Under review as a conference paper at ICLR 2026

BIG-LAYERS: ENABLING END-TO-END TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training deep neural networks on extremely large inputs—such as gigapixel
Whole Slide Images (WSIs) in digital pathology—poses significant challenges
due to GPU memory constraints. Multiple Instance Learning (MIL) circumvents
this limitation by processing patches from a WSI. However, the encoder used to
get patch embeddings is usually a generic pre-trained deep neural network model.
In this paper, we propose a training strategy that enables training the encoder by
dynamically offloading intermediate activations of a layer to CPU RAM, allowing
the layer to process inputs that do not fit in the GPU memory. We demonstrate the
effectiveness of our approach on PANDA and CAMELYON datasets using popu-
lar MIL approaches. Experimental results indicate that our method improves the
Quadratic Weighted Kappa (QWK) metric, on PANDA, by 7—-15 percentage points
compared to ResNet-18 baselines where encoders are kept frozen. Evaluations on
external test sets further suggest better generalisation, and in some configurations,
our models even outperform foundation-model encoders on TCGA-PRAD. The
code will be made publicly available upon publication.

1 INTRODUCTION

Advances in deep learning have revolutionised histopathology (Unger & Kather}|2024; [Van der Laak
et al.,[2021)), but some challenges in handling Whole Slide Images (WSIs) remain. One of the chal-
lenges is the enormous size of WSIs, which can be up to a few gigapixels. It prevents the use of
common machine learning techniques, as these techniques require much smaller images to be di-
rectly applicable. For classification tasks, a common approach to handle such large images is to
use Multiple Instance Learning (MIL) (Dietterich et al.l (1997} [Maron & Lozano-Pérez, [1997) in
which some patches are extracted from the WSI, and it is assumed that a subset of those patches
corresponds to the desired label. It is also sometimes referred to as weakly supervised learning.
MIL involves three steps: first, an encoder, such as a Convolutional Neural Network (CNN), con-
verts a patch into an embedding; second, an aggregator pools the embeddings into an aggregated
embedding; and third, a classifier assigns a label to the aggregated embedding.

However, due to the large number of patches required to train a model effectively, training a model
end-to-end is practically infeasible on most GPUs. Therefore, the common approach is to use a
pre-trained encoder to extract the embeddings for all the patches and train only the aggregator and
the classifier models (Song et al., [2023).

Foundation models—Ilarge, heavily pre-trained encoders learned from massive histopathology image
corpora—have become increasingly popular, prompting a rapid proliferation of models developed
for a wide range of computational pathology tasks. Despite their rapid adoption, accumulating
evidence shows these models can be brittle under realistic distribution shifts (de Jong et al., [2025)).
Recent evaluations show that pathology foundation models often encode non-biological technical
signals—such as medical-center, scanner and staining signatures—that undermine their robustness
under distribution shift (Komen et al., 2024; de Jong et al., 2025; |Gustafsson & Rantalainen, |[2024)).
Linear-probe analyses further reveal that these site- and batch-specific factors are readily recoverable
from foundation-model embeddings and can dominate biologically relevant variation, leading to
systematic errors when models are deployed across institutions (Komen et al., 2024; de Jong et al.,
2025 [Komen et al.,[2025)). Moreover, standard mitigation strategies, including stain normalisation,
distillation and larger-scale pretraining, only partially reduce these vulnerabilities (Komen et al.,
202452025} |Gustafsson & Rantalainen, 2024; |Filiot et al.;,|2025)). These findings underscore the need

Under review as a conference paper at ICLR 2026

for rigorous robustness assessment and task-aware adaptation when applying foundation encoders
in heterogeneous clinical environments.

Recent work has attacked the GPU-memory bottleneck for whole-slide and other multi-megapixel
inputs using several complementary strategies. Some authors leverage CUDA unified memory to let
the runtime page very large tensors between host and device (Chen et al), 2021)); others stream or
tile the input so that convolutional layers run on spatial tiles and intermediate outputs are stitched
(Pinckaers et al., [2020); still others reduce GPU state by offloading optimizer/parameter state to
CPU (Ren et al., [2021) or running the backward pass for only a subset of patches (Skrede et al.,
2020).

In this work, we introduce a training strategy that allows comprehensive end-to-end training of
models by efficiently using CPU RAM and GPU RAM for layers whose input and output are too
big to fit in the GPU memory, including layers that require computing statistics over the entire input.
We demonstrate the utility of our approach by training models on the PANDA dataset (Bulten et al.,
2022) using ResNet18 (He et al.l [2016) as the encoder. Models trained using our method perform
significantly better on the test set compared to baseline models where the encoder is frozen, gaining
several percentage points on Cohen’s quadratic weighted Kappa 2 (QWK) metric.

2 RELATED WORK

Memory- and I/O-aware techniques for training on large inputs have followed several broad
paradigms; we summarise each and explain how our method differs.

Unified / runtime-managed memory |Chen et al.|(2021) demonstrate that CUDA unified memory
can enable end-to-end training on entire whole-slide images by relying on the CUDA runtime to page
tensors between host and device. This approach simplifies implementation because the runtime
performs paging implicitly, but it offers limited control over transfer scheduling. In practice, the
explicit high-level unified-memory knobs used in older TensorFlow releases are not exposed as
stable TensorFlow version 2 public APIs. Unified memory may also be suboptimal compared to
methods that explicitly manage data transfers between GPU and CPU (Landaverde et al.| 2014;
Jarzabek & Czarnul, 2017} |Alawneh et al., 2018). Our method does not depend on CUDA unified
memory; instead, we perform layer-aware transfers and precisely control when and how tensors
move between CPU and GPU.

Streaming / tiled convolutional training |Pinckaers et al.| (2020) split the input into spatial tiles
and execute convolutions tile-by-tile, stitching intermediate feature maps. They use this idea to
train ResNet architectures end-to-end on large Whole Slide Images. They use gradient checkpoint-
ing (Chen et al.| 2016)) to avoid storing intermediate representations for those layers. While this
alleviates memory constraints, it can not be used to train layers that require computing statistics
over the entire input, which includes common layers such as batch normalisation. By contrast,
we present a more generic method for implementing commonly used layers. Our method enables
training layers that require global statistics.

Partial backward / selective gradient updates |Skrede et al.|(2020) reduce memory consumption
by computing gradients for the encoder only for selected patches. Their approach reduces mem-
ory and computation at the cost of computing approximate gradients; they are effective when full
gradients are unnecessary but can harm representational learning when end-to-end gradient fidelity
matters. In contrast, we compute gradients for all the tiles processed by the encoder.

Optimizer/state offload (ZeRO-offload) [Ren et al.|(2021) design ZeRO-Offload to reduce GPU
memory pressure by moving model state and optimizer work onto CPU. ZeRO-Offload parti-
tions model states and keeps model parameters on the GPU while offloading averaged gradients,
and the optimizer update computation to the CPU. The approach uses a highly optimized CPU
Adam (Kingmal 2014) implementation and enables training large models on a single GPU. By con-
trast, our method targets memory arising from extremely large single-example tensors rather than
the whole model state or the optimizer. Our approach enables training layers whose activation does
not fit in the GPU. ZeRO-Offload and our approach are complementary and can be combined.

Under review as a conference paper at ICLR 2026

Run on CPU m

Input Image
Fully Connected
Output

Global Average Pool

N
= N
3| gl ||
o °
ZlLlz 3
ol 16 2
x
U E; ©
™~] =
X
IS

CPU eTransfer chunks Transfer chunks
1 by 1 to the GPU 1 by 1 to the GPU
%]
] [
............
gmgoRun the ;'-q B E 5‘,‘"” e
A A 2 &Y Conv layer d Ee erorss
Divide mput TECEEEN N | T ~ Dvide npue EEEEEERY e algorithm
ivide input =
o into chunks ﬁ 0 into chunks
Transfer the result —
back to CPU Y
— CPU Transfer chunks GPU
1 by 1 to the GPU i
@ ;
@ w
L
o
— _ A
2 H H Normalise
N d =& sub-tensor

Transfer the result
back to CPU

Figure 1: ResNetl8 architecture implemented using our method.

3 PROPOSED METHOD

3.1 OVERVIEW

Our method allows training neural networks when the input and output of one or more layers do not
fit in the GPU memory. To achieve that, our method employs the following key strategies:

* Partitioning: Large tensors are divided into sub-tensors that fit within GPU memory.

* Selective Offloading: Intermediate activations that would otherwise exceed GPU capacity
are stored in CPU RAM and transferred back to the GPU only when needed.

» Layer-Specific Execution: Compute-intensive layers (e.g., convolutional layers and batch
normalisation layers) leverage the partitioning and selective offloading strategies on the
GPU, while computationally cheap layers (e.g., activation layers such as ReL.U and pooling
layers such as MaxPool) are executed on the CPU.

« Efficient Backpropagation: The same data partitioning and offloading techniques are ap-
plied to gradient computations, ensuring a memory-efficient backward pass.

Typically, the first few layers of modern CNN architectures progressively downsample the input
image. These layers consume a lot of memory, but as the network deepens, the feature maps become
smaller, and the memory requirements decrease substantially. Our approach utilises the CPU RAM
to process the initial high-memory-demand layers. Once sufficient downsampling has occurred, the
data remains on the GPU for the rest of the network. How many layers should leverage the CPU
RAM can easily be adapted to the particular GPU setup using our implementation.

Algorithm [T] outlines our method. Figure [T]illustrates our implementation of ResNetl18 based on
Algorithm I}

Under review as a conference paper at ICLR 2026

Algorithm 1 Our method

Require: Image X, layers {L;}}¥, of the neural network
Ensure: Output tensor Y’
1: procedure EFFICIENTFORWARD(X, {L;}¥ |)
for each layer L; in the network do
3 if L, is compute-intensive (e.g., Conv, BatchNorm) then
4: Partition X into sub-tensors { X} that fit in GPU memory
5: for each sub-tensor X; do
6.
7
8

Transfer X; to GPU
Compute Y; < L;(X;) on GPU
: Transfer Y; back to CPU if subsequent layers require partitioning
9: end for

10: else if L; is computationally inexpensive (e.g., ReLU, MaxPool) then

11: Compute Y + L;(X) directly on CPU

12: end if

13: XY > Update input for the next layer
14: if tensor size has been significantly reduced then

15: Transfer entire X to GPU for remaining layers

16: end if

17: end for

18: Y« X > Store final output

19: return Y
20: end procedure

3.2 PARTITIONING AND SELECTIVE OFFLOADING

The core of our method for handling computationally heavy layers is to partition the input tensor
into sub-tensors and incrementally compute the output using those sub-tensors. First, we divide the
input tensor into (potentially overlapping) sub-tensors. Then, we transfer sub-tensors to the GPU
one by one and perform the layer-specific computation with the sub-tensor present on the GPU.
Some layers, like normalisation layers, require repeating the previous step to get the final output.
For example, for BatchNorm, we first compute the mean and standard deviation of the input using
Welford’s algorithm in the first sequential transfer of sub-tensors, followed by a second transfer
to normalise the input using the mean and standard deviation computed in the first pass. For the
convolution layer, we transfer the sub-tensors only once, but the sub-tensors might have an overlap
depending on the stride used in the layer.

Since the concrete implementation of our generic method differs from layer to layer, we detail the
implementation of the forward pass for BatchNorm in Algorithm [2] and illustrate it in Figure [I]
demonstrating how to use the generic method for a layer that requires global statistics. We provide
a similar implementation of the Convolution layer in Appendix [A.3]

3.3 LIMITATIONS

Our methodology involves partitioning the input tensor into sub-tensors and executing computations
incrementally using these sub-tensors. Although all commonly used layers can be computed in this
manner, any computationally intensive layer whose computation can not be decomposed in this way
will present a significant constraint as it will necessitate computation on the CPU, which can be
prohibitively expensive.

Architectures that do not significantly downsample the input in the early layers or do not downsam-
ple at all (like Vision Transformers (ViTs) (Dosovitskiy}, 2020), which do not downsample except for
the initial embedding layer) require using our method for most (or all) layers in the network. This
can be too slow to be practically useful, especially for very big networks; however, self-attention can
be implemented efficiently using tiled, IO-aware kernels that align with our partition-and-offload
strategy.

Under review as a conference paper at ICLR 2026

Algorithm 2 Memory-efficient Batch Normalisation (Forward Pass)

Require: Input tensor X, scale parameter -y, shift parameter 3, running mean r_mean, running
variance r_var, maximum count max_N of tensor elements to transfer to GPU, small constant €

Ensure: Normalized output tensor Y, updated running statistics (r_mean, r_var)

1: procedure BIGBATCHNORMFORWARD(X, v, B, r_mean, r_var, max_N, ¢)

2: Partition X into sub-tensors {X; }, each with at most max_N elements

3 if training then

4: for each sub-tensor X; of X do

5: Transfer X; to GPU

6: Update variables in Welford’s algorithm

7 Transfer Y; back to CPU memory
8

end for
9: Update running statistics r_mean and r_var
10: else
11: Set y < r_mean and 02 < r_var
12: end if
13: Normalize:
14: for each sub-tensor X; of X do
15: Transfer X; to GPU
16: Compute:
Xi—p
Yi<~ Nz + 5

17: Transfer Y; back to CPU memory
18: end for
19: return Y, r_mean, r_var

20: end procedure

Implementing self-attention with our method is straightforward in principle. Self-attention reduces
to a sequence of linear projections and small matrix multiplications, and linear layers map directly to
the same partitioning approach we apply to convolutional layers (a 1x1 convolution is algebraically
equivalent to a linear layer on flattened inputs). In practice, algorithms like FlashAttention (Dao
et al., 2022) split the attention computation into small blocks, process each block on the GPU, and
update outputs incrementally. This block-wise approach fits naturally with our sub-tensor transfer
strategy, enabling memory-efficient self-attention.

4 EXPERIMENTS

4.1 DATASETS

PANDA This dataset (Bulten et al., |2022) consists of 10616 WSIs of hematoxylin and eosin
(H&E)-stained needle biopsy WSIs of prostate tissue from two medical centres. Each WSI car-
ries an International Society of Urological Pathology (ISUP) grade - O for normal tissue and 1 to 5
for cancer, forming a 6-class classification task. All slides are in 20X resolution.

TCGA-PRAD This dataset contains 449 resection WSIs from The Cancer Genome Atlas (TCGA)
repository of prostate adenocarcinoma|Zuley et al.|(2016). After a pathologist’s review, we removed
5 WSIs lacking tumour and 23 that could not be opened. The remaining 421 WSIs represent 394
unique patients; we randomly selected one WSI per patient to use as an external test set.

CAMELYON17 This dataset (Litjens et al., [2018)) comprises 1000 H&E-stained WSIs from five
Dutch medical centres (with five slides per patient in the released patient-centric setup) and—when
aggregated with Camelyon16—forms a collection of 1399 annotated WSIs. CAMELYON17 pro-
vides patient-level pN-stage labels (aggregating slide-level findings) and includes a subset of lesion-
level manual annotations (10 annotated slides per centre in the training set) to support both slide-
level classification and lesion localization tasks. All slides are in 40 resolution.

Under review as a conference paper at ICLR 2026

CAMELYON16 This dataset (Bejnordi et al.,[2017) contains 399 WSIs of H&E-stained sentinel
lymph node sections collected from two Dutch centres. The dataset splits into 270 training slides
and 129 test slides; the training slides include pixel-level delineations of metastatic regions provided
as XML contours and binary masks. All slides are in 40 resolution.

4.2 DATASET PREPARATION

We tile the WSIs into non-overlapping 256 x256 patches. For PANDA and TCGA-PRAD, we retain
only the patches with at least 60% foreground pixels. We convert each tile to greyscale and consider
pixels with intensities between 3 and 230 as foreground. For CAMELYON 16/17, we follow Zhang
et al.| (2022) for tiling the WSIs, tiling them at 20 x resolution after localising the tissue region using
OTSU’s threshold method (Otsu et al.l |1975).

4.2.1 PANDA SPLITS

We use the training/validation/test split from Song et al.|Song et al.|(2024), which provides a label-
stratified division of 80:10:10 after removing 1061 noisy WSIs, resulting in 7647, 954, and 954
WSIs for the training, validation, and test subsets, respectively. We train all models exclusively on
the PANDA training subset and evaluate them on its test subset. Additionally, we use TCGA-PRAD
as an external test set to further assess generalisability.

4.2.2 CAMELYON SPLITS

We train exclusively on the CAMELYON17 training set and follow the reprocessed binary labels
proposed by [Ling et al.| (2025). From CAMELYONI17’s training set we randomly select 50 WSIs
to form a validation set and use the remaining 472 WSIs for training. We evaluate on the official
CAMELYON17 test set and use CAMELYON16 as an external test set.

4.2.3 METHODS

We evaluate three methods: Attention-based MIL (ABMIL) [lse et al.| (2018), Double-tier feature
distillation MIL (DTFD) Zhang et al.| (2022}, and TransMIL [Shao et al.| (2021). For each method,
we compare baseline models that freeze the ResNet-18 encoder with our approach that trains it.
All models are initialised with a ResNet-18 encoder pre-trained on ImageNet Deng et al.| (2009),
and we use its final stage output as the patch embedding. In addition, we evaluate three pub-
licly released foundation encoders: H-optimus-1 (Bioptimus| [2025)), UNI2-h (released alongside
UNI) (Chen et al., [2024), and Prov-GigaPath (Xu et al., 2024). For foundation encoders, we fol-
low the baseline hyperparameter settings applying the same optimisation schedule and learning-rate
choices as used for the baseline frozen-ResNet models. We train three models per method and select
the best checkpoint based on the validation QWK score.

4.2.4 TILE SELECTION

During training, we randomly sample 256 tiles per WSI to form a bag. During testing, we use all
foreground tiles; for TCGA-PRAD, we additionally evaluate on 256 randomly selected tiles per
WSI. As the specific 256 tiles may vary across random seeds, we run 100 tests per model using the
mean QWK as the final QWK for the model.

For the CAMELYON experiments, we adopt method-specific sampling strategies that work best for
the method. For baseline models we construct training bags by randomly sampling 1024 tiles per
WSI. For our models we sample 512 tiles per WSI and use a batch size of 2. During evaluation, for
our DTFD and TransMIL models we sample 2048 tiles per WSI, repeat the evaluation 3 times, and
use the mean of those 3 runs as the final score for a given model. For our ABMIL models and all
baseline models, we use all foreground tiles at test time.

4.2.5 OPTIMISATION HYPERPARAMETER SETTINGS

PANDA We test two hyperparameter configurations per method. In the first, we select a learning
rate from le—4, 5e—>5, le—>5 and train for 20 epochs with cosine annealing (Loshchilov & Hutter,
2016)), a batch size of 2, and gradient accumulation over 16 steps, inspired by [Song et al.| (2024).

Under review as a conference paper at ICLR 2026

Table 1: Cohen’s quadratic weighted kappa (QWK) on the PANDA dataset’s test subset and TCGA-
PRAD. We train three models per method and report the mean and standard deviation of QWK. For
TCGA-PRAD, we also report QWK using only 256 randomly selected tiles per scan. We test each
model 100 times when using only 256 tiles and use the mean QWK of the 100 runs as the final QWK
for that model. “-Aug" indicates the use of augmentation.

Method PANDA TCGA-PRAD-All TCGA-PRAD-
256

ABMIL 94.04+ 030 68.11 - 2.21 66.60 - 1.47

H-optimus-1 DTFD 03.18 + 0.44 59.98 & 1.77 66.34 + 0.49
TransMIL 95.56 & 0.39 46.19 + 10.48 54.10 + 4.56

ABMIL 93.91 +0.25 67.53 + 1.10 64.71 + 1.98

Prov-GigaPath DTFD 92.90 + 0.29 61.94 + 1.31 64.10 + 0.42
TransMIL 94,14 + 0.43 52.30 + 5.19 53.89 + 2.89

ABMIL 93.61 +0.12 71.10 £ 0.72 68.65 + 0.63

UNI2-h DTFD 93.20 + 0.15 69.98 + 0.73 67.55 + 1.04
TransMIL 94.35 + 0.38 55.62 & 5.08 58.43 + 4.27

ABMIL Baseline 76.74 + 0.43 56.34 - 0.85 4731+ 118
+Ours 84.60 + 1.15 53.53 + 2.35 49.61 + 1.62

I Bascline 73.64 + 1.48 55.26 - 1.87 47.83 + 0.74
+ Ours 87.13 + 0.63 64.54 & 2.97 56.04 + 2.42

TranMIL Bascline 81.87 + 1.13 14.63 + 3.16 16.86 + 1.70
+ Ours 89.60 & 0.52 90.96 + 9.12 52.49 + 1.67

Baseline 77.89 & 0.50 52.83 + 0.87 51.29 + 0.69

ABMIL-Aug + Ours 86.91 + 1.31 65.86 + 1.73 63.46 + 0.89
DTFDA Baseline 71.53 + 1.18 56.79 - 4.21 1021 + 2.44
-Aug + Ours 86.59 + 0.40 69.47 + 0.76 62.65 + 0.54
TrameMILAG Baseline 78.06 + 1.06 36.25 £ 0.78 14.69 + 2.5
g + Ours 89.39 + 0.85 45.56 + 7.15 65.33 + 1.14

In the second, we train for 45 epochs without cosine annealing or gradient accumulation, applying
exponential decay (rate 0.955). All experiments use the Adam optimiser (Kingmal 2014)) with a
weight decay of le—4.

CAMELYON17 For baseline models we train with a learning rate of 1le—4 for 120 epochs. For
our models we train with a learning rate of 5e—5 for 90 epochs. Both baseline and our models
use a cosine-annealing learning-rate schedule and gradient accumulation over 2 steps. Baseline
models use Adam optimiser while our models use Adam optimiser with DEMON momentum decay
rule (Chen et al., [2022)). Adam is used with weight decay of 1le—4.

4.2.6 INPUT AUGMENTATION

We train models with and without augmentation. We employ Gaussian blur, colour jitter, random
horizontal and vertical flips, and random rotation. We apply a single set of randomly selected pa-
rameters uniformly per WSI rather than augmenting each tile independently.

5 RESULTS AND DISCUSSION

5.1 PANDA AND TCGA-PRAD

Table [T shows that end-to-end training with our method improves the QWK by 7 to 15 percentage
points on the PANDA test set. On TCGA-PRAD, the baseline outperforms ABMIL and TransMIL
without augmentation; however, our method with augmentation attains superior results. Baseline

Under review as a conference paper at ICLR 2026

models that freeze the encoder do not benefit from augmentation, whereas our approach exploits it
effectively.

TransMIL exhibits high variance when tested on all tiles. We hypothesise that these inferior results
stem from a training-testing mismatch. Specifically, all models train on bags with 256 tiles per
WSI. While the PANDA test set averages 400 tiles per WSI, with the maximum being 1400 tiles,
TCGA-PRAD averages 12800 tiles with the maximum being 41000. Because TransMIL employs
self-attention that directly processes inter-tile interactions, it likely performs suboptimally on WSIs
with approximately 50 times more tiles than WSIs seen during training.

We validate this hypothesis by testing on TCGA-PRAD using a subset of 256 randomly selected
tiles per WSI. To handle variability from random selection of tiles, we run the evaluation 100 times
and use the mean QWK as the final QWK for each model. Under these conditions, TransMIL
improves notably, reaching QWK values comparable to other methods. Moreover, our approach
with augmentation also maintains superior generalisability on TCGA-PRAD.

Foundation models consistently yield stronger in-domain performance on the PANDA test set, but
the picture reverses on the external cohort when we compare each method using its best TCGA-
PRAD result (taking the better of TCGA-PRAD-AIl and TCGA-PRAD-256 per method/approach).
Under this best-of-two comparison, foundation models remain superior for ABMIL; for DTFD only
the UNI2-h encoder slightly outperforms our augmented variant by 0.5%; and for TransMIL our
augmented TransMIL (evaluated with the 256-tile protocol) achieves the highest external QWK
overall, exceeding all three foundation-encoder variants. These results reinforce recent reports that
foundation features often deliver excellent in-domain accuracy but can falter on out-of-distribution
cohorts.

5.2 CAMELYON

Table [2] reports accuracy on the CAMELYONI17 test subset and the CAMELYON16 whole set.
End-to-end training with our method increases accuracy by up to 6 percentage points. Our mod-
els generalise more effectively, demonstrating larger performance improvements on the external
CAMELYONI16 test set compared to the internal CAMELYON17 test subset.

Many whole-slide images in both CAMELYON datasets contain substantially more tiles—up to an
80x increase—than the 512-tile bags we use for training; accordingly, we observe high evaluation
variance for both DTFD and TransMIL when we evaluate on all tiles. To address this training—testing
mismatch, we evaluate every model on two setups: (1) all foreground tiles per WSI and (2) 2048
randomly sampled tiles per WSI (the same number we use in the validation set for checkpoint
selection). We repeat the 2048-tile evaluation 10 times and use the mean accuracy as the final score
for a given model. On the CAMELYON17 test set, our models generally achieve higher accuracy in
the 2048-tile evaluation setup, whereas the baseline models show comparable performance across
both setups. In contrast, on CAMELYON16, most methods perform better when evaluated on all
tiles, with the sole exception of our TransMIL models. This pattern is consistent with the PANDA
results, where TransMIL exhibits improved performance on external datasets when tested with a
limited number of tiles.

Whereas foundation models showed mixed external behaviour in the PANDA-TCGA analysis, here
they offer clear advantages on both datasets: they match or exceed our models on the internal
CAMELYONI17 test set and deliver consistently stronger performance on CAMELYON16. This
could indicate that the domain gap between CAMELYON17 and CAMELYON16 is smaller than
between PANDA and TCGA-PRAD.

We observe similar trends for the AUC metrics, reported in Table[3]in Appendix [A.T

5.3 SPEED

Training epoch comparison. We report per-epoch wall-clock time for three setups on PANDA
(NVIDIA RTX 3090, 24 GB): precomputed-embeddings (train only MIL head) takes =~ 20 s/epoch;
baseline on-the-fly (compute embeddings each iteration, no encoder backpropagation) takes ~
45 min/epoch; end-to-end (encoder backpropagation using our approach) takes ~ 200 min/epoch.

Under review as a conference paper at ICLR 2026

Table 2: Accuracy on the CAMELYON17 dataset’s test set and CAMELYON16 whole dataset. We
train three models per method and report the mean and standard deviation of accuracy. We report
accuracies using 2 different inference setups: 1) Using all foreground tiles of the WSIs 2) Using
only up to 2048 radomly selected tiles per WSI. For the 2048-tiles per bag setup, we test each model
10 times and use the mean accuracy of the 10 runs as the final accuracy for that model. “-Aug"

indicates the use of augmentation.

Method CAM17-All CAM17-2048 CAMI16-All CAMI16-2048

ABMIL 88.64+0.92 90.524+0.40 96.84£0.34 95.15+0.20

H-optimus-1 DTFD 87.75+1.45 90.26+0.72 94.35+£2.00 93.98+0.65
TransMIL 87.12+1.49 89.11+£0.73 93.16 £4.06 92.52 £ 3.23

ABMIL 89.92+0.69 91.43+0.27 96.48+£1.42 94.21+0.48

Prov-GigaPath DTFD 87.63+0.94 90.76 £0.46 94.09+£0.84 92.31+0.45
TransMIL 89.36 £1.32 91.014+0.93 9528 £1.12 93.65 £ 0.66

ABMIL 87.63+0.90 89.60+0.54 93.11£2.10 93.29+1.16

UNI2-h DTFD 88.81+0.56 90.83+0.40 93.78 £3.16 94.22+1.44
TransMIL 87.46 £1.12 89.86 £0.42 91.97+4.15 92.40+£2.55

ABMIL Baseline 88.49+1.22 87.97+1.04 81.26£2.39 79.36+1.72
+ Ours 89.12£0.88 90.58£0.68 87.05+£3.05 82.52+2.33

DTED Baseline 87.50+1.12 88.524+0.68 81.69+£1.73 80.77 +0.62
+ Ours 89.46 +£2.35 90.12+1.97 86.27£3.48 84.29+1.63

TransMIL Baseline 88.44 £2.27 87.484+2.19 79.90£2.66 78.26 + 1.48
+ Ours 88.77+2.81 90.12+1.53 78.11£284 80.79+1.70

ABMIL-A Baseline 87.71+0.92 88.524+0.31 81.35£1.19 79.70 +0.22
ue + Ours 90.54 +0.88 91.14+1.18 86.53£0.69 82.69 + 0.66

DTED-A Baseline 87.64 £0.44 88.27+0.09 82.21+0.98 80.37£0.17
ue + Ours 85.95+2.44 88.63+1.58 87.56+2.59 86.04+2.07
TransMIL-Au Baseline 87.29+£0.56 86.61+£0.47 81.52+£0.15 80.81£0.83
£ +Ours 88.77£297 91.20£0.39 79.71+4.38 83.05+1.09

Runtime benchmark and scalability analysis. We conduct a runtime benchmark to characterize
how per-iteration training time (forward + backward + optimiser step) scales with input resolu-
tion, and how the addition of Big-Layer stages affects scalability. Experiments use ResNet-18 and
ResNet-50 (Appendix [A.2). We report wall times measured on an NVIDIA RTX 3090 (24 GB) for
ResNet-18 and an NVIDIA A100 (80 GB) for ResNet-50. We sweep input side length from 4096 to
32768 pixels. We show the ResNet-18 results in Figure[2] and we present the corresponding ResNet-
50 results in the Appendix in Figure[3] For each configuration, we report the mean per-iteration wall
time with shaded bands indicating +1 standard deviation computed from 10 repeats after 5 warmup
iterations.

Two main trends emerge from the results. First, the baseline configuration—where the entire model
resides on the GPU—exhibits near-linear scaling of iteration time with image area. Second, pro-
gressively enabling more Big-Layer stages increases the maximum feasible input size but also leads
to higher per-iteration cost. The increase in cost is modest (sub-linear) for configurations using
only two Big-Layers and becomes substantially steeper for configurations involving one or more
Big-Layer stages. For ResNet-18, the fitted power-law exponents (see Appendix [A.2)) range from
b ~ 0.83 to 1.48, indicating sub-linear to super-linear growth. For ResNet-50, the exponents exhibit
greater variability across configurations, spanning from b ~ 0.83 to 2.24. We provide detailed fit
statistics and coefficient of determination in Appendix[A.2]

5.4 DISCUSSION AND FUTURE WORK

While we do not evaluate ViT architectures or fine-tune foundation encoders in this study, our
partition-and-offload approach can support memory-efficient attention and encoder fine-tuning (see

Under review as a conference paper at ICLR 2026

Total pixels (side?)

o 1
g7 A

(1 2° @fﬂé
%Q’b v ,1“6 N
I I

‘alx
o 1 ®*
RS Pk
I I

Qv
I

® » o 3 3 ®
&° QQ“E* 5% oot o oo¥
RS e o pa s 0!
I I I I I I

6@1‘5&
‘601'
g— 450 Model
B 420 —e— Baseline (whole model on GPU)
T 390 L No. of Big-Layer stages=0 (2 layers)
2360 No. of Big-Layer stages=1 (6 layers)
G 330 No. of Big-Layer stages=2 (10 layers)
9300 —*— No.of Big-Layer stages=3 (14 layers)

.»0—"'»'

1 1 I 1 \\ . .7\ T 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1
6 0 AW @@ O A® O D oAl a0 o ® b 0 D B O o ® b b 4l b g0 ph e
S G SR S AN Nﬁh a2 o B g @”’9’& U @‘fﬁ o 1\‘& 25 1&‘)‘ 2 g & 1%@1 2987 oGP ¥ 1®
Image side (px)

Figure 2: Incremental-stage benchmark for ResNet18: mean wall time per training iteration (forward
+ backward + optimizer step) versus input side length. Shaded bands denote £1 standard deviation
across repeated iterations. The top axis reports image area (side?). Each curve corresponds to a
model configuration where the number in brackets indicates the number of Big-Layers the model
uses. Benchmarks were run on an NVIDIA RTX 3090 (24 GB). We report the fitted power-law
exponents b and doubling factors in Appendix

section[3.3)), and we leave systematic evaluation of ViTs and encoder fine-tuning to future work. Be-
cause our method enables training the encoder, it also readily accommodates domain-generalisation
techniques that require encoder training — for example, Representation Self-Challenging (Huang
et al.} 2020), Learning to Diversify (Wang et al.,[2021), Correlated Style Uncertainty (Zhang et al.,
2024), and nucleus-focused training (Tomar et al., [2024) — as well as augmentation strategies de-
veloped for H&E images (Marini et al., [2023}; |Shen et al., [2022]).

While we focus on MIL for histopathology in this work, our method is broadly applicable. It allows
training on WSIs without dividing them into patches, which can be helpful in applications where
global context is essential.

The memory constraints we address are not unique to histopathology. For instance, remote
sensing images can have a large image size, which poses challenges in tasks like segmenta-
tion |Huang et al.|(2018)) and object detection |Li et al.| (2022). Our approach can be useful in these
and other applications as well.

6 CONCLUSION

We present a practical method that leverages CPU RAM as auxiliary memory to overcome GPU
memory limits for very large inputs such as whole-slide images. By integrating Big-Layers into
standard MIL pipelines we enable end-to-end training of the encoder on gigapixel-scale inputs that
previously required freezing or aggressive tiling.

Empirically, we demonstrate that end-to-end training with Big-Layers substantially improves pre-
dictive performance on large-scale histopathology benchmarks. On PANDA we report QWK gains
of roughly 7-15 percentage points relative to frozen-encoder baselines; on CAMELYON our method
improves external-set accuracy by up to ~6 percentage points, indicating improved cross-site gen-
eralisability.

The runtime experiments clarify the principal trade-off: Big-Layers enable processing of inputs
that exceed GPU memory at the cost of increased per-iteration runtime. Baseline (all-on-GPU)
configurations exhibit near-linear scaling with image area, whereas using Big-Layers increases per-
iteration cost.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Luay Alawneh, Emad Rawashdeh, Mahmoud Al-Ayyoub, and Yaser Jararweh. Gpu parallelization
of sequence segmentation using information theoretic models. Simulation Modelling Practice
and Theory, 86:11-24, 2018.

Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes Van Diest, Bram Van Ginneken, Nico
Karssemeijer, Geert Litjens, Jeroen AWM Van Der Laak, Meyke Hermsen, Quirine F Manson,
Maschenka Balkenhol, et al. Diagnostic assessment of deep learning algorithms for detection of
lymph node metastases in women with breast cancer. Jama, 318(22):2199-2210, 2017.

Bioptimus. H-optimus-1. https://huggingface.co/bioptimus/H-optimus—1, 2025.
Accessed: 2025-11-15.

Wouter Bulten, Kimmo Kartasalo, Po-Hsuan Cameron Chen, Peter Strom, Hans Pinckaers, Kunal
Nagpal, Yuannan Cai, David F Steiner, Hester Van Boven, Robert Vink, et al. Artificial intelli-
gence for diagnosis and gleason grading of prostate cancer: the panda challenge. Nature medicine,
28(1):154-163, 2022.

Chi-Long Chen, Chi-Chung Chen, Wei-Hsiang Yu, Szu-Hua Chen, Yu-Chan Chang, Tai-I Hsu,
Michael Hsiao, Chao-Yuan Yeh, and Cheng-Yu Chen. An annotation-free whole-slide training
approach to pathological classification of lung cancer types using deep learning. Nature commu-
nications, 12(1):1193, 2021.

John Chen, Cameron Wolfe, Zhao Li, and Anastasios Kyrillidis. Demon: improved neural net-
work training with momentum decay. In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 3958-3962. IEEE, 2022.

Richard J Chen, Tong Ding, Ming Y Lu, Drew FK Williamson, Guillaume Jaume, Andrew H Song,
Bowen Chen, Andrew Zhang, Daniel Shao, Muhammad Shaban, et al. Towards a general-purpose
foundation model for computational pathology. Nature medicine, 30(3):850-862, 2024.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré€. FlashAttention: Fast and memory-
efficient exact attention with IO-awareness. Advances in neural information processing systems,
35:16344-16359, 2022.

Edwin D. de Jong, Eric Marcus, and Jonas Teuwen. Current pathology foundation models are
unrobust to medical center differences. arXiv preprint arXiv:2501.18055, 2025. URL https:
//arxiv.org/abs/2501.18055/

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Thomas G Dietterich, Richard H Lathrop, and Tomds Lozano-Pérez. Solving the multiple instance
problem with axis-parallel rectangles. Artificial intelligence, 89(1-2):31-71, 1997.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Alexandre Filiot, Nicolas Dop, Oussama Tchita, Auriane Riou, Rémy Dubois, Thomas Peeters,
Daria Valter, Marin Scalbert, Charlie Saillard, Genevie¢ve Robin, et al. Distilling foundation mod-
els for robust and efficient models in digital pathology. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pp. 162—172. Springer, 2025.

Fredrik K Gustafsson and Mattias Rantalainen. Evaluating computational pathology foundation
models for prostate cancer grading under distribution shifts. arXiv preprint arXiv:2410.06723,
2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

11

https://huggingface.co/bioptimus/H-optimus-1
https://arxiv.org/abs/2501.18055
https://arxiv.org/abs/2501.18055

Under review as a conference paper at ICLR 2026

Bohao Huang, Daniel Reichman, Leslie M Collins, Kyle Bradbury, and Jordan M Malof. Tiling and
stitching segmentation output for remote sensing: Basic challenges and recommendations. arXiv
preprint arXiv:1805.12219, 2018.

Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-challenging improves cross-domain
generalization. In European conference on computer vision, pp. 124—140. Springer, 2020.

Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance learn-
ing. In International conference on machine learning, pp. 2127-2136. PMLR, 2018.

Lukasz Jarzabek and Pawet Czarnul. Performance evaluation of unified memory and dynamic par-
allelism for selected parallel cuda applications. The Journal of Supercomputing, 73:5378-5401,
2017.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Jonah Komen, Hannah Marienwald, Jonas Dippel, and Julius Hense. Do histopathological foun-
dation models eliminate batch effects? a comparative study. arXiv preprint arXiv:2411.05489,
2024.

Jonah Koémen, Edwin D de Jong, Julius Hense, Hannah Marienwald, Jonas Dippel, Philip Naumann,
Eric Marcus, Lukas Ruff, Maximilian Alber, Jonas Teuwen, et al. Towards robust foundation
models for digital pathology. arXiv preprint arXiv:2507.17845, 2025.

Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and Martin Herbordt. An investigation of
unified memory access performance in cuda. In 2014 IEEE High Performance Extreme Comput-
ing Conference (HPEC), pp. 1-6. IEEE, 2014.

Zheng Li, Yongcheng Wang, Ning Zhang, Yuxi Zhang, Zhikang Zhao, Dongdong Xu, Guangli Ben,
and Yunxiao Gao. Deep learning-based object detection techniques for remote sensing images: A
survey. Remote Sensing, 14(10):2385, 2022.

Xitong Ling, Yuanyuan Lei, Jiawen Li, Junru Cheng, Wenting Huang, Tian Guan, Jian Guan, and
Yonghong He. Comprehensive benchmark dataset for pathological lymph node metastasis in
breast cancer sections. Scientific Data, 12(1):1381, 2025.

Geert Litjens, Peter Bandi, Babak Ehteshami Bejnordi, Oscar Geessink, Maschenka Balkenhol,
Peter Bult, Altuna Halilovic, Meyke Hermsen, Rob Van de Loo, Rob Vogels, et al. 1399 hé&e-
stained sentinel lymph node sections of breast cancer patients: the camelyon dataset. GigaScience,
7(6):giy065, 2018.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Niccold Marini, Sebastian Otalora, Marek Wodzinski, Selene Tomassini, Aldo Franco Dragoni,
Stephane Marchand-Maillet, Juan Pedro Dominguez Morales, Lourdes Duran-Lopez, Simona
Vatrano, Henning Miiller, et al. Data-driven color augmentation for h&e stained images in com-
putational pathology. Journal of Pathology Informatics, 14:100183, 2023.

Oded Maron and Tomds Lozano-Pérez. A framework for multiple-instance learning. Advances in
neural information processing systems, 10, 1997.

Nobuyuki Otsu et al. A threshold selection method from gray-level histograms. Automatica, 11
(285-296):23-27, 1975.

Hans Pinckaers, Bram Van Ginneken, and Geert Litjens. Streaming convolutional neural networks
for end-to-end learning with multi-megapixel images. IEEE transactions on pattern analysis and
machine intelligence, 44(3):1581-1590, 2020.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-

jia Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551-564, 2021.

12

Under review as a conference paper at ICLR 2026

Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, et al. Transmil:
Transformer based correlated multiple instance learning for whole slide image classification. Ad-
vances in neural information processing systems, 34:2136-2147, 2021.

Yiqing Shen, Yulin Luo, Dinggang Shen, and Jing Ke. Randstainna: Learning stain-agnostic features
from histology slides by bridging stain augmentation and normalization. In International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention, pp. 212-221. Springer,
2022.

Ole-Johan Skrede, Sepp De Raedt, Andreas Kleppe, Tarjei S Hveem, Knut Liestgl, John Maddison,
Hanne A Askautrud, Manohar Pradhan, John Arne Nesheim, Fritz Albregtsen, et al. Deep learning

for prediction of colorectal cancer outcome: a discovery and validation study. The Lancet, 395
(10221):350-360, 2020.

Andrew H Song, Guillaume Jaume, Drew FK Williamson, Ming Y Lu, Anurag Vaidya, Tiffany R
Miller, and Faisal Mahmood. Artificial intelligence for digital and computational pathology. Na-
ture Reviews Bioengineering, 1(12):930-949, 2023.

Andrew H Song, Richard J Chen, Tong Ding, Drew FK Williamson, Guillaume Jaume, and Faisal
Mahmood. Morphological prototyping for unsupervised slide representation learning in compu-
tational pathology. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11566-11578, 2024.

Dhananjay Tomar, Alexander Binder, and Andreas Kleppe. Are nuclear masks all you need for
improved out-of-domain generalisation? a closer look at cancer classification in histopathology.
Advances in Neural Information Processing Systems, 37:43499-43532, 2024.

Michaela Unger and Jakob Nikolas Kather. Deep learning in cancer genomics and histopathology.
Genome medicine, 16(1):44, 2024.

Jeroen Van der Laak, Geert Litjens, and Francesco Ciompi. Deep learning in histopathology: the
path to the clinic. Nature medicine, 27(5):775-784, 2021.

Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and Mahsa Baktashmotlagh. Learning to diversify
for single domain generalization. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 834-843, 2021.

Hanwen Xu, Naoto Usuyama, Jaspreet Bagga, Sheng Zhang, Rajesh Rao, Tristan Naumann, Cliff
Wong, Zelalem Gero, Javier Gonzélez, Yu Gu, Yanbo Xu, Mu Wei, Wenhui Wang, Shuming Ma,
Furu Wei, Jianwei Yang, Chunyuan Li, Jianfeng Gao, Jaylen Rosemon, Tucker Bower, Soohee
Lee, Roshanthi Weerasinghe, Bill J. Wright, Ari Robicsek, Brian Piening, Carlo Bifulco, Sheng
Wang, and Hoifung Poon. A whole-slide foundation model for digital pathology from real-world
data. Nature, 2024.

Hongrun Zhang, Yanda Meng, Yitian Zhao, Yihong Qiao, Xiaoyun Yang, Sarah E Coupland, and
Yalin Zheng. Dtfd-mil: Double-tier feature distillation multiple instance learning for histopathol-
ogy whole slide image classification. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 18802-18812, 2022.

Zheyuan Zhang, Bin Wang, Debesh Jha, Ugur Demir, and Ulas Bagci. Domain generalization with
correlated style uncertainty. In Proceedings of the IEEE/CVF winter conference on applications
of computer vision, pp. 2000-2009, 2024.

Margarita L Zuley, Rose Jarosz, Bettina F Drake, Danielle Rancilio, Aleksandra Klim, Kimberly
Rieger-Christ, and John Lemmerman. Radiology data from the cancer genome atlas prostate
adenocarcinoma [tcga-prad] collection. Cancer Imaging Arch, 9(10.7937):K9, 2016.

13

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 AREA UNDER CURVE FOR CAMELYON 17/16

We report AUCs for the CAMELYON datasets in Table[3]

Table 3: AUC on the CAMELYON17 dataset’s test set and CAMELYON16 whole dataset.

We

train three models per method and report the mean and standard deviation of AUC. We report AUCs
using 2 different inference setups: 1) Using all foreground tiles of the WSIs 2) Using only up to
2048 radomly selected tiles per WSI. For the 2048-tiles per bag setup, we test each model 10 times
and use the mean AUC of the 10 runs as the final AUC for that model. “-Aug" indicates the use of

augmentation.
Method CAMI7-All CAMI17-2048 CAMI6-All CAMI6-2048
ABMIL 95.64+0.52 96.00+0.41 97.98+0.22 95.76 4 0.42
H-optimus-1 DTFD 95.10+1.30 95.7640.69 97.93+0.15 95.76 + 0.29
TransMIL ~ 95.714+1.91 96.67+0.36 98.22+0.32 95.80 & 0.58
ABMIL 9581 +0.69 9543+0.24 97.66+0.14 94.29+0.23
Prov-GigaPath DTFD 95.61£0.18 952640.21 97.68+0.36 93.61 +0.32
TransMIL 95904+ 1.39 96.29+0.52 97.77+0.27 95.20 & 0.75
ABMIL 96.36+0.48 96.70+0.21 98.60+0.04 96.16+0.18
UNI2-h DTFD 95.95+0.94 96.114+0.69 98.53+0.27 96.06 + 0.43
TransMIL ~ 93.50 4+ 1.83 96.09+1.45 98.50 +£0.13 96.35 & 0.46
ABMIL Baseline 89.72+1.94 88.10+1.94 81.964+1.60 79.46+ 1.71
+Ours 94.76+0.60 92.36+1.06 87.804+2.66 80.68 + 3.54
DTED Baseline 92.10+0.28 89.93+0.36 83.02+1.16 79.06 4 1.02
+Ours 94.62+1.36 93.81+0.45 89.724+3.61 87.11 +0.96
TransMIL Baseline 89.70 +1.82 88.82+1.68 76.59+2.49 74.12+2.90
rans +Ours 93.65+1.73 92.92+1.63 79.624+4.20 79.34 + 3.50
ABMIL-Au Baseline 91.77+0.37 90.41+0.56 80.8240.48 78.00 4+ 0.40
g +O0urs 9220+ 1.00 91.06+0.43 85.96+3.03 81.66+1.17
DTED-A Baseline 92.38+0.36 90.37+0.26 85.48+1.22 82.204 (.87
“Aug +Ours 9475+ 1.18 92.83+1.17 87.564+2.59 89.30 +2.13
TransMIL.Aue Baseline 90.96 050 89.1040.53 81.45+253 80.09+ 241
€ 4yOurs 94.06+125 93.314+0.86 85.01 +4.38 83.79 + 1.86

A.2 RUNTIME SCALING ANALYSIS

To analyse how per-iteration runtime ¢ scales with input resolution, we fit the model

t(4)

a A’ + ¢,

where A denotes image area (pixels), a > 0 is a scale factor, b > 0 is the power-law exponent and
¢ > 0 1is an additive overhead to capture constant per-iteration costs.

For each model configuration we report:

* the fitted parameters a, b, c;

« the coefficient of determination R?;

* the doubling factor computed at the median tested area,

Fap =

a(QAmed>b +c

a(Amed)? + ¢

which reports how many times slower an iteration becomes when the image area doubles;

* the number of measured points n used in the fit.

14

Under review as a conference paper at ICLR 2026

Total pixels (side?)

W ph 4® P b D ek © 2 60 g O N1O ot o apt LR %“m%@ww‘)
o \:f: 1\““ 1«‘%[" 1:&; 013 v;b“q’ q%”bh_‘m?’: 6‘3;@“6 g,“_@q e‘ﬂ 66@" 11 61" 9‘?& b““ q.“ \\“”‘ a”b“ “AY’ 5‘?'7' \ql“ %@5 A1D‘ e
o 1
I \ \ I
700
Model
2 650 Baseli
—e— Baseline (whole model on GPU)
+ ;
kel 600 No. of Big-Layer stages=0 (2 layers)

g 550 e+ No. of Big-Layer stages=1 (11 layers
5 500 —e- No. of Big-Layer stages=2 (23 layers
o 450 No. of Big-Layer stages=3 (41 layers

(

)
)
)
T 400 T No. of Big-Layer stages=4 (50 layers)

1 1 1 1 I 1 1 I I I I I I 1 1 1 1 1 I 1 1 I 1 I 1 1 1 1
o P O o 6\ @ O P O ® O @b © 9P o Al oah 0B B e) 6\ o®
W Q0 @ g P @ @ g g @ g RUaaR \\1@ I I A N @"y RTINSt
Image side (px)

Figure 3: Incremental-stage benchmark for ResNet50: mean wall time per training iteration (forward
+ backward + optimizer step) versus input side length. Shaded bands denote £1 standard deviation
across repeated iterations. The top axis reports image area (side?). Each curve corresponds to a
model configuration where the number in brackets indicates the number of Big-Layers the model
uses. Benchmarks were run on an NVIDIA A100 (80 GB).

Table 4: Power-law-plus-offset fit results for per-iteration wall time, t(A) = a A® 4 c. Columns list
the model configuration, number of measured points n, fitted parameters a, b and c, coefficient of
determination R? (original scale), and doubling factor Fy;, (time multiplier when area doubles at
the median tested area). See Section @ for benchmarking details.

Model n a b c R? Fam
ResNet-18
Baseline (whole model on GPU) 7 743x107° 1.03 1.69x107% 099 2.00
No. of Big-Layer stages = 0 (2 Big-Layers) 13 123x107% 083 154x107* 098 1.78
No. of Big-Layer stages = 1 (6 Big-Layers) 26 1.67x 107 148 299 098 248
No. of Big-Layer stages = 2 (10 Big-Layers) 41 240 x 107° 1.24 3.21x107* 099 236
No. of Big-Layer stages = 3 (14 Big-Layers) 57 7.96x 107 141 537 099 257
ResNet-50
Baseline (whole model on GPU) 6 224x107% 100 7.86x107% 099 1.98
No. of Big-Layer stages = 0 (2 Big-Layers) 7 1.80x107% 083 3.21x107* 097 1.77
No. of Big-Layer stages = 1 (11 Big-Layers) 11 264x107* 257 2,63 093 5.04
No. of Big-Layer stages = 2 (23 Big-Layers) 19 524x107* 190 7.07x107* 097 3.74
No. of Big-Layer stages = 3 (41 Big-Layers) 29 5.00x 107 2.01 9.30 097 3.77

No. of Big-Layer stages = 4 (50 Big-Layers) 28 3.13x107'% 168 4.14x107* 099 3.20

A.3 CONVOLUTION PASS USING OUR METHOD

Note: patches include halo (overlap) rows to guarantee correct convolution outputs at patch bound-
aries; during the backward pass overlapping gradient contributions to VX are accumulated (re-
duced) when stitching. Gradient accumulation for VW is performed incrementally on the chosen
accumulation device (GPU or CPU) to bound peak memory usage.

15

Under review as a conference paper at ICLR 2026

Algorithm 3 Memory-Efficient Convolution (Forward Pass)

1: procedure BIGCONV2DFORWARD(X, W, stride, padding, dilation, max_N)

2 Determine maximal patch height from max_N and model dimensions.

3 for each batch slice of X do

4: for each (height) patch of X (include halo rows as needed for kernel support) do
5

6

Transfer the patch to GPU (non-blocking).
Compute local convolution:

Yoateh <= Conv2D(Xpaech, W, stride, padding, dilation)

7: Transfer Ypaen back to CPU and place it into its positionin Y.
8 end for
9: end for

10: return Concatenated output Y (stitching overlaps / halos if present).

11: end procedure

Algorithm 4 Memory-Efficient Convolution (Backward Pass)

1: procedure BIGCONV2DBACKWARD(X, W, VY stride, padding, dilation, max_N)

2 Determine maximal patch height from max_N and model dimensions.

3 Initialize VW < 0 (accumulator on device) and VX < 0 (host or preallocated buffer).
4 for each batch slice of X do

5: for each (height) patch of X (use same partitioning/halo policy as forward) do

6.

7

8

Extract corresponding slice VYjcn (output gradient) for this patch.
Transfer Xpuch and VYycn to GPU.
Compute partial gradients on GPU:

AW < Conv2D_weight_grad(Xpach, V Ypatch)
V Xpateh <= Conv2D_input_grad(VYpach, W)

9: Transfer AW to the accumulator location and update VW (reduce/accumulate).
10: Transfer V X,ach to host and add into the corresponding slice of VX (accumulate
where patches overlap).
11: end for

12: end for
13: return VX, VW (and Vb if bias is present).
14: end procedure

16

	Introduction
	Related Work
	Proposed Method
	Overview
	Partitioning and selective offloading
	Limitations

	Experiments
	Datasets
	Dataset preparation
	PANDA splits
	CAMELYON splits
	Methods
	Tile Selection
	Optimisation Hyperparameter Settings
	Input augmentation

	Results and discussion
	PANDA and TCGA-PRAD
	CAMELYON
	Speed
	Discussion and future work

	Conclusion
	Appendix
	Area Under Curve for CAMELYON 17/16
	Runtime scaling analysis
	Convolution pass using our method

