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Abstract

We introduce SASST, an end-to-end frame-001
work for simultaneous speech translation that002
integrates segmentation, alignment, and gen-003
eration within a single decoder-only language004
model. To address the challenge of transla-005
tion timing, we propose a syntax-aware chunk-006
ing strategy that segments source speech based007
on grammatical structure, enabling more ac-008
curate and linguistically informed translation009
boundaries. The model learns to output ei-010
ther translation tokens or special <WAIT> to-011
kens, thereby jointly modeling when and what012
to translate under causal constraints.013

To further enhance the model’s ability to de-014
tect optimal translation timing, we incorpo-015
rate chunk-level alignment and target-side re-016
ordering during training, allowing the model017
to associate source-side grammatical bound-018
aries with fluent target segments. Unlike019
prior methods that separate policy learning020
and decoding, SASST unifies both within a021
single generative process. Experiments on022
the MuST-C En→De benchmark show that023
SASST outperforms strong baselines across024
latency regimes—achieving up to +1.4 BLEU025
improvement over SeamlessM4T at low la-026
tency—while maintaining architectural sim-027
plicity. These results highlight the effec-028
tiveness of integrating syntactic structure into029
LLM-driven SimulST systems.030

1 Introduction031

Simultaneous speech translation (SimulST) aims032

to generate target-language translations with min-033

imal delay while receiving ongoing speech in034

the source language. Unlike offline translation035

systems, which have access to the full source036

sequence, SimulST systems must operate in a037

streaming fashion, making real-time decisions un-038

der strict latency constraints. This requires models039

to balance three often conflicting goals: translation040

quality, latency, and coherence.041

Traditional SimulST pipelines are typically 042

composed of multiple independent components, 043

such as automatic speech recognition (ASR), 044

chunk segmentation, and neural machine transla- 045

tion (NMT) (Ma et al., 2018; Zeng et al., 2021). 046

While this modular design provides flexibility, it 047

also introduces error propagation, latency accu- 048

mulation, and incompatibility between training 049

and inference. Moreover, segmentation decisions 050

are often made heuristically or by lightweight 051

models, lacking deep contextual understanding. 052

Recent research has shown that large language 053

models (LLMs) possess strong abilities in lan- 054

guage generation, instruction following, and few- 055

shot generalization (Brown et al., 2020; Chowd- 056

hery et al., 2022; Achiam et al., 2023). How- 057

ever, their integration into SimulST frameworks 058

remains limited. Notably, most prior work ei- 059

ther treats segmentation and translation separately 060

or relies on external alignment tools (Zhang and 061

Feng, 2023; Koshkin et al., 2024). In contrast, 062

we propose to unify these components into a sin- 063

gle instruction-tuned LLM that handles both when 064

and what to translate. Our approach is inspired by 065

the intuition that human interpreters tend to seg- 066

ment speech at syntactic or semantic boundaries 067

rather than by fixed timing. 068

To achieve this, we propose a framework that 069

combines syntax-aware chunking, wait-token su- 070

pervision, reordering, and prompt-based genera- 071

tion. Chunking plays a critical role in determin- 072

ing when the model should emit translations, es- 073

pecially under streaming constraints (i.e., simulta- 074

neous speech translation setting). Rather than seg- 075

menting speech based on fixed time intervals or 076

length thresholds, we use grammatical structure to 077

divide transcribed input into linguistically mean- 078

ingful units, such as clauses or noun phrases. This 079

approach is more aligned with how human inter- 080

preters naturally pause and segment speech (Oda 081

et al., 2014), helping reduce semantic fragmenta- 082
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tion and enabling clearer and more coherent trans-083

lations.084

During training, the model is supervised to out-085

put <WAIT> or translation tokens based on chunk086

boundaries derived from grammatical segmenta-087

tion. It also learns to align source and target se-088

quences using chunk-level token alignment, and089

reorders output tokens to match the natural word090

order of the target language. During inference,091

it receives partial source audio input in a dy-092

namic prompt and generates translation tokens in093

a streaming, autoregressive fashion.094

Our architecture consists of three main com-095

ponents: a sliding-window audio preprocessor, a096

frozen Whisper (Cao et al., 2012) encoder, and a097

decoder-only Qwen3 (Yang et al., 2025) language098

model. The entire system operates under causal099

constraints, and all segmentation, alignment, and100

generation decisions are handled within the model.101

Unlike cascaded pipelines, our method enables102

fine-grained control over when and how to trans-103

late through chunk-aware modeling.104

Contributions. Our main contributions are as105

follows:106

• We propose a unified, end-to-end SimulST107

system that integrates chunk segmentation108

and translation into a single LLM.109

• We introduce a syntax-aware chunk pol-110

icy combined with wait-token supervision111

and token-level alignment to guide real-time112

translation triggering.113

• We design a reordering mechanism that114

uses chunk-level token alignment to rear-115

range translated segments into natural target-116

language order, improving coherence across117

word-order divergent language pairs.118

2 Related Work119

Simultaneous speech translation (SimulST) tar-120

gets real-time translation of streaming audio with121

minimal delay and high output fidelity. Early122

SimulST systems often employed a cascaded ap-123

proach involving separate automatic speech recog-124

nition (ASR) and machine translation (MT) mod-125

ules (Oda et al., 2014; Le et al., 2017), which suf-126

fered from compounded latency and error prop-127

agation. The emergence of end-to-end SimulST128

models has since led to more integrated architec-129

tures that jointly optimize translation quality and130

latency (Berard et al., 2016; Weiss et al., 2017; 131

Bansal et al., 2018; Ren et al., 2020). 132

Central to these models is the read/write pol- 133

icy, which determines whether the system should 134

translate immediately or wait for more input. 135

Fixed policies such as wait-k (Ma et al., 2018) 136

or fixed-length chunking (Ma et al., 2020b) of- 137

fer predictable latency but lack contextual adapt- 138

ability. More recent works have introduced adap- 139

tive policies that rely on attention patterns (Papi 140

et al., 2022), information flow estimation (Zhang 141

and Feng, 2022), or segmentation of meaningful 142

translation units (Zhang et al., 2022; Dong et al., 143

2021) to inform dynamic decision-making. While 144

these approaches improve flexibility, they often re- 145

quire additional modules or rely on heuristic cues. 146

Several recent models, including MoSST (Dong 147

et al., 2021), RealTranS (Zeng et al., 2021), and 148

DiSeg (Zhang and Feng, 2023), attempt to align 149

speech with semantically consistent segments for 150

better translation timing. Similarly, there is grow- 151

ing interest in chunk-aware modeling for SimulST, 152

including unified architectures that eliminate the 153

need for separate policy networks (Fu et al., 2025). 154

These approaches reflect a broader trend toward 155

segment-level modeling as a means of reducing la- 156

tency and improving interpretability. 157

Building on this intuition, we propose a lin- 158

guistically grounded framework that uses syntac- 159

tic and semantic chunking to guide the training 160

and inference processes. Rather than modeling 161

read/write decisions as a separate process, our 162

approach trains a unified model to output both 163

translations and explicit <WAIT> tokens that in- 164

dicate natural pause points aligned with chunk 165

boundaries. We leverage the contextual reason- 166

ing and structured generation capabilities of large 167

language models (LLMs) to jointly perform chunk 168

detection and translation triggering. This allows 169

the model to learn context-sensitive segmentation 170

policies implicitly from chunk-aligned supervi- 171

sion, without relying on handcrafted rules or aux- 172

iliary classifiers. The result is a more interpretable 173

and coherent output stream, grounded in the struc- 174

tural alignment between source input and target 175

generation. 176

3 Method 177

3.1 System Architecture 178

Our system adopts a unified end-to-end architec- 179

ture that directly maps speech input to translated 180
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output under simultaneous translation constraints.181

Unlike previous designs that rely on multiple sep-182

arate modules, such as independent chunk policy183

models, external alignment components, and stan-184

dalone translation decoders (Oda et al., 2014; Ma185

et al., 2018; Zeng et al., 2021; Bahar et al., 2020),186

our approach integrates multiple key functionali-187

ties into a single language model backbone. This188

design allows the model to learn to segment and189

translate simultaneously within a cohesive gener-190

ative process, reducing inter-module complexity191

and improving overall efficiency.192

The system consists of a frozen Whisper en-193

coder and a Qwen3-based language model. Recent194

work has explored integrating decoder-only LLMs195

with speech encoders for streaming tasks (Chen196

et al., 2024). Building on this direction, our model197

embeds chunk-aware reasoning into the gener-198

ation loop, enabling fine-grained control over199

read/write decisions and unifying segmentation200

with translation.201

Streaming Input Windowing. To support real-202

time translation, we apply a sliding window strat-203

egy before audio encoding. Each input segment204

is derived from an 8-second audio window, which205

is updated every 2 seconds with new incoming206

speech while retaining 6 seconds of prior context.207

This overlapping setup preserves both local conti-208

nuity and long-range acoustic dependencies, while209

avoiding access to future input.210

The Whisper encoder then processes each win-211

dow to extract semantic audio embeddings, which212

are passed to the decoder for joint reasoning.213

In our design, chunking and generation are uni-214

fied into a single autoregressive language model-215

ing task. The model is trained on streaming se-216

quences, allowing it to learn natural pause points,217

maintain coherence over time, and operate under218

causal decoding constraints. Compared to sys-219

tems with distinct decision and generation stages,220

this structure simplifies deployment, reduces error221

propagation, and enables more effective utilization222

of large language models for both segmentation223

and translation. Figure 1 provides an overview224

of our architecture, illustrating the interaction be-225

tween the Whisper encoder, chunk policy mecha-226

nism, and autoregressive translation process.227

We fine-tune the model on streaming speech228

data derived from the MuST-C corpus (Cattoni229

et al., 2021), where syntactic chunk boundaries230

are first extracted from the reference transcriptions231

using spaCy (AI, 2020). These chunks are then 232

projected back to the source audio via their time- 233

aligned word boundaries, yielding a set of audio 234

segments with syntactically informed translation 235

points. During training, <WAIT> tokens are in- 236

serted between non-aligned regions to supervise 237

timing behavior. The model is trained end-to- 238

end to generate either a <WAIT> token or trans- 239

lation tokens, enabling joint learning of segmenta- 240

tion and generation under causal constraints. 241

3.2 Syntax-Aware Chunking and Alignment 242

A core component of our simultaneous speech 243

translation system is a syntax-aware chunking pol- 244

icy and an LLM that acts both as a chunking pol- 245

icy and translation. Unlike fixed windowing or 246

pause-based segmentation methods, which often 247

lack linguistic coherence, our approach leverages 248

syntactic information to decide when a partial in- 249

put is semantically complete and ready for trans- 250

lation. This enables the system to produce trans- 251

lation units that align closely with the constituents 252

of the meaning in the natural language, such as 253

clauses, noun phrases, or logical segments. By 254

doing so, we aim to improve the semantic focus, 255

fluency, and contextual consistency of the gener- 256

ated translations, particularly under simultaneous 257

speech translation constraints. 258

To obtain chunk boundaries, we parse each 259

source sentence using the en core web trf 260

model from spaCy, which provides token-level 261

part-of-speech tags and dependency relations. 262

Chunk segmentation is guided by syntactic bound- 263

aries derived from noun phrases (NP), verb 264

phrases (VP), and prepositional phrases (PP), 265

as well as structural markers such as punctua- 266

tion, subordinating conjunctions (e.g., “although”, 267

“that”, “which”), and dependency transitions (e.g., 268

nsubj → VERB, VERB → dobj/pobj). We 269

further apply rule-based constraints to ensure that 270

each chunk forms a semantically coherent unit 271

and does not exceed a maximum span of 7 to- 272

kens. These boundaries serve as supervision for 273

the model to learn read/write decisions that align 274

with linguistically meaningful units. 275

The chunk policy operates incrementally and is- 276

sues binary decisions—READ or WRITE—at each 277

decoding step. When the policy outputs READ, 278

the system continues to buffer additional input 279

without producing translation. When it outputs 280

WRITE and the current segment forms a complete, 281
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Figure 1: An overview of the proposed SASST model architecture for end-to-end simultaneous speech translation.
The input audio stream is segmented by a sliding window mechanism and encoded into audio embeddings using a
frozen Whisper encoder. These embeddings are combined with a textual system instruction to construct a multi-
modal prompt following the ChatML format. The prompt, which includes prior user–assistant dialogue turns, is
fed into a Qwen3-based decoder-only LLM. The model autoregressively generates tokens until either a translation
chunk is complete or a special <WAIT> token is emitted. If a content token is produced (WRITE action), it is
appended to the translation output and the prompt is updated with both the new audio and text. If a <WAIT> token
is generated (READ action), only a new audio chunk is added to the context. This cycle continues incrementally,
enabling low-latency, streaming translation under causal constraints.

translatable chunk, the model immediately gener-282

ates translation for that segment. During train-283

ing, chunk boundaries are supervised using syn-284

tactic annotations on the MuST-C corpus (Cattoni285

et al., 2021). Each segment must satisfy linguis-286

tic criteria such as the presence of a finite verb,287

punctuation-aligned endings, and complete depen-288

dency subtrees. These design principles reflect289

empirical findings in translation process research290

suggesting that human interpreters tend to pause291

and produce output at natural grammatical bound-292

aries where semantic units are complete (Carl,293

2012).294

We further incorporate a wait-token alignment295

mechanism inspired by TransLLaMa (Koshkin296

et al., 2024) to guide generation timing within297

our chunk-based structure. After the chunk pol-298

icy determines a sequence of READ and WRITE299

actions over time, we align the source and target300

sequences at the chunk level. For each segment301

where WRITE is not triggered, a special <WAIT>302

token is inserted as a placeholder in the translation303

output. When a WRITE occurs, the corresponding304

aligned target phrase is generated. This alignment 305

strategy enables causal training and streaming out- 306

put supervision without requiring word-level de- 307

lay labels (Koshkin et al., 2024). Our method does 308

not rely on external alignment tools such as SimA- 309

lign (Sabet et al., 2020), but instead integrates soft 310

alignment directly into the chunking process, en- 311

suring consistency between segment boundaries 312

and translation timing. 313

3.3 Target-Side Reordering 314

Additionally, we address word order divergence 315

between source and target languages by explicitly 316

reordering the target sequence based on alignment 317

indices. For each translated chunk, we compute 318

word-level alignment between the source and tar- 319

get using position indices, and reorder the target 320

sequence to better reflect canonical word order in 321

the target language. This helps the model learn 322

to produce more fluent, natural-sounding output 323

in languages with divergent syntactic structures. 324

The reordering improves both training supervi- 325

sion and decoding accuracy under streaming con- 326
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Figure 2: An example of target-side reordering based
on alignment indices. The target tokens are rearranged
to reflect the canonical word order in German.

straints. An example of this reordering process is327

illustrated in Figure 2, which shows how the target328

tokens are reordered to better match natural word329

order in the target language.330

3.4 Training Procedure331

We fine-tune the SASST model using a syntax-332

aware training pipeline that aligns source audio333

with syntactic chunks from the target transcript.334

Each training sample is treated as an interleaved335

generation task, where the model predicts either a336

translated chunk or a <WAIT> token under causal337

constraints. The core procedure is summarized in338

Algorithm 1.339

3.5 Streaming Inference and Prompt340

Encoding341

1) Simultaneous Inference. Our system per-342

forms real-time speech translation in a fully343

streaming fashion, operating directly on audio in-344

puts via token-level incremental decoding. At345

each step, the system receives a new chunk of au-346

dio formed using a sliding window with config-347

urable stride and context length. The audio is en-348

coded into semantic representations by a frozen349

Whisper encoder, and the resulting embeddings350

are incrementally appended to the source con-351

text. These embeddings serve as direct inputs to352

the decoder-only language model, which gener-353

ates output tokens one by one. The overall de-354

coding logic is illustrated in Table 1, where the355

model decides whether to output a translation to-356

ken, a special ¡WAIT¿ symbol, or terminate the357

segment with ¡EOS¿.358

The model outputs tokens one at a time, decid-359

ing at each step whether to emit a translation to-360

ken or a special <WAIT> token. A <WAIT> indi-361

cates a READ action, meaning the system should362

wait for more input; a content token indicates a363

Algorithm 1 Syntax-Aware Chunk-Based Train-
ing

Require: Source audio a, target transcript y
Ensure: Updated LLM parameters θ

1: Apply syntax parser (e.g., spaCy) to y to ob-
tain chunk segments:

y = [t1, t2, . . . , tn]

2: Segment audio a using sliding window to get
partial audio windows [a1, . . . , aT ]

3: for t = 1 to T do
4: Encode at via Whisper encoder to obtain

embedding ht
5: Build prompt Pt = SystemPrompt +

[h≤t] + TargetPrefix
6: Predict next token:

ŷt = LLMθ(Pt)

7: Compare with reference: ŷt should be ei-
ther:

• <wait>⇒ no output yet

• tk ⇒ aligned chunk from target

8: Compute loss Lt = CE(ŷt, yt)
9: end for

10: Update model:

θ ← θ − η∇θ

∑
t

Lt

WRITE action, meaning a translatable chunk is 364

ready. Generation continues until an <EOS> to- 365

ken is produced, indicating the end of a translat- 366

able segment. This unified generation procedure 367

allows the model to learn both segmentation and 368

translation implicitly, without relying on separate 369

policy or chunking modules. 370

Although <WAIT> tokens are part of the 371

model’s output during training and inference, they 372

are discarded from the final translation output to 373

ensure fluency. However, their positions are re- 374

tained for evaluation using SimulST metrics such 375

as Average Lagging (AL) and Latency-Aware Av- 376

erage Lagging (LAAL), following the SimulE- 377

val (Ma et al., 2020a) protocol. 378
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2) Incremental Prompt Encoding. Our model379

adopts a multimodal prompt design inspired by380

recent LLM-based speech understanding systems.381

Each prompt consists of two parts: (1) a fixed382

instruction text that defines the translation task383

and streaming behavior, and (2) a sequence of384

audio-derived token embeddings extracted from385

the Whisper encoder. Unlike prior methods that386

rely on text transcripts or symbolic prompts, our387

system operates directly on speech inputs without388

intermediate ASR, enabling seamless end-to-end389

streaming translation.390

The same multimodal prompt format is used391

during training and inference, which reduces do-392

main shift and improves model consistency under393

streaming constraints. As decoding progresses,394

the prompt is updated incrementally by extending395

the source-side audio embedding stream and the396

target-side token history.397

This design enables the model to simultane-398

ously reason over speech context, track translation399

progress, and make timing decisions within a uni-400

fied decoding process.401

3) Sliding Window Strategy. To support402

streaming input and ensure causal access, we403

apply a sliding window strategy before Whisper404

encoding. At each time step, the input audio is405

segmented into overlapping windows of fixed406

8-second context, formed by appending the latest407

δ seconds of audio to the preceding 8− δ seconds408

of buffered context. Here, the stride parameter δ is409

configurable (e.g., 0.5–2.0 seconds), and directly410

controls the system’s latency–quality tradeoff.411

This overlapping window preserves both short-412

term and long-range acoustic dependencies while413

maintaining strict causality, i.e., no access to fu-414

ture input. It operates independently of the de-415

coder, producing a continuous stream of audio416

embeddings with stable temporal alignment. The417

same mechanism is applied during training to en-418

sure consistency with streaming deployment.419

By adjusting the stride δ, we generate420

BLEU–latency curves across different regimes,421

enabling evaluation from low-latency to high-422

latency configurations. This design allows fine-423

grained control over responsiveness in simultane-424

ous settings without architectural modifications.425

Table 1: Streaming Inference Procedure (End-to-End
Token-Level Decoding)

Input: Speech stream S
Output: Final translation output T

1. Initialize T ← [ ], E ← [ ]
2. while audio stream not ended do
3. Receive audio window w with stride/context
4. e← WhisperEncode(w)
5. Append e to E
6. while True
7. y ← LLM.generate next(E, T )
8. if y = <WAIT> then break
9. else if y = <EOS> then break
10. else Append y to T

4 Experiments 426

4.1 Setup 427

We conduct experiments on the MuST-C English- 428

German (En→De) dataset (Gangi et al., 2019), 429

a widely used benchmark for simultaneous 430

speech translation (SimulST). Following prior 431

work (Dong et al., 2021; Zeng et al., 2021), we 432

evaluate on the tst-COMMON split. 433

Our training corpus consists of 234k utterances 434

from the MuST-C training split. For each ut- 435

terance, we first segment the reference transcript 436

into syntactic-semantic chunks using dependency 437

parsing. These chunks are then mapped back 438

to their corresponding audio spans using time- 439

aligned word boundaries, resulting in audio-level 440

segmentation aligned with translation units. Based 441

on this alignment, we insert explicit <WAIT> to- 442

kens between audio chunks to supervise transla- 443

tion timing. This chunk-based supervision en- 444

ables the model to learn when to wait and when to 445

generate, using only streaming audio as input and 446

without relying on intermediate transcripts during 447

training. 448

This chunk-based alignment enables joint mod- 449

eling of translation and read/write decisions within 450

a single sequence-to-sequence framework. Un- 451

like previous methods that rely on separate pol- 452

icy modules (Ma et al., 2018), our model learns to 453

control streaming behavior implicitly via syntactic 454

structure. 455

We tokenize text using the HuggingFace 456

tokenizers library with BPE (10k merge op- 457

erations) trained on the MuST-C training corpus. 458

The encoder is initialized from Whisper, a 12- 459

layer conformer pretrained on multilingual au- 460

dio. The decoder is adapted from Qwen-3 8B; 461

for adaptation, we retain only the bottom 6 trans- 462
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former layers for fine-tuning, while keeping the re-463

maining layers frozen to reduce memory and com-464

putation overhead.465

We fine-tune the model on the chunk-aligned466

data for one epoch using the Adam optimizer with467

inverse square-root learning rate scheduling, label468

smoothing of 0.1, and 400 warm-up steps. Train-469

ing is performed on 4×V100 GPUs with a batch470

size of 100 sentences per GPU. For inference, we471

use the vLLM engine (Kwon et al., 2023), which472

enables efficient decoding with reduced memory473

overhead and supports fast streaming generation474

under causal constraints.475

We evaluate streaming performance using476

BLEU (sacreBLEU) and Latency-Aware Aver-477

age Lagging (LAAL) (Ma et al., 2020b). La-478

tency is controlled via chunking thresholds, and479

BLEU–LAAL curves are plotted across different480

delay regimes. All baselines are evaluated un-481

der the same real-time setting. Latency is pri-482

marily controlled by varying the stride δ of the483

sliding window used in the audio frontend (see484

Section 3.5). Smaller stride values (e.g., δ =485

0.5–1.0s) introduce more frequent context updates486

and lead to lower latency, while larger stride val-487

ues (e.g., 1.5–2.0s) increase delay but allow more488

complete context accumulation before decoding.489

This adjustable stride enables us to evaluate the490

BLEU–LAAL tradeoff across a wide range of la-491

tency regimes without modifying the model archi-492

tecture.493

4.2 Main Results494

Figure 3 presents BLEU scores under varying495

LAAL conditions. Our model consistently outper-496

forms strong baselines across all latency levels. In497

particular, we observe up to +1.4 BLEU improve-498

ment over SeamlessM4T and +2.0 over MoSST in499

the low-latency regime (1500–2500ms), demon-500

strating strong translation quality under strict de-501

lay constraints.502

These gains can be attributed to the tight cou-503

pling between syntactic segmentation and transla-504

tion timing in our model. By learning to gener-505

ate at linguistically meaningful chunk boundaries,506

the model avoids premature or incomplete transla-507

tion—especially critical under low-delay settings.508

In contrast, prior systems often rely on heuristics509

or separate decision modules, which may misalign510

semantic units with output timing. Our unified511

LLM-based decoder benefits from chunk-level su-512

Model BLEU LAAL (ms)

RealTranS (Zeng et al., 2021) 19.2 2451
MoSST (Dong et al., 2021) 21.1 2514
SeamlessM4T (Barrault et al., 2023) 22.2 2572
Ours 22.7 2546

Table 2: BLEU and LAAL scores at the ∼2500ms
regime on MuST-C En→De. Our method yields the
best translation quality at comparable latency.

Figure 3: BLEU vs. LAAL on MuST-C En→De. Our
model achieves consistent gains across all latency set-
tings.

pervision and prompt consistency, leading to more 513

coherent and contextually appropriate output. 514

Table 2 provides a side-by-side comparison un- 515

der comparable latency levels. We report scores at 516

two representative LAAL points: approximately 517

2545ms and 3300ms. At 2545ms, our model out- 518

performs MoSST by +1.6 BLEU and RealTranS 519

by +3.5 BLEU, achieving the best trade-off be- 520

tween quality and latency. Even under higher 521

latency, our model remains competitive, outper- 522

forming SeamlessM4T, which otherwise excels in 523

multilingual settings but lags behind under tighter 524

streaming constraints. 525

4.3 Ablation Study 526

To assess the contribution of syntactic chunking, 527

we conduct ablations by replacing our syntax- 528

aware policy with two baselines. In our setup, 529

chunk boundaries are derived from syntactic an- 530

notations on the reference target text and used 531

to supervise translation timing through alignment- 532

aware prompting. These syntactic chunks are 533

mapped back to source audio spans during training 534

to guide the model in learning when to translate. 535

• Random Chunking: chunk boundaries are 536

inserted uniformly every k tokens, ignoring 537

linguistic cues. 538
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Model Variant BLEU LAAL (ms)

Full Model (Ours) 22.7 2546
w/o Syntax (Random Chunk) 18.8 2398
Fixed-Length Chunking 20.3 2412

Table 3: Ablation results at around 2400ms LAAL.
Removing syntax-aware chunking leads to significant
degradation, validating the benefit of structural seg-
mentation.

• Fixed-Length Chunking: segments are split539

into fixed-size 5-token units regardless of540

syntax.541

As shown in Table 3, both variants lead to sub-542

stantial drops in BLEU. In particular, removing543

syntactic guidance causes up to a 2.1 BLEU de-544

crease, underscoring the importance of linguis-545

tically motivated segments for fluent and timely546

streaming translation.547

We hypothesize that syntax-aware chunking548

helps the model learn better temporal segmenta-549

tion for output timing. By aligning READ/WRITE550

decisions with natural semantic units such as551

clauses and verb-object structures, the model is552

better able to anticipate translation-ready points553

and avoid premature or delayed generation. In554

contrast, random or fixed-length segmentation of-555

ten splits cohesive phrases across chunk bound-556

aries, making alignment ambiguous and genera-557

tion less coherent.558

Overall, structural segmentation improves both559

adequacy and latency handling by providing more560

interpretable and contextually stable translation561

triggers.562

5 Limitations563

While our proposed SASST framework demon-564

strates improved latency-quality trade-offs in si-565

multaneous speech translation, it has several lim-566

itations. First, our syntax-aware chunking relies567

on pre-parsed reference transcripts using off-the-568

shelf parsers such as spaCy. This dependency may569

limit the system’s applicability to low-resource570

languages where accurate syntactic parsers are un-571

available or unreliable. Second, our current train-572

ing pipeline assumes access to aligned source-573

target pairs with high-quality transcriptions, which574

may not hold in real-world scenarios involving575

spontaneous speech or noisy inputs.576

Furthermore, our model is fine-tuned on a large577

pre-trained LLM backbone (e.g., Qwen3), which578

imposes substantial GPU memory and computa- 579

tion demands. Even with inference acceleration 580

techniques such as vLLM, real-time deployment 581

in low-latency or on-device environments remains 582

challenging. While our chunk-based strategy im- 583

proves translation timing, it does not yet account 584

for speaker turn-taking or multimodal grounding, 585

which are crucial for more interactive and robust 586

simultaneous translation systems. Finally, our ex- 587

periments are limited to the English–German di- 588

rection on the MuST-C benchmark, and extending 589

to more diverse language pairs remains an impor- 590

tant direction for future work. 591

6 Conclusion 592

We present a novel framework for simultaneous 593

speech translation that unifies segmentation, align- 594

ment, and generation within a single decoder-only 595

language model. Unlike prior systems that rely on 596

modular pipelines or shallow policy components, 597

our approach leverages the reasoning capabilities 598

of large language models (LLMs) to perform both 599

chunk segmentation and real-time translation in a 600

unified generative process. 601

The proposed syntax-aware chunk policy al- 602

lows the model to learn when to translate based 603

on grammatical structure, while wait-token super- 604

vision and chunk-aligned reordering further align 605

translation timing and output fluency with linguis- 606

tic intuition. This integration of linguistic struc- 607

ture into LLM-based simultaneous ST represents 608

a distinct step beyond existing approaches. 609

Our architecture simplifies deployment while 610

maintaining strong translation performance under 611

latency constraints. Experiments on the MuST- 612

C benchmark validate the effectiveness of com- 613

bining structure-aware modeling and LLM-driven 614

generation. In future work, we plan to explore 615

multilingual transfer, latency-adaptive decoding, 616

and more efficient prompt engineering for stream- 617

ing translation. 618

Ethical Considerations 619

This work utilizes publicly available large lan- 620

guage models (e.g., Whisper, Qwen) for research 621

purposes. Due to their probabilistic nature, these 622

models may produce inaccurate or biased outputs. 623

All experiments and methods were conducted in- 624

dependently by the authors. We also used Chat- 625

GPT to assist with language refinement. 626
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