
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BIG-LAYERS: ENABLING END-TO-END TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training deep neural networks on extremely large inputs—such as gigapixel
Whole Slide Images (WSIs) in digital pathology—poses significant challenges
due to GPU memory constraints. Multiple Instance Learning (MIL) circumvents
this limitation by processing patches from a WSI. However, the encoder used to
get patch embeddings is usually a generic pre-trained deep neural network model.
In this paper, we propose a training strategy that enables training the encoder by
dynamically offloading intermediate activations of a layer to CPU RAM, allow-
ing the layer to process inputs that do not fit in the GPU memory. We demonstrate
the effectiveness of our approach on PANDA and CAMELYON datasets using
popular MIL approaches. Experimental results indicate that our method improves
the Quadratic Weighted Kappa (QWK) metric, on PANDA, by 7–15 percentage
points compared to baselines where encoders are kept frozen. Evaluations on
external test sets further suggest better generalisation. The code will be made
publicly available upon publication.

1 INTRODUCTION

Advances in deep learning have revolutionised histopathology (Unger & Kather, 2024; Van der Laak
et al., 2021), but some challenges in handling Whole Slide Images (WSIs) remain. One of the chal-
lenges is the enormous size of WSIs, which can be up to a few gigapixels. It prevents the use of
common machine learning techniques, as these techniques require much smaller images to be di-
rectly applicable. For classification tasks, a common approach to handle such large images is to
use Multiple Instance Learning (MIL) (Dietterich et al., 1997; Maron & Lozano-Pérez, 1997) in
which some patches are extracted from the WSI, and it is assumed that a subset of those patches
corresponds to the desired label. It is also sometimes referred to as weakly supervised learning.
MIL involves three steps: first, an encoder, such as a Convolutional Neural Network (CNN), con-
verts a patch into an embedding; second, an aggregator pools the embeddings into an aggregated
embedding; and third, a classifier assigns a label to the aggregated embedding.

However, due to the large number of patches required to train a model effectively, training a model
end-to-end is practically infeasible on most GPUs. Therefore, the common approach is to use a
pre-trained encoder to extract the embeddings for all the patches and train only the aggregator and
the classifier models (Song et al., 2023).

Recent work has attacked the GPU-memory bottleneck for whole-slide and other multi-megapixel
inputs using several complementary strategies. Some authors leverage CUDA unified memory to let
the runtime page very large tensors between host and device (Chen et al., 2021); others stream or
tile the input so that convolutional layers run on spatial tiles and intermediate outputs are stitched
(Pinckaers et al., 2020); still others reduce GPU state by offloading optimizer/parameter state to
CPU (Ren et al., 2021) or running the backward pass for only a subset of patches (Skrede et al.,
2020).

In this work, we introduce a training strategy that allows comprehensive end-to-end training of
models by efficiently using CPU RAM and GPU RAM for layers whose input and output are too
big to fit in the GPU memory, including layers that require computing statistics over the entire input.
We demonstrate the utility of our approach by training models on the PANDA dataset (Bulten et al.,
2022) using ResNet18 (He et al., 2016) as the encoder. Models trained using our method perform
significantly better on the test set compared to baseline models where the encoder is frozen, gaining
several percentage points on Cohen’s quadratic weighted Kappa κ2 (QWK) metric.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Memory- and I/O-aware techniques for training on large inputs have followed several broad
paradigms; we summarise each and explain how our method differs.

Unified / runtime-managed memory Chen et al. (2021) demonstrate that CUDA unified memory
can enable end-to-end training on entire whole-slide images by relying on the CUDA runtime to page
tensors between host and device. This approach simplifies implementation because the runtime
performs paging implicitly, but it offers limited control over transfer scheduling. In practice, the
explicit high-level unified-memory knobs used in older TensorFlow releases are not exposed as
stable TensorFlow version 2 public APIs. Unified memory may also be suboptimal compared to
methods that explicitly manage data transfers between GPU and CPU (Landaverde et al., 2014;
Jarząbek & Czarnul, 2017; Alawneh et al., 2018). Our method does not depend on CUDA unified
memory; instead, we perform layer-aware transfers and precisely control when and how tensors
move between CPU and GPU.

Streaming / tiled convolutional training Pinckaers et al. (2020) split the input into spatial tiles
and execute convolutions tile-by-tile, stitching intermediate feature maps. They use this idea to
train ResNet architectures end-to-end on large Whole Slide Images. They use gradient checkpoint-
ing (Chen et al., 2016) to avoid storing intermediate representations for those layers. While this
alleviates memory constraints, it can not be used to train layers that require computing statistics
over the entire input, which includes common layers such as batch normalisation. By contrast,
we present a more generic method for implementing commonly used layers. Our method enables
training layers that require global statistics.

Partial backward / selective gradient updates Skrede et al. (2020) reduce memory consumption
by computing gradients for the encoder only for selected patches. Their approach reduces mem-
ory and computation at the cost of computing approximate gradients; they are effective when full
gradients are unnecessary but can harm representational learning when end-to-end gradient fidelity
matters. In contrast, we compute gradients for all the tiles processed by the encoder.

Optimizer/state offload (ZeRO-offload) Ren et al. (2021) design ZeRO-Offload to reduce GPU
memory pressure by moving model state and optimizer work onto CPU. ZeRO-Offload parti-
tions model states and keeps model parameters on the GPU while offloading averaged gradients,
and the optimizer update computation to the CPU. The approach uses a highly optimized CPU
Adam (Kingma, 2014) implementation and enables training large models on a single GPU. By con-
trast, our method targets memory arising from extremely large single-example tensors rather than
the whole model state or the optimizer. Our approach enables training layers whose activation does
not fit in the GPU. ZeRO-Offload and our approach are complementary and can be combined.

3 PROPOSED METHOD

3.1 OVERVIEW

Our method allows training neural networks when the input and output of one or more layers do not
fit in the GPU memory. To achieve that, our method employs the following key strategies:

• Partitioning: Large tensors are divided into sub-tensors that fit within GPU memory.

• Selective Offloading: Intermediate activations that would otherwise exceed GPU capacity
are stored in CPU RAM and transferred back to the GPU only when needed.

• Layer-Specific Execution: Compute-intensive layers (e.g., convolutional layers and batch
normalisation layers) leverage the partitioning and selective offloading strategies on the
GPU, while computationally cheap layers (e.g., activation layers such as ReLU and pooling
layers such as MaxPool) are executed on the CPU.

• Efficient Backpropagation: The same data partitioning and offloading techniques are ap-
plied to gradient computations, ensuring a memory-efficient backward pass.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

7x
7,

 C
on

v,
 6

4,
 /

2

B
at

ch
N

or
m

Re
LU

M
ax

 P
oo

l, 
/2

St
ag

e 
1

St
ag

e 
2

St
ag

e 
3

St
ag

e 
4

G
lo

ba
l A

ve
ra

ge
 P

oo
l

Fu
lly

 C
on

ne
ct

ed

So
ft

m
ax

O
ut

p
ut

In
p

ut
 Im

ag
e

1

Image

Rows 0-7

Rows 2-9

Rows 4-11

Rows (n-7)-(n)

⠇ ⠇
Divide input 
into chunks

2
Transfer chunks
1 by 1 to the GPU

3
Run the 
Conv layer

4 Transfer the result
back to CPU

CPU GPU

Tensor

Sub-tensor 0

Sub-tensor 1

Sub-tensor 2

Sub-tensor n
⠇

Mean & Std
1 Divide input 

into chunks

2 Transfer chunks
1 by 1 to the GPU

3
Run 
Welford’s 
algorithm

CPU GPU

Tensor

Sub-tensor 0

Sub-tensor 1

Sub-tensor 2

Sub-tensor n
⠇

Normalised

⠇

4 Transfer chunks
1 by 1 to the GPU

5 Normalise 
sub-tensor

CPU GPU

6 Transfer the result
back to CPU

Mean & Std

Run on CPU Run on GPU

1s
t
Pa

ss
2n

d
Pa

ss

Figure 1: ResNet18 architecture implemented using our method.

Typically, the first few layers of modern CNN architectures progressively downsample the input
image. These layers consume a lot of memory, but as the network deepens, the feature maps become
smaller, and the memory requirements decrease substantially. Our approach utilises the CPU RAM
to process the initial high-memory-demand layers. Once sufficient downsampling has occurred, the
data remains on the GPU for the rest of the network. How many layers should leverage the CPU
RAM can easily be adapted to the particular GPU setup using our implementation.

Algorithm 1 outlines our method. Figure 1 illustrates our implementation of ResNet18 based on
Algorithm 1.

3.2 PARTITIONING AND SELECTIVE OFFLOADING

The core of our method for handling computationally heavy layers is to partition the input tensor
into sub-tensors and incrementally compute the output using those sub-tensors. First, we divide the
input tensor into (potentially overlapping) sub-tensors. Then, we transfer sub-tensors to the GPU
one by one and perform the layer-specific computation with the sub-tensor present on the GPU.
Some layers, like normalisation layers, require repeating the previous step to get the final output.
For example, for BatchNorm, we first compute the mean and standard deviation of the input using
Welford’s algorithm in the first sequential transfer of sub-tensors, followed by a second transfer
to normalise the input using the mean and standard deviation computed in the first pass. For the
convolution layer, we transfer the sub-tensors only once, but the sub-tensors might have an overlap
depending on the stride used in the layer.

Since the concrete implementation of our generic method differs from layer to layer, we detail the
implementation of the forward pass for BatchNorm in Algorithm 2 and illustrate it in Figure 1,
demonstrating how to use the generic method for a layer that requires global statistics.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Our method
Require: Image X , layers {Li}Ni=1 of the neural network
Ensure: Output tensor Y

1: procedure EFFICIENTFORWARD(X, {Li}Ni=1)
2: for each layer Li in the network do
3: if Li is compute-intensive (e.g., Conv, BatchNorm) then
4: Partition X into sub-tensors {Xj} that fit in GPU memory
5: for each sub-tensor Xj do
6: Transfer Xj to GPU
7: Compute Yj ← Li(Xj) on GPU
8: Transfer Yj back to CPU if subsequent layers require partitioning
9: end for

10: else if Li is computationally inexpensive (e.g., ReLU, MaxPool) then
11: Compute Y ← Li(X) directly on CPU
12: end if
13: X ← Y ▷ Update input for the next layer
14: if tensor size has been significantly reduced then
15: Transfer entire X to GPU for remaining layers
16: end if
17: end for
18: Y ← X ▷ Store final output
19: return Y
20: end procedure

Algorithm 2 Memory-efficient Batch Normalisation (Forward Pass)
Require: Input tensor X , scale parameter γ, shift parameter β, running mean r_mean, running

variance r_var, maximum count max_N of tensor elements to transfer to GPU, small constant ϵ
Ensure: Normalized output tensor Y , updated running statistics (r_mean, r_var)

1: procedure BIGBATCHNORMFORWARD(X, γ, β, r_mean, r_var, max_N, ϵ)
2: Partition X into sub-tensors {Xi}, each with at most max_N elements
3: if training then
4: for each sub-tensor Xi of X do
5: Transfer Xi to GPU
6: Update variables in Welford’s algorithm
7: Transfer Yi back to CPU memory
8: end for
9: Update running statistics r_mean and r_var

10: else
11: Set µ← r_mean and σ2 ← r_var
12: end if
13: Normalize:
14: for each sub-tensor Xi of X do
15: Transfer Xi to GPU
16: Compute:

Yi ← γ · Xi − µ√
σ2 + ϵ

+ β

17: Transfer Yi back to CPU memory
18: end for
19: return Y, r_mean, r_var
20: end procedure

3.3 LIMITATIONS

Our methodology involves partitioning the input tensor into sub-tensors and executing computations
incrementally using these sub-tensors. Although all commonly used layers can be computed in this
manner, any computationally intensive layer whose computation can not be decomposed in this way

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

will present a significant constraint as it will necessitate computation on the CPU, which can be
prohibitively expensive.

Architectures that do not significantly downsample the input in the early layers or do not downsam-
ple at all (like ViTs, which do not downsample except for the initial embedding layer) require using
our method for most (or all) layers in the network. This can be too slow to be practically useful,
especially for very deep networks.

4 EXPERIMENTS

4.1 DATASETS

PANDA This dataset (Bulten et al., 2022) consists of 10616 WSIs of hematoxylin and eosin
(H&E)-stained needle biopsy WSIs of prostate tissue from two medical centres. Each WSI car-
ries an International Society of Urological Pathology (ISUP) grade - 0 for normal tissue and 1 to 5
for cancer, forming a 6-class classification task. All slides are in 20× resolution.

TCGA-PRAD This dataset contains 449 resection WSIs from The Cancer Genome Atlas (TCGA)
repository of prostate adenocarcinoma Zuley et al. (2016). After a pathologist’s review, we removed
5 WSIs lacking tumour and 23 that could not be opened. The remaining 421 WSIs represent 394
unique patients; we randomly selected one WSI per patient to use as an external test set.

CAMELYON17 This dataset (Litjens et al., 2018) comprises 1000 H&E-stained WSIs from five
Dutch medical centres (with five slides per patient in the released patient-centric setup) and—when
aggregated with Camelyon16—forms a collection of 1399 annotated WSIs. CAMELYON17 pro-
vides patient-level pN-stage labels (aggregating slide-level findings) and includes a subset of lesion-
level manual annotations (10 annotated slides per centre in the training set) to support both slide-
level classification and lesion localization tasks. All slides are in 40× resolution.

CAMELYON16 This dataset (Bejnordi et al., 2017) contains 399 WSIs of H&E-stained sentinel
lymph node sections collected from two Dutch centres. The dataset splits into 270 training slides
and 129 test slides; the training slides include pixel-level delineations of metastatic regions provided
as XML contours and binary masks. All slides are in 40× resolution.

4.2 DATASET PREPARATION

We tile the WSIs into non-overlapping 256×256 patches. For PANDA and TCGA-PRAD, we retain
only the patches with at least 60% foreground pixels. We convert each tile to greyscale and consider
pixels with intensities between 3 and 230 as foreground. For CAMELYON 16/17, we follow Zhang
et al. (2022) for tiling the WSIs, tiling them at 20× resolution after localising the tissue region using
OTSU’s threshold method (Otsu et al., 1975).

4.2.1 PANDA SPLITS

We use the training/validation/test split from Song et al. Song et al. (2024), which provides a label-
stratified division of 80:10:10 after removing 1061 noisy WSIs, resulting in 7647, 954, and 954
WSIs for the training, validation, and test subsets, respectively. We train all models exclusively on
the PANDA training subset and evaluate them on its test subset. Additionally, we use TCGA-PRAD
as an external test set to further assess generalisability.

4.2.2 CAMELYON SPLITS

We train exclusively on the CAMELYON17 training set and follow the reprocessed binary labels
proposed by Ling et al. (2025). From CAMELYON17’s training set we randomly select 50 WSIs
to form a validation set and use the remaining 472 WSIs for training. We evaluate on the official
CAMELYON17 test set and use CAMELYON16 as an external test set.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2.3 METHODS

We evaluate three methods: Attention-based MIL (ABMIL) Ilse et al. (2018), Double-tier feature
distillation MIL (DTFD) Zhang et al. (2022), and TransMIL Shao et al. (2021). For each method,
we compare baseline models that freeze the ResNet-18 encoder with our approach that trains it. All
models are initialised with a ResNet-18 encoder pre-trained on ImageNet Deng et al. (2009), and
we use its final stage output as the patch embedding. We train three models per method and select
the best checkpoint based on the validation QWK score.

4.2.4 TILE SELECTION

During training, we randomly sample 256 tiles per WSI to form a bag. During testing, we use all
foreground tiles; for TCGA-PRAD, we additionally evaluate on 256 randomly selected tiles per
WSI. As the specific 256 tiles may vary across random seeds, we run 100 tests per model using the
mean QWK as the final QWK for the model.

For the CAMELYON experiments, we adopt method-specific sampling strategies that work best for
the method. For baseline models we construct training bags by randomly sampling 1024 tiles per
WSI. For our models we sample 512 tiles per WSI and use a batch size of 2. During evaluation, for
our DTFD and TransMIL models we sample 2048 tiles per WSI, repeat the evaluation 3 times, and
use the mean of those 3 runs as the final score for a given model. For our ABMIL models and all
baseline models, we use all foreground tiles at test time.

4.2.5 OPTIMISATION HYPERPARAMETER SETTINGS

PANDA We test two hyperparameter configurations per method. In the first, we select a learning
rate from 1e−4, 5e−5, 1e−5 and train for 20 epochs with cosine annealing (Loshchilov & Hutter,
2016), a batch size of 2, and gradient accumulation over 16 steps, inspired by Song et al. (2024).
In the second, we train for 45 epochs without cosine annealing or gradient accumulation, applying
exponential decay (rate 0.955). All experiments use the Adam optimiser (Kingma, 2014) with a
weight decay of 1e−4.

CAMELYON17 For baseline models we train with a learning rate of 1e−4 for 120 epochs. For
our models we train with a learning rate of 5e−5 for 90 epochs. Both baseline and our models
use a cosine-annealing learning-rate schedule and gradient accumulation over 2 steps. Baseline
models use Adam optimiser while our models use Adam optimiser with DEMON momentum decay
rule (Chen et al., 2022). Adam is used with weight decay of 1e−4.

4.2.6 INPUT AUGMENTATION

We train models with and without augmentation. We employ Gaussian blur, colour jitter, random
horizontal and vertical flips, and random rotation. We apply a single set of randomly selected pa-
rameters uniformly per WSI rather than augmenting each tile independently.

5 RESULTS AND DISCUSSION

5.1 PANDA AND TCGA-PRAD

Table 1 shows that end-to-end training with our method improves the QWK by 7 to 15 percentage
points on the PANDA test set. On TCGA-PRAD, the baseline outperforms ABMIL and TransMIL
without augmentation; however, our method with augmentation attains superior results. Baseline
models that freeze the encoder do not benefit from augmentation, whereas our approach exploits it
effectively.

TransMIL exhibits high variance when tested on all tiles. We hypothesise that these inferior results
stem from a training-testing mismatch. Specifically, all models train on bags with 256 tiles per
WSI. While the PANDA test set averages 400 tiles per WSI, with the maximum being 1400 tiles,
TCGA-PRAD averages 12800 tiles with the maximum being 41000. Because TransMIL employs
self-attention that directly processes inter-tile interactions, it likely performs suboptimally on WSIs
with approximately 50 times more tiles than WSIs seen during training.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Cohen’s quadratic weighted kappa (QWK) on the PANDA dataset’s test subset and TCGA-
PRAD. We train three models per method and report the mean and standard deviation of QWK. For
TCGA-PRAD, we also report QWK using only 256 randomly selected tiles per scan. We test each
model 100 times when using only 256 tiles and use the mean QWK of the 100 runs as the final QWK
for that model. “-Aug" indicates the use of augmentation.

Method PANDA TCGA-PRAD-All TCGA-PRAD-256

ABMIL Baseline 76.74± 0.43 56.34± 0.85 47.31± 1.18
+ Ours 84.60± 1.15 53.53± 2.35 49.61± 1.62

DTFD Baseline 73.64± 1.48 55.26± 1.87 47.83± 0.74
+ Ours 87.13± 0.63 64.54± 2.97 56.04± 2.42

TransMIL Baseline 81.87± 1.13 44.63± 3.16 46.86± 1.70
+ Ours 89.60± 0.52 29.96± 9.12 52.49± 1.67

ABMIL-Aug Baseline 77.89± 0.50 52.83± 0.87 51.29± 0.69
+ Ours 86.91± 1.31 65.86± 1.73 63.46± 0.89

DTFD-Aug Baseline 71.53± 1.18 56.79± 4.21 49.21± 2.44
+ Ours 86.59± 0.40 69.47± 0.76 62.65± 0.54

TransMIL-Aug Baseline 78.06± 1.06 36.25± 0.78 44.69± 2.54
+ Ours 89.39± 0.85 45.56± 7.15 65.33± 1.14

Table 2: Accuracy on the CAMELYON17 dataset’s test subset and CAMELYON16 whole set. We
train three models per method and report the mean and standard deviation of accuracy. For DTFD
and TransMIL, we also report accuracy for our models using only 2048 randomly selected tiles per
scan. We test each model 3 times when using only 2048 tiles and use the mean accuracy of the 3
runs as the final accuracy for that model. “-Aug" indicates the use of augmentation.

Method CAMELYON17 CAMELYON16

ABMIL-Aug Baseline 87.71± 0.92 81.35± 1.19
+ Ours 89.27± 0.96 90.59± 0.40

DTFD-Aug Baseline 87.64± 0.44 82.21± 0.98
+ Ours 88.06± 0.79 85.87± 1.71

TransMIL-Aug Baseline 87.29± 0.56 81.52± 0.15
+ Ours 91.03± 0.07 83.33± 1.56

We validate this hypothesis by testing on TCGA-PRAD using a subset of 256 randomly selected
tiles per WSI. To handle variability from random selection of tiles, we run the evaluation 100 times
and use the mean QWK as the final QWK for each model. Under these conditions, TransMIL
improves notably, reaching QWK values comparable to other methods. Moreover, our approach
with augmentation also maintains superior generalisability on TCGA-PRAD.

5.2 CAMELYON

Table 2 reports accuracy on the CAMELYON17 test subset and the CAMELYON16 whole set. End-
to-end training with our method increases accuracy by up to 9 percentage points. Many whole-slide
images in both CAMELYON datasets contain substantially more tiles—up to an 80× increase—than
the 512-tile bags we use for training; in CAMELYON we observe high evaluation variance for
both DTFD and TransMIL under full-tile evaluation. To mitigate this effect, we evaluate DTFD
and TransMIL by randomly sampling 2048 tiles per WSI (the same number use in validation for
checkpoint selection), repeat each evaluation three times, and use the mean accuracy across the
three runs as the final score for a given model. For ABMIL, using the full set of foreground tiles
at test time consistently improves performance on CAMELYON16, which makes ABMIL the most
robust approach in this regard.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.3 SPEED

We compare the speed of the baseline method with our method. For the baseline, we compute
the embeddings on the fly on GPU and do not run the backward pass for the encoder, while for
our method, backpropagation is run for the encoder as well. When training on PANDA, baseline
models take about 45 minutes for one epoch, while models trained using our approach take about
200 minutes for one epoch on NVIDIA RTX 3090.

Benchmark protocol We performed an incremental-stage sweep in which we increase the image
side length (starting at 7,680 px, step 256 up to a maximum of 13,824 px) and for each image side
attempt progressively more memory-intensive configurations of the network until a configuration
fits on the device. Key parameters of the sweep are:

• batch size: 1,

• warmup iterations per size: 5,

• measured repeats per size: 10 (reported mean and standard deviation),

• optimizer: AdamW (LR = 10−5, weight decay = 10−4),

• mixed precision: automatic AMP (CUDA float16),

• device: NVIDIA RTX 3090 (24 GB).

Figure 2 shows mean wall times (±1 standard deviation shaded) as a function of image side; the top
x-axis shows the total pixel count (side2). The plot was produced from the raw sweep output and
highlights how larger images and different stage configurations affect throughput.

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

140,000,000

160,000,000

180,000,000

200,000,000

Total pixels (side²)

0

5

10

15

20

25

30

35

40

W
al

l t
im

e 
(s

) 
 fo

rw
ar

d+
ba

ck
w

ar
d+

st
ep

ResNet18 incremental-stage benchmark (means ± 1 std)

baseline (tv_resnet18)
custom stage=0
custom stage=1
custom stage=2

6400
6656

6912
7168

7424
7680

7936
8192

8448
8704

8960
9216

9472
9728

9984
10240

10496
10752

11008
11264

11520
11776

12032
12288

12544
12800

13056
13312

13568
13824

Image side (px)

2

6

10

C
us

to
m

 la
ye

rs
(2

 +
 4

 *
 s

ta
ge

)

2 2 2 2 2 2 2

6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10

Figure 2: Incremental-stage benchmark: mean wall time per training iteration (forward + backward
+ step) as a function of image side. Shaded bands show ±1 standard deviation across measured
repeats. The top axis reports total pixel count (side2). The sweep attempts multiple configuration
strategies per side (see text). A stage refers to a group of 2 basic blocks.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.4 DISCUSSION

While we focus on MIL for histopathology in this work, our method is broadly applicable. It allows
training on WSIs without dividing them into patches, which can be helpful in applications where
global context is essential.

The memory constraints we address are not unique to histopathology. For instance, remote sens-
ing images can have a large image size, which poses challenges in tasks like segmentation Huang
et al. (2018) and object detection Li et al. (2022). Our approach can be useful in these and other
applications as well.

6 CONCLUSION

We introduce a novel method to address the memory constraint encountered on GPU while pro-
cessing large inputs such as WSIs. By leveraging CPU RAM as an auxiliary memory resource, our
approach enables processing input tensors that exceed the GPU memory capacity.

We train various MIL models end-to-end on the PANDA dataset using our approach and observe
significant improvement over baseline MIL models in both the PANDA test subset and an external
dataset. The results demonstrate the usefulness of our approach.

REFERENCES

Luay Alawneh, Emad Rawashdeh, Mahmoud Al-Ayyoub, and Yaser Jararweh. Gpu parallelization
of sequence segmentation using information theoretic models. Simulation Modelling Practice
and Theory, 86:11–24, 2018.

Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes Van Diest, Bram Van Ginneken, Nico
Karssemeijer, Geert Litjens, Jeroen AWM Van Der Laak, Meyke Hermsen, Quirine F Manson,
Maschenka Balkenhol, et al. Diagnostic assessment of deep learning algorithms for detection of
lymph node metastases in women with breast cancer. Jama, 318(22):2199–2210, 2017.

Wouter Bulten, Kimmo Kartasalo, Po-Hsuan Cameron Chen, Peter Ström, Hans Pinckaers, Kunal
Nagpal, Yuannan Cai, David F Steiner, Hester Van Boven, Robert Vink, et al. Artificial intelli-
gence for diagnosis and gleason grading of prostate cancer: the panda challenge. Nature medicine,
28(1):154–163, 2022.

Chi-Long Chen, Chi-Chung Chen, Wei-Hsiang Yu, Szu-Hua Chen, Yu-Chan Chang, Tai-I Hsu,
Michael Hsiao, Chao-Yuan Yeh, and Cheng-Yu Chen. An annotation-free whole-slide training
approach to pathological classification of lung cancer types using deep learning. Nature commu-
nications, 12(1):1193, 2021.

John Chen, Cameron Wolfe, Zhao Li, and Anastasios Kyrillidis. Demon: improved neural net-
work training with momentum decay. In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 3958–3962. IEEE, 2022.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. Solving the multiple instance
problem with axis-parallel rectangles. Artificial intelligence, 89(1-2):31–71, 1997.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Bohao Huang, Daniel Reichman, Leslie M Collins, Kyle Bradbury, and Jordan M Malof. Tiling and
stitching segmentation output for remote sensing: Basic challenges and recommendations. arXiv
preprint arXiv:1805.12219, 2018.

Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance learn-
ing. In International conference on machine learning, pp. 2127–2136. PMLR, 2018.

Łukasz Jarząbek and Paweł Czarnul. Performance evaluation of unified memory and dynamic par-
allelism for selected parallel cuda applications. The Journal of Supercomputing, 73:5378–5401,
2017.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and Martin Herbordt. An investigation of
unified memory access performance in cuda. In 2014 IEEE High Performance Extreme Comput-
ing Conference (HPEC), pp. 1–6. IEEE, 2014.

Zheng Li, Yongcheng Wang, Ning Zhang, Yuxi Zhang, Zhikang Zhao, Dongdong Xu, Guangli Ben,
and Yunxiao Gao. Deep learning-based object detection techniques for remote sensing images: A
survey. Remote Sensing, 14(10):2385, 2022.

Xitong Ling, Yuanyuan Lei, Jiawen Li, Junru Cheng, Wenting Huang, Tian Guan, Jian Guan, and
Yonghong He. Comprehensive benchmark dataset for pathological lymph node metastasis in
breast cancer sections. Scientific Data, 12(1):1381, 2025.

Geert Litjens, Peter Bandi, Babak Ehteshami Bejnordi, Oscar Geessink, Maschenka Balkenhol,
Peter Bult, Altuna Halilovic, Meyke Hermsen, Rob Van de Loo, Rob Vogels, et al. 1399 h&e-
stained sentinel lymph node sections of breast cancer patients: the camelyon dataset. GigaScience,
7(6):giy065, 2018.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Oded Maron and Tomás Lozano-Pérez. A framework for multiple-instance learning. Advances in
neural information processing systems, 10, 1997.

Nobuyuki Otsu et al. A threshold selection method from gray-level histograms. Automatica, 11
(285-296):23–27, 1975.

Hans Pinckaers, Bram Van Ginneken, and Geert Litjens. Streaming convolutional neural networks
for end-to-end learning with multi-megapixel images. IEEE transactions on pattern analysis and
machine intelligence, 44(3):1581–1590, 2020.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551–564, 2021.

Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, et al. Transmil:
Transformer based correlated multiple instance learning for whole slide image classification. Ad-
vances in neural information processing systems, 34:2136–2147, 2021.

Ole-Johan Skrede, Sepp De Raedt, Andreas Kleppe, Tarjei S Hveem, Knut Liestøl, John Maddison,
Hanne A Askautrud, Manohar Pradhan, John Arne Nesheim, Fritz Albregtsen, et al. Deep learning
for prediction of colorectal cancer outcome: a discovery and validation study. The Lancet, 395
(10221):350–360, 2020.

Andrew H Song, Guillaume Jaume, Drew FK Williamson, Ming Y Lu, Anurag Vaidya, Tiffany R
Miller, and Faisal Mahmood. Artificial intelligence for digital and computational pathology. Na-
ture Reviews Bioengineering, 1(12):930–949, 2023.

Andrew H Song, Richard J Chen, Tong Ding, Drew FK Williamson, Guillaume Jaume, and Faisal
Mahmood. Morphological prototyping for unsupervised slide representation learning in compu-
tational pathology. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11566–11578, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michaela Unger and Jakob Nikolas Kather. Deep learning in cancer genomics and histopathology.
Genome medicine, 16(1):44, 2024.

Jeroen Van der Laak, Geert Litjens, and Francesco Ciompi. Deep learning in histopathology: the
path to the clinic. Nature medicine, 27(5):775–784, 2021.

Hongrun Zhang, Yanda Meng, Yitian Zhao, Yihong Qiao, Xiaoyun Yang, Sarah E Coupland, and
Yalin Zheng. Dtfd-mil: Double-tier feature distillation multiple instance learning for histopathol-
ogy whole slide image classification. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 18802–18812, 2022.

Margarita L Zuley, Rose Jarosz, Bettina F Drake, Danielle Rancilio, Aleksandra Klim, Kimberly
Rieger-Christ, and John Lemmerman. Radiology data from the cancer genome atlas prostate
adenocarcinoma [tcga-prad] collection. Cancer Imaging Arch, 9(10.7937):K9, 2016.

11


	Introduction
	Related Work
	Proposed Method
	Overview
	Partitioning and selective offloading
	Limitations

	Experiments
	Datasets
	Dataset preparation
	PANDA splits
	CAMELYON splits
	Methods
	Tile Selection
	Optimisation Hyperparameter Settings
	Input augmentation


	Results and discussion
	PANDA and TCGA-PRAD
	CAMELYON
	Speed
	Discussion

	Conclusion

