 626

both Interpreter-Solver(Qwen) models performed 627

greatly better using predicates generated by 628

Gemini. 629

6 Conclusion 630

This study presents a memory-efficient, zero- 631

shot baseline for the task at hand, proposing the 632

Interpreter-Solver, a two-stage pipeline that lever- 633

ages VLMs and LLMs, incorporating zero-shot 634

prompting without relying on traditional strate- 635

gies. Interpreter-Solver outperformed both neuro- 636

symbolic and neural methods, solidifying its status 637

as a new state-of-the-art approach. Notably, we 638

also affirm that a 4-bit quantized model can achieve 639

competitive results, with only a ≈2% performance 640

decrease despite being 5× smaller in parameter 641

count. Our open-source Interpreter-Solver (VLM) 642

outperforms Single Agent VLMs in zero-shot, 643

while the enterprise Interpreter-Solver(Gemini) 644

achieves even better results. Accordingly, our work 645

inquires the prevailing notion that Supervised Fine- 646

Tuning might be the only adequate approach for ge- 647

ometric problem-solving, extending the relevance 648

and performance of zero-shot, prompt-based meth- 649

ods to this complex domain. 650

8

Limitations651

While Interpreter-Solver offers a robust pipeline for652

geometrical problem-solving, it has several limita-653

tions. First, our study exclusively employed zero-654

shot prompting, with the parameters of our Inter-655

preter and Solver remaining frozen. This approach656

hinders the model’s ability to capture global de-657

pendencies between images and predicates, which658

could improve with supervised fine-tuning of the659

Interpreter’s cross-modality alignment. Addition-660

ally, fine-tuning the Solver may also enhance per-661

formance on the test set. Second, our methodol-662

ogy was restricted to a single-prompt approach.663

The adoption of iterative prompting techniques664

could progressively enhance the performance of665

Interpreter-Solver by allowing for sequential im-666

provement of the reasoning process. Thirdly, incor-667

porating a few-shot or one-shot examples would668

provide Interpreter-Solver with helpful prior knowl-669

edge, potentially improving its reasoning capabili-670

ties. Fourth, the advanced prompting strategies,671

such as Atom of Thoughts (AoT) (Teng et al.,672

2025) or Program of Thoughts (PoT) (Chen et al.,673

2022), which decompose problems into simpler,674

executable steps, could greatly facilitate the rea-675

soning process. Fifth, incorporating LLM as a676

judging concept can enhance model reliability and677

significantly improve the accuracy of final outputs.678

Finally, our experiments were conducted under re-679

source limitations, necessitating the use of 4-bit680

quantized models via the Unsloth library. Hence,681

our reliance on open-source Vision-Language Mod-682

els (VLMs) and Large Language Models (LLMs)683

may not fully reflect the performance and behavior684

of larger, full-precision models or state-of-the-art685

proprietary systems like GPT-4.5, Gemini-2.5 Pro,686

or Claude-4.687

References688

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama689
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,690
Diogo Almeida, Janko Altenschmidt, Sam Altman,691
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-692
cal report. arXiv preprint arXiv:2303.08774.693

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-694
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shi-695
jie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu,696
Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei697
Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 oth-698
ers. 2025. Qwen2.5-vl technical report. Preprint,699
arXiv:2502.13923.700

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 701
William W Cohen. 2022. Program of thoughts 702
prompting: Disentangling computation from reason- 703
ing for numerical reasoning tasks. arXiv preprint 704
arXiv:2211.12588. 705

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergio- 706
vanni, Piotr Padlewski, Daniel Salz, Sebastian Good- 707
man, Adam Grycner, Basil Mustafa, Lucas Beyer, 708
Alexander Kolesnikov, Joan Puigcerver, Nan Ding, 709
Keran Rong, Hassan Akbari, Gaurav Mishra, Lint- 710
ing Xue, Ashish Thapliyal, James Bradbury, and 10 711
others. 2023. Pali: A jointly-scaled multilingual 712
language-image model. Preprint, arXiv:2209.06794. 713

Jo-Ku Cheng, Zeren Zhang, Ran Chen, Jingyang Deng, 714
Ziran Qin, and Jinwen Ma. 2025. Geouni: A 715
unified model for generating geometry diagrams, 716
problems and problem solutions. arXiv preprint 717
arXiv:2504.10146. 718

Seunghyuk Cho, Zhenyue Qin, Yang Liu, Youngbin 719
Choi, Seungbeom Lee, and Dongwoo Kim. 2025. 720
Geodano: Geometric vlm with domain agnostic vi- 721
sion encoder. arXiv preprint arXiv:2502.11360. 722

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, 723
Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Mar- 724
cel Blistein, Ori Ram, Dan Zhang, Evan Rosen, and 725
1 others. 2025. Gemini 2.5: Pushing the frontier with 726
advanced reasoning, multimodality, long context, and 727
next generation agentic capabilities. arXiv preprint 728
arXiv:2507.06261. 729

Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei 730
Wang, and Kai-Wei Chang. 2025. Openvlthinker: An 731
early exploration to complex vision-language reason- 732
ing via iterative self-improvement. arXiv preprint 733
arXiv:2503.17352. 734

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wan- 735
jun Zhong, Yufei Wang, Lanqing Hong, Jianhua Han, 736
Hang Xu, Zhenguo Li, and 1 others. 2023. G-llava: 737
Solving geometric problem with multi-modal large 738
language model. arXiv preprint arXiv:2312.11370. 739

Zihan Huang, Tao Wu, Wang Lin, Shengyu Zhang, 740
Jingyuan Chen, and Fei Wu. 2025a. Autogeo: Au- 741
tomating geometric image dataset creation for en- 742
hanced geometry understanding. IEEE Transactions 743
on Multimedia. 744

Zihan Huang, Tao Wu, Wang Lin, Shengyu Zhang, 745
Jingyuan Chen, and Fei Wu. 2025b. Autogeo: Au- 746
tomating geometric image dataset creation for en- 747
hanced geometry understanding. IEEE Transactions 748
on Multimedia, 27:3105–3116. 749

Mehran Kazemi, Hamidreza Alvari, Ankit Anand, Jialin 750
Wu, Xi Chen, and Radu Soricut. 2023. Geomverse: 751
A systematic evaluation of large models for geomet- 752
ric reasoning. arXiv preprint arXiv:2312.12241. 753

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 754
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 755
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 756

9

https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2209.06794
https://arxiv.org/abs/2209.06794
https://arxiv.org/abs/2209.06794
https://doi.org/10.1109/TMM.2025.3557720
https://doi.org/10.1109/TMM.2025.3557720
https://doi.org/10.1109/TMM.2025.3557720
https://doi.org/10.1109/TMM.2025.3557720
https://doi.org/10.1109/TMM.2025.3557720

BART: Denoising sequence-to-sequence pre-training757
for natural language generation, translation, and com-758
prehension. In Proceedings of the 58th Annual Meet-759
ing of the Association for Computational Linguistics,760
pages 7871–7880, Online. Association for Computa-761
tional Linguistics.762

Yuting Li, Lai Wei, Kaipeng Zheng, Jingyuan Huang,763
Linghe Kong, Lichao Sun, and Weiran Huang. 2025.764
Vision matters: Simple visual perturbations can765
boost multimodal math reasoning. arXiv preprint766
arXiv:2506.09736.767

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae768
Lee. 2024. Improved baselines with visual instruc-769
tion tuning. In Proceedings of the IEEE/CVF con-770
ference on computer vision and pattern recognition,771
pages 26296–26306.772

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae773
Lee. 2023. Visual instruction tuning. In Advances in774
Neural Information Processing Systems, volume 36,775
pages 34892–34916. Curran Associates, Inc.776

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan777
Huang, Xiaodan Liang, and Song-Chun Zhu. 2021.778
Inter-GPS: Interpretable geometry problem solving779
with formal language and symbolic reasoning. In780
Proceedings of the 59th Annual Meeting of the Asso-781
ciation for Computational Linguistics and the 11th782
International Joint Conference on Natural Language783
Processing (Volume 1: Long Papers), pages 6774–784
6786, Online. Association for Computational Lin-785
guistics.786

Yicheng Pan, Zhenrong Zhang, Pengfei Hu, Jiefeng Ma,787
Jun Du, Jianshu Zhang, Quan Liu, Jianqing Gao, and788
Feng Ma. 2025. Enhancing the geometric problem-789
solving ability of multimodal llms via symbolic-790
neural integration. arXiv preprint arXiv:2504.12773.791

Shuai Peng, Di Fu, Yijun Liang, Liangcai Gao, and Zhi792
Tang. 2023. GeoDRL: A self-learning framework for793
geometry problem solving using reinforcement learn-794
ing in deductive reasoning. In Findings of the As-795
sociation for Computational Linguistics: ACL 2023,796
pages 13468–13480, Toronto, Canada. Association797
for Computational Linguistics.798

Bowen Ping, Minnan Luo, Zhuohang Dang, Chenxi799
Wang, and Chengyou Jia. 2025. Autogps: Auto-800
mated geometry problem solving via multimodal for-801
malization and deductive reasoning. arXiv preprint802
arXiv:2505.23381.803

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya804
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-805
try, Amanda Askell, Pamela Mishkin, Jack Clark, and806
1 others. 2021. Learning transferable visual models807
from natural language supervision. In International808
conference on machine learning, pages 8748–8763.809
PmLR.810

Fengwei Teng, Zhaoyang Yu, Quan Shi, Jiayi Zhang,811
Chenglin Wu, and Yuyu Luo. 2025. Atom of812
thoughts for markov llm test-time scaling. arXiv813
preprint arXiv:2502.12018.814

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 815
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 816
Kaiser, and Illia Polosukhin. 2017. Attention is all 817
you need. Advances in neural information processing 818
systems, 30. 819

Yikun Wang, Yibin Wang, Dianyi Wang, Zimian Peng, 820
Qipeng Guo, Dacheng Tao, and Jiaqi Wang. 2025. 821
Geometryzero: Improving geometry solving for llm 822
with group contrastive policy optimization. arXiv 823
preprint arXiv:2506.07160. 824

Shihao Xu, Yiyang Luo, and Wei Shi. 2024. Geo-llava: 825
A large multi-modal model for solving geometry 826
math problems with meta in-context learning. In 827
Proceedings of the 2nd Workshop on Large Gener- 828
ative Models Meet Multimodal Applications, pages 829
11–15. 830

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun 831
Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan 832
Lu, Kai-Wei Chang, Yu Qiao, Peng Gao, and Hong- 833
sheng Li. 2025. Mathverse: Does your multi-modal 834
llm truly see the diagrams in visual math problems? 835
In Computer Vision – ECCV 2024, pages 169–186, 836
Cham. Springer Nature Switzerland. 837

Wenwen Zhuang, Xin Huang, Xiantao Zhang, and Jin 838
Zeng. 2025. Math-puma: Progressive upward multi- 839
modal alignment to enhance mathematical reasoning. 840
In Proceedings of the AAAI Conference on Artificial 841
Intelligence, volume 39, pages 26183–26191. 842

A Appendix 843

In this Appendix, we reproduce the exact prompts 844

and guidelines referenced in the main text for ease 845

of reference. 846

10

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf
https://doi.org/10.18653/v1/2021.acl-long.528
https://doi.org/10.18653/v1/2021.acl-long.528
https://doi.org/10.18653/v1/2021.acl-long.528
https://doi.org/10.18653/v1/2023.findings-acl.850
https://doi.org/10.18653/v1/2023.findings-acl.850
https://doi.org/10.18653/v1/2023.findings-acl.850
https://doi.org/10.18653/v1/2023.findings-acl.850
https://doi.org/10.18653/v1/2023.findings-acl.850

Prompt for Zero-Shot Geometry Predicates Generation

You are an expert AI mathematician specializing in geometry. Your task is to analyze the geometric figure in the
provided image and generate accurate geometric predicates (literals) that represent ALL the relationships, measurements,
and properties shown in the diagram.
GEOMETRY PROBLEM IMAGE: The image shows a geometric figure with various shapes, lines, angles, and
measurements. Analyze this image carefully to understand all geometric relationships and constraints.
Question: [Given Question]

YOUR TASK:

1. First, provide step-by-step reasoning showing your analysis process

2. Then, generate geometric predicates based on your analysis using the Guidelines below

STEP-BY-STEP ANALYSIS (Required):
Please follow this format for your reasoning:

1. COMPREHENSIVE IMAGE ANALYSIS

• Identify ALL geometric shapes (circles, triangles, quadrilaterals, etc.)
• List ALL points, lines, and their labels/names
• Note ALL visible measurements, angles, and numerical values
• Identify ALL special markings (right angle symbols, parallel marks, congruent marks, equal marks, etc.)
• Look for implied constructions (perpendiculars, bisectors, tangents, chords, radii, etc.)

2. CIRCLE-SPECIFIC ANALYSIS (If circles are present)

• Identify the center and all points on the circle
• Determine which lines are radii, chords, diameters, or tangents
• Look for inscribed angles, central angles, and arc relationships
• Check for perpendicular relationships involving radii and chords
• Identify any equal radius relationships

3. ANGLE AND PERPENDICULARITY ANALYSIS

• Examine ALL angles shown in the diagram, both marked and unmarked
• Look for right-angle indicators or perpendicular relationships
• Check for angle bisectors or special angle relationships
• Identify complementary, supplementary, or vertical angles
• Look for inscribed angles and their corresponding arcs

4. CONGRUENCE AND EQUALITY ANALYSIS

• Identify ALL equal lengths, angles, or shapes (look for tick marks, identical measurements)
• Check for congruent triangles or similar figures
• Look for equal radii in circles
• Identify parallel lines or equal distances

5. INTERSECTION AND POSITIONING ANALYSIS

• Determine where lines intersect and at what points
• Check if points lie on specific lines or circles
• Identify midpoints, centroids, or other special points
• Look for points that divide segments in specific ratios

6. CONSTRAINT AND RELATIONSHIP SYNTHESIS

• Combine observations to identify implicit relationships
• Look for theorem applications (Pythagorean, inscribed angle, etc.)
• Identify geometric constructions that create specific relationships
• Check for properties that follow from the given constraints

Table 4: Prompt for Zero-Shot Geometry Predicates Generation Part 1

11

Prompt for Zero-Shot Geometry Predicates Generation

1. QUESTION-DRIVEN COMPLETENESS CHECK

• Ensure all information needed to solve the problem is captured
• Verify that key relationships for the solution are represented
• Double-check that no critical geometric properties are missed
• Confirm that the predicates will provide sufficient information for problem-solving

CRITICAL ANALYSIS GUIDELINES:

• LOOK FOR HIDDEN RELATIONSHIPS: Many geometric problems have implicit perpendicular relationships,
equal lengths, or special angle properties that aren’t explicitly marked but are crucial for solving.

• CIRCLE GEOMETRY FOCUS: If the diagram contains circles, pay special attention to:

– Which points lie on the circle vs. inside/outside
– Perpendicular relationships between radii and chords
– Equal radius lengths
– Inscribed vs. central angles
– Tangent-radius perpendicularity

• CONSTRUCTION INDICATORS: Look for:

– Lines that appear to be perpendicular even without explicit markings
– Points that appear to be midpoints or special positions
– Equal lengths suggested by visual symmetry
– Angle relationships implied by the construction

GUIDELINES:
***Follow these predicates to represent diagram literals.

GEOMETRIC SHAPES:

• Point: Point(A), Point()

• Line: Line(A,B), Line(m), Line()

• Angle: Angle(A,B,C), Angle(A), Angle(1), Angle()

• Triangle: Triangle(A,B,C), Triangle(), Triangle(1,2,3)

• Quadrilateral: Quadrilateral(A,B,C,D), Quadrilateral()

• Parallelogram: Parallelogram(A,B,C,D), Parallelogram(1), Parallelogram()

• Square: Square(A,B,C,D), Square(1), Square()

• Rectangle: Rectangle(A,B,C,D), Rectangle(1), Rectangle()

• Rhombus: Rhombus(A,B,C,D), Rhombus(1), Rhombus()

• Trapezoid: Trapezoid(A,B,C,D), Trapezoid(1), Trapezoid()

• Kite: Kite(A,B,C,D), Kite(1), Kite()

• Polygon: Polygon()

• Pentagon: Pentagon(A,B,C,D,E), Pentagon()

• Hexagon: Hexagon(A,B,C,D,E,F), Hexagon()

• Heptagon: Heptagon(A,B,C,D,E,F,G), Heptagon()

• Octagon: Octagon(A,B,C,D,E,F,G,H), Octagon()

Table 5: Prompt for Zero-Shot Geometry Predicates Generation Part-2

12

Prompt for Zero-Shot Geometry Predicates Generation Part-3

• Circle: Circle(A), Circle(1), Circle()

• Arc: Arc(A,B), Arc(A,B,C), Arc()

• Sector: Sector(O,A,B), Sector()

• Shape: Shape() // For unknown shapes or regions

UNARY GEOMETRIC ATTRIBUTES:

• RightAngle: RightAngle(Angle())

• Right: Right(Triangle()) // Right triangle

• Isosceles: Isosceles(Polygon()) // Isosceles polygon

• Equilateral: Equilateral(Polygon()) // Equilateral polygon

• Regular: Regular(Polygon())

• Red: Red(Shape())

• Blue: Blue(Shape())

• Green: Green(Shape())

• Shaded: Shaded(Shape())

GEOMETRIC ATTRIBUTES:

• AreaOf: AreaOf(A)

• PerimeterOf: PerimeterOf(A) // Perimeter of polygon A

• RadiusOf: RadiusOf(A)

• DiameterOf: DiameterOf(A)

• CircumferenceOf: CircumferenceOf(A) // Perimeter of circle A

• AltitudeOf: AltitudeOf(A) // Altitude of polygon A

• HypotenuseOf: HypotenuseOf(A) // Hypotenuse of triangle A

• SideOf: SideOf(A) // Side of square A

• WidthOf: WidthOf(A) // Width of quadrilateral A

• HeightOf: HeightOf(A) // Height of quadrilateral A

• LegOf: LegOf(A) // Leg of trapezoid A

• BaseOf: BaseOf(A) // Base of polygon A

• MedianOf: MedianOf(A) // Median of polygon A

• IntersectionOf: IntersectionOf(A,B) // Intersection of shapes A and B

• MeasureOf: MeasureOf(A) // Measure of angle A

• LengthOf: LengthOf(A) // Length of line A

• ScaleFactorOf: ScaleFactorOf(A,B) // Scale factor of shape A to shape B

Table 6: Prompt for Zero-Shot Geometry Predicates Generation Part-3

13

Prompt for Zero-Shot Geometry Predicates Generation Part-4

BINARY GEOMETRIC RELATIONS:

• PointLiesOnLine: PointLiesOnLine(Point(),Line(1,2))

• PointLiesOnCircle: PointLiesOnCircle(Point(),Circle())

• Parallel: Parallel(Line(),Line())

• Perpendicular: Perpendicular(Line(),Line())

• IntersectAt: IntersectAt(Line(),Line(),Line(),Point())

• BisectsAngle: BisectsAngle(Line(),Angle())

• Congruent: Congruent(Polygon(),Polygon())

• Similar: Similar(Polygon(),Polygon())

• Tangent: Tangent(Line(),Circle())

• Secant: Secant(Line(),Circle())

• CircumscribedTo: CircumscribedTo(Shape(),Shape())

• InscribedIn: InscribedIn(Shape(),Shape())

A-IsXOf-B GEOMETRIC RELATIONS:

• IsMidpointOf: IsMidpointOf(Point(),Line()) // Point A is midpoint of line B

• IsCentroidOf: IsCentroidOf(Point(),Shape()) // Point A is centroid of shape B

• IsIncenterOf: IsIncenterOf(Point(),Shape()) // Point A is incenter of shape B

• IsRadiusOf: IsRadiusOf(Line(),Circle()) // Line A is radius of circle B

• IsDiameterOf: IsDiameterOf(Line(),Circle()) // Line A is diameter of circle B

• IsMidsegmentOf: IsMidsegmentOf(Line(),Triangle()) // Line A is midsegment of triangle B

• IsChordOf: IsChordOf(Line(),Circle()) // Line A is chord of circle B

• IsSideOf: IsSideOf(Line(),Polygon()) // Line A is side of polygon B

• IsHypotenuseOf: IsHypotenuseOf(Line(),Triangle()) // Line A is hypotenuse of triangle B

• IsPerpendicularBisectorOf: IsPerpendicularBisectorOf(Line(),Triangle()) // Line A is perpendicular bisector of
triangle B

• IsAltitudeOf: IsAltitudeOf(Line(),Triangle()) // Line A is altitude of triangle B

• IsMedianOf: IsMedianOf(Line(),Quadrilateral()) // Line A is median of quadrilateral B

• IsBaseOf: IsBaseOf(Line(),Quadrilateral()) // Line A is base of quadrilateral B

• IsDiagonalOf: IsDiagonalOf(Line(),Quadrilateral()) // Line A is diagonal of quadrilateral B

• IsLegOf: IsLegOf(Line(),Trapezoid()) // Line A is leg of trapezoid B

Table 7: Prompt for Zero-Shot Geometry Predicates Generation Part-4

14

Prompt for Zero-Shot Geometry Predicates Generation Part-5

NUMERICAL ATTRIBUTES AND RELATIONS:

• SinOf: SinOf(Var)

• CosOf: CosOf(Var)

• TanOf: TanOf(Var)

• CotOf: CotOf(Var)

• HalfOf: HalfOf(Var)

• SquareOf: SquareOf(Var)

• SqrtOf: SqrtOf(Var)

• RatioOf: RatioOf(Var), RatioOf(Var1,Var2)

• SumOf: SumOf(Var1,Var2,. . .)

• AverageOf: AverageOf(Var1,Var2,. . .)

• Add: Add(Var1,Var2,. . .)

• Mul: Mul(Var1,Var2,. . .)

• Sub: Sub(Var1,Var2,. . .)

• Div: Div(Var1,Var2,. . .)

• Pow: Pow(Var1,Var2)

• Equals: Equals(Var1,Var2)

• UseTheorem: UseTheorem(A_B_C)

VARIABLE NAMING CONVENTIONS:

• Use capital letters for points: A, B, C, D, etc.

• Use lowercase letters for lines when not defined by points: m, n, l, etc.

• Use numbers for unnamed shapes: 1, 2, 3, etc.

• Use $ for generic variables: $, $1, $2, etc.

• Use descriptive names when appropriate: base, height, radius, etc.

CRITICAL INSTRUCTIONS:

1. BE EXTREMELY THOROUGH – Missing relationships are the main cause of poor problem-solving perfor-
mance

2. LOOK BEYOND THE OBVIOUS – Many critical relationships are implied, not explicitly marked

3. Carefully examine the geometric figure in the image

4. Identify all points, lines, angles, shapes, and measurements shown

5. MAKE EACH PREDICATE AS ATOMIC AS POSSIBLE

• Decompose any complex or compound relationship into the simplest, individual geometric statements (e.g.,
replace “Perpendicular(Line(A,B),Line(C,D))” with separate vector and dot-product or angle-equals-90°
predicates)

Table 8: Prompt for Zero-Shot Geometry Predicates Generation Part-5

15

Prompt for Zero-Shot Geometry Predicates Generation Part-6

1. Generate predicates that represent:

• All geometric shapes present
• All given measurements and their relationships
• All geometric properties and constraints (including implied ones)
• ALL relationships between different elements
• All perpendicular relationships (marked and implied)
• All equal lengths and angles (marked and implied)

2. Always provide the step-by-step reasoning first

3. Then provide the predicates section with a clear section header

4. Follow the Guidelines above – these predicates are crucial for representing diagram literals

5. Each predicate must be on a separate line

6. Do not include quotation marks, extra symbols, or explanatory text in predicates

7. Only output predicates in the exact format: PredicateName(arguments)

8. IMPORTANT: Do NOT include Find(...) predicates or any question-related predicates

9. Include only the given information, constraints, and geometric relationships visible in the diagram

10. Represent all visible geometric relationships, not derived solutions

11. The predicates should provide sufficient information for another system to solve the problem, but not the solution
itself

12. COMPLETENESS IS KEY – Better to include extra relationships than miss critical ones

Table 9: Prompt for Zero-Shot Geometry Predicates Generation Part-6

Prompt for Solving Multiple Choice Geometry Problems Part-1

You are an expert AI mathematician specializing in geometry. Your task is to solve the following geometric problem
using the provided predicates through systematic reasoning and theorem application.

Question:
Predicates: [Given Predicate]
Question: [Given Question]
Choices: [Given Choices]

YOUR TASK:
Provide a complete step-by-step solution following the structured approach below, then select the correct answer choice.
STEP-BY-STEP SOLUTION PROCESS
STEP 1: PREDICATE ANALYSIS AND SETUP

• Parse and categorize the given predicates into:

– Geometric shapes (points, lines, circles, triangles, etc.)
– Measurements and equalities (lengths, angles, areas)
– Relationships (perpendicular, parallel, congruent, etc.)
– Positioning (points on lines/circles, intersections, etc.)

• Identify what specific value or measurement the question is asking for.

• Note any special geometric constructions or theorems that might apply.

Table 10: Prompt for Solving Multiple Choice Geometry Problems

16

Prompt for Solving Multiple Choice Geometry Problems Part-2

STEP 2: CONSTRAINT SYNTHESIS

• Combine related predicates to understand the complete geometric picture.

• Identify key relationships that will be useful for solving.

• Look for:

– Equal lengths or angles that can be substituted
– Perpendicular relationships that create right triangles
– Circle properties (radii, chords, central/inscribed angles)
– Congruent or similar triangles
– Theorem applications (Pythagorean, inscribed angle, etc.)

STEP 3: SOLUTION STRATEGY

• Based on the predicates and question, determine the most direct solution path.

• Identify which geometric theorems, properties, or formulas to apply.

• Plan the sequence of logical steps needed to reach the answer.

STEP 4: MATHEMATICAL DERIVATION

• Execute your solution strategy step by step.

• Show all calculations clearly with proper mathematical notation.

• Apply geometric theorems and properties systematically.

• Use the relationships established in the predicates.

• Substitute known values and solve for unknowns.

STEP 5: VERIFICATION AND ANSWER SELECTION

• Verify your calculated result makes geometric sense.

• Compare your result with the provided answer choices.

• Select the choice that best matches your calculated answer.

• If no exact match, select the closest reasonable option.

GEOMETRIC REASONING GUIDANCE

• Consider all relevant geometric theorems and properties.

• Apply circle, triangle, quadrilateral, and angle theorems as appropriate.

• Look for relationships between shapes, measurements, and positions.

• Use both basic and advanced geometric principles as needed.

PREDICATE USAGE GUIDANCE

• Interpret predicates based on their geometric meaning and context.

• Combine multiple predicates to understand complex relationships.

• Consider both direct and derived information from predicate combinations.

Table 11: Prompt for Solving Multiple Choice Geometry Problems

17

Prompt for Solving Multiple Choice Geometry Problems Part-3

CRITICAL INSTRUCTIONS

1. USE THE PREDICATES SYSTEMATICALLY – Every predicate provides important information.

2. APPLY RELEVANT GEOMETRIC KNOWLEDGE – Use any geometric theorems, properties, or principles
that help solve the problem.

3. REASON FLEXIBLY – Adapt your approach based on the specific problem and predicates.

4. SHOW ALL WORK – Make your reasoning clear and mathematical.

5. BE PRECISE – Use exact values when possible, approximate only when necessary.

CRITICAL OUTPUT FORMAT REQUIREMENT
YOU MUST END YOUR RESPONSE WITH EXACTLY ONE OF THESE FOUR LINES:

Final Answer: A
Final Answer: B
Final Answer: C
Final Answer: D

ABSOLUTELY FORBIDDEN - DO NOT USE:

• "The final answer is $\boxed{{14}}$"

• "The final answer is $\boxed{{A}}$"

• "$\boxed{{A}}$"

• "\\boxed{{A}}"

• "(A)"

• "A is correct."

• "Final Answer: The answer is A"

• Any LaTeX formatting

• Any mathematical notation

• Any additional text after the letter

REQUIRED FORMAT EXAMPLES:
If you determine the answer is choice A: "Final Answer: A"
If you determine the answer is choice B: "Final Answer: B"
If you determine the answer is choice C: "Final Answer: C"
If you determine the answer is choice D: "Final Answer: D"

IMPORTANT: Your response must end with exactly "Final Answer: [SINGLE LETTER]" – nothing else on that line.
Do not include any boxed notation, LaTeX, or mathematical formatting in your final line.

Table 12: Prompt for Solving Multiple Choice Geometry Problems.

18

Prompt for Solving Free-Form Geometry Problems Part-1

You are an expert AI mathematician specializing in geometry. Your task is to solve the following geometric problem
using the provided predicates through systematic reasoning and theorem application.

Question:
Predicates: [Given Predicate]
Question: [Given Question]
Choices: [Given Choices]

YOUR TASK: Provide a complete step-by-step solution following the structured approach below, then provide your
final answer in proper mathematical LaTeX format.
STEP-BY-STEP SOLUTION PROCESS:
STEP 1: PREDICATE ANALYSIS AND SETUP

• Parse and categorize the given predicates into:

– Geometric shapes (points, lines, circles, triangles, etc.)
– Measurements and equalities (lengths, angles, areas)
– Relationships (perpendicular, parallel, congruent, etc.)
– Positioning (points on lines/circles, intersections, etc.)

• Identify what specific value or measurement the question is asking for

• Note any special geometric constructions or theorems that might apply

STEP 2: CONSTRAINT SYNTHESIS

• Combine related predicates to understand the complete geometric picture

• Identify key relationships that will be useful for solving

• Look for:

– Equal lengths or angles that can be substituted
– Perpendicular relationships that create right triangles
– Circle properties (radii, chords, central/inscribed angles)
– Congruent or similar triangles
– Theorem applications (Pythagorean, inscribed angle, etc.)

STEP 3: SOLUTION STRATEGY

• Based on the predicates and question, determine the most direct solution path

• Identify which geometric theorems, properties, or formulas to apply

• Plan the sequence of logical steps needed to reach the answer

STEP 4: MATHEMATICAL DERIVATION

• Execute your solution strategy step by step

• Show all calculations clearly with proper mathematical notation

• Apply geometric theorems and properties systematically

• Use the relationships established in the predicates

• Substitute known values and solve for unknowns

STEP 5: VERIFICATION AND FINAL ANSWER

• Verify your calculated result makes geometric sense

• Express your final answer in proper mathematical LaTeX format

• Ensure units are included when applicable

• Round to appropriate precision when necessary

Table 13: Prompt for Solving Free-Form Geometry Problems

19

Prompt for Solving Free-Form Geometry Problems Part-2

GEOMETRIC REASONING GUIDANCE:

• Consider all relevant geometric theorems and properties

• Apply circle, triangle, quadrilateral, and angle theorems as appropriate

• Look for relationships between shapes, measurements, and positions

• Use both basic and advanced geometric principles as needed

PREDICATE USAGE GUIDANCE:

• Interpret predicates based on their geometric meaning and context

• Combine multiple predicates to understand complex relationships

• Consider both direct and derived information from predicate combinations

CRITICAL INSTRUCTIONS:

1. USE THE PREDICATES SYSTEMATICALLY - Every predicate provides important information

2. APPLY RELEVANT GEOMETRIC KNOWLEDGE - Use any geometric theorems, properties, or principles
that help solve the problem

3. REASON FLEXIBLY - Adapt your approach based on the specific problem and predicates

4. SHOW ALL WORK - Make your reasoning clear and mathematical

5. BE PRECISE - Use exact values when possible, approximate only when necessary

CRITICAL OUTPUT FORMAT REQUIREMENT YOU MUST END YOUR RESPONSE WITH YOUR FINAL
ANSWER IN PROPER LATEX FORMAT.
FORMAT EXAMPLES FOR DIFFERENT ANSWER TYPES:

• Coordinates: (2,−2) or (0, 0)

• Angles with degrees: 230◦ or 319◦

• Measurements with units: 4.4m or 85

• Areas: Area = 347.4248πcm2 or Area = 113.1cm2

• Surface Areas: Surface Area = 9236.28m2

• Volumes: Volume = 113.10cm3

• Polar coordinates: (x, y) = (270◦, 5) or (x, y) = (90◦, 5)

• Piecewise functions: When x ≤ −3, f(x) = −x− 5; when x > 3, f(x) = x+ 1

• Function notation: g(x) = (x+ 4)2 − 5

• Domain and Range: Domain: [−4, 4], Range: [0, 2]

• Constants: π

FORMATTING GUIDELINES:

• Use proper LaTeX syntax with appropriate symbols for inline math

• Include units when applicable using for unit labels

• Use appropriate mathematical notation (◦ for degrees, π for pi, etc.)

• For areas, volumes, and surface areas, clearly label what the measurement represents

• For coordinates, use parentheses: (x, y)

Table 14: Prompt for Solving Free-Form Geometry Problems

20

Prompt for Solving Free-Form Geometry Problems Part-3

FORMATTING GUIDELINES:

• For ranges and domains, use brackets and interval notation

• Round decimal answers to appropriate precision (typically 1-4 decimal places)

• Use for spacing between multiple parts of an answer

REQUIRED FORMAT: Your final answer must be a single mathematical expression in proper LaTeX format, clearly
representing the solution to the problem.

MANDATORY: Your response must end with exactly this format:

Final Answer: your latex expression here

Table 15: Prompt for Solving Free-Form Geometry Problems

21

Reasoning comparison for MathVerse example 328 with and without choices.

Wrong Reasoning Right Reasoning

PREDICATES: Point(A), Point(B), Point(C),
Line(A,B), Line(A,C), Line(B,C), Triangle(A,B,C),
RightAngle(Angle(A,B,C)), LengthOf(Line(A,B),17.6),
LengthOf(Line(A,C),d), MeasureOf(Angle(B,A,C),52) ,
Perpendicular(Line(A,B),Line(B,C))
QUESTION: Three television presenters are practis-
ing their navigation skills before heading off on an
expedition to a remote location. Amelia at point B
is positioned 17.6 metres south of Ned at point A.
Bart at point C is due east of Amelia and on a bearing

of S 38◦ E from Ned . If Ned and Bart are d metres
apart, find d to one decimal place. Okay, let me try to
figure out this problem. So, we have three points: A, B,
and C. Let me start by visualizing the setup. First, the
problem says Amelia is at point B, and she’s positioned
17.6 meters south of Ned at point A. So, if I imagine
a coordinate system where north is up, then point A is
north of point B. Wait, but directions can sometimes
be confusing. Let me clarify: "south" means that B is
directly south of A. So, if I consider A at some coordinate,
then B would be straight down (south) from A.
But the problem says that MeasureOf(Angle(B,A,C),52).
This implies that α = 52 degrees.
This contradiction suggests that either the problem

has conflicting information, or I have misinterpreted
the bearing. Wait, could the bearing be referring to the
angle between AC and the north direction? Let me think.
If the bearing is S 38◦ E, then the angle between AC
and south is 38 degrees. But the angle at A between
AB (south) and AC is 38 degrees. So, this would mean
α = 38 degrees. But the problem says it’s 52 degrees.
Unless... there’s a miscalculation in the problem’s given
information. Alternatively, maybe the angle mentioned
in the problem is not the angle at A, but at C? Wait,
the problem says: MeasureOf(Angle(B,A,C),52). This
is angle at A between B and C, so it’s angle BAC,
which should be 38 degrees according to the bearing.
But the problem says 52. So, using the right triangle
with ∠A = 52◦ and AB = 17.6m, we have
AC = AB

cos(52◦) ; since cos(52◦) ≈ 0.6157, it follows that

d = 17.6
0.6157

≈ 28.6m . Although the problem also gives

a bearing of S 38◦ E (which would yield a different

result), the explicit angle at A of 52◦ takes precedence.
Therefore, despite the apparent contradiction, the correct
value of d is 17.6

cos(52◦) . Rounded to one decimal place, it
would be 28.6. But wait, let me check with the bearing.
If the bearing is S 38◦ E, then the angle at A is 38◦,
so d = 17.6

cos(38◦) ≈ 17.6
0.7880

≈ 22.34, which rounds to
22.3. But the problem states the angle at A is 52◦. Since
the problem provides both the angle and the bearing,
and they seem conflicting, but the predicates include
MeasureOf(Angle(B,A,C)) = 52◦, which is the
angle at A, I must prioritize that. Thus, the answer
is approximately 28.6m.

PREDICATES: Point(A), Point(B), Point(C),
Line(A,B), Line(A,C), Line(B,C), Triangle(A,B,C),
RightAngle(Angle(A,B,C)), LengthOf(Line(A,B),17.6),
LengthOf(Line(A,C),d), MeasureOf(Angle(B,A,C),52) ,
Perpendicular(Line(A,B),Line(B,C))
QUESTION: Three television presenters are practis-
ing their navigation skills before heading off on an
expedition to a remote location. Amelia at point B
is positioned 17.6 metres south of Ned at point A.
Bart at point C is due east of Amelia and on a bearing

of S 38◦ E from Ned . If Ned and Bart are d metres
apart, find d to one decimal place.
CHOICES: A. 22.3 B. 44.5 C. 20.4 D. 50
Okay, let’s tackle this problem step by step. So, we have
three points: A, B, and C. From the given predicates, I
need to figure out the distance between Ned (at point A)
and Bart (at point C), which is denoted as ’d’.
. . .
. . .
. . .
Therefore, there is a contradiction here. Hence, my as-

sumption must be wrong somewhere. This inconsistency
indicates that I’ve misunderstood either the angle given
or the bearing. Let me revisit the problem statement.
In triangle ABC, ∠A = 52◦. So, the angle between
BA (south) and AC is 52◦. But the bearing says it’s
38◦. So, why is there a discrepancy? Ah! Wait, maybe
I mixed up the angle. The angle at A is between BA
and CA. BA is south, and CA is going to point C. The
angle between BA and CA is 52◦, which is the angle
between south and AC. But the bearing from A to C
is S 38◦ E, which suggests that this angle is 38◦. So,
this implies that the given angle of 52◦ conflicts with
the bearing of 38◦. This inconsistency suggests that
my initial assumptions are incorrect.
. . .
. . .
. . .
So, d ≈ 17.6/0.7880 ≈ 17.6/0.7880 ≈ 22.34m.

Looking at the answer choices, option A is 22.3, which
is close. However, given that the only way to get
a value matching the answer choices is to take the
bearing angle as 38◦, leading to d ≈ 22.3, which is
option A, and assuming that the angle at A is 38◦,
even though the problem says it’s 52◦, there might be
a typo in the problem. Or perhaps I misread the angle.
Thus, the correct answer is A.

Table 16: Comparison of reasoning with and without multiple-choice options for example number 328 from the
MathVerse dataset. We have highlighted in red where the Solver’s (Qwen) reasoning detected ambiguity and how
the influence of the given choices, in green , corrected.

22

Illustration of the model’s recursive self-doubt

PREDICATES: Rhombus(A,B,C,D) Point(A) Point(B) Point(C) Point(D) Equals(AreaOf(Rhombus(A,B,C,D)), 36)
Equals(LengthOf(Line(A,D)), 8) Shape(1) Equals(LengthOf(AltitudeOf(Shape(1))), 4) Similar(Rhombus(A,B,C,D),
Shape(1)) IsAltitudeOf(Line(A,D), Rhombus(A,B,C,D)) Green(Shape(1)) Blue(Rhombus(A,B,C,D))
QUESTION: For the pair of similar figures, find the area of the green figure.
CHOICES: A. 9 B. 18 C. 72 D. 144
Okay, let’s tackle this geometry problem step by step. First, I need to parse all the given information and constraints.
Let me start by listing out everything provided.
We have a rhombus ABCD. The area of this rhombus is given as 36. Also, the length of side AD is 8 units. There’s
another shape called Shape(1), which is similar to the rhombus ABCD. Additionally, there’s an altitude related to
Shape(1) with length 4. The altitude mentioned is specifically for Line(A,D) in the rhombus ABCD. Also, Shape(1) is
green, and the rhombus is blue. The question asks for the area of the green figure (which is Shape(1)).
. . .
. . .
. . .
Alternatively, perhaps I got the direction wrong. Let me clarify. Suppose the altitude of R is 4.5, and the altitude of S
is 4. Since they are similar, the ratio of altitudes is equal to the ratio of corresponding lengths. So the ratio of alti-
tudes is 4

4.5
= 8

9
. Therefore, the scale factor from R to S is 8

9
. Therefore, the area of S is Area(R)×

(
8
9

)2
= 36× 64

81
=?

Calculating that: 36÷ 81 = 4
9

, so 4
9
× 64 = 256

9
≈ 28.44 . . . Hmm, but none of the answer choices are close to that.

Wait, but that seems odd. Maybe my approach is incorrect.
. . .
. . .
. . .
Wait, maybe I made a mistake in calculating the altitude of the original rhombus. Let me re-examine
that. The area of the rhombus is base × height. We know the base is AD, which is 8. Therefore,
Area = 8 × height = 36 → height = 36/8 = 4.5. Correct. So the altitude of the original rhombus is 4.5. The
altitude of Shape(1) is 4. So the ratio of altitudes is 4/4.5 = 8/9. Therefore, the scale factor from original to Shape(1)
is 8/9. Therefore, Area(Shape(1)) = 36× (8/9)2 = 36× 64/81 = (36/81)× 64 = (4/9)× 64 = 256/9 ≈ 28.44.
Which isn’t among the options. Hmm. This suggests that either there’s a misunderstanding in the setup, or perhaps the

altitude of Shape(1) refers to a different altitude?
. . .
. . .
. . .
Looking back: The problem says "Equals(LengthOf(AltitudeOf(Shape(1))), 4)". So Shape(1) has an altitude of
length 4. But what kind of altitude? Wait, but AD is a side of the rhombus. How can a side be an altitude? That
doesn’t make sense. Wait, no— the phrase "IsAltitudeOf(Line(A,D), Rhombus(A,B,C,D))" likely means that the line
AD serves as an altitude of the rhombus. But in a rhombus, the altitude is a segment perpendicular to a side. So if AD
is one of the sides, then the altitude corresponding to that side would be a segment perpendicular to AD, starting at
one of the vertices.
Thus, the area of Shape(1) is k2 × original area = (8/9)2 × 36 = (64/81)× 36 = (64/81)× 36 = (64/9)× 4 =
256/9 ≈ 28.44. Again, same result. But this is not among the options. So there must be an error in my understanding.
. . .
Hence, x = 8×

(
8/9

)
= 64/9. Then, the area of Shape(1) is base × height = x× 4 = (64/9)× 4 = 256/9, same

as before. Still no match. Then, the area of Shape(1) is k2 × 36 = (64/81)× 36 = 256/9 ≈ 28.44. Same result.
. . .
At this point, I’m stuck because none of the options match this calculation
. . .
If the area is 144, then scale factor squared is 4, so scale factor is 2. Altitude would be 4.5× 2 = 9, not 4.
. . .
None of these match. So this suggests that either the problem is flawed, or there’s a miscalculation.
. . .
At this point, I’m forced to conclude that either there’s a mistake in the problem, or I’m missing something critical.
Given that, perhaps I should re-express the problem in terms of the options provided. Let’s assume that the correct
answer is B. 18. Why? Because if the area of Shape(1) is 18, then the ratio of areas is 18/36 = 1/2, so the scale factor
is 1/

√
2. This would mean that the altitude of Shape(1) is 4.5/

√
2 ≈ 3.18, which is not 4. But perhaps the problem

assumes that the altitude of Shape(1) is 4, and the original’s altitude is 4.5, so the ratio is 4/4.5 = 8/9, and the area
is 36× (8/9)2 = 256/9 ≈ 28.44. If the options are wrong, or if I made a mistake, but since this is a test, perhaps the
intended answer is B. 18, assuming that the altitude of the original is 6, leading to area of Shape(1) being 18. Let me
check: if the original area is 36, and its altitude is 6, then the base is 8, so 8× 6 = 48, which is not 36. So no.

Table 17: Illustration of the model’s recursive self-doubt. Lines highlighted in red indicate the segments where
Solver (Qwen) demonstrates recursive self-doubt in its reasoning.

23

Illustration of the model’s reasoning loops

PREDICATES: Triangle(A, B, C) Point(A) Point(B) Point(C) Line(A, B) Line(B, C) Line(A, C) Angle(A,
B, C) Angle(B, C, A) Angle(C, A, B) RightAngle(Angle(C, A, B)) Equals(MeasureOf(Angle(C, A, B)), 90)
Equals(MeasureOf(Angle(B, C, A)), 60) Equals(MeasureOf(Angle(C, B, A)), 55) Equals(LengthOf(Line(A, B)),
73) IsHypotenuseOf(Line(A, B), Triangle(A, B, C)) IsSideOf(Line(A, C), Triangle(A, B, C)) IsSideOf(Line(B, C),
Triangle(A, B, C)) CosOf(MeasureOf(Angle(B, C, A))) = Div(LengthOf(Line(A, C)), LengthOf(Line(A, B)))
QUESTION: Find x. Round the side measure to the nearest tenth.
CHOICES: A. 69.0 B. 69.8 C. 76.4 D. 77.2
To solve the problem, we will follow the step-by-step process outlined.
STEP 1: PREDICATE ANALYSIS AND SETUP
- **Geometric Shapes:** - Triangle △ABC - Points A,B,C - Lines AB,BC,AC
- **Measurements and Equalities:** - Right angle at ∠CAB with Measure = 90◦ - MeasureOf(∠BCA) = 60◦ -
MeasureOf(∠CBA) = 55◦ - LengthOf(AB) = 73 - IsHypotenuseOf(AB,△ABC)
. . .
STEP 4: MATHEMATICAL DERIVATION
1. From the cosine relationship:

cos(60◦) =
LengthOf(AC)

73

0.5 =
LengthOf(AC)

73

2. Solve for LengthOf(AC):
LengthOf(AC) = 0.5× 73 = 36.5

3. However, this doesn’t match any answer choices, indicating a potential oversight. Let’s verify using the Pythagorean
theorem.
4. Since ∠CAB = 90◦, apply the Pythagorean theorem:

AB2 = AC2 +BC2

732 = AC2 +BC2

5. Use the sine relationship to find BC:

sin(60◦) =
LengthOf(BC)

73

√
3

2
=

LengthOf(BC)

73

LengthOf(BC) =

√
3

2
× 73 ≈ 63.2

6. Substitute BC back into the Pythagorean theorem:

732 = AC2 + 63.22

5329 = AC2 + 3994.24

AC2 = 5329− 3994.24 = 1334.76

AC =
√
1334.76 ≈ 36.5

7. Re-evaluate using cosine:

cos(60◦) =
AC

73
⇒ AC = 36.5

. . .
34. Correct Pythagorean:

732 = AC2 + 63.22

5329 = AC2 + 3994.24

AC2 = 1334.76

AC =
√
1334.76 ≈ 36.5

35. Correct calculation: - Use cosine:

cos(60◦) =
AC

73
⇒ AC = 0.5× 73 = 36.5

Table 18: Illustration of the model’s reasoning loops. Lines highlighted in red indicate the segments where Solver
(Phi-4) demonstrates reasoning loops. 24

Solver’s (Phi-4) reassessment reasoning steps.

PREDICATES: Hexagon(A,C,F,H,G,E) Point(A) Point(C) Point(F) Point(H) Point(G) Point(E) Point(B) Point(D)
Line(A,C) Line(A,B) Line(B,C) Line(B,D) Regular(Hexagon(A,C,F,H,G,E)) Equals(LengthOf(Line(A,D)),3)
IsMidpointOf(D,Line(A,C)) Triangle(A,B,C) Equilateral(Triangle(A,B,C)) Perpendicular(Line(B,D),Line(A,C))
Equals(LengthOf(Line(A,C)),6) IsSideOf(Line(A,C),Triangle(A,B,C)) IsSideOf(Line(A,C),Hexagon(A,C,F,H,G,E))
IsAltitudeOf(Line(B,D),Triangle(A,B,C)) RightAngle(Angle(B,D,C)) Right(Triangle(B,D,C))
Right(Triangle(A,D,B)) AreaOf(Hexagon(A,C,F,H,G,E)) Equals(LengthOf(Line(A,C)),Mul(2,LengthOf(Line(A,D))))
Equals(AreaOf(Hexagon(A,C,F,H,G,E)),Mul(6,AreaOf(Triangle(A,B,C))))
Equals(LengthOf(Line(A,B)),LengthOf(Line(A,C))) Equals(LengthOf(Line(B,C)),LengthOf(Line(A,C)))
QUESTION: Find the area of the regular polygon. Round to the nearest tenth.
CHOICES: A. 3.9 B. 11.7 C. 23.4 D. 46.
Step 1: Analyze the Geometric Constraints
- We have a regular hexagon A,C, F,H,G,E with AC = 6. Since it is regular, all sides are equal. - D is the
midpoint of AC, hence AD = DC = 3. - Triangle ABC is equilateral, and AC is a side of this triangle. Therefore,
AB = BC = AC = 6. - Line BD is perpendicular to AC and is the altitude of triangle ABC. - The area of the
hexagon is given by 6× Area of △ABC.
Step 2: Calculate the Area of Triangle ABC
- Since ABC is equilateral with side length 6, we use the formula for the area of an equilateral triangle:

Area of △ABC =

√
3

4
× (side length)2 =

√
3

4
× 62 =

√
3

4
× 36 = 9

√
3

Step 3: Calculate the Area of the Hexagon
- The area of the hexagon is 6× Area of △ABC:

Area of Hexagon = 6× 9
√
3 = 54

√
3

Step 4: Approximate and Compare
- Calculate 54

√
3 using the approximation

√
3 ≈ 1.732:

54× 1.732 ≈ 93.528

- Round 93.528 to the nearest tenth: 93.5
Step 5: Compare with Answer Choices
- The calculated area is approximately 93.5. The closest answer choice is 46.8, which suggests a miscalculation or
misinterpretation. Let’s reassess:
Reassessment:
- The side length of the hexagon is 6, and the formula for the area of a regular hexagon with side length s is:

Area =
3
√
3

2
s2

- Substitute s = 6:

Area =
3
√
3

2
× 62 =

3
√
3

2
× 36 = 54

√
3

- Recalculate 54
√
3 ≈ 93.528.

Final Check:
- The closest answer choice to 93.5 is indeed 46.8, suggesting a factor of 2 discrepancy due to the formula used.
Re-evaluate the interpretation:
- The correct calculation should reflect the area directly from the hexagon formula:

Area =
3
√
3

2
× 36 = 54

√
3 ≈ 93.5

- The discrepancy arises from the interpretation of the area scaling. The correct choice should be the closest to the
calculated value.
Conclusion:
- The correct choice, considering the closest approximation, is D.46.8.
Final Answer: D

Table 19: Solver’s (Phi-4) reassessment reasoning steps. Highlighted lines in red show where Solver (Phi-4) was
unable to solve the problem after the reassessment step.

25

How does the quality of literals affect the per-
formance of different LLMs on geometry tasks?

PREDICATES: PointLiesOnCircle(B, Circle(A, radius00)) PointLiesOnCircle(B, Circle(C, radius20))
QUESTION: Find the area of the shaded region. Round to the nearest tenth.
CHOICES: A. 104.7 B. 157.1 C. 235.6 D. 314.2

1. **Step 1: Analyze the Given Information**

- We are given two circles: 1. Circle with center A and radius r0 = 0 . This implies that circle is essentially a

point at A. 2. Circle with center C and radius r2 = 0 . This implies that circle is essentially a point at C.

- The point B lies on both these circles. Since both circles are just points (centers A and C), it implies B is
coincident with both A and C. Thus, A = B = C.

2. **Step 2: Identify What Needs to Be Found**

- The problem asks for the area of the shaded region. However, given that both circles are just points, the "shaded
region" typically suggests an intersection or overlap between two geometric shapes. Here, the interpretation may
be incorrect due to the constraint r0 = 0 and r2 = 0 .

3. **Step 3: Consider Geometric Interpretation**

- Since both circles are points, there is no traditional "shaded region" between two overlapping circles. If there were
any other details, like a non-zero radius or additional geometric constraints, we might consider the intersection of
two circles. However, with both radii being zero, there is no overlap or intersection area.

4. **Step 4: Reassess the Problem Statement**

- Given the constraints, the problem might involve an implicit or external condition not stated explicitly in the
problem. The problem could involve a standard geometric scenario where these circles would have non-zero radii,
but they are not provided here.

5. **Step 5: Explore Possible Misinterpretations**

- If the problem intended to use non-zero radii, the typical approach would involve calculating the area of
intersection between two circles. However, with zero radii, no such area exists.

6. **Step 6: Reflect on the Answer Choices**

- The answer choices provided (104.7, 157.1, 235.6, 314.2) suggest areas of circles or segments. Given the
constraints, the only logical interpretation is that the problem might have intended for a standard scenario with
non-zero radii.

7. **Step 7: Consider Standard Circle Areas**

- If we assume standard circle radii, the closest standard area calculation would be for a circle with radius r such
that: - Area = πr2. - For π ≈ 3.14, the areas corresponding to the choices are: - r2 ≈ 33.3 for 104.7 - r2 ≈ 50
for 157.1 - r2 ≈ 75.3 for 235.6 - r2 ≈ 100 for 314.2

8. **Step 8: Choose the Closest Logical Answer**

- Given the constraints and the nature of the problem, the most logical assumption is that the problem intended
for a scenario where the radii were non-zero and equal, leading to a full overlap (complete intersection) of two
circles. - The largest area choice, 314.2, corresponds to a circle with radius 10 (since π × 102 = 314), which is a
common scenario for full overlap.

9. **Step 9: Finalize the Answer**

- Given the constraints and the logical deductions, the closest and most reasonable choice is the largest area,
assuming a standard scenario with equal radii.

<Solution> Based on the analysis, the problem’s constraints imply a scenario where the circles are points, leading to no
traditional intersection area. However, considering standard geometric interpretations and the provided answer choices,
the most reasonable assumption is that the problem intended for a scenario with equal, non-zero radii leading to a full
overlap. The largest area choice, 314.2, corresponds to a circle with radius 10, which is a common scenario for full
overlap.
Final Answer: D

Table 20: How does the quality of literals affect the performance of different LLMs on geometry tasks? The
incorrect part of the reasoning is highlighted using red color.

26

How does the quality of literals affect the performance
of different LLMs on geometry tasks? Example - 2

PREDICATES: Equals(MeasureOf(Angle(N, L, M)), 65)

Equals(MeasureOf(Angle(L, M, N)), 51)

Equals(MeasureOf(Angle(Y, X, Z)), 4x)

Equals(MeasureOf(Angle(Y, Z, X)), MeasureOf(Angle(M, L, N)))

Equals(MeasureOf(Angle(Z, Y, X)), MeasureOf(Angle(N, M, L)))
QUESTION: Find x.
CHOICES: A. 12 B. 16 C. 51 D. 65

1. **Analyze the Given Information:** - We have two triangles involved: Triangle △NLM and Triangle △Y XZ. -
From the constraints, we know: - ∠NLM = 65◦ - ∠LNM = 51◦ - ∠Y XZ = 4x - ∠Y ZX = ∠NLM = 65◦

- ∠ZY X = ∠NML

2. **Calculate the Missing Angle in Triangle △NLM :** - The sum of angles in any triangle is 180◦. - Therefore,
for △NLM :

∠NML = 180◦ − ∠NLM − ∠LNM = 180◦ − 65◦ − 51◦ = 64
◦

3. **Apply the Angle Information to Triangle △Y XZ:** - We know: - ∠Y XZ = 4x - ∠Y ZX = 65◦ -

∠ZY X = ∠NML = 64◦

4. **Calculate the Sum of Angles in Triangle △Y XZ:** - The sum of angles in △Y XZ is also 180◦. - Therefore:

4x+ 65◦ + 64
◦
= 180◦

5. **Solve for x:** - Simplify the equation:

4x+ 129◦ = 180◦

- Subtract 129◦ from both sides:
4x = 51◦

- Divide by 4:

x =
51◦

4
= 12.75

6. **Select the Closest Answer Choice:** - The calculated value of x is 12.75. - Among the answer choices: - A. 12
- B. 16 - C. 51 - D. 65 - The closest value to 12.75 is 12.

7. **Conclusion:** - Based on the calculations, the closest answer choice is 12.

Final Answer: A

Table 21: How does the quality of literals affect the performance of different LLMs on geometry tasks? Example-2.
The incorrect part of the reasoning is highlighted using red color.

27

Prompt for evaluating the accuracy of free-form ge-
ometry problem solutions using an LLM as a judge.

You are an expert mathematical judge comparing two answers to determine if they represent the same mathematical
result part-1.
Problem Number: [Porblem Number]
LLM Generated Answer: [LLM Generated Answer]
Original Answer: [Original Answer]

COMPARISON TASK:
Compare these two answers and determine if they represent the same mathematical result. Consider:

1. Numerical Equivalence: Do they have the same numerical value?

• Example: “11.8” and “11.8” are the same.
• Example: “22.3 meters” and “the answer is approximately 22.3 meters” are the same.

2. Unit Consistency: Are the units equivalent or both referring to the same quantity?

• Example: “22.3 meters” and “22.3 m” are the same.
• Example: “203.5◦” and “203.5 degrees” are the same.

3. Directional/Angular Equivalence: For angles and directions.

• Example: “203.5◦” and “S 23.5◦ W” represent the same direction (since 203.5◦ = 180◦ + 23.5◦).
• Example: “N 30◦ E” and “60◦” represent the same direction.

4. Mathematical Expressions: Are they mathematically equivalent?

• Example: “
√
16” and “4” are the same.

• Example: “2π” and “6.28. . . ” are the same.

5. Approximate Values: Are they reasonably close approximations?

• Example: “22.3” and “22.28” might be the same if rounding is involved.
• Example: “π” and “3.14159” are the same.

6. Formatting Differences: Ignore LaTeX, formatting, extra text.

• Example: “11.8” and “11.8” are the same.
• Example: “The answer is 22.3” and “22.3” are the same.

IMPORTANT CONSIDERATIONS:

• If one answer is clearly wrong numerically, they are NOT the same.

• If units are different and not convertible, they are NOT the same.

• If the numerical values are significantly different, they are NOT the same.

• Consider mathematical context and reasonable precision.

EXAMPLES:

• LLM: “11.8”, Original: “11.8” → SAME (identical)

• LLM: “the answer is approximately 22.3 meters”, Original: “22.3” → SAME (same numerical value)

• LLM: “203.5◦”, Original: “S 23.5◦ W” → SAME (equivalent directions)

• LLM: “916.0”, Original: “2191.7 metres” → NOT SAME (different values)

Table 22: Prompt for evaluating the accuracy of free-form geometry problem solutions using an LLM as a judge
part-1.

28

Prompt for evaluating the accuracy of free-form geome-
try problem solutions using an LLM as a judge part-2.

ANALYSIS STEPS:

1. Extract the numerical value(s) from each answer.

2. Consider the units and context.

3. Check for mathematical equivalence.

4. Determine if they represent the same result.

Provide your detailed reasoning and analysis, then end with exactly one of these:
DECISION: YES
DECISION: NO
CRITICAL: Your response must end with exactly DECISION: YES or DECISION: NO on the last line.

Table 23: Prompt for evaluating the accuracy of free-form geometry problem solutions using an LLM as a judge
part-2.

0.2
0.1

0.0
0.1

0.2
0.3

0.4
0.5 PCA Component 1 (24.38% variance)

0.4
0.3

0.2
0.1

0.0
0.1

PCA Component 2 (6.75% variance)

0.2

0.1

0.0

0.1

0.2

0.3PCA Com
ponent 3 (4.84%

 variance)

3D PCA of Text Only and Predicate Embeddings

Text Only
Ground Truth (Image+Question)

Ground Truth (Image only)
Gemini Predicates

Qwen Predicates
GPT Predicates

Figure 4: 3D PCA projection of predicate embeddings. Text-only embeddings and various predicate types—Ground
Truth (Image+Question), Ground Truth (Image only), and model-generated predicates (Gemini, Qwen, GPT)—are
visualized.

29

80 60 40 20 0 20 40 60 80
t-SNE Component 1

80

60

40

20

0

20

40

60

t-S
NE

 C
om

po
ne

nt
 2

t-SNE of Text Only and Predicate Embeddings

Text Only
Ground Truth (Image+Question)

Ground Truth (Image only)
Gemini Predicates

Qwen Predicates
GPT Predicates

Figure 5: t-SNE visualization of text-only and predicate embeddings. The plot shows the distribution of embeddings
from different sources: text-only inputs, ground truth predicates based on image and question, image-only predicates,
and model-generated predicates (Gemini, Qwen, GPT). Distinct clustering patterns suggest semantic differences
and similarities among embedding types.

0.2 0.1 0.0 0.1 0.2 0.3 0.4
PCA Component 1 (33.56% variance)

0.2

0.1

0.0

0.1

0.2

0.3

PC
A

Co
m

po
ne

nt
 2

 (5
.0

9%
 v

ar
ia

nc
e)

2D PCA of Text Only and Predicate Embeddings
Text Only
GT (Image+Question)
Gemini

Figure 6: 2D PCA projection showing the distribution of text-only, GT (image + question), and Gemini embeddings.
PCA Component 1 explains 33.56% of the variance, and Component 2 explains 5.09%.

30

0.3
0.2

0.1
0.0

0.1
0.2

0.3
0.4

0.5
PCA Component 1 (33.56% variance)

0.2
0.1

0.0
0.1

0.2
0.3

PCA Component 2 (5.09% variance)

0.2

0.1

0.0

0.1

0.2

0.3

PCA Com
ponent 3 (4.40%

 variance)

3D PCA of Text Only and Predicate Embeddings
Text Only
GT (Image+Question)
Gemini

Figure 7: 3D PCA visualization of text-only and predicate embeddings. Embeddings from text-only inputs, ground
truth predicates (Image+Question), and Gemini-generated predicates are projected onto the first three principal
components, which account for 33.56%, 5.09%, and 4.40% of the variance, respectively. The spatial separation
indicates distinct semantic structures among the embedding types.

60 40 20 0 20 40 60 80
t-SNE Component 1

40

20

0

20

40

t-S
NE

 C
om

po
ne

nt
 2

t-SNE of Text Only and Predicate Embeddings
Text Only
GT (Image+Question)
Gemini

Figure 8: This t-SNE plot visualizes and compares three distinct types of embeddings: "Text Only" (black), "GT
(Image+Question)" (green), and "Gemini" (cyan).

31

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
PCA Component 1 (33.99% variance)

0.2

0.1

0.0

0.1

0.2

0.3

PC
A

Co
m

po
ne

nt
 2

 (5
.6

0%
 v

ar
ia

nc
e)

2D PCA of Text Only and Predicate Embeddings
Description
GT (Image+Question)
GT (Image only)

Figure 9: This 2D PCA plot shows a Principal Component Analysis (PCA) of text-only and predicate embeddings.
The visualization projects the embeddings onto the two principal components that capture the most variance, 33.99%
and 5.60%, respectively. A distinct clustering pattern emerges, with text-only "Problem Description" embeddings
(left) clearly separated from the image-based "GT (Image+Question)" and "GT (Image only)" embeddings (right).

0.5
0.4

0.3
0.2

0.1
0.0

0.1
0.2

0.3
PCA Component 1 (33.99% variance)

0.2
0.1

0.0
0.1

0.2
0.3

PCA Component 2 (5.60% variance)

0.3

0.2

0.1

0.0

0.1

0.2

PCA Com
ponent 3 (3.79%

 variance)

3D PCA of Text Only and Predicate Embeddings
Description
GT (Image+Question)
GT (Image only)

Figure 10: This 3D Principal Component Analysis (PCA) plot illustrates the spatial relationship between different
predicate embeddings. The visualization demonstrates a clear separation between the text-only "Problem Descrip-
tion" embeddings (black) and the multimodal embeddings from "GT (Image+Question)" (green) and "GT (Image
only)" (cyan). The first principal component accounts for 33.99% of the variance, while the second accounts for
5.60%.

32

80 60 40 20 0 20 40 60
t-SNE Component 1

60

40

20

0

20

40

t-S
NE

 C
om

po
ne

nt
 2

t-SNE of Text Only and Predicate Embeddings
Description
GT (Image+Question)
GT (Image only)

Figure 11: It reveals a strong and well-defined separation between the text-based "Problem Description" embeddings,
which form a dense cluster on the left, and the visually-grounded "GT (Image+Question)" and "GT (Image only)"
embeddings, which are intermingled on the right.

33

	Introduction
	Related Work
	Methodology
	Problem Formulation & Overview
	Interpreter Agent
	Solver Agent

	Experimental Analysis
	Datasets
	Models
	Evaluation Metrics

	Results and Analysis
	Quantitative Reults
	Predicate Alignment and Quality
	Analysis of Interpreter-Solver's Reasoning
	Ablation Study

	Conclusion
	Appendix

