
Published as a conference paper at ICLR 2021

ARE NEURAL NETS MODULAR? INSPECTING FUNC-
TIONAL MODULARITY THROUGH DIFFERENTIABLE
WEIGHT MASKS

Róbert Csordás
IDSIA / USI / SUPSI
robert@idsia.ch

Sjoerd van Steenkiste
IDSIA / USI / SUPSI
sjoerd@idsia.ch

Jürgen Schmidhuber
IDSIA / USI / SUPSI / NNAISENSE
juergen@idsia.ch

ABSTRACT

Neural networks (NNs) whose subnetworks implement reusable functions are
expected to offer numerous advantages, including compositionality through ef-
ficient recombination of functional building blocks, interpretability, preventing
catastrophic interference, etc. Understanding if and how NNs are modular could
provide insights into how to improve them. Current inspection methods, however,
fail to link modules to their functionality. In this paper, we present a novel method
based on learning binary weight masks to identify individual weights and subnets
responsible for specific functions. Using this powerful tool, we contribute an exten-
sive study of emerging modularity in NNs that covers several standard architectures
and datasets. We demonstrate how common NNs fail to reuse submodules and offer
new insights into the related issue of systematic generalization on language tasks.

1 INTRODUCTION

Modularity is an important organization principle in both artificial (Ballard, 1987; Baldwin & Clark,
2000) and biological (von Dassow & Munro, 1999; Lorenz et al., 2011; Clune et al., 2013) systems.
It provides a natural way of achieving compositionality, which appears essential for systematic
generalization, one of the areas where typical artificial neural networks (NNs) do not yet perform
well (Fodor et al., 1988; Marcus, 1998; Lake & Baroni, 2018; Hupkes et al., 2020).

Recently, NNs with explicitly designed modules have demonstrated superior generalization capabil-
ities (Clune et al., 2013; Andreas et al., 2016; Kirsch et al., 2018; Chang et al., 2019; Bahdanau et al.,
2019; Goyal et al., 2021b), which support this intuition. An implicit assumption behind such models
is that NNs without hand-designed modularity do not learn to become modular by themselves. In
contrast, it was recently shown that certain types of modular structures do emerge in standard NNs
(Watanabe, 2019; Filan et al., 2020). However, due to defining modules in terms of activation statistics
or clustering connectivity, it remains unclear whether these correspond to a functional decomposition.

This paper contributes new insights into the generalization capabilities of popular neural networks by
investigating whether modules implementing specific functionality emerge and to what extent they
enable compositionality. This calls for a functional definition of modules, which has not previously
been studied in prior work. In particular, we consider functional modules given by subsets of weights
(i.e. subnetworks) responsible for performing a specific ‘target functionality’, such as solving a
subtask of the original task. By associating modules with performing a specific function they become
easier to interpret. Moreover, depending on the chosen target functionality, modules at multiple
different levels of granularity can be considered.

To unveil whether a NN has learned to acquire functional modules we propose a novel analysis tool
that works on pre-trained NNs. Given an auxiliary task corresponding to a particular target function
of interest (e.g., train only on a specific subset of the samples from the original dataset), we train
probabilistic, binary, but differentiable masks for all weights (while the NN’s weights remain frozen).
The result is a binary mask exhibiting the module necessary to perform the target function. Our
approach is simple yet general, which readily enables us to analyze several popular NN architectures
on a variety of tasks in this way, including recurrent NNs (RNNs), Transformers (Vaswani et al.,
2017), feedforward NNs (FNNs) and convolutional NNs (CNNs).

1



Published as a conference paper at ICLR 2021

To investigate whether the discovered functional modules are part of a compositional solution, we
analyze whether the NN has the following two desirable properties: (Pspecialize) it uses different
modules for very different functions, and (Preuse) it uses the same module for identical functions that
may have to be performed multiple times1. Here we treat Pspecialize and Preuse as continuous quantities,
which lets us focus on the degree to which functional modularity emerges. Further, since for many
tasks it is unclear what precise amount of sharing is desirable, we will measure Pspecialize and Preuse
by considering the change in performance as a result of applying different masks corresponding
to a target function. This yields an easy to interpret metric that does not assume precise knowledge
about the desired level of weight sharing. We experimentally show that many typical NNs exhibit
Pspecialize but not Preuse. By additionally analyzing the capacity for transfer learning, we provide
further insight into this issue. We offer a possible explanation: while simple data routing between
modules in standard NNs is often highly desirable, it is hard to learn since the weights must also
implement the data transformation. Indeed, our findings suggest that standard NNs have no bias
towards separating these conceptually different goals of data transformation and information routing.

We also demonstrate how the functional modules discovered by typical NNs do not tend to encourage
compositional solutions. For example, we analyze encoder-decoder LSTMs (Hochreiter & Schmid-
huber, 1997) and Transformers (Vaswani et al., 2017) on the SCAN dataset (Lake & Baroni, 2018)
designed to test systematic generalization based on textual commands. We show that combination-
specific weights are learned to deal with certain command combinations, even when they are governed
by the same rules as the other combinations. The existence of such weights indicates that the learned
solution is non-compositional and fails at performing the more symbolic manipulation required for sys-
tematic generalization on SCAN. To demonstrate that this issue is present even in more real-world sce-
narios, we highlight identical behavior on the challenging Mathematics Dataset (Saxton et al., 2019).

Finally, we study whether functional modules emerge in CNNs trained for image classification, which
are thought to rely heavily on shared features. Surprisingly, we can identify subsets of weights solely
responsible for single classes: when removing these weights the performance on its class drops signif-
icantly. By analyzing the resulting confusion matrices, we identify classes relying on similar features.

2 DISCOVERING MODULES VIA WEIGHT-LEVEL INTROSPECTION

To investigate whether functional modules emerge in neural networks one must perform a weight-level
analysis. This precludes the use of existing methods, which discover modular structure in NNs based
on clustering individual units according to their similarity (Watanabe, 2019; Filan et al., 2020) and
that may not always be enough to draw meaningful conclusions. Units can be shared even when their
weights, which perform the actual computation, are not. Indeed, units can be viewed as mere “wires”
for transmitting information. Consider for example a gated RNN, such as an LSTM, where gates can
be controlled either by the inputs or the state, yet make use of different weights to project to the same
gating units. To overcome this limitation, we propose a novel method to inspect pre-trained NNs at the
level of individual weights. It works as follows. First, we formulate a target task corresponding to the
specific function for which we want to investigate if a module has been learned. For example, this can
be a subset of the original problem (i.e. a subtask), or based on a particular dataset split, e.g. to test
generalization. Next, we train a weight mask on this target task while keeping the weights themselves
frozen. The resulting mask then reveals the module (subnetwork) responsible for the target task.

To train the mask, we treat all N weights seperately of each other. Let i ∈ [1, N ] to denote the weight
index. The mask’s probabilities are represented as learned logits li ∈ R, which are initialized to keep
the weights with high probability (0.9). If one were to apply continuous masks to the weights it would
be possible to scale them arbitrarily, thereby potentially modifying the function the network performs.
To prevent this, we binarize masks, which only provides for keeping or removing individual weights.
The binarization is achieved using a Gumbel-Sigmoid with a straight-through estimator, which we
derive from the Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017) in Appendix A.1. A

1We emphasize the distinction between the ability to reuse modules and the ability to compose them: a
compositional solution may fail to reuse a module to implement the same behavior multiple times. Similarly,
weights can be reused without them being composed to yield a compositional solution. Further, we consider
specialization of modules a special case of modularization where modules are specialized to implement a
particular functionality that is semantically meaningful.

2



Published as a conference paper at ICLR 2021

layer 1 layer 2 layer 3 layer 4 output
0.0

0.5

1.0

P
ro

po
rt

io
n IoU IoMin

lstm 0 hh lstm 0 ih lstm 1 hh lstm 1 ih output
0.0

0.5

1.0

P
ro

po
rt

io
n IoU IoMin

Figure 1: Proportion of shared weights per layer on addition/multiplication. Left: FNN, right: LSTM.

sample si ∈ [0, 1] from the mask can be drawn as follows:

si = σ ((li − log (logU1/ logU2)) /τ) with U1, U2 ∼ U(0, 1), (1)

where τ ∈ (0,∞) is the temperature and σ(x) = 1
1+e−x is the sigmoid function. Next, we can

use a straight-through estimator (Hinton, 2012; Bengio et al., 2013) to obtain a binarized sample
bi ∈ {0, 1}:

bi = [1si>0.5 − si]stop + si, (2)

where 1x is the indicator function and [·]stop is an operator for preventing backward gradient flow. In
this case the bi are samples from a Bernoulli(σ(li)) random variable (proof in Appendix A.3). The
masks are applied elementwise: w′i = wi∗bi. Training is done by applying the loss function defined by
the target task and backpropagating into the logits li. Typically multiple (between 4–8) binary masks
are sampled and applied to different parts of a batch to improve the quality of the estimated gradient.

The goal of the masking is to remove weights that are not necessary to perform the target function.
Thus, the logits li should be regularized, such that the probability for weight wi to be active is small
unlesswi is necessary for the task. This is achieved by adding a regularization term r = α

∑
i li to the

loss, where α ∈ [0,∞) is a hyper-parameter responsible for the strength of the regularization. How to
best choose α is described in detail in Appendix C.3. At the end of the training process, deterministic
binary masks Mi ∈ {0, 1} for weights i are obtained via thresholding Mi = 1σ(li)>0.5

2. Applying
the full mask M then uncovers the module responsible for the target task. A preliminary study
confirmed that the mask training process is stable and thereby suitable for inspection (Appendix B.1).

In the following sections we will analyze several standard NNs using this technique of mask-training34.
Throughout our experiments we will avoid drawing conclusions based on the measured amount of
sharing alone as much as possible, since it is unclear what degree of sharing can be expected or is
desirable. Rather, we will analyze the performance drop caused by removing weights corresponding
to certain functionality, which offers a more consistent and easier to interpret metric5. For example,
to show that a module is responsible for a particular subtask (A) but not for another (B), we train
masks on A and test on both. A performance drop is expected on task B only. In contrast, to show
that this module is exclusively needed for a particular subtask, we can invert the masks and test on
both tasks. The inverted masks are expected to perform well on the complementary task, but not on
the original one. However, we note that this mask inversion method is limited to analyzing entirely
disjoint weights.

We analyze weight sharing between two tasks using two different metrics: one is Intersection over
Union (IoU), which measures how much the weights used for solving the tasks overlap. We call
the other Intersection over Minimum (IoMin), which measures the number of overlapping weights
(intersection) divided by the minimum of the total number of weights used for each task. In that sense
IoMin is a measure of “subsetness”. Intuitively, if no weights are shared, both IoU and IoMin are
zero. If all weights are shared, both IoU and IoMin are one. However, when the weights needed for
one task are a strict subset of the other, then IoMin is one, while IoU < 1.

2In general we find that li concentrates at either 0 or 1 and so thresholding is safe (see also Fig. 9).
3A complete overview of all experimental details is available in Appendix C. Mean and standard deviations

shown in the figures are calculated over 10 runs unless otherwise noted.
4Code for all experiments is available at https://github.com/RobertCsordas/modules.
5Exceptions only include cases where the observed amount of weight sharing can be clearly interpreted.

However, even in these cases, our analysis will focus on general trends rather than the precise amounts observed.

3

https://github.com/RobertCsordas/modules


Published as a conference paper at ICLR 2021

3 ANALYZING FUNDAMENTAL PROPERTIES OF MODULES

Let us consider Pspecialize and Preuse (defined in Sec. 1) in more detail, as they reflect the advantages
of modular compositional design. According to our notion of functional modularity, an NN is not
modular without Pspecialize. Moreover, disjoint modules prevent catastrophic interference (McCloskey
& Cohen, 1989; Rosenbaum et al., 2019), since changing the weights responsible for a specific
function does not affect the others. Preuse also has multiple advantages. It increases data efficiency
by processing all relevant data using the same module, which thus receives additional training when
a module can be reused. It also helps with generalization. For example, consider processing the
expressions a ∗ b and (c+ d) ∗ e where a, b, c and d are sampled from the same range. By reusing the
multiplier it will be able to perform a∗b on wider range of inputs then it would otherwise be trained for.

In this section we conduct several experiments using synthetic datasets to test whether NNs have a
natural inductive bias supporting Pspecialize and Preuse. These experiments are designed to be as simple
as possible to isolate the property of interest. Let’s assume the network consists of compositional mod-
ules. The input of such modules can come from multiple sources within the network. Similarly, their
output could be connected to different parts of the network. For example, in the previous arithmetic ex-
pression, the first operand of the multiplier can come directly from the input or the output of the adder.
The same holds for the outputs. Therefore we consider cases where the inputs and outputs are shared
between the modules of the ideal solution (shared I/O) and where they are separated (separate I/O).

We construct two different datasets for analyzing Pspecialize and Preuse. For Pspecialize, we use shared I/O
and two different target functions (addition/multiplication task in section 3.1). The shared I/O biases
the network towards weight sharing by default. Thus we use this dataset to test whether there is a bias
for specializing different computations (functions) to separate weights. In contrast, to test for Preuse, we
construct a dataset where the same function should be performed twice, but using separate I/O (double
addition task in section 3.2). Since separate I/O biases the network to not share weights at initialization
time, we will make use of this dataset to test whether NNs exhibit a bias for reusing computation.
Here reusing weights is expected, since information routing is assumed to be easier to learn than the
actual function (addition). We emphasize that this initial bias due to different choices for I/O arises
naturally in any network composing multiple different internal modules to arrive at a solution.

The conclusions are surprising: typical NNs tend to satisfy Pspecialize but not Preuse. Our experiments
suggest that weight sharing across tasks is mostly driven by shared I/O rather than task similarity,
which results in redundancies and a lack of data efficiency.

3.1 ADDITION/MULTIPLICATION EXPERIMENTS

The addition/multiplication dataset is designed to test Pspecialize. The task is to add or multiply numbers
(modulo 100). The input and output units are the same for both operations. An additional one-hot
input specifies the operation. The numbers are two-digit and encoded as two 10-way one-hot vectors,
each representing a digit. Thus, the total input is 42-dimensional, and the output is 20.

First, we train the network to perform this task without any masking. Once the performance is nearly
perfect, we freeze its weights. We perform two stages of mask training: first, we train a mask on
addition (multiplication examples excluded), then we repeat this procedure for multiplication.

We analyze FNN and LSTM on this task. For LSTM, we present the full input for a fixed number of
timesteps. The result is the output at the final step. No loss is applied at intermediate steps. Regardless
of the architecture, we found the same general tendencies: There is more sharing in the input and
output layers and less in the hidden layers (Fig. 1). We also found that the multiplication uses 3.8
times more weights than the addition (Fig. 12), which partially explains the low IoU in this case. We
conclude that there does appear to be some bias towards specializing weights according to different
functions. On the other hand, the separation might still be inadequate to prevent interference and
catastrophic forgetting. Increased sharing in I/O layers could be due to a switching/routing procedure
used to select which operation to perform.

We further analyzed how performance breaks down on the task for which the mask was not trained on.
Here the behavior of the FNN and the RNN differ. The FNN tends to ignore the function description
and performs the operation for which the mask was trained, while the LSTM tends to produce invalid
outputs, suggesting that it learned a solution where the two operations are more intertwined (Fig. 13).

4



Published as a conference paper at ICLR 2021

Full Pair 1 ¬Pair 1 Pair 2 ¬Pair 2

FNN Pair 1 100± 0.0 100± 0.0 20± 12.7 1± 0.1 92± 10.5
Pair 2 100± 0.0 1± 0.1 94± 6.7 100± 0.0 21± 11.0

LSTM Pair 1 100± 0.0 100± 0.0 2± 0.5 1± 0.1 99± 3.0
Pair 2 100± 0.0 1± 0.1 100± 0.2 100± 0.0 2± 0.3

LSTM (forced) Pair 1 100± 0.0 100± 0.0 4± 0.8 1± 0.1 99± 0.7
Pair 2 100± 0.1 1± 0.1 96± 4.1 100± 0.0 3± 0.6

Table 1: Double-addition task: accuracy [%] of LSTMs and FNN on the two pairs. In case of LSTM
(forced) only one input is presented at a time (to prevent interference). The header shows on which
pair the mask was trained on. ¬ denotes an inverted mask.

3.2 DOUBLE-ADDITION EXPERIMENTS

layer 1 layer 2 layer 3 layer 4 output
0.0

0.5

1.0

P
ro

po
rt

io
n IoU

IoMin

(a) FNN

lstm 0 ih lstm 0 hh lstm 1 ih lstm 1 hh output
0.0

0.5

1.0

P
ro

po
rt

io
n IoU

IoMin

(b) LSTM

Figure 2: Double addition task: proportion of weights shared per operation in case of (a) feedforward
network, (b) LSTM, both inputs presented together. The first and last layers have no shared weights.

The double-addition experiment is designed to test property Preuse. The task is to perform modulo
100 addition twice using separate I/O (different units) for each of the two instances. Using inputs a, b,
c and d, the network should output a+ b and c+ d. This simulates the realistic scenario of having
different data sources within a network when composing modules dynamically, without considering
the additional problem of finding the right composition. Since the operation is the same and the
operands’ data distributions are exact matches, this simple setup encourages sharing. The encoding is
the same as in section 3.1, resulting in 80 input and 40 output units.

We first train the network until convergence on the full task, then freeze its weights. We train a mask
on a + b, followed by c + d. We analyze both FNN and LSTM architectures. FNN needs special
care to avoid activation interference. When both operations have to be performed simultaneously,
sharing is impossible. Thus, for the FNN, we perform two forward passes. In each pass, we feed only
one pair of numbers to the network (either a, b or c, d), while zeroing out the other. With LSTM, we
investigate two different settings. In the first, both pairs are presented together for a fixed number of
steps, and the result is the final output. Hence, the LSTM is allowed to schedule the execution of the
operations freely. In the second setting, called LSTM (forced), we remove any incentive for solving
the pairs simultaneously by feeding a single pair for multiple steps with the other zeroed out, and
then read its output. This procedure is then repeated for the second pair without resetting the state.

All experiments’ results are consistent: weight sharing is low (Fig. 2). To assert the modules’
independence, we invert masks trained on pair 1, removing all weights needed for pair 1. We test the
resulting network on pair 2, where the performance decreases only slightly, suggesting that they are
independent (Tab. 1, further analysis is provided in Appendix C.5.1). No difference between the two
LSTM variants was observed.

These observations show that Preuse is violated even in this simple case. Realistic scenarios tend to
be more complex as the data distribution for different operation instances might be different (with
overlaps), providing even fewer incentive to share. Furthermore, comparing the results to those of
section 3.1, it is apparent that sharing depends more on the location of the inputs/outputs than on the
similarity of the performed operations. This behavior is undesired and calls for further research.

5



Published as a conference paper at ICLR 2021

Layer 2 Layer 3 Layer 4
0.0

0.5

1.0

P
ro

po
rt

io
n T2

T4
T6
T8

T10
Figure 3: Proportion of the weights of a task shared
with any of the previous tasks. Every second task on
permuted MNIST. Each task corresponds to a permu-
tation. The last layer has the lowest capacity, filling up
first, forcing subsequent runs to share weights.

3.3 TRANSFER LEARNING EXPERIMENTS

Let us now consider a more complex setting to assess the degree to which property Preuse is violated
(see sec. 3.2). Here, we will measure the amount of possible transfer in a continual learning setup
using the popular permuted MNIST benchmark (Kirkpatrick et al., 2017; Golkar et al., 2019; Kolouri
et al., 2019). A sequence of tasks is created by applying different permutations to MNIST images
(LeCun et al., 2010). Spatially close pixels may no longer be observed in nearby locations in this
case, which leads us to train a FNN (as opposed to a CNN) sequentially on all permutations (tasks).

Continual learning is closely related to transfer learning, which is additionally concerned with
transferring knowledge between tasks to improve learning and use fewer parameters. Typical
approaches revolve around freezing used weights via masking when a new task is added (Fernando
et al., 2017; Mallya & Lazebnik, 2018; Golkar et al., 2019). We adjust our method accordingly: We
train on a single task and freeze the occupied weights. In particular, to be able to bias the network
towards weight sharing, we train masks and weights simultaneously in this case. The free weights are
then reinitialized and a new mask is allocated for the next task to obtain a mask for each permutation.

Note that since each task differs only by the input’s permutation, it suffices to re-train a new ‘first layer’
to undo the permutation so that later layers can be reused. Indeed, since a significant portion of the
weights is in the hidden layers, knowledge transfer between the permutations is possible and expected
to be beneficial. However, re-learning the first layer may not always possible in practice since the
required weights could already have been occupied to address a previous permutation. To ensure that
this does not happen, we always reset the first layer and do not freeze any of its elements. Notice how,
while this departs from the standard transfer learning setting, it still provides us with an upper bound
on the amount of transfer that is possible when no such conflict occurs. Even with these modifications,
we observed only little weight sharing when sufficient free space was available (Fig. 3). Only once all
the capacity is saturated, weights become shared. This effect is especially apparent for the output layer.

We additionally conducted an experiment in which we explicitly bias the network towards sharing.
We initialized elements of new masks corresponding to occupied weights by a significantly higher
probability (P ≈ 0.88) compared to the unused ones (P ≈ 0.27). Intuitively, this encourages reusing
the old, frozen network and adds new weights with low probability. This was able to force the
network to significantly share in later layers (see Fig. 14). However, we emphasize that knowledge
about which weights have to be reused between which samples is usually not available and explicitly
biasing the network in this way is therefore generally not possible.

Together these observations re-affirm that Preuse does not emerge naturally and that the same
functionality is re-learned. This is both redundant and potentially harmful as we investigate in Sec. 4.

3.4 A POTENTIAL EXPLANATION FOR LACK OF WEIGHT SHARING

Let us consider a possible explanation for the lack of weight-sharing observed in sections 3.2 and
3.3, which is that data routing is difficult in standard NNs. Indeed, inputs and outputs must be
correctly routed to different sources/targets to reuse modules in different compositions. In routing
networks (Kirsch et al., 2018; Rosenbaum et al., 2019; Chang et al., 2019), this is achieved through
hand-designed mechanisms. Without those, routing can only occur through the weights of the
NN. However, such a ‘routing transformation’ would change the data representation alongside the
routing unless the weights have a special structure that we empirically find is hard to learn. Indeed,
our experiments suggest that NNs find it hard to learn to represent data similarly along different
information routes that can in principle be processed by a single module. We argue that this is an
important issue and that additional research on suitable inductive biases is needed to address this.
Further discussion on the potential role of attention to mitigate this is provided in Appendix B.4.

6



Published as a conference paper at ICLR 2021

Turn Left Jump Length

0

100

A
cc

ur
ac

y
[%

]

(a) Performance on different splits

I TURN LEFT
I TURN RIGHT

I JUMP
I WALK

I RUN
I LOOK

EOS
0

25

R
em

ov
ed

[%
]

(b) Weights removed from last layer on “Add jump”

Figure 4: Results of experiments on SCAN. (a) Test accuracy on split shown on x-axis with masks
trained on the full problem (blue, orange) and with masks trained on split shown on x-axis (green,
red). LSTM: blue, green, Transformer: orange, red (b) Percentage of weights removed per token
from the output layer of the LSTM decoder trained on the “Add jump” split.

4 ANALYZING SYSTEMATIC GENERALIZATION ON ALGORITHMIC TASKS

Let us now consider the known issue of systematic generalization in light of our previous observations.
First, what is meant by systematic generalization? Once an NN has learned to perform certain
operations and some of their combinations, it should perform well on unseen combinations governed
by the same algorithmic rules. Hence, it requires Preuse to hold. The failure of typical NNs to
generalize systematically is one of the central issues of current-day NN research. The SCAN
dataset (Lake & Baroni, 2018) is designed for analyzing the degree to which NNs can generalize
systematically. It consists of compositional commands (e.g. “jump twice”), to be translated into
primitive output moves (e.g. “JUMP JUMP”). The “simple” data split is IID, the “length” split has
shorter training samples than test samples, and the "add primitive" splits have a particular command
presented in the training set but no compositions of this command with others (as in the test set).

It was previously shown that typical NNs generalize poorly on data splits systematically different
from the train set (Lake & Baroni, 2018; Saxton et al., 2019). The root of the problem is unclear,
however. In fact, there might be two explanations: (a) The NN might have learned the correct
algorithm for solving the problem, but failed to pick up on certain symmetries between concepts due
to scarce evidence in the train set. For example, in the “add primitive” split, the NN might be unable
to form an analogy between the additional primitive and the well-performing ones. This can also be
understood as a representation problem: in this case the NN has failed to represent the new primitive
in a way that lets them be used for problem solving in a similar manner following the acquired
solution. However, the NN is not pressured to improve since the learned solution suffices for solving
the training set. (b) Alternatively, the NN might not have learned the correct algorithm to solve the
problem. For example, it may have learned to recognize patterns determining when an output token
should be produced in place of reusable rules. In this case, new weights are required to solve new
problems of the same kind, since they correspond to different patterns. Only in this case, we argue,
has the NN failed to leverage the problem’s compositional nature. Note that (a) requires Preuse to hold
such that weights responsible for performing each individual operation are shared between different
samples, while (b) does not.

We have tested two networks: the baseline 2 layer LSTM encoder-decoder model from Lake &
Baroni (2018) and a Transformer (Vaswani et al. (2017) (see Appendix C.7.1). We pretrain the
model on the IID data, which ensures that the learned weights are capable of solving the full
problem and that a potential absence of sufficient evidence for learning about the correct symmetries
between concepts is not an issue. Hence, this rules out explanation (a) being the only issue. For each
split, we train a mask on its train set and measure the discovered subnetwork’s performance on the
corresponding systematically different test set. This process removes the weights that are not required
to solve the train set for a given split. However, all splits’ train sets contain sufficient information
about the full set of rules required to perform well on any split. Hence, should the masking process
remove any important weights, then we argue that the solution is likely pattern-recognition like rather
than based on reusable rules, providing evidence for explanation (b). Indeed, our experimental results
demonstrate precisely this behavior as can be seen from the large generalization gap in Fig. 4a.
Note that while this gap is consistent with the findings of Lake & Baroni (2018), we are additionally
able to provide evidence that the learned algorithm is likely inherently non-compositional, i.e. by
eliminating explanation (a) being the only issue as a possibility.

7



Published as a conference paper at ICLR 2021

Add or sub
Linear 1D

Differentiate
Sort

Poly. Collect
0

100

A
cc

ur
ac

y
[%

] Figure 5: Accuracy on the “hard” test set of differ-
ent tasks of the Mathematics Dataset: model without
masks, masks trained on IID data and masks trained
on “easy” set. A performance drop can be observed,
because of the sample-specific weights. 5 seeds/task.

airplane
automobile

bird
cat

deer
dog

frog
horse

ship
truck

0

50

100

R
el

at
iv

e
dr

op
[%

]

(a) Relative performance drop per class

airplane
automobile

bird
cat

deer
dog

frog
horse

ship
truck

0.0

2.5

5.0

7.5

10.0

La
rg

es
to

th
er

/ta
rg

et
[%

]

(b) Largest drop in non-target class (relative)

Figure 6: (a) Relative drop in performance for simple CNN, simple CNN without dropout and
ResNet-110. (b) Largest performance drop in a non-target class relative to the drop in the target class.

To assess if the same behavior can be observed in a more complex real-world setting, we conduct a
similar experiment on the challenging Mathematics Dataset (Saxton et al., 2019). Here, we generated
difficulty-based splits for tasks like differentiation, solving linear equations, sorting, etc. (further
details in Appendix C.7.2). In Fig. 5 a consistent performance drop can be observed when applying
the inferred subnetwork on the “hard” split using a mask trained on the “easy” split. This demonstrates
that samples in the “hard” split depend on exclusive weights, despite those being governed by the
same underlying rules, which is consistent with results on SCAN.

The weight level analysis provided by our method enables us to gain further insight. We inspect the
LSTM decoder’s weights on the “add jump” split of SCAN and note that the most apparent difference
is in the output layer. Almost half of the weights corresponding to “I_JUMP” are removed (Fig. 4b),
suggesting that the network learned to detect patterns of cases when “I_JUMP” should be the output,
and the last layer puzzles them together. In contrast, we hypothesize that the generalizing algorithm
for solving such problems necessitates proper variable manipulation (Garnelo & Shanahan, 2019).

5 ANALYZING CONVOLUTIONAL NEURAL NETWORKS

As a final case-study, we consider whether we are also able to observe a lack of weight-sharing
in CNNs. By conducting a weight-level analysis using our tool, we are able to highlight sets of
non-shared weights solely responsible for individual classes. We consider multiple CNN architectures
trained on CIFAR10 (Krizhevsky et al., 2009): a simple CNN with dropout (an ablation is provided in
Appendix C.8.2) and a ResNet-110 (He et al. (2016). Full details are available in Appendix C.8). We
proceed as follows. First, we train a ‘control mask’ on the full dataset to highlight all used weights.
Next, we train a mask with a single class removed so that the weights solely responsible for this class
will be absent from the resulting mask. Here we avoid removing all weights responsible for the this
class from the output layer (leaving no connection to the corresponding output unit) by fixing its
mask to one trained on the full dataset. This corresponds to inspecting the feature detector layers as
opposed to the classifier. We repeat this process for all classes to obtain a total of 11 masks.

We compute the confusion matrix on the full validation set at the end of each stage. Then we calculate
the difference between the confusion matrices with and without the removed class, which unveils
how the removal changes the classification. Interestingly, the performance of the target class drops
significantly (Fig. 6a), only a small drop in performance (possibly due noise when mask sampling)
is observed for non-target classes (Fig. 6b). This indicates a large dependence on class-exclusive,
non-shared weights in the feature detectors. These findings, which assume that the network has
sufficient capacity relative to dataset size, are in line with those observed in sections 3–4. Analyzing
the difference in misclassification rates yields further insights: as the true positive rate drops, certain
other classes are predicted instead that appear to rely on similar shared features. For example,
removing “airplane” causes images to be classified as “birds” and “ships” instead, which have a blue
background in common. Additional insights are reported for other classes in Fig. 18 in Appendix C.8.

8



Published as a conference paper at ICLR 2021

6 RELATED WORK

There have been few other attempts at analyzing emerging modularity in NNs. Filan et al. (2020) iden-
tifies groups of neurons with strong internal and weak external connectivity via clustering, while others
group neurons based on their connectivity pattern (Watanabe et al., 2018) or cluster them hierarchically
based on activation statistics (Watanabe, 2019). However, as we have argued, without considering
the contribution of individual weights it is not always possible to reason about functional modularity.
Davis et al. (2020) considers an alternative approach based on mutual information to detects salient
pathways in NNs that could in principle allow for this. However, the discovered pathways are not
grounded with respect to particular functionality, nor is it analyzed whether they support composi-
tionality. Bengio et al. (2015) formulate adaptive mask learning as a reinforcement learning problem,
with the main goal of accelerating inference via conditional execution. However, the masking is unit
level and trained together with network weights. Similarly, functional modularity is not considered.

It has repeatedly been argued that NNs lack compositionality due to their failure at systematic
generalization (Lake & Baroni, 2018; Bahdanau et al., 2019; Barrett et al., 2018; Hupkes et al., 2020;
Hill et al., 2020). Typically this analysis proceeds by evaluating NNs on a dataset that exhibits some
systematic difference from the training data, yet can be solved through clever recombination of known
concepts based on inferred rules. Here we were additionally able to show that the learned solution
incorporates combination-specific weights even on the training set, suggesting that this issue runs
deeper than simply being unable to learn about symmetries between well-known and novel concepts.
Andreas (2019) introduced a direct measure of compositionality by reconstructing NN representations
from a set of primitive representations and a learned composition function. However this method is
concerned about the data representation and not about the modularity of the performed computation.

Finally, we note how many transfer and continual learning methods make use of weight freezing via
masking to prevent catastrophic forgetting (Fernando et al., 2017; Mallya & Lazebnik, 2018; Golkar
et al., 2019; Yang et al., 2020). Determining the importance of individual weights has been studied in
network pruning (LeCun et al., 1990; Hassibi & Stork, 1993; Li et al., 2017; Frankle & Carbin, 2019;
Gaier & Ha, 2019) and feature attribution (Simonyan et al., 2013; Springenberg et al., 2015; Sundarara-
jan et al., 2017; Shrikumar et al., 2017) often using weight and/or gradients magnitudes. Differentiable
binary weight masks have also been explored in the multi-task setting (Mallya et al., 2018), albeit deter-
ministically in contrast to the Gumbel-Sigmoid used here. It should also be mentioned how many ex-
plicitly modular architectures have been proposed to improve generalization (e.g. Clune et al. (2013);
Andreas et al. (2016); Kirsch et al. (2018); Chang et al. (2019); Goyal et al. (2021b)) and data effi-
ciency (Purushwalkam et al., 2019). Rather than engineering an explicitly modular solution, our goal
is to let this emerge naturally. We believe that our current findings help take a step in that direction.

7 CONCLUSION

Our new method for inspecting modularity in neural networks is the first to identify modules by their
functionality. It is a powerful tool for analyzing how the NNs share or separate weights based on the
performed computation. By analyzing diverse sets of neural networks (FNNs, CNNs, RNNs, Trans-
formers), we could draw significant novel conclusions: in typical current NNs, weight sharing between
modules does not reflect task similarity (as desired) but can mostly be explained by rather trivial shared
I/O interfaces of solution-implementing modules. The lack of weight sharing between multiple uses of
the same function makes the learning data inefficient since it has to be re-learned repeatedly. Moreover,
NNs trained on algorithmic tasks appear to fail to learn general, modular, compositional algorithms.
Rather, we have shown that they require specific subset weights to solve a particular combination
of the input tokens, even when the same rules govern both the solution as the other samples. Our
discoveries call for future research: function dependent weight sharing in the neural networks should
vastly improve data efficiency, and encouraging algorithmic solutions should improve generalization.

ACKNOWLEDGMENTS

We wish to thank Aleksandar Stanić, Francesco Faccio, Kazuki Irie & Louis Kirsch for their construc-
tive feedback. This research was supported by a European Research Council Advanced grant (no:
742870), two Swiss National Science Foundation grants (no: 200021_165675/1, 200021_192356) and
hardware donations from NVIDIA & IBM. We thank Weights & Biases for a free academic license.

9



Published as a conference paper at ICLR 2021

REFERENCES

Jacob Andreas. Measuring compositionality in representation learning. In International Conference
on Learning Representations (ICLR), 2019.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations (ICLR),
2015.

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries,
and Aaron Courville. Systematic generalization: What is required and can it be learned? In
International Conference on Learning Representations (ICLR), 2019.

Carliss Young. Baldwin and Kim B. Clark. Design rules / the power of modularity. MIT Press, 2000.

Dana H Ballard. Modular learning in neural networks. In Proc. AAAI, pp. 279–284, 1987.

David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. Measuring abstract
reasoning in neural networks. In International Conference on Machine Learning, pp. 511–520,
2018.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in
neural networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, 2013.

Michael Chang, Abhishek Gupta, Sergey Levine, and Thomas L. Griffiths. Automatically composing
representation transformations as a means for generalization. In International Conference on
Learning Representations (ICLR), 2019.

Jeff Clune, Jean-Baptiste Mouret, and Hod Lipson. The evolutionary origins of modularity. Proceed-
ings of the Royal Society B: Biological Sciences, 280, 2013.

Brian Davis, Umang Bhatt, Kartikeya Bhardwaj, Radu Marculescu, and José MF Moura. On network
science and mutual information for explaining deep neural networks. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8399–8403, 2020.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations (ICLR), 2019.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734, 2017.

Daniel Filan, Shlomi Hod, Cody Wild, Andrew Critch, and Stuart Russell. Neural networks are
surprisingly modular. arXiv preprint arXiv:2003.04881, 2020.

Jerry A Fodor, Zenon W Pylyshyn, et al. Connectionism and cognitive architecture: A critical
analysis. Cognition, 28:3–71, 1988.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations (ICLR), 2019.

Adam Gaier and David Ha. Weight agnostic neural networks. In Advances in Neural Information
Processing Systems, pp. 5364–5378, 2019.

Marta Garnelo and Murray Shanahan. Reconciling deep learning with symbolic artificial intelligence:
representing objects and relations. Current Opinion in Behavioral Sciences, 29:17–23, 2019.

Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Continual learning via neural pruning. In
NeurIPS 2019 Workshop Neuro AI, 2019.

10



Published as a conference paper at ICLR 2021

Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe Beaudoin, Charles Blundell, Sergey Levine,
Yoshua Bengio, and Michael Mozer. Factorizing declarative and procedural knowledge in struc-
tured, dynamical environments. In International Conference on Learning Representations, 2021a.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio,
and Bernhard Schölkopf. Recurrent independent mechanisms. In International Conference on
Learning Representations, 2021b.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
neural networks. arXiv preprint arXiv:2012.05208, 2020.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in Neural Information Processing Systems, pp. 164–171, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Felix Hill, Andrew K. Lampinen, Rosalia Schneider, Stephen Clark, Matthew Botvinick, James L.
McClelland, and Adam Santoro. Environmental drivers of systematicity and generalization in a
situated agent. In International Conference on Learning Representations (ICLR), 2020.

Geoffrey Hinton. Neural networks for machine learning. Coursera, video lectures., 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:
1735–1780, 1997.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumbel-softmax. In
International Conference on Learning Representations (ICLR), 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114:
3521–3526, 2017.

Louis Kirsch, Julius Kunze, and David Barber. Modular networks: Learning to decompose neural
computation. In Advances in Neural Information Processing Systems, pp. 2408–2418, 2018.

Soheil Kolouri, Nicholas Ketz, Xinyun Zou, Jeffrey Krichmar, and Praveen Pilly. Attention-based
structural-plasticity. arXiv preprint arXiv:1903.06070, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In Proc. International Conference on Machine
Learning (ICML), volume 80, pp. 2879–2888, 2018.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, pp. 598–605, 1990.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations (ICLR), 2017.

Dirk M. Lorenz, Alice Jeng, and Michael W. Deem. The emergence of modularity in biological
systems. Physics of life reviews, 8:129–160, 2011.

11



Published as a conference paper at ICLR 2021

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on Learning Representations
(ICLR), 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proc. Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7765–7773,
2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple
tasks by learning to mask weights. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 67–82, 2018.

Gary F Marcus. Rethinking eliminative connectionism. Cognitive psychology, 37:243–282, 1998.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guillaume Lajoie,
Michael Mozer, and Yoshua Bengio. Learning to combine top-down and bottom-up signals in
recurrent neural networks with attention over modules. In Proc. International Conference on
Machine Learning (ICML), 2020.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine
Learning, pp. 807–814, 2010.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, pp. 8024–8035, 2019.

Senthil Purushwalkam, Maximilian Nickel, Abhinav Gupta, and Marc’Aurelio Ranzato. Task-
driven modular networks for zero-shot compositional learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2019.

Clemens Rosenbaum, Ignacio Cases, Matthew Riemer, and Tim Klinger. Routing networks and the
challenges of modular and compositional computation. arXiv preprint arXiv:1904.12774, 2019.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. In International Conference on Learning Representations
(ICLR), 2019.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International Conference on Machine Learning, pp. 3145–
3153, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. CoRR, abs/1312.6034, 2013.

Jost Tobias Springenberg, A. Dosovitskiy, T. Brox, and Martin A. Riedmiller. Striving for simplicity:
The all convolutional net. International Conference on Learning Representations (ICLR), Workshop
Track, 2015.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3319–3328,
2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30, pp. 5998–6008, 2017.

12



Published as a conference paper at ICLR 2021

G von Dassow and E Munro. Modularity in animal development and evolution: elements of a
conceptual framework for evodevo. The Journal of experimental zoology, 285:307—325, 1999.

Chr. von der Malsburg. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik,
14:85–100, 1973.

Chihiro Watanabe. Interpreting layered neural networks via hierarchical modular representation. In
International Conference on Neural Information Processing, pp. 376–388, 2019.

Chihiro Watanabe, Kaoru Hiramatsu, and Kunio Kashino. Modular representation of layered neural
networks. Neural Networks, 97:62–73, 2018.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. arXiv preprint arXiv:2003.13661, 2020.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. In Advances in Neural Information Processing Systems, pp. 3592–3602,
2019.

13



Published as a conference paper at ICLR 2021

A DERIVATIONS

A.1 FROM GUMBEL-SOFTMAX TO GUMBEL-SIGMOID

In what follows, we use the notation by Jang et al. (2017): k is the number of categories, class
probabilities are πi, y ∈ Rk is a sample vector from the Gumbel-Softmax distribution (also called
Concrete distribution by Maddison et al. (2017)). Individual components of y are denoted by yi,
i ∈ [1, k]. We will refer to li = log πi as logits. We show how to sample from the Gumbel-Sigmoid
distribution, the special case of k = 2, l2 = 0 of the Gumbel-Softmax distribution.

First, we show that the sigmoid is equivalent to a first element y1 ∈ R of the output vector of the two
element softmax with l1 = x, x ∈ R and l2 = 0:

σ(x) =
1

1 + e−x
=

ex

ex + 1
=

ex

ex + e0
=

el1

el1 + el2
= y1. (3)

According to Jang et al. (2017), the sample vector y ∈ Rk from the Gumbel-Softmax distribution can
be drawn as follows:

yi =
e

1
τ (li+gi)∑k

j=1 e
1
τ (lj+gj)

, (4)

where gi ∼ Gumbel(0, 1) are independent samples from the Gumbel distribution. We are interested
in the special case of a sigmoid, which we showed to be equivalent to the y1 in k = 2, l2 = 0 case:

y1 =
e

1
τ (l1+g1)

e
1
τ (l1+g1) + e

1
τ g2

. (5)

This can be rearranged as:

y1 =
1

1 + e−
1
τ (l1+g1−g2)

= σ

(
1

τ
(l1 + g1 − g2)

)
. (6)

Writing out the inverse transformation sampling formula for gi ∼ Gumbel(0, 1); gi =
− log(− logUi), were Ui ∼ U(0, 1) are independent samples from the uniform distribution, we
get:

y1 = σ

(
1

τ
(l1 − log(− logU1) + log(− logU2))

)
= σ

(
1

τ

(
l1 − log

logU1

logU2

))
.

(7)

Finally, by renaming s = y1 and l = l1 (we have just a single logit), we obtain the sampling formula
for Gumbel-Sigmoid:

s = σ

(
1

τ

(
l − log

logU1

logU2

))
. (8)

A.2 STRAIGHT-THROUGH ESTIMATOR

Samples from the Gumbel-Softmax distribution can directly be converted to a sample from the
categorical distribution as:

ci = 1i=argmaxi yi . (9)
Applying the straight-through estimator (Hinton, 2012; Bengio et al., 2013) can provide ‘hard’
samples while permitting gradient flow ([·]stop is an operator for blocking backward gradient flow):

ci = [1i=argmaxi yi − yi]stop + yi. (10)

Since in the Gumbel-Sigmoid we have k = 2 categories and
∑
i yi = 1, the argmax can be replaced

by testing whether yi > 0.5:
ci = [1yi>0.5 − yi]stop + yi. (11)

Since we defined the sample s to be y1 (i.e. we are interested in the i = 1 case) the index i can be
omitted. The variable has a Bernoulli distribution (see Section A.3), so we use a substitution b = c1
to get:

b = [1s>0.5 − s]stop + s. (12)

14



Published as a conference paper at ICLR 2021

A.3 THE EXPECTED VALUE OF THE SAMPLES

Let us analyze the distribution governing the samples b. Each sample is binary and independent since
it is generated using independent samples from a uniform distribution. Since the sampling process is
stationary they must therefore be Bernoulli distributed. Next, we show that their mean is µ = σ(l).

We are interested in:
µ = P (b = 1) = P ([1s>0.5 − s]stop + s = 1) . (13)

The straight-through estimator does not change the numerical value of b, so we can ignore it:

µ = P (b = 1) = P (1s>0.5 = 1) = P (s > 0.5) , (14)

where s = σ
(

1
τ

(
l − log logU1

logU2

))
. Let us simplify the condition s > 0.5:

σ

(
1

τ

(
l − log

logU1

logU2

))
> 0.5 (15)

σ is monotonically increasing and σ(0) = 0.5, so:

1

τ

(
l − log

logU1

logU2

)
> 0. (16)

By multiplying both sides with τ > 0 and re-ordering we obtain:

l > log
logU1

logU2
. (17)

Since ex is monotonically increasing, we can exponentiate both sides to obtain:

el >
logU1

logU2
. (18)

The samples Ui are uniform random samples from the range Ui ∈ (0, 1). Hence, it follows that
logUi < 0. Multiplying both sides by logU2, we get:

el logU2 < logU1. (19)

Exponentiating once again leads to:
Ue

l

2 < U1. (20)

Let us return to the original problem, which is now takes a much simpler form:

µ = P (b = 1) = P (Ue
l

2 < U1). (21)

Using the definition of the mean, we get:

µ = EU1∼U(0,1),U2∼U(0,1)

[
1
Ue

l
2 <U1

]
. (22)

Using the definition of expectation:

µ =

∫ ∞
−∞

P (U2)

∫ ∞
−∞

P (U1)1Uel2 <U1
dU1dU2. (23)

Since Ui ∼ U(0, 1) are samples form uniform distribution with range (0, 1), P (Ui) = 1 in interval
Ui ∈ (0, 1) and 0 otherwise. This enables us to change the boundaries of the integrals:

µ =

∫ 1

0

∫ 1

0

1
Ue

l
2 <U1

dU1dU2. (24)

Since the value of 1
Ue

l
2 <U1

is 1 when U1 > Ue
l

2 and 0 otherwise, we can tighten the bounds of
integration and eliminate the indicator function:

µ =

∫ 1

0

∫ 1

Ue
l

2

1dU1dU2 =

∫ 1

0

[U1]
1

Ue
l

2
dU2. (25)

15



Published as a conference paper at ICLR 2021

µ =

∫ 1

0

1− Uel2 dU2 = 1−
∫ 1

0

Ue
l

2 dU2

= 1−
[
Ue

l+1
2

el + 1

]1
0

= 1− 1e
l+1

el + 1
+

0e
l+1

el + 1

= 1− 1

el + 1
=
el + 1

el + 1
− 1

el + 1
=

el

el + 1
=

1

e−l + 1

= σ(l).

(26)

A.4 CHOOSING THE TEMPERATURE

Notice that µ = σ(l) does not depend on the temperature τ (Appendix A.3). The binarized sample, b,
will have the same output regardless of the value of τ , thus s will have the same gradients. The logit
l, however, has a gradient scaled by 1

τ , but which can be mitigated by the normalization in the Adam
optimizer. Thus, we can choose τ freely. We set τ = 1 for all experiments of our paper.

B ADDITIONAL DISCUSSION

B.1 STABILITY OF THE MASKS

Multiple sources of randomness could affect the final masks discovered by our method. These include
sampling the mask at each iteration, different data for each target task, and the order in which data is
used for training. To verify that the masks discovered by our method are consistent we considered pairs
of CIFAR10 classes as target tasks in combination with a simple CNN without dropout (Appendix
C.8). Pairs are chosen instead of the leave-one-out scheme used in Section 5 to increase the sparsity
of the masks as much as possible (potentially making them even more unstable). We trained 10 CNNs
and analyzed 10 random pairs of classes for each of them. For each pair we trained two separate
masks and calculate the Intersection over Union (IoU), resulting in a total of 100 data points.

We found that the mean IoU is 93.26± 0.96%, which confirms the discovered masks’ stability. Note
that in case multiple redundant weight configurations are present in the network, different mask seeds
will find a different subset of them, so their IoU will be less then 100% even in the optimally stable
case. Using dropout would encourage such cases.

B.1.1 POTENTIAL ERRORS INTRODUCED BY THE STRAIGHT-THROUGH ESTIMATOR

The straight-through estimator introduces approximations in the gradient calculation. Fortunately, the
inaccuracies do not build up through multiple estimation steps, since the masking and straight-through
estimator are applied directly to the network’s parameters. Indeed, on each gradient path, there is at
most a single straight-through estimator present.

B.2 DOES MASKING CHANGE THE PERFORMED OPERATION?

The recent work of Zhou et al. (2019) demonstrated how it is possible to achieve non trivial perfor-
mance by training binary masks on a neural network with frozen weights that were randomly chosen.
This raises the question whether the masking process in our method changes the performed operation
after the weights are frozen and could thus cause misleading observations.

To investigate this possibility, we randomly selected some of the networks and datasets used through-
out the paper, and trained as usual. After both the weights and the masks are learned, we performed
the following experiment: we applied masks to roughly half of the networks weights, while leaving
the remainder unmasked. In one variant of this experiment, early layers near to the input are masked,
while the later layers, including the output, are not. In the other variant, the opposite is true. If the net-
work demonstrates compatibility between the masked and non-masked layers for these experiments,
then this is a strong indication that it has not altered the performed operation significantly.

The outcome of these experiments are shown on Fig. 7, where we report the performance drop for
transformer on SCAN dataset, FNN on addition/multiplication dataset, LSTM, big (4 layers of 2000

16



Published as a conference paper at ICLR 2021

units) and small (4 layers of 800 units) FNNs on the double-addition experiments and the small CNN
on CIFAR 10.

For almost all configurations, we observe only a low drop in performance, indicating that the
operations performed by the network remain mostly the same under the masking process. The only
exception we found is the big FNN on the double-addition task, when the early layers are masked.
Note, however, that its performance is well above the chance level (P = 10−4). Since this network is
severely overparametrized, we speculate how this might be the reason for this observed difference.
For example, it could have learned to solve the problem by combining multiple alternative pathways,
all of which contribute to the output. If the masking process removes some of those pathways from
the layer near the input, but leaves them in the layers near the output, the pathways are cut in half.
Thus, they might produce erroneous outputs. To further analyze this we therefore also trained a
smaller version of the same network, which we observe behaves similarly to all other networks,
suggesting that also in this case the masking does not alter the performed computation significantly.

Finally, we note the variant where the early layers are masked appears considerably more difficult
than other way around. This might be because some of the inputs of the unmasked later layers are
removed by masking the early layers. Normally, if all layers are masked as well, such weights of
later layers would be removed together with the ones in the early layers, thus not affecting the result.

SCAN trafo
+/∗ FNN

+/+ LSTM
+/+ FNN Big

+/+ FNN Small
CIFAR 10 simple

0

50

100

A
cc

ur
ac

y
dr

op
[%

]

Early masked
Late masked

Figure 7: Accuracy drop for masks applied to half of the weights. See Sec. B.2 for details.

There may be multiple reasons for these different findings compared to Zhou et al. (2019). First, we
use well trained networks instead a randomly initialized ones. Untrained network are believed to
contain many random subnetworks which can useful for performing any task. However, the fully
trained network has its subnetworks tuned to the task, likely decreasing the possibility of further
subnetworks existing that implement radically different operations. Second, we are training the masks
on a subset of the train set, which does not encourage changing the performed operations either: the
highest performance can be achieved by selecting the correct subnetwork already performing the
operation well. Finally, the experiments of Zhou et al. (2019) indicated that the performance of the
best found network decreases with the task complexity, and performs best on MNIST. Some of the
experiments considered here are significantly more complex.

B.3 CHOOSING TARGET FUNCTIONALITY

In principle any operation that the network is able perform can be used as a target functionality.
This includes partitions of the dataset, or even novel tasks if the network can generalize to them.
The resulting masks will highlight which weights are responsible for performing them. For our
experiments, we always chose a subset of the training set of the weights as target functionality. This
ensures that no generalization is required from the network to solve the problem, and that the subset
of the original weights required to solve this subproblem is highlighted. The discovered module then
corresponds to functionality that the network should already have learned in the original training
phase.

Interesting target functionality should be chosen such that removing the discovered set of weights or
its inverse can be expected to lead to measurable performance difference on some test set. This test
set should ideally be a subset of the original training set used for the weights. In this way, one does
not have to directly consider the amount of sharing, and can measure (the difference in) accuracy,
which we find more reliable and easy to interpret (see also Sec. 2 for further details) However,
if such a choice is not available and the amount of sharing has to be analyzed directly, then we
recommend drawing conclusions only when the observed difference compared to some reference
score is sufficiently high. For example in the Permuted MNIST experiments, the sharing of < 20% is
significantly lower than the expected 100%.

17



Published as a conference paper at ICLR 2021

B.4 IS ATTENTION THE SOLUTION?

Could a form of attention (Bahdanau et al., 2015) solve the problem discussed in Section 3.4? At
least the current use of attention does not seem promising. In theory, attention-based Transformers
(Vaswani et al., 2017) can reuse the same modules in parallel, but only if they are executed in the same
layer. For a∗b+c∗d the multiplier is reusable, but for a∗b∗c it is not, since the second multiplication
requires the result of the first; that is, different layers are needed. In recurrent models, such as RNNs
with attention (Bahdanau et al., 2015) and Universal Transformers (Dehghani et al., 2019), attention
does not permit routing between functional modules but is just used to route data to the input of a
monolithic transformation block which processes the information. Emerging functional modules must
in that case appear within the processing blocks. However, since attention is neither able to rewire the
block’s internal data flow, nor to permute elements of the attended vector, it does not help with the
routing between modules emerging inside the block. Indeed, we showed empirically in Section 4 that
Transformers suffer from the same generalization issues as LSTM on the SCAN dataset, and they
did not generalize on the more complex Mathematics Dataset either. Attention might help though, if
all the input and output interfaces of functional blocks overlap, and a single processing step executes
a single function. However, as our experiments show, the separation between modules tends to be
inadequate in the case of shared interfaces (Sec 3.1). Moreover, there is no control over executing
a single function per time step (e.g., the whole a ∗ b ∗ c block could be executed in a single step).

In order to help with data routing between emerging functional modules, attention has to be able to
focus on arbitrary parts of the activation vectors. This would enable information exchange between
such modules, but it is unclear how this could be implemented. For example, in the double addition
experiment (Section 3.2), the task requires to process disjoint subsets of the input, which is not
possible with the attention mechanism. In general, attention-based solutions would require to store
one “concept” in a single vector so that they can separately attended to. However, what makes a good
“concept” in this case is unclear, especially since different processing stages might require a different
granularity – for example, sorting tuples of numbers based on the first element of the tuple requires
accessing individual elements of it but also treating the tuple as a whole. For a broader discussion on
dynamic information routing and the problem of variable binding in neural networks, we refer the
reader to Greff et al. (2020).

B.5 EXPLICITLY MODULAR NETWORKS

At first glance, explicitly modular networks (Clune et al., 2013; Andreas et al., 2016; Kirsch et al.,
2018; Chang et al., 2019; Bahdanau et al., 2019) could provide a solution for the discovered problems.
In what follows we will call hardcoded modules “blocks” to distinguish from functional modules,
which we call “modules”. Routing networks, in addition to the problems described by Rosenbaum et al.
(2019), are restricted to exchange information between blocks as a single fixed-size activation vector.
Because all the information has to be stored in this vector (such as different variables), either different
parts of the vector should be responsible for different stored variables, or they have to be stored in
superposition, e.g., by projecting them in a space where they are orthogonal to each other. Either way,
this requires the blocks not only to perform a given operation, but also to be aware which variable they
want to access. Thus, the blocks are not universal since operating on different variables encoded in the
state require different modules. For example, in the double addition experiment (Section 3.2), the task
requires to process disjoint subsets of the input. This is true in general: different subsets of the net-
work state may require independent processing. Routing networks consist of simple modules stacked
sequentially, which is obviously not a good fit for this type of data. Alternatively, RIMs (Mittal et al.,
2020; Goyal et al., 2021b;a) attend to the data, making it possible to execute multiple modules in par-
allel. However, they are based on attention, which also has its limitations (Sec. B.4). These difficulties
let us believe that a general inductive bias towards function-based specialization in generic neural net-
works would be a preferable solution compared to explicit modality and motivates this paper’s topic.

18



Published as a conference paper at ICLR 2021

C ADDITIONAL RESULTS AND EXPERIMENTAL DETAILS

C.1 SANITY CHECKING THE MASK DISCOVERY PROCESS

Our method frequently discovers a resistance against weight sharing. Perhaps this could raise the
question whether our method is able to discover shared weights at all. We ran additional experiments
to verify this.

We used the double-addition experiments from Sec. 3.2. Specifically, we trained the network as
before, but after the weight training phase, we copy the input and output weights of one pair to the
part of the weight matrix corresponding to the other. This ensures that the hidden layers can not
see any difference between the two pairs. We use the FNN variant since it can be used without any
modification, while the LSTM would require changes to avoid state conflicts.

In Fig. 8 it can be seen how our method accurately discovers that the sharing is almost perfect in this
case, which further justifies our approach. Compare this to the identical setup of Fig. 2. Note that the
first and last layers are still not shared: they contain identical, but non-shared copies of the weights.

layer 1 layer 2 layer 3 layer 4 output
0.0

0.5

1.0

P
ro

po
rt

io
n IoU

IoMin

Figure 8: Double addition task with manually edited input/output weight matrices to reuse the hidden
layers. Proportion of weights shared per operation in case of FFN.

C.2 COMMON HYPERPARAMETER CHOICES

Our method is implemented in PyTorch (Paszke et al., 2019), and available at https://github.
com/RobertCsordas/modules. Unless otherwise noted we use the Adam optimizer (Kingma
& Ba, 2015), a batch size of 128, a learning rate of 10−3, and gradient clipping of 1. To improve the
quality of the masks we divide a batch into four parts that each act on a different mask sample. For
non-LSTM networks, we use the ReLU activation function (von der Malsburg, 1973; Nair & Hinton,
2010) for the activations of intermediate layers. The Gumbel-sigmoid always has a temperature
of τ = 1 (the reason for this is explained in Appendix A.4). For most of our experiments, the
regularization coefficient α is specified as β = bα, where b is the batch size used for training the
masks. Otherwise we will mention α separately. All figures in this paper, unless noted otherwise,
show mean and standard deviation calculated over 10 runs with different seeds.

C.3 CHOOSING THE REGULARIZATION HYPERPARAMETER

Choosing the regularization hyperparameter α is critical to obtain valid conclusions. Too low α might
yield the false impression that no modules exist or that they share more weights than they really do.
Too strong regularization may degrade performance on the target task, discarding essential weights.

Fortunately, there is a simple and consistent heuristic for choosing α, which follows from training a
mask on the full task. We increase α as long as the performance does not start to drop. Then, we
reduce α slightly until the performance is adequate, e.g. > 95% of the original performance. This
method is not very sensitive to the exact value α and transfers well across different network sizes
(Fig. 10). We find that it is less critical but still important to tune the learning rate and the number of
steps of the mask training process. We always check the chosen hyperparameters’ validity by training
a mask on the full, unmodified problem, where we expect to see only a slight drop in performance.

Note that underfitting NNs tend to share more weights. Indeed, in our experiments we found that
choosing a sufficiently large network size is essential to avoid false conclusions about the reason
for sharing. Fig. 11 shows an example how the amount of weight sharing changes as a function
of network capacity.

19

https://github.com/RobertCsordas/modules
https://github.com/RobertCsordas/modules


Published as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0
mask value

0

500

1000

de
ns

ity

+/∗ FNN
+/∗ LSTM
+/+ FNN
+/+ LSTM

(a) Linear scale, small values cut off

0.0 0.2 0.4 0.6 0.8 1.0
mask value

0

5

10

15

lo
g

de
ns

ity

+/∗ FNN
+/∗ LSTM
+/+ FNN
+/+ LSTM

(b) Log scale, all values

Figure 9: Histogram (normalized as a 500-bin PDF) of expected values of the mask elements
(µi = σ(li)) on different tasks. (a) Shown on a linear scale. Values < 0.0002 (bottom 10% of the
first bin) are removed from the calculation because their number vastly exceeds the number of kept
weights for most of the networks, making the details invisible. (b) All mask means, µi, (without
small values removed) shown on log-scale.

10−5 10−4 10−3

β = bα

70

80

90

100

A
cc

ur
ac

y
[%

]

30

40

50

(a) Big network

10−5 10−4 10−3

β = bα

70

80

90

100

A
cc

ur
ac

y
[%

]

30

40

50

(b) Medium network

Figure 10: Sensitivity analysis for hyperparameter β = bα (b is the batch size) on addition/multi-
plication experiments. Note the logarithmic x-axis. The color indicates the total amount of sharing
[%]. The red line and the star indicate the value chosen for our experiments. Each point is a mean of
10 independent seeds. The network is not very sensitive to the exact choice of β. (a) Big network,
with 5 layers of size 2000. (b) Medium network, with 5 layers of size 800. It can be seen that the
hyperparameter transfers well between network sizes.

20



Published as a conference paper at ICLR 2021

C.4 ADDITION/MULTIPLICATION EXPERIMENTS

Since preliminary experiments indicated that modulo 100 multiplication require lots of weights, we
used reasonably large networks for this experiment. The FNN is 5 layers deep, each layer having
2000 units and the LSTM a hidden state size of 256 (further increase resulted in overfitting). A
network was trained for 20k steps on the full task before freezing. The following mask training
phase takes an additional 20k steps for each mask. Mask training uses a learning rate of 10−2 and
β = 10−4 for regularization. For the LSTM we use 3 time steps where the input is repeated for every
step. The dataset is generated by sampling numbers and operations uniformly at random.

Fig. 11 demonstrates that even if we use a large network (the small, 3 layer networks of 400, 400, 200
can solve the task), the percentage of shared weights still changes when increasing the network size.

In Sec. 3.1 we showed that even though there is a certain level of natural separation between the
modules responsible for addition and multiplication, there is still a significant proportion of shared
weights. To analyze the importance of those shared weights, we tested the network with inverted
masks as in Sec. 3.2. Tab. 2 shows the results. Given the high proportion of sharing, especially in the
input and output layers, the results are as expected: inverted masks do not perform well, showing that
the separation of the modules is limited.

small medium big huge
0

20

40

60

To
ta

ls
ha

re
d

[%
]

Figure 11: Addition/multiplication task: the total proportion of shared weights for the “add” operation
for different network sizes. “small” means a 4 layer network with hidden sizes of 400, 400, 200,
“medium” 5 layers / hidden sizes of 800, “big” 5 layers / 2000, “huge” 5 layers / 4000.

Full + ¬+ ∗ ¬∗

FNN + 100± 0.0 100± 0.0 13± 5.5 1± 0.0 20± 7.0
∗ 100± 0.2 0± 0.0 69± 9.7 100± 0.0 17± 5.8

LSTM + 100± 0.0 100± 0.0 2± 0.6 2± 0.6 1± 0.2
∗ 100± 0.1 3± 1.2 6± 0.8 100± 0.0 2± 1.2

Table 2: Accuracy of addition/multiplication task on addition and multiplication with FNN and
LSTM. The header shows on what the applied mask was trained on. ¬ denotes an inverted mask

layer 1 layer 2 layer 3 layer 4 output
0

1

2

N
o.

of
w

ei
gh

ts

×104

+ ∗

(a) FNN

lstm 0 ih lstm 0 hh lstm 1 ih lstm 1 hh output
0

1

2

N
o.

of
w

ei
gh

ts

×104

+ ∗

(b) LSTM

Figure 12: Addition/multiplication taks: number of weights per operation for each layer in (a)
feedforward network, (b) LSTM.

21



Published as a conference paper at ICLR 2021

+ ∗ none
Predicted

+
∗Tr

ue 99± 0 1± 0 0± 0
0± 0 100± 0 0± 0

0

100

(a) FNN: Mask trained on + and ∗

+ ∗ none
Predicted

+
∗Tr

ue 99± 0 1± 0 0± 0
99± 2 0± 0 1± 2

0

100

(b) FNN: Mask trained on +

+ ∗ none
Predicted

+
∗Tr

ue 1± 0 98± 3 2± 3
0± 0 100± 0 0± 0

0

100

(c) FNN: Mask trained on ∗

+ ∗ none
Predicted

+
∗Tr

ue 99± 0 1± 0 0± 0
0± 0 99± 0 0± 0

0

100

(d) LSTM: Mask trained on + and ∗

+ ∗ none
Predicted

+
∗Tr

ue 99± 0 1± 0 0± 0
21± 8 3± 1 75± 8

0

100

(e) LSTM: Mask trained on +

+ ∗ none
Predicted

+
∗Tr

ue 2± 1 28± 4 70± 4
0± 0 100± 0 0± 0

0

100

(f) LSTM: Mask trained on ∗

Figure 13: Analysis of FNN (a, b, c) and LSTM (d, e, f) performance degradation on the addition/
multiplication task. The y-axis shows the target operation. The x-axis shows the actual operation
performed. “none” means the predicted number is neither the result of addition nor multiplication.
The FNN ignores the operator specification and performs the one corresponding to the mask; in
contrast, the LSTM tends to perform invalid operations.

C.5 DOUBLE ADDITION EXPERIMENTS

The training protocol for double-addition experiments is identical to the one in Appendix C.4, except
that the FNN variant uses a mask regularizer of β = 4 ∗ 10−4. The LSTM uses 6 steps in total in this
case (3 steps per operation). In the full input case, both tuples are presented for all 6 steps and the
output is read from the last step. In the case where one tuple is presented at a time, the first tuple is
shown for the first 3 steps, resulting in an output at the 3rd step, the second tuple is presented for the
next 3 steps, resulting in an output at the 6th step.

C.5.1 ADDITIONAL INVERTED MASK EXPERIMENTS

Following the inverted-mask experiments done in Sec. 3.2, we investigated how well the separation
holds if we consider only the hidden layers. This is achieved by using inverted masks for the hidden
layers, while using the mask trained on the full task without inversion for the input and output layers.
Hence, in this case the inputs and outputs contain all the connections needed for both tasks. Our
findings are shown in Tab. 3 and are consistent with Tab. 1. It can be seen how the performance
of the inverted mask tends to work well on the opposite task, while its performance is significantly
lower on the original task (note that chance is at P = 0.01 for these experiments), suggesting that
this effect is not due to their inputs/outputs being disjoint.

Further we experimented with leaving the input and output layers unmasked, while inverting the
discovered masks for the hidden layers. Surprisingly, in this case the inverted masks perform well
on both tasks (around 90%), even on the task for which the mask was inverted. This suggests that
the network contains an ensemble of subnetworks individually capable of solving the problem with
good performance. However based on the findings in Tab. 3, these subnetworks in the hidden layers
appear to be mostly independent of each other: the performance is nonzero on the original task only
if both the original weights and the ones corresponding to the inverted masks are now included. It
remains unclear what causes this particular behavior in this setting, which we believe is an interesting
direction for future research.

C.6 TRANSFER LEARNING EXPERIMENTS

In the transfer learning setup, we train on 11 permutations of MNIST using the same network.
Training the weights and masks together is more difficult than the usual setup. In order to improve
the quality of the mask gradients we use 8 mask samples per batch instead of the standard 4. Each
phase takes 30k steps. The learning rate is 10−2. The network is 4 layers deep, with hidden sizes of
800, 800, 64. We are using a mask loss of α = 10−5.

Fig. 14 demonstrates the number of shared weights per layer for a network that has its masks
initialized such that it prefers to reuse the old weights. The mask logits corresponding to weights

22



Published as a conference paper at ICLR 2021

Full Pair 1 ¬Pair 1 Pair 2 ¬Pair 2

FNN Pair 1 100± 0.4 100± 0.0 7± 4.0 1± 0.1 63± 15.9
Pair 2 100± 0.1 1± 0.1 62± 16.9 100± 0.0 8± 5.0

LSTM Pair 1 100± 0.0 100± 0.0 16± 4.1 1± 0.1 99± 1.3
Pair 2 100± 0.0 1± 0.0 97± 4.9 100± 0.0 16± 5.9

LSTM (forced) Pair 1 100± 0.0 100± 0.0 25± 6.1 1± 0.1 76± 10.0
Pair 2 100± 0.1 1± 0.1 94± 4.2 100± 0.0 42± 14.7

Table 3: Double-addition task: accuracy [%] of LSTMs and FNN on the two pairs. In case of LSTM
(forced) only one input is presented at a time (to prevent interference). The header shows on which
pair the mask was trained on. ¬ denotes an inverted mask for the hidden layers, while the regular
mask (for the full task) is applied to the input and output layers. For further details please refer to
Sec. C.5.1

of the previous task are initialized to 2 (corresponding to P ≈ 0.88), the logits for newly initialized
weights to either 0 (P = 0.5, Fig. 14a) or -1 (P ≈ 0.27, Fig. 14b). Compared to Fig. 3, the sharing
is significantly increased.

Layer 2 Layer 3 Layer 4
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

T2
T4

T6
T8

T10

(a) New weights with P = 0.5.
Layer 2 Layer 3 Layer 4

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

T2
T4

T6
T8

T10

(b) New weights with P ≈ 0.27.

Figure 14: Proportion of weights shared per layer after every second task on permuted MNIST, for
a network with masks initialized to prefer reusing the old weights. Old weights are sampled with
P ≈ 0.88 probability. Each task corresponds to a permutation. Decreasing the probability of new
weights forces increased sharing.

C.7 EXPERIMENTS ON ALGORITHMIC TASKS

C.7.1 SCAN EXPERIMENTS

In preliminary experiments we observed that the full-size word embeddings used for the baseline
in Lake & Baroni (2018) yielded many possible redundant input-to-hidden weight configurations
that have a greatly reduced probability of being sampled. This caused the input-to-hidden layer to
be removed by the thresholding procedure. Therefore, we appropriately reduced the size of word
embeddings to 16 (note that SCAN has only 13 input and 6 output tokens and they are not shared).
When using the reduced embedding we do not suffer from the aforementioned problems. Teacher
forcing was used for each batch with 50% probability.

The Transformer network is based on PyTorch’s internal implementation, with modifications needed
to apply multiple masks more effectively. We use dmodel = 100, inner-layer dimensionality of
dff = 200, h = 4 heads, and 3 layers both in the encoder and decoder. The network is always trained
with teacher forcing. An end token is applied to the end of each input sequence, and decoding starts
with a start token. The sinusoidal positional embedding (Vaswani et al., 2017) is applied to the inputs
of the transformer in both encoder and decoder.

The training procedure uses a batch size of 256 and a gradient clipping of 5. The mask learning rate
is 10−2 and we use β = 3 ∗ 10−5 for the LSTM experiments and β = 10−3 for the Transformers.

23



Published as a conference paper at ICLR 2021

Turn Left Jump Length
0

50

100

Te
st

ac
cu

ra
cy

[%
]

(a) LSTM

Turn Left Jump Length

0

50

100

Te
st

ac
cu

ra
cy

[%
]

(b) Transformer

Figure 15: The networks’ performance when it is directly trained and tested on the splits indicated on
the x-axis, without masking. This is the standard setup from Lake & Baroni (2018). Performance
when the network is trained on IID split, then masks are trained on train split indicated on the x-axis.
It can be seen that although training on the IID set helps compared to the basic setup, the network
still needs task-specific weights, which hurt performance when removed by the masks.

We train the networks for 25k steps without masks before freezing and for another 25k steps for each
mask training phase.

We train the network weights on the IID dataset (the “simple” split), and only the masks on the rest
of the data splits. Figure 15 shows that this process marginally improves the performance of all
splits, compared to when the network is directly trained on the corresponding train split. However,
the performance degrades significantly when removing weights that are unnecessary for the given
training split. This allows us to conclude that the learned solution requires tasks-specific weights.
Notice that the remaining weights still have significantly better performance than training the network
solely on the training set of the given split without masking.

The word embeddings are excluded from the masking process and remain unmodified after initial
training to keep the learned word representations unchanged.

C.7.2 EXPERIMENTS ON THE MATHEMATICS DATASET

The Mathematics Dataset (Saxton et al., 2019) is a dataset intended to test the mathematical reasoning
skills of NNs. It consists of 56 tasks from different areas of mathematics, on high school-level. Each
task consists of a train set divided into 3 levels of difficulty (easy, medium, and hard) and an IID test
set. All questions and answers are provided only in a human-readable text format (see examples in
Fig. 16).

We train the network on individual tasks, in contrast to the method of Saxton et al. (2019), where all
tasks are trained together. The main reason for this is to save computation and to prevent possible
interference between the tasks. We chose five different tasks to analyze, based on their difficulty:
the chosen tasks should have good performance without masking but should be nontrivial. Thus we
choose “arithmetic: add_or_sub”, “algebra: linear_1d”, “calculus: differentiate”, “comparison: sort”
and “polynomials: collect”. Note that the performance of our network might be less than reported in
Saxton et al. (2019), since no transfer between tasks is possible, and we train for significantly fewer
iterations because of limited computational resources.

We split the official easy, medium, and hard train sets to obtain new train and validation sets for each
difficulty level. We randomly choose 10k samples for the new validation set; the rest is used as the
new train set. We filter for repetitions, making sure that no sample appears twice. This way, we get a
train and validation set for each difficulty level. We ignore the official test sets because of the missing
distinction in difficulty. This treatment is needed because we want to be able to train the network on
all difficulty levels but also the masks only on the easy split. Additionally, we want to evaluate its
performance on the hard difficulty. In this way, we are able to determine whether specific weights are
needed exclusively for performing the hard split. Note that the same rules govern the samples in all
sets.

24



Published as a conference paper at ICLR 2021

What is the difference between 1801791.2422 and −0.7?
1801791.9422

Solve −719∗o + 3179∗o + 135275 = −628∗o − 777∗o for o.
−35

What is the derivative of 30595∗j∗∗4 + 254∗j∗∗3 + 1559873 wrt j?
122380∗j∗∗3 + 762∗j∗∗2

Sort −3/5, −1355.6, 703, 2, −2/3 in ascending order .
−1355.6, −2/3, −3/5, 2, 703

Collect the terms in −26∗v − 67 + 29∗v + 12∗v − 3 − 155.
15∗v − 225

Figure 16: Examples from Mathematics Dataset. One sample for every task we use.

First, we train the network on all difficulty levels (easy, medium, and hard). Then we freeze its weights.
Next, we train masks on the easy split and test on the hard split. If this results in a performance drop,
then this indicates that the network requires a separate set of weights for different difficulty levels,
which is undesirable. Nonetheless, we observe precisely this behavior (Fig. 5), which confirms once
more that NNs tend to violate Preuse.

Interpreting the size of the drop is nontrivial due to how the easy, medium, and hard splits differ. The
more difficult splits may include some samples from the easier splits, but never the other way around.
This means that the hard test set’s performance will be nonzero even if none of the hard samples are
solved correctly. This behavior is inherent to the original dataset and can not be changed without
regenerating it.

We use the Transformer (Vaswani et al., 2017) model from Saxton et al. (2019). It has a dmodel = 256,
inner-layer dimensionality of dff = 512, h = 4 heads. Both the encoder and decoder have 3 layers.
The word embeddings of the encoder and decoder are shared, and the output layer is tied to the
word embedding. The network is always trained with teacher forcing. We use the Adam optimizer
with a learning rate of 10−4, ε = 10−9, β1 = 0.9, β2 = 0.995 and gradient clipping of 1. We use 8
masks samples for each batch. We found that some tasks require a linear learning rate warmup for 5k
iterations at the beginning of network training in order to converge. No warmup is used for training
the masks. Individual tasks use different hyperparameters, listed in Table 4. Batch sizes are chosen
so that the experiments fit on a single GPU with 16Gb of VRAM (2 GPUs for “Poly. collect”).

Hyperparameter Add or sub Linear 1D Differentiate Sort Poly. Collect

Batch size (net) 256 512 128 256 128
Batch size (mask) 256 400 128 256 256
Mask regularizer (β) 2 ∗ 10−5 10−6 10−5 3 ∗ 10−6 10−6

Training iters (net) 30k 200k 40k 30k 200k
Training iters (masks) 30k 50k 40k 30k 50k
Learning rate (masks) 0.03 0.02 0.03 0.03 0.02
Warmup steps - 5k - - 5k

Table 4: Hyperparameters for different tasks on the Mathematics Dataset

25



Published as a conference paper at ICLR 2021

C.8 CNN EXPERIMENTS ON CIFAR10

C.8.1 SIMPLE CNN

We use a learning rate of 10−3 and β = 10−4. We train the network for 20k steps before freezing its
weights and then use an additional 20k steps for training each of the masks, including the reference
mask. See Table 5 for details regarding the architecture.

Index Operation Inputs Outputs Kernel Padding Activation Dropout

1 Conv 3 32 3x3 1 ReLU -
2 Max pooling 32 32 2x2 0 - -
3 Conv 32 64 3x3 1 ReLU -
4 Max pooling 64 64 2x2 0 - -
5 Conv 64 128 3x3 1 ReLU 0.25
6 Max pooling 128 128 2x2 0 - -
7 Conv 128 256 3x3 1 ReLU 0.5
8 Spatial average 256 256 - - - -
6 Feedforward 256 10 - - Softmax -

Table 5: Architecture of the simple CNN used for CIFAR 10 experiments

Fig. 18 shows the confusion matrix difference for all classes of CIFAR 10. The most surprising
observation is that the decrease in performance for each of the classes is substantial, ranging from 40
to 60%. This shows the heavy reliance on class-exclusive features.

Analyzing confusion matrix differences yields interesting insights. “Airplane” is confused with“bird”
and “ship”, which is likely due to having a similar blue background. Classes “cat” and “dog” tend to
be confused with each other—removing exclusive feature detectors for one improves the performance
of the other. “Truck” and “car” are highly related, likely due to the similarities in terms of shape,
such as having tires, and similar backgrounds, such as the road.

C.8.2 SIMPLE CNN WITHOUT DROPOUT

The CNN architecture used for experiments in Section 5 uses dropout, as shown in Table 5. A natural
question to ask is how this affects the modularity of the resulting network. Figure 17 indicates that, as
expected, removing dropout results in a few percent of performance loss. When comparing Figures
18 and 19 it can be seen that adding dropout causes a higher degradation in the class performance
when the class-exclusive feature detectors are removed (roughly 30%-40% higher drop per class).
This indicates that network with dropout depends more on class-specific modules, which is in line
with findings presented in Filan et al. (2020).

C.8.3 RESNET-110

To demonstrate that these behaviors apply to more complex models, we train a ResNet-110 (He et al.,
2016) model which achieves competitive 93% validation accuracy following https://github.
com/bearpaw/pytorch-classification. The network is built from non-bottleneck blocks
(“BasicBlocks”, Fig. 5, left in Vaswani et al. (2017)). It is trained with SGD using a weight decay
of 10−4, batch size of 128 and a starting learning rate of 0.1. The learning rate is divided by 10 at
iterations 32 000 and 48 000 (corresponding roughly to epoch 81 and 122). The network is trained
for 64 000 iterations (164 epochs). Data augmentation of random horizontal flipping and random
crop (with padding 4 and output size of 32x32) is used. Masks are trained with Adam, batch size of
256, learning rate of 0.03, β = 2 ∗ 10−5, for 30 000 iterations each. Gradient clipping is not applied
during the initial stage of training the weights, but the usual clipping to norm of 1.0 is applied when
training the masks.

As Figures 6 and 20 show, the performance drop per class is even more dramatic than in the simple
CNN case, reaching almost 100%.

26

https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification


Published as a conference paper at ICLR 2021

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

85± 2 1± 0 3± 1 1± 0 1± 0 0± 0 1± 0 1± 0 4± 1 2± 0

2± 1 90± 1 0± 0 0± 0 0± 0 0± 0 1± 0 0± 0 2± 1 5± 1

5± 1 0± 0 75± 2 4± 1 4± 1 4± 1 5± 1 2± 1 1± 0 0± 0

3± 0 0± 0 5± 1 66± 4 3± 1 13± 3 5± 1 3± 1 1± 0 1± 0

2± 0 0± 0 5± 1 4± 1 77± 3 2± 1 3± 1 5± 2 1± 0 0± 0

1± 0 0± 0 3± 0 14± 3 3± 1 70± 4 2± 1 5± 1 0± 0 1± 0

1± 0 0± 0 3± 1 4± 1 2± 0 2± 1 86± 3 1± 0 0± 0 0± 0

1± 0 0± 0 2± 0 3± 1 3± 1 3± 1 0± 0 85± 3 0± 0 1± 0

4± 1 1± 0 1± 0 1± 0 0± 0 0± 0 0± 0 0± 0 90± 2 2± 0

2± 0 6± 1 1± 0 1± 0 0± 0 0± 0 0± 0 0± 0 2± 1 88± 2

20

40

60

80

(a) Simple CNN

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

82± 3 2± 1 4± 1 1± 0 1± 1 1± 0 1± 0 1± 0 5± 2 2± 1

2± 0 87± 3 0± 0 1± 0 0± 0 0± 0 1± 0 0± 0 2± 2 6± 2

5± 1 1± 0 68± 5 5± 1 6± 1 5± 1 5± 2 3± 1 1± 1 1± 0

3± 1 1± 0 5± 1 58± 4 5± 1 16± 3 5± 2 4± 2 1± 1 2± 1

2± 0 0± 0 5± 2 5± 1 74± 3 4± 1 3± 1 6± 2 1± 0 1± 0

1± 0 0± 0 4± 1 14± 2 4± 1 68± 3 2± 1 5± 1 1± 0 1± 0

1± 0 1± 0 4± 1 5± 2 3± 1 3± 1 82± 3 1± 0 0± 0 1± 0

1± 1 0± 0 2± 1 3± 1 5± 1 4± 1 0± 0 83± 3 0± 0 1± 1

5± 1 2± 1 1± 0 1± 0 0± 0 0± 0 0± 0 0± 0 88± 3 2± 1

2± 0 7± 2 1± 0 1± 0 0± 0 0± 0 0± 0 1± 0 2± 1 86± 2

20

40

60

80

(b) Simple CNN without dropout

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

92± 2 0± 0 3± 1 1± 0 0± 0 0± 0 0± 0 0± 0 2± 1 2± 1

0± 0 97± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 1

2± 1 0± 0 90± 2 2± 1 1± 0 2± 1 2± 0 1± 0 0± 0 0± 0

1± 0 0± 0 2± 1 83± 3 1± 0 8± 1 2± 0 1± 0 0± 0 1± 0

1± 0 0± 0 2± 1 2± 1 91± 2 2± 1 1± 0 2± 1 0± 0 0± 0

1± 0 0± 0 2± 1 7± 1 1± 0 88± 1 0± 0 1± 0 0± 0 0± 0

0± 0 0± 0 2± 1 2± 1 0± 0 0± 0 94± 1 0± 0 0± 0 0± 0

1± 0 0± 0 1± 0 1± 1 1± 1 2± 1 0± 0 94± 1 0± 0 0± 0

3± 1 1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 94± 2 1± 0

1± 0 3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 0 96± 1
0

20

40

60

80

(c) ResNet-110

Figure 17: Confusion matrix on CIFAR10 with masks trained on all classes. It can be seen that
performance without dropout is a few percent lower, as expected. ResNet-110 has a significantly
better performance in all classes.

Inspecting the confusion matrix differences of different architectures as seen in Figures 18, 19 and 20
highlight their similarity. This suggests that the interdependence between classes previously observed
is mostly data driven an independent of the actual network architecture.

27



Published as a conference paper at ICLR 2021

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

−63± 4 3± 1 24± 3 2± 1 3± 1 1± 0 1± 0 2± 1 19± 3 7± 2

−2± 1 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

−5± 1 0± 0 4± 1 0± 1 0± 1 0± 1 0± 1 0± 0 0± 0 0± 0

−3± 0 0± 0 1± 1 0± 2 1± 0 1± 1 0± 0 0± 1 0± 0 0± 0

−2± 0 0± 0 0± 1 0± 1 2± 1 0± 0 0± 1 0± 1 0± 0 0± 0

−1± 0 0± 0 0± 0 −1± 1 0± 0 1± 1 0± 0 0± 1 0± 0 0± 0

−1± 0 0± 0 0± 1 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

−1± 0 0± 0 0± 0 0± 0 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0

−4± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 3± 1 0± 0

−2± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 1 −60

−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 2 −1± 1 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 1± 0

4± 1 −48± 10 0± 0 1± 0 0± 0 0± 0 1± 0 0± 0 6± 1 36± 9

0± 1 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 3 0± 1 0± 2 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 −1± 2 0± 0 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 2 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 0± 0 0± 0

0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 −6± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 5± 1
−40

−20

0

20

(a) airplane (b) automobile

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

3± 1 0± 0 −3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

14± 3 0± 0 −64± 4 11± 3 12± 2 10± 2 11± 2 4± 1 1± 1 0± 0

0± 1 0± 0 −5± 1 1± 2 0± 0 2± 2 0± 1 0± 1 0± 0 0± 0

1± 1 0± 0 −5± 1 1± 1 2± 1 1± 1 0± 1 1± 1 0± 0 0± 0

0± 0 0± 0 −3± 0 0± 2 0± 0 3± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 −3± 1 0± 0 0± 0 1± 0 2± 1 0± 0 0± 0 0± 0

0± 0 0± 0 −2± 0 0± 0 0± 1 1± 1 0± 0 1± 1 0± 0 0± 0

0± 1 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −60

−50

−40

−30

−20

−10

0

10

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

1± 1 0± 0 0± 1 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 1 0± 0 1± 2 −4± 1 0± 1 2± 1 1± 0 0± 0 0± 0 0± 0

3± 2 0± 0 4± 1 −64± 4 6± 1 36± 3 10± 2 4± 2 1± 1 1± 1

0± 0 0± 0 0± 1 −4± 1 2± 2 1± 1 0± 0 0± 1 0± 0 0± 0

1± 0 0± 0 0± 0 −14± 3 1± 0 11± 3 1± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 0 −4± 1 0± 0 1± 0 2± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 −3± 1 0± 0 2± 1 0± 0 1± 1 0± 0 0± 0

0± 1 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −60

−40

−20

0

20

(c) bird (d) cat

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 1 0± 0 3± 2 0± 1 −4± 1 1± 1 0± 1 0± 1 0± 0 0± 0

0± 1 0± 0 1± 1 1± 3 −3± 1 1± 2 0± 1 0± 1 0± 0 0± 0

4± 1 0± 0 19± 3 10± 3 −67± 3 7± 2 8± 2 19± 4 1± 0 0± 0

0± 0 0± 0 0± 1 0± 1 −3± 1 1± 2 0± 0 1± 1 0± 0 0± 0

0± 0 0± 0 1± 0 0± 1 −2± 0 0± 0 1± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 −3± 1 1± 0 0± 0 2± 2 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −60

−40

−20

0

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 0 0± 0 2± 2 1± 1 0± 1 −4± 1 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 1± 1 11± 3 0± 1 −13± 3 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 0± 1 −2± 1 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 8± 3 43± 3 2± 1 −63± 4 2± 1 7± 2 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 0± 0 −2± 1 1± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 2± 1 0± 0 −3± 1 0± 0 1± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −60

−40

−20

0

20

40

(e) deer (f) dog

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 1± 1 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 1

0± 1 0± 0 4± 2 0± 1 0± 1 0± 1 −5± 1 0± 1 0± 0 0± 0

0± 0 0± 0 1± 1 2± 2 1± 1 1± 1 −5± 1 0± 0 0± 0 0± 0

0± 0 0± 0 1± 1 0± 1 2± 2 0± 0 −3± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 1± 2 −2± 1 0± 1 0± 0 0± 0

1± 0 1± 1 21± 3 23± 6 13± 3 5± 2 −67± 9 1± 1 2± 1 1± 0

0± 0 0± 0 0± 0 0± 0 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −60

−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 −1± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 1 0± 0 1± 1 0± 1 0± 0 0± 0 0± 1 −2± 1 0± 0 0± 0

0± 1 0± 0 0± 1 2± 2 0± 0 0± 1 0± 1 −3± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 4± 2 0± 0 0± 1 −5± 2 0± 0 0± 0

0± 0 0± 0 1± 0 1± 1 1± 0 2± 2 0± 0 −5± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 −1± 0 0± 0 0± 0

3± 1 0± 0 3± 1 5± 1 22± 7 10± 2 0± 0 −47± 7 0± 0 2± 1

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1
−40

−30

−20

−10

0

10

20

(g) frog (h) horse

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −4± 1 0± 0

0± 0 1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1 0± 1

0± 0 0± 0 0± 1 0± 1 0± 1 0± 1 0± 1 0± 0 −1± 0 0± 0

0± 0 0± 0 0± 0 1± 2 0± 0 0± 1 0± 1 0± 1 −1± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0 −1± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 0 0± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

31± 4 8± 2 1± 1 2± 1 1± 0 0± 0 1± 0 0± 0 −52± 6 8± 2

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1 1± 1
−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

1± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −2± 0

0± 0 4± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −5± 1

0± 1 0± 0 1± 1 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 1± 2 0± 0 0± 1 0± 1 0± 1 0± 0 −1± 0

0± 0 0± 0 0± 1 0± 1 0± 2 0± 0 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 1 0± 0 0± 1 0± 0 −1± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 0± 0 −1± 0

0± 1 1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 −2± 0

7± 2 40± 6 1± 0 2± 0 0± 0 0± 0 0± 0 2± 1 5± 2 −57± 6

−40

−20

0

20

(i) ship (j) truck

Figure 18: Simple CNN: The change in confusion matrix for all CIFAR10 classes, when class
indicated by the caption, is removed.

28



Published as a conference paper at ICLR 2021

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l
−40± 6 3± 1 14± 3 1± 1 3± 1 1± 0 1± 0 1± 1 12± 3 5± 1

−2± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

−5± 1 0± 0 4± 2 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0 0± 0

−3± 1 0± 0 1± 1 1± 1 0± 1 0± 1 0± 1 0± 1 0± 0 0± 0

−2± 0 0± 0 1± 1 0± 1 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0

−1± 0 0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0

−1± 0 0± 0 1± 1 0± 1 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

−1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

−4± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 4± 2 0± 0

−2± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1

−30

−20

−10

0

10

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 −2± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1

3± 1 −28± 6 1± 0 1± 0 0± 0 0± 0 1± 1 0± 0 5± 1 17± 4

0± 0 −1± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 0 −1± 0 0± 0 1± 1 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 1± 1 0± 0 0± 1 0± 0 0± 1 0± 0 0± 0

0± 0 −1± 0 0± 1 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

0± 0 −2± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 0

0± 0 −7± 2 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 6± 2

−20

−10

0

10

(a) airplane (b) automobile

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

2± 1 0± 0 −4± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

8± 2 0± 0 −45± 5 7± 3 10± 2 7± 2 7± 1 4± 2 1± 1 0± 0

1± 0 0± 0 −5± 1 2± 2 0± 1 1± 1 1± 1 1± 1 0± 0 0± 0

0± 0 0± 0 −5± 1 1± 1 2± 1 1± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 −4± 1 1± 1 0± 0 2± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 −4± 1 0± 0 0± 0 0± 0 2± 1 0± 0 0± 0 0± 0

0± 0 0± 0 −2± 1 1± 0 0± 0 0± 0 0± 0 1± 1 0± 0 0± 0

0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1
−40

−30

−20

−10

0

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 1 0± 0 3± 2 −5± 1 0± 1 1± 0 0± 0 0± 0 0± 0 0± 0

2± 1 0± 0 4± 1 −47± 2 5± 2 24± 3 6± 3 3± 1 1± 0 1± 1

0± 0 0± 0 1± 0 −4± 1 2± 2 2± 1 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 1± 0 −13± 2 1± 1 10± 2 1± 1 1± 0 0± 0 0± 0

0± 0 0± 0 1± 1 −5± 2 0± 1 2± 1 2± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 −3± 1 0± 1 1± 1 0± 0 1± 1 0± 0 0± 0

0± 1 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1
−40

−30

−20

−10

0

10

20

(c) bird (d) cat

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 0 0± 0 4± 1 1± 0 −6± 1 0± 1 0± 0 1± 1 0± 0 0± 0

0± 0 0± 0 1± 1 3± 2 −4± 1 0± 1 1± 1 1± 1 0± 0 0± 0

2± 1 0± 0 11± 3 7± 2 −45± 6 6± 2 5± 2 13± 4 1± 0 0± 0

0± 0 0± 0 1± 0 1± 1 −3± 1 0± 1 0± 1 1± 1 0± 0 0± 0

0± 0 0± 0 1± 0 1± 1 −3± 1 0± 0 2± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 1± 0 −4± 1 0± 0 0± 0 3± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −40

−30

−20

−10

0

10

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 1 0± 0 3± 1 1± 1 0± 1 −5± 1 0± 0 1± 1 0± 0 0± 0

0± 0 0± 0 1± 1 10± 3 1± 1 −15± 2 1± 1 1± 1 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 1± 2 −3± 1 0± 1 1± 0 0± 0 0± 0

0± 0 0± 0 5± 1 25± 6 2± 1 −43± 5 3± 1 6± 2 0± 0 0± 0

0± 0 0± 0 0± 0 1± 1 0± 1 −2± 1 1± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 1± 1 0± 0 −4± 1 0± 0 2± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −40

−30

−20

−10

0

10

20

(e) deer (f) dog

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0

0± 0 0± 0 3± 1 1± 1 0± 1 0± 0 −4± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 4± 2 0± 0 1± 1 −5± 2 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 1± 1 0± 0 −3± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 1± 2 0± 0 1± 1 −2± 1 0± 0 0± 0 0± 0

1± 0 1± 1 10± 3 12± 4 8± 1 4± 2 −38± 4 1± 0 1± 1 1± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

−30

−20

−10

0

10

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 1 0± 0 2± 1 0± 0 0± 1 0± 0 0± 0 −2± 1 0± 0 0± 0

0± 0 0± 0 1± 1 2± 2 0± 0 1± 2 0± 1 −4± 2 0± 0 0± 0

0± 0 0± 0 1± 1 1± 0 2± 2 1± 0 0± 0 −5± 1 0± 0 0± 0

0± 0 0± 0 0± 0 1± 1 1± 0 3± 2 0± 0 −5± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 1 −1± 0 0± 0 0± 0

2± 1 0± 0 3± 1 4± 1 11± 2 8± 2 0± 0 −30± 5 0± 0 2± 1

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 0 0± 0 1± 1

−20

−10

0

10

(g) frog (h) horse

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

3± 2 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −5± 2 0± 0

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1 0± 0

0± 0 0± 0 1± 1 0± 1 0± 0 0± 0 0± 0 0± 0 −1± 1 0± 0

0± 0 0± 0 0± 0 1± 1 0± 0 0± 1 0± 1 0± 0 −1± 1 0± 0

0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 −1± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

16± 5 5± 2 1± 1 2± 1 1± 0 0± 0 1± 0 0± 0 −29± 7 4± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1 1± 1

−20

−10

0

10

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

1± 1 1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1

0± 0 4± 2 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −5± 1

0± 0 0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 −2± 1

0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 1 0± 1 0± 0 −1± 0

0± 0 0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 1 0± 0 −1± 0

0± 0 0± 0 0± 1 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 −1± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 0 −1± 1

0± 1 1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 −2± 0

5± 1 23± 5 1± 0 1± 1 0± 0 0± 0 1± 0 1± 1 3± 2 −35± 7 −30

−20

−10

0

10

20

(i) ship (j) truck

Figure 19: Simple CNN without dropout: The change in confusion matrix for all CIFAR10 classes,
when class indicated by the caption, is removed. The network has the same architecture as Table 5,
but without the dropout layers. The performance drop is reduced by roughly 30%-40% compared to
the same architecture with dropout (Fig. 18).

29



Published as a conference paper at ICLR 2021

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

−91± 3 4± 2 40± 3 5± 3 4± 2 1± 1 2± 1 2± 1 21± 4 12± 2

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

−2± 1 0± 0 1± 2 0± 1 0± 1 0± 1 0± 1 0± 0 0± 0 0± 0

−1± 0 0± 0 1± 1 −2± 4 0± 1 1± 3 0± 1 0± 1 0± 0 0± 0

−1± 0 0± 0 0± 1 0± 1 1± 2 0± 1 0± 0 0± 1 0± 0 0± 0

−1± 0 0± 0 0± 1 −1± 2 0± 0 1± 3 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 1± 1 0± 1 0± 0 0± 1 −1± 2 0± 0 0± 0 0± 0

−1± 0 0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 1± 2 0± 0 0± 0

−3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 2 0± 1

−1± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −80

−60

−40

−20

0

20

40

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 1

2± 1 −96± 2 0± 0 1± 0 0± 0 0± 0 1± 1 0± 0 8± 2 84± 2

0± 0 0± 0 1± 2 −1± 1 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 −2± 2 0± 1 1± 1 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 0 1± 2 0± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 0 −1± 2 0± 1 0± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 1± 2 0± 0 0± 0

0± 1 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 2 0± 0

0± 0 −3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 1
−75

−50

−25

0

25

50

75

(a) airplane (b) automobile

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

3± 2 0± 0 −3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −1± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

25± 3 0± 0 −90± 2 19± 5 15± 3 9± 2 16± 4 2± 1 1± 1 1± 0

0± 0 0± 0 −2± 1 1± 5 1± 1 0± 3 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 −2± 1 0± 1 3± 3 −1± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 −2± 1 1± 3 1± 1 0± 3 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 −2± 1 0± 1 0± 0 0± 0 1± 2 0± 0 0± 0 0± 0

0± 0 0± 0 −1± 0 0± 1 1± 1 0± 1 0± 0 0± 2 0± 0 0± 0

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 −1± 0

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 1 −80

−60

−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 −1± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 1 0± 0 −1± 2 −2± 1 1± 0 1± 1 1± 1 0± 1 0± 0 0± 0

3± 1 1± 0 6± 3 −83± 3 6± 2 52± 3 10± 2 3± 2 2± 1 2± 1

0± 0 0± 0 0± 1 −2± 1 2± 2 1± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 −7± 1 1± 0 6± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 −2± 1 0± 0 0± 0 1± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 −1± 1 0± 1 1± 1 0± 0 1± 2 0± 0 0± 0

−1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 2 −1± 1

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −1± 2 −80

−60

−40

−20

0

20

40

(c) bird (d) cat

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 2 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 1 0± 0 0± 3 0± 1 −1± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 −1± 4 −1± 0 1± 2 0± 1 0± 1 0± 0 0± 0

3± 1 0± 0 23± 5 17± 4 −90± 2 22± 4 3± 1 21± 4 1± 0 0± 0

0± 0 0± 0 0± 1 −1± 2 −1± 0 1± 2 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 −1± 1 0± 1 0± 0 1± 1 0± 0 0± 0

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −80

−60

−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

1± 1 0± 0 −1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

1± 1 0± 0 −1± 2 1± 1 0± 0 −2± 1 0± 0 0± 0 0± 0 0± 0

0± 1 0± 0 0± 1 7± 4 0± 1 −8± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 1± 2 −2± 1 0± 0 0± 0 0± 0 0± 0

1± 1 0± 0 9± 3 63± 6 4± 2 −88± 1 2± 1 7± 2 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 0± 0 0± 0 −1± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 1± 1 0± 0 −2± 1 0± 0 1± 1 0± 0 0± 0

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 1 −80

−60

−40

−20

0

20

40

60

(e) deer (f) dog

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 1 0± 0 1± 2 0± 1 0± 1 0± 1 −2± 0 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 −1± 3 1± 1 1± 2 −2± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 2± 3 0± 1 −1± 0 −1± 1 0± 0 0± 0

0± 0 0± 0 0± 1 −1± 2 0± 1 1± 2 0± 0 0± 0 0± 0 0± 0

2± 1 1± 0 35± 7 33± 7 8± 2 7± 3 −94± 1 1± 1 3± 2 4± 4

0± 0 0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1
−80

−60

−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

2± 2 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −1± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 1

0± 1 0± 0 1± 2 0± 1 0± 0 0± 1 0± 1 −1± 0 0± 0 0± 0

0± 0 0± 0 1± 1 0± 4 0± 0 −1± 3 0± 1 −1± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 2± 2 0± 1 0± 0 −2± 1 0± 0 0± 0

0± 0 0± 0 1± 1 1± 3 1± 1 −2± 3 0± 0 −1± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 −1± 1 0± 0 0± 0 0± 0

5± 2 1± 1 8± 2 9± 2 26± 7 41± 8 0± 0 −93± 1 0± 0 2± 1

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 2 0± 1

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −1± 1
−80

−60

−40

−20

0

20

40

(g) frog (h) horse

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

2± 2 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1 −1± 1

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 1

0± 1 0± 0 1± 2 −1± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 1± 1 −2± 4 1± 1 0± 2 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 −1± 1 1± 2 0± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 −1± 2 0± 1 0± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 2 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 1± 2 0± 0 0± 0

62± 5 15± 4 2± 1 1± 0 1± 0 0± 0 3± 1 1± 0 −94± 2 10± 3

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 0 −1± 1 −80

−60

−40

−20

0

20

40

60

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

2± 2 0± 0 −1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −2± 1

0± 0 2± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1

1± 1 0± 0 −1± 2 0± 1 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 3 0± 1 1± 2 0± 1 0± 1 0± 0 −1± 0

0± 0 0± 0 0± 1 0± 1 0± 3 0± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 2 0± 1 0± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 −1± 2 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0

1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 −1± 0

15± 1 69± 4 0± 0 2± 1 0± 0 0± 0 0± 0 1± 0 8± 3 −95± 1
−75

−50

−25

0

25

50

(i) ship (j) truck

Figure 20: ResNet-110: The change in confusion matrix for all CIFAR10 classes, when class indicated
by the caption, is removed.

30


	Introduction
	Discovering Modules via Weight-Level Introspection
	Analyzing Fundamental Properties of Modules
	Addition/Multiplication Experiments
	Double-Addition Experiments
	Transfer Learning Experiments
	A Potential Explanation for Lack of Weight Sharing

	Analyzing Systematic Generalization on Algorithmic Tasks
	Analyzing Convolutional Neural Networks
	Related Work
	Conclusion
	Derivations
	From Gumbel-Softmax to Gumbel-Sigmoid
	Straight-Through Estimator
	The Expected Value of the Samples
	Choosing the Temperature

	Additional Discussion
	Stability of the Masks
	Potential Errors Introduced by the Straight-Through Estimator

	Does Masking Change the Performed Operation?
	Choosing Target Functionality
	Is Attention the Solution?
	Explicitly Modular Networks

	Additional Results and Experimental Details
	Sanity Checking the Mask Discovery Process
	Common Hyperparameter Choices
	Choosing the Regularization Hyperparameter
	Addition/Multiplication Experiments
	Double Addition Experiments
	Additional Inverted Mask Experiments

	Transfer Learning Experiments
	Experiments on Algorithmic Tasks
	SCAN Experiments
	Experiments on the Mathematics Dataset

	CNN Experiments on CIFAR10
	Simple CNN
	Simple CNN Without Dropout
	ResNet-110



