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Abstract

We introduce SASST, an end-to-end frame-
work for simultaneous speech translation that
integrates segmentation, alignment, and gen-
eration within a single decoder-only language
model. To address the challenge of transla-
tion timing, we propose a syntax-aware chunk-
ing strategy that segments source speech based
on grammatical structure, enabling more ac-
curate and linguistically informed translation
boundaries. The model learns to output ei-
ther translation tokens or special <WAIT> to-
kens, thereby jointly modeling when and what
to translate under causal constraints.

To further enhance the model’s ability to de-
tect optimal translation timing, we incorpo-
rate chunk-level alignment and target-side re-
ordering during training, allowing the model
to associate source-side grammatical bound-
aries with fluent target segments. Unlike
prior methods that separate policy learning
and decoding, SASST unifies both within a
single generative process. Experiments on
the MuST-C En—De benchmark show that
SASST outperforms strong baselines across
latency regimes—achieving up to +1.4 BLEU
improvement over SeamlessM4T at low la-
tency—while maintaining architectural sim-
plicity. These results highlight the effec-
tiveness of integrating syntactic structure into
LLM-driven SimulST systems.

1 Introduction

Simultaneous speech translation (SimulST) aims
to generate target-language translations with min-
imal delay while receiving ongoing speech in
the source language. Unlike offline translation
systems, which have access to the full source
sequence, SimulST systems must operate in a
streaming fashion, making real-time decisions un-
der strict latency constraints. This requires models
to balance three often conflicting goals: translation
quality, latency, and coherence.

Traditional SimulST pipelines are typically
composed of multiple independent components,
such as automatic speech recognition (ASR),
chunk segmentation, and neural machine transla-
tion (NMT) (Ma et al., 2018; Zeng et al., 2021).
While this modular design provides flexibility, it
also introduces error propagation, latency accu-
mulation, and incompatibility between training
and inference. Moreover, segmentation decisions
are often made heuristically or by lightweight
models, lacking deep contextual understanding.

Recent research has shown that large language
models (LLMs) possess strong abilities in lan-
guage generation, instruction following, and few-
shot generalization (Brown et al., 2020; Chowd-
hery et al., 2022; Achiam et al., 2023). How-
ever, their integration into SimulST frameworks
remains limited. Notably, most prior work ei-
ther treats segmentation and translation separately
or relies on external alignment tools (Zhang and
Feng, 2023; Koshkin et al., 2024). In contrast,
we propose to unify these components into a sin-
gle instruction-tuned LLM that handles both when
and what to translate. Our approach is inspired by
the intuition that human interpreters tend to seg-
ment speech at syntactic or semantic boundaries
rather than by fixed timing.

To achieve this, we propose a framework that
combines syntax-aware chunking, wait-token su-
pervision, reordering, and prompt-based genera-
tion. Chunking plays a critical role in determin-
ing when the model should emit translations, es-
pecially under streaming constraints (i.e., simulta-
neous speech translation setting). Rather than seg-
menting speech based on fixed time intervals or
length thresholds, we use grammatical structure to
divide transcribed input into linguistically mean-
ingful units, such as clauses or noun phrases. This
approach is more aligned with how human inter-
preters naturally pause and segment speech (Oda
et al., 2014), helping reduce semantic fragmenta-



tion and enabling clearer and more coherent trans-
lations.

During training, the model is supervised to out-
put <WAIT> or translation tokens based on chunk
boundaries derived from grammatical segmenta-
tion. It also learns to align source and target se-
quences using chunk-level token alignment, and
reorders output tokens to match the natural word
order of the target language. During inference,
it receives partial source audio input in a dy-
namic prompt and generates translation tokens in
a streaming, autoregressive fashion.

Our architecture consists of three main com-
ponents: a sliding-window audio preprocessor, a
frozen Whisper (Cao et al., 2012) encoder, and a
decoder-only Qwen3 (Yang et al., 2025) language
model. The entire system operates under causal
constraints, and all segmentation, alignment, and
generation decisions are handled within the model.
Unlike cascaded pipelines, our method enables
fine-grained control over when and how to trans-
late through chunk-aware modeling.

Contributions. Our main contributions are as

follows:

* We propose a unified, end-to-end SimulST
system that integrates chunk segmentation
and translation into a single LLM.

* We introduce a syntax-aware chunk pol-
icy combined with wait-token supervision
and token-level alignment to guide real-time
translation triggering.

e We design a reordering mechanism that
uses chunk-level token alignment to rear-
range translated segments into natural target-
language order, improving coherence across
word-order divergent language pairs.

2 Related Work

Simultaneous speech translation (SimulST) tar-
gets real-time translation of streaming audio with
minimal delay and high output fidelity. Early
SimulST systems often employed a cascaded ap-
proach involving separate automatic speech recog-
nition (ASR) and machine translation (MT) mod-
ules (Oda et al., 2014; Le et al., 2017), which suf-
fered from compounded latency and error prop-
agation. The emergence of end-to-end SimulST
models has since led to more integrated architec-
tures that jointly optimize translation quality and

latency (Berard et al., 2016; Weiss et al., 2017;
Bansal et al., 2018; Ren et al., 2020).

Central to these models is the read/write pol-
icy, which determines whether the system should
translate immediately or wait for more input.
Fixed policies such as wait-k (Ma et al., 2018)
or fixed-length chunking (Ma et al., 2020b) of-
fer predictable latency but lack contextual adapt-
ability. More recent works have introduced adap-
tive policies that rely on attention patterns (Papi
et al., 2022), information flow estimation (Zhang
and Feng, 2022), or segmentation of meaningful
translation units (Zhang et al., 2022; Dong et al.,
2021) to inform dynamic decision-making. While
these approaches improve flexibility, they often re-
quire additional modules or rely on heuristic cues.

Several recent models, including MoSST (Dong
et al., 2021), RealTranS (Zeng et al., 2021), and
DiSeg (Zhang and Feng, 2023), attempt to align
speech with semantically consistent segments for
better translation timing. Similarly, there is grow-
ing interest in chunk-aware modeling for SimulST,
including unified architectures that eliminate the
need for separate policy networks (Fu et al., 2025).
These approaches reflect a broader trend toward
segment-level modeling as a means of reducing la-
tency and improving interpretability.

Building on this intuition, we propose a lin-
guistically grounded framework that uses syntac-
tic and semantic chunking to guide the training
and inference processes. Rather than modeling
read/write decisions as a separate process, our
approach trains a unified model to output both
translations and explicit <WATT> tokens that in-
dicate natural pause points aligned with chunk
boundaries. We leverage the contextual reason-
ing and structured generation capabilities of large
language models (LLMs) to jointly perform chunk
detection and translation triggering. This allows
the model to learn context-sensitive segmentation
policies implicitly from chunk-aligned supervi-
sion, without relying on handcrafted rules or aux-
iliary classifiers. The result is a more interpretable
and coherent output stream, grounded in the struc-
tural alignment between source input and target
generation.

3 Method

3.1 System Architecture

Our system adopts a unified end-to-end architec-
ture that directly maps speech input to translated



output under simultaneous translation constraints.
Unlike previous designs that rely on multiple sep-
arate modules, such as independent chunk policy
models, external alignment components, and stan-
dalone translation decoders (Oda et al., 2014; Ma
et al., 2018; Zeng et al., 2021; Bahar et al., 2020),
our approach integrates multiple key functionali-
ties into a single language model backbone. This
design allows the model to learn to segment and
translate simultaneously within a cohesive gener-
ative process, reducing inter-module complexity
and improving overall efficiency.

The system consists of a frozen Whisper en-
coder and a Qwen3-based language model. Recent
work has explored integrating decoder-only LL.Ms
with speech encoders for streaming tasks (Chen
etal., 2024). Building on this direction, our model
embeds chunk-aware reasoning into the gener-
ation loop, enabling fine-grained control over
read/write decisions and unifying segmentation
with translation.

Streaming Input Windowing. To support real-
time translation, we apply a sliding window strat-
egy before audio encoding. Each input segment
is derived from an 8-second audio window, which
is updated every 2 seconds with new incoming
speech while retaining 6 seconds of prior context.
This overlapping setup preserves both local conti-
nuity and long-range acoustic dependencies, while
avoiding access to future input.

The Whisper encoder then processes each win-
dow to extract semantic audio embeddings, which
are passed to the decoder for joint reasoning.

In our design, chunking and generation are uni-
fied into a single autoregressive language model-
ing task. The model is trained on streaming se-
quences, allowing it to learn natural pause points,
maintain coherence over time, and operate under
causal decoding constraints. Compared to sys-
tems with distinct decision and generation stages,
this structure simplifies deployment, reduces error
propagation, and enables more effective utilization
of large language models for both segmentation
and translation. Figure 1 provides an overview
of our architecture, illustrating the interaction be-
tween the Whisper encoder, chunk policy mecha-
nism, and autoregressive translation process.

We fine-tune the model on streaming speech
data derived from the MuST-C corpus (Cattoni
et al., 2021), where syntactic chunk boundaries
are first extracted from the reference transcriptions

using spaCy (Al, 2020). These chunks are then
projected back to the source audio via their time-
aligned word boundaries, yielding a set of audio
segments with syntactically informed translation
points. During training, <WAIT> tokens are in-
serted between non-aligned regions to supervise
timing behavior. The model is trained end-to-
end to generate either a <WATIT> token or trans-
lation tokens, enabling joint learning of segmenta-
tion and generation under causal constraints.

3.2 Syntax-Aware Chunking and Alignment

A core component of our simultaneous speech
translation system is a syntax-aware chunking pol-
icy and an LLM that acts both as a chunking pol-
icy and translation. Unlike fixed windowing or
pause-based segmentation methods, which often
lack linguistic coherence, our approach leverages
syntactic information to decide when a partial in-
put is semantically complete and ready for trans-
lation. This enables the system to produce trans-
lation units that align closely with the constituents
of the meaning in the natural language, such as
clauses, noun phrases, or logical segments. By
doing so, we aim to improve the semantic focus,
fluency, and contextual consistency of the gener-
ated translations, particularly under simultaneous
speech translation constraints.

To obtain chunk boundaries, we parse each
source sentence using the en_core web_ trf
model from spaCy, which provides token-level
part-of-speech tags and dependency relations.
Chunk segmentation is guided by syntactic bound-
aries derived from noun phrases (NP), verb
phrases (VP), and prepositional phrases (PP),
as well as structural markers such as punctua-
tion, subordinating conjunctions (e.g., “although”,
“that”, “which”), and dependency transitions (e.g.,
nsubj — VERB, VERB — dobj/pobj). We
further apply rule-based constraints to ensure that
each chunk forms a semantically coherent unit
and does not exceed a maximum span of 7 to-
kens. These boundaries serve as supervision for
the model to learn read/write decisions that align
with linguistically meaningful units.

The chunk policy operates incrementally and is-
sues binary decisions—READ or WRITE—at each
decoding step. When the policy outputs READ,
the system continues to buffer additional input
without producing translation. When it outputs
WRITE and the current segment forms a complete,
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Figure 1: An overview of the proposed SASST model architecture for end-to-end simultaneous speech translation.
The input audio stream is segmented by a sliding window mechanism and encoded into audio embeddings using a
frozen Whisper encoder. These embeddings are combined with a textual system instruction to construct a multi-
modal prompt following the ChatML format. The prompt, which includes prior user—assistant dialogue turns, is
fed into a Qwen3-based decoder-only LLM. The model autoregressively generates tokens until either a translation
chunk is complete or a special <WAIT> token is emitted. If a content token is produced (WRITE action), it is
appended to the translation output and the prompt is updated with both the new audio and text. If a <WATIT> token
is generated (READ action), only a new audio chunk is added to the context. This cycle continues incrementally,
enabling low-latency, streaming translation under causal constraints.

translatable chunk, the model immediately gener-
ates translation for that segment. During train-
ing, chunk boundaries are supervised using syn-
tactic annotations on the MuST-C corpus (Cattoni
et al., 2021). Each segment must satisfy linguis-
tic criteria such as the presence of a finite verb,
punctuation-aligned endings, and complete depen-
dency subtrees. These design principles reflect
empirical findings in translation process research
suggesting that human interpreters tend to pause
and produce output at natural grammatical bound-
aries where semantic units are complete (Carl,
2012).

We further incorporate a wait-token alignment
mechanism inspired by TransLLaMa (Koshkin
et al., 2024) to guide generation timing within
our chunk-based structure. After the chunk pol-
icy determines a sequence of READ and WRITE
actions over time, we align the source and target
sequences at the chunk level. For each segment
where WRITE is not triggered, a special <WAIT>
token is inserted as a placeholder in the translation
output. When a WRITE occurs, the corresponding

aligned target phrase is generated. This alignment
strategy enables causal training and streaming out-
put supervision without requiring word-level de-
lay labels (Koshkin et al., 2024). Our method does
not rely on external alignment tools such as SimA-
lign (Sabet et al., 2020), but instead integrates soft
alignment directly into the chunking process, en-
suring consistency between segment boundaries
and translation timing.

3.3 Target-Side Reordering

Additionally, we address word order divergence
between source and target languages by explicitly
reordering the target sequence based on alignment
indices. For each translated chunk, we compute
word-level alignment between the source and tar-
get using position indices, and reorder the target
sequence to better reflect canonical word order in
the target language. This helps the model learn
to produce more fluent, natural-sounding output
in languages with divergent syntactic structures.
The reordering improves both training supervi-
sion and decoding accuracy under streaming con-



Source Speech

Source Transcription I'mgoingto | talk today about energy | and climate.

Aligned Translation (Original Order) = Ich zu Ihnen |: Heute spreche Uber Energie und Klima.

reorder

Target Translation Heute 'spreche ich zu Ihnen ber Energie und Klima.

combine into one chunk

Aligned Translation (Reorder) Heute spreche ich zu Ihnen Uber Energie und Klima.

Figure 2: An example of target-side reordering based
on alignment indices. The target tokens are rearranged
to reflect the canonical word order in German.

straints. An example of this reordering process is
illustrated in Figure 2, which shows how the target
tokens are reordered to better match natural word
order in the target language.

3.4 Training Procedure

We fine-tune the SASST model using a syntax-
aware training pipeline that aligns source audio
with syntactic chunks from the target transcript.
Each training sample is treated as an interleaved
generation task, where the model predicts either a
translated chunk or a <WATIT> token under causal
constraints. The core procedure is summarized in
Algorithm 1.

3.5 Streaming Inference and Prompt
Encoding

1) Simultaneous Inference. Our system per-
forms real-time speech translation in a fully
streaming fashion, operating directly on audio in-
puts via token-level incremental decoding. At
each step, the system receives a new chunk of au-
dio formed using a sliding window with config-
urable stride and context length. The audio is en-
coded into semantic representations by a frozen
Whisper encoder, and the resulting embeddings
are incrementally appended to the source con-
text. These embeddings serve as direct inputs to
the decoder-only language model, which gener-
ates output tokens one by one. The overall de-
coding logic is illustrated in Table 1, where the
model decides whether to output a translation to-
ken, a special jWAIT; symbol, or terminate the
segment with {EOS;.

The model outputs tokens one at a time, decid-
ing at each step whether to emit a translation to-
ken or a special <WAIT> token. A <WAIT> indi-
cates a READ action, meaning the system should
wait for more input; a content token indicates a

Algorithm 1 Syntax-Aware Chunk-Based Train-
ing

Require: Source audio a, target transcript y
Ensure: Updated LLM parameters 6
1: Apply syntax parser (e.g., spaCy) to y to ob-
tain chunk segments:

y = [t1,t2, ... 1y

2: Segment audio a using sliding window to get
partial audio windows [ay, . .., ar]

3: fort =1toT do

4:  Encode a; via Whisper encoder to obtain
embedding h;

5:  Build prompt P, = SystemPrompt +
[h<t] + TargetPrefix

6:  Predict next token:

U = LLMg(P)

7. Compare with reference: g; should be ei-
ther:

* <wait> = no output yet
*  t} = aligned chunk from target

8:  Compute loss £; = CE(4, y¢)
9: end for
10: Update model:

0« 0-nVy> L
t

WRITE action, meaning a translatable chunk is
ready. Generation continues until an <EOS> to-
ken is produced, indicating the end of a translat-
able segment. This unified generation procedure
allows the model to learn both segmentation and
translation implicitly, without relying on separate
policy or chunking modules.

Although <WAIT> tokens are part of the
model’s output during training and inference, they
are discarded from the final translation output to
ensure fluency. However, their positions are re-
tained for evaluation using SimulST metrics such
as Average Lagging (AL) and Latency-Aware Av-
erage Lagging (LAAL), following the SimulE-
val (Ma et al., 2020a) protocol.



2) Incremental Prompt Encoding. Our model
adopts a multimodal prompt design inspired by
recent LLM-based speech understanding systems.
Each prompt consists of two parts: (1) a fixed
instruction text that defines the translation task
and streaming behavior, and (2) a sequence of
audio-derived token embeddings extracted from
the Whisper encoder. Unlike prior methods that
rely on text transcripts or symbolic prompts, our
system operates directly on speech inputs without
intermediate ASR, enabling seamless end-to-end
streaming translation.

The same multimodal prompt format is used
during training and inference, which reduces do-
main shift and improves model consistency under
streaming constraints. As decoding progresses,
the prompt is updated incrementally by extending
the source-side audio embedding stream and the
target-side token history.

This design enables the model to simultane-
ously reason over speech context, track translation
progress, and make timing decisions within a uni-
fied decoding process.

3) Sliding Window Strategy. To support
streaming input and ensure causal access, we
apply a sliding window strategy before Whisper
encoding. At each time step, the input audio is
segmented into overlapping windows of fixed
8-second context, formed by appending the latest
& seconds of audio to the preceding 8 — J seconds
of buffered context. Here, the stride parameter ¢ is
configurable (e.g., 0.5-2.0 seconds), and directly
controls the system’s latency—quality tradeoff.

This overlapping window preserves both short-
term and long-range acoustic dependencies while
maintaining strict causality, i.e., no access to fu-
ture input. It operates independently of the de-
coder, producing a continuous stream of audio
embeddings with stable temporal alignment. The
same mechanism is applied during training to en-
sure consistency with streaming deployment.

By adjusting the stride §, we generate
BLEU-latency curves across different regimes,
enabling evaluation from low-latency to high-
latency configurations. This design allows fine-
grained control over responsiveness in simultane-
ous settings without architectural modifications.

Table 1: Streaming Inference Procedure (End-to-End
Token-Level Decoding)

Input: Speech stream S

Output:  Final translation output 7'

1. Initialize T < [], E « []

2. while audio stream not ended do

3. Receive audio window w with stride/context
4. e < WhisperEncode(w)

5. Append e to E

6. while True

7. y < LLM.generate_next(F,T)
8. if y = <WAIT> then break

9. else if y = <E0S> then break

10. else Append y to T’

4 Experiments

4.1 Setup

We conduct experiments on the MuST-C English-
German (En—De) dataset (Gangi et al., 2019),
a widely used benchmark for simultaneous
speech translation (SimulST). Following prior
work (Dong et al., 2021; Zeng et al., 2021), we
evaluate on the t st —COMMON split.

Our training corpus consists of 234k utterances
from the MuST-C training split. For each ut-
terance, we first segment the reference transcript
into syntactic-semantic chunks using dependency
parsing. These chunks are then mapped back
to their corresponding audio spans using time-
aligned word boundaries, resulting in audio-level
segmentation aligned with translation units. Based
on this alignment, we insert explicit <WAIT> to-
kens between audio chunks to supervise transla-
tion timing. This chunk-based supervision en-
ables the model to learn when to wait and when to
generate, using only streaming audio as input and
without relying on intermediate transcripts during
training.

This chunk-based alignment enables joint mod-
eling of translation and read/write decisions within
a single sequence-to-sequence framework. Un-
like previous methods that rely on separate pol-
icy modules (Ma et al., 2018), our model learns to
control streaming behavior implicitly via syntactic
structure.

We tokenize text using the HuggingFace
tokenizers library with BPE (10k merge op-
erations) trained on the MuST-C training corpus.
The encoder is initialized from Whisper, a 12-
layer conformer pretrained on multilingual au-
dio. The decoder is adapted from Qwen-3 8B;
for adaptation, we retain only the bottom 6 trans-



former layers for fine-tuning, while keeping the re-
maining layers frozen to reduce memory and com-
putation overhead.

We fine-tune the model on the chunk-aligned
data for one epoch using the Adam optimizer with
inverse square-root learning rate scheduling, label
smoothing of 0.1, and 400 warm-up steps. Train-
ing is performed on 4x V100 GPUs with a batch
size of 100 sentences per GPU. For inference, we
use the vLLM engine (Kwon et al., 2023), which
enables efficient decoding with reduced memory
overhead and supports fast streaming generation
under causal constraints.

We evaluate streaming performance using
BLEU (sacreBLEU) and Latency-Aware Aver-
age Lagging (LAAL) (Ma et al., 2020b). La-
tency is controlled via chunking thresholds, and
BLEU-LAAL curves are plotted across different
delay regimes. All baselines are evaluated un-
der the same real-time setting. Latency is pri-
marily controlled by varying the stride § of the
sliding window used in the audio frontend (see
Section 3.5). Smaller stride values (e.g., 6 =
0.5—1.0s) introduce more frequent context updates
and lead to lower latency, while larger stride val-
ues (e.g., 1.5-2.0s) increase delay but allow more
complete context accumulation before decoding.
This adjustable stride enables us to evaluate the
BLEU-LAAL tradeoff across a wide range of la-
tency regimes without modifying the model archi-
tecture.

4.2 Main Results

Figure 3 presents BLEU scores under varying
LAAL conditions. Our model consistently outper-
forms strong baselines across all latency levels. In
particular, we observe up to +1.4 BLEU improve-
ment over SeamlessM4T and +2.0 over MoSST in
the low-latency regime (1500-2500ms), demon-
strating strong translation quality under strict de-
lay constraints.

These gains can be attributed to the tight cou-
pling between syntactic segmentation and transla-
tion timing in our model. By learning to gener-
ate at linguistically meaningful chunk boundaries,
the model avoids premature or incomplete transla-
tion—especially critical under low-delay settings.
In contrast, prior systems often rely on heuristics
or separate decision modules, which may misalign
semantic units with output timing. Our unified
LLM-based decoder benefits from chunk-level su-

Model BLEU LAAL (ms)
RealTranS (Zeng et al., 2021) 19.2 2451
MoSST (Dong et al., 2021) 21.1 2514
SeamlessM4T (Barrault et al., 2023) 222 2572
Ours 22.7 2546

Table 2: BLEU and LAAL scores at the ~2500ms
regime on MuST-C En—De. Our method yields the
best translation quality at comparable latency.
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Figure 3: BLEU vs. LAAL on MuST-C En—De. Our
model achieves consistent gains across all latency set-
tings.

pervision and prompt consistency, leading to more
coherent and contextually appropriate output.

Table 2 provides a side-by-side comparison un-
der comparable latency levels. We report scores at
two representative LAAL points: approximately
2545ms and 3300ms. At 2545ms, our model out-
performs MoSST by +1.6 BLEU and RealTranS
by +3.5 BLEU, achieving the best trade-off be-
tween quality and latency. Even under higher
latency, our model remains competitive, outper-
forming SeamlessM4T, which otherwise excels in
multilingual settings but lags behind under tighter
streaming constraints.

4.3 Ablation Study

To assess the contribution of syntactic chunking,
we conduct ablations by replacing our syntax-
aware policy with two baselines. In our setup,
chunk boundaries are derived from syntactic an-
notations on the reference target text and used
to supervise translation timing through alignment-
aware prompting. These syntactic chunks are
mapped back to source audio spans during training
to guide the model in learning when to translate.

* Random Chunking: chunk boundaries are
inserted uniformly every k tokens, ignoring
linguistic cues.



Model Variant BLEU LAAL (ms)
Full Model (Ours) 22.7 2546
w/o Syntax (Random Chunk) 18.8 2398
Fixed-Length Chunking 20.3 2412

Table 3: Ablation results at around 2400ms LAAL.
Removing syntax-aware chunking leads to significant
degradation, validating the benefit of structural seg-
mentation.

* Fixed-Length Chunking: segments are split
into fixed-size 5-token units regardless of
syntax.

As shown in Table 3, both variants lead to sub-
stantial drops in BLEU. In particular, removing
syntactic guidance causes up to a 2.1 BLEU de-
crease, underscoring the importance of linguis-
tically motivated segments for fluent and timely
streaming translation.

We hypothesize that syntax-aware chunking
helps the model learn better temporal segmenta-
tion for output timing. By aligning READ/WRITE
decisions with natural semantic units such as
clauses and verb-object structures, the model is
better able to anticipate translation-ready points
and avoid premature or delayed generation. In
contrast, random or fixed-length segmentation of-
ten splits cohesive phrases across chunk bound-
aries, making alignment ambiguous and genera-
tion less coherent.

Overall, structural segmentation improves both
adequacy and latency handling by providing more
interpretable and contextually stable translation
triggers.

5 Limitations

While our proposed SASST framework demon-
strates improved latency-quality trade-offs in si-
multaneous speech translation, it has several lim-
itations. First, our syntax-aware chunking relies
on pre-parsed reference transcripts using off-the-
shelf parsers such as spaCy. This dependency may
limit the system’s applicability to low-resource
languages where accurate syntactic parsers are un-
available or unreliable. Second, our current train-
ing pipeline assumes access to aligned source-
target pairs with high-quality transcriptions, which
may not hold in real-world scenarios involving
spontaneous speech or noisy inputs.

Furthermore, our model is fine-tuned on a large
pre-trained LLM backbone (e.g., Qwen3), which

imposes substantial GPU memory and computa-
tion demands. Even with inference acceleration
techniques such as vLLM, real-time deployment
in low-latency or on-device environments remains
challenging. While our chunk-based strategy im-
proves translation timing, it does not yet account
for speaker turn-taking or multimodal grounding,
which are crucial for more interactive and robust
simultaneous translation systems. Finally, our ex-
periments are limited to the English-German di-
rection on the MuST-C benchmark, and extending
to more diverse language pairs remains an impor-
tant direction for future work.

6 Conclusion

We present a novel framework for simultaneous
speech translation that unifies segmentation, align-
ment, and generation within a single decoder-only
language model. Unlike prior systems that rely on
modular pipelines or shallow policy components,
our approach leverages the reasoning capabilities
of large language models (LLMs) to perform both
chunk segmentation and real-time translation in a
unified generative process.

The proposed syntax-aware chunk policy al-
lows the model to learn when to translate based
on grammatical structure, while wait-token super-
vision and chunk-aligned reordering further align
translation timing and output fluency with linguis-
tic intuition. This integration of linguistic struc-
ture into LLM-based simultaneous ST represents
a distinct step beyond existing approaches.

Our architecture simplifies deployment while
maintaining strong translation performance under
latency constraints. Experiments on the MuST-
C benchmark validate the effectiveness of com-
bining structure-aware modeling and LLM-driven
generation. In future work, we plan to explore
multilingual transfer, latency-adaptive decoding,
and more efficient prompt engineering for stream-
ing translation.

Ethical Considerations

This work utilizes publicly available large lan-
guage models (e.g., Whisper, Qwen) for research
purposes. Due to their probabilistic nature, these
models may produce inaccurate or biased outputs.
All experiments and methods were conducted in-
dependently by the authors. We also used Chat-
GPT to assist with language refinement.
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