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ABSTRACT

Autoregressive (AR) editors have recently emerged as strong competitors to dif-
fusion models for text-based image editing, yet they often introduce unintended
changes in non-edited regions due to stochastic token sampling. We present ERec
(Editing by Reconstruction), a background-preservation method that synchronizes
sampling between reconstruction and editing and requires no additional fine-tuning.
Concretely, we run a reconstruction path alongside the standard editing path and
inject identical standard-Gumbel noise into both logits at every decoding step.
This Gumbel-max procedure is multinomial-equivalent, so it keeps diversity while
coupling the two chains: when the logits are similar (typically in background
regions), token choices align; when they differ (true edit regions), choices diverge
and editability is retained. After generation, a lightweight post-refinement local-
izes edits by combining distributional discrepancy with background confidence,
followed by connectivity filtering and residual compositing to correct encoder
quantization residuals. ERec requires no fine-tuning of the baseline, integrates
seamlessly with top-£ or nucleus sampling, and adds negligible inference overhead.
Experimental results show that it substantially improves background preservation
while maintaining edit fidelity.

1 INTRODUCTION

Text-based image editing has long been a particularly important topic in generative Al (Mirza &
Osindero, 2014; Li et al., 2025a; Chen et al., 2024). An effective image editing method should
faithfully enact the text-specified change while minimally disturbing unrelated regions, preserving
background and overall layout. Early approaches primarily relied on GAN inversion with CLIP-based
guidance (Patashnik et al., 2021; Xia et al., 2021; Gal et al., 2022; Abdal et al., 2022). Recent advances
in diffusion models (Ho et al., 2020; Song et al., 2021a) have substantially advanced generative
modeling and, in turn, propelled text-based image editing to the forefront (Huang et al., 2025).
Building on these models, most editing methods either leverage large-scale pretraining (Saharia et al.,
2022; Esser et al., 2024) or adopt task-specific fine-tuning (Mokady et al., 2023; Zhang et al., 2023;
Han et al., 2023; Shi et al., 2024). Most recently, autoregressive (AR) models, traditionally dominant
in natural language processing (Achiam et al., 2023; Liu et al., 2024), have only more recently gained
traction in visual synthesis (Ramesh et al., 2021; Esser et al., 2021).

In contrast to diffusion models, AR-based visual architectures align naturally with large language
models (LLMs) by operating in the same next-token prediction framework over discrete token
sequences, enabling tighter text—image integration and fine-grained token-level control (Chang et al.,
2022). In particular, recent AR-based visual models (Tian et al., 2024; Xiao et al., 2025; Chen
et al., 2025), such as LlamaGen (Sun et al., 2024) and VAR (Tian et al., 2024), have advanced
image tokenization and transformer architectures, achieving performance competitive with diffusion
models and demonstrating significant promise in visual generation. Building on this line of work,
Mu et al. (2025) proposed an instruction-based AR image editing model EditAR, which fine-tunes
LlamaGen as the backbone and establishes an instruction-based editing paradigm comparable to other
instruction-driven diffusion models (Brooks et al., 2023; Zhang et al., 2024).
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Figure 1: Illustration of uncontrolled background changes in AR editing and the workflow of our
proposed ERec. (b) We adopt EditAR (Mu et al., 2025) as the baseline, which often introduces unex-
pected alterations in the background during editing (e.g., deformation of the flowerpot and distortion
of the wooden horse). (c) Our ERec leverages reconstruction as guidance. (d) It synchronizes sam-
pling between reconstruction and editing, keeping background tokens on the reconstruction trajectory.
(e) Finally, by comparing with the reconstruction tokens (with probabilities), ERec identifies the true
editing regions and achieves robust background control.

Despite these advances, visual AR models are still criticized for their limited ability to preserve non-
edited regions consistency, a weakness that becomes particularly evident in instruction-based editing
methods (Hu et al., 2025; Wu et al., 2025). This limitation stems from their next-token generation
paradigm, where each prediction during inference is sampled from a conditional distribution given
both the input tokens (from input image and instruction text) and the previously generated tokens.
While this sampling mechanism is the source of AR models’ diversity and editing flexibility, it
can also lead to incorrect predictions in regions that should remain unchanged, causing cascading
alterations in the non-edited regions, as shown in Fig. 1(b). This challenge remains underexplored,
especially in the context of instruction-based AR editing.

In this paper, building on the EditAR as baseline, we propose a background-preservation method,
Editing by Reconstruction (ERec), which requires no further fine-tuning of the baseline. Concep-
tually, regions susceptible to change under editing exhibit behavior similar to reconstruction: their
conditional distributions are closely aligned. Nevertheless, independent sampling can steer these
regions along divergent token trajectories, inducing extensive background drift. To mitigate this,
we inject shared standard-Gumbel perturbations into the logits of both reconstruction and editing at
every decoding step, thereby implementing multinomial sampling via the Gumbel-max trick (Jang
et al., 2016). This preserves output diversity while synchronizing trajectories in background regions
wherever the distributions coincide, without constraining edited areas (Fig.1(c,d)). After the initial
generation, we compute, for each token, the Jensen—Shannon divergence between the reconstruction
and editing distributions and combine it with token-level confidence to delineate the true edit mask;
we then restore non-edited regions with the original tokens with pixels, yielding robust background
preservation (Fig.1(e)).

The main contribution of this paper can be summarized as follows:

* We introduce ERec, which uses a reconstruction pass as background guidance and shares
the same standard-Gumbel perturbations between reconstruction and editing at every step.
This keeps sampling multinomial-equivalent and synchronizes token choices in non-edited
regions while leaving true edits unconstrained, yielding strong background preservation.

* We design a refinement procedure that jointly leverages distributional discrepancy between
reconstruction and editing and token confidence to localize the true edit regions, then restores
background areas with the original input tokens with pixel residuals.

» ERec requires no further fine-tuning of the baseline editing AR model and no multi-round
inference, yielding substantial background-preservation gains while maintaining edit fidelity.
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2 RELATED WORKS

2.1 TEXT-GUIDED IMAGE EDITING

Text-guided image editing aims to modify image content according to a semantic prompt while
preserving irrelevant background regions. Early GAN-based approaches (Mirza & Osindero, 2014;
Xia et al., 2021; Gal et al., 2022) optimize in the GAN latent space, often with CLIP-based guidance
(Patashnik et al., 2021; Abdal et al., 2022), but are constrained by the capacity and domain coverage of
the pretrained generator, yielding limited realism and poor faithfulness out of distribution. Diffusion-
based editing has since become mainstream. A distinguishing property of diffusion models is the
(approx1mate) one-to-one link between an image and its latent/noise trajectory z under the forward
noising process; consequently, most pipelines first invert a real image to its latent state and then
perform conditional generation with a new prompt, enabling principled inversion and reconstruction-
consistent edits. Inversion can be deterministic (e.g., DDIM inversion or flow-matching trajectories)
(Song et al., 2021a; Lipman et al., 2022) or stochastic via SDE/DDPM-style paths (Song et al., 2021b;
Ho et al., 2020); editing is then guided by cross-attention control (Hertz et al., 2022) or test-time
optimization (Tumanyan et al., 2023; Lu et al., 2023; Hertz et al., 2024). Training-based variants
bypass test-time inversion by learning on paired data (Brooks et al., 2023), and practical refinements
improve reconstruction alignment and efficiency (Mokady et al., 2023; Miyake et al., 2025). In
contrast, autoregressive models generate images token by token without an explicit invertible latent
tied to the input, making faithful inversion and strict background preservation more challenging.

2.2 AUTOREGRESSIVE IMAGE GENERATION AND EDITING

Autoregressive vision models. Unlike diffusion models’ iterative denoising, AR models synthesize
images by predicting the next token in a discrete sequence. Early autoregressive approaches modeled
generation at the pixel or token level (van den Oord et al., 2016; 2017; Esser et al., 2021) or through
masked prediction (Chang et al., 2022). Recent large-scale AR models (Sun et al., 2024; Tian et al.,
2024; Wang et al., 2024; Luo et al., 2024; Xiao et al., 2025; Chen et al., 2025) have further improved
image tokenization and adopted LLM-style Transformer backbones. These advances enable AR
models to produce high-quality images competitive with diffusion models, while supporting flexible
conditioning from semantic text (Ramesh et al., 2021; Yu et al., 2022; Ding et al., 2022) or structural
cues such as edges and depth (Li et al., 2024; 2025b). These capabilities provide a strong foundation
for AR-based image editing.

AR-based image editing. AR-based image editing remains comparatively underexplored, especially
with respect to background preservation. Mu et al. (2025) propose EditAR, which fine-tunes a strong
LlamaGen prior to follow natural-language edit instructions, serving as a competitive AR editing
baseline. Hu et al. (2025) introduce a training-free anchoring strategy that implicitly locks scene
structure and curbs background drift during localized edits. Most recently, Dao et al. (2025) propose
Discrete Noise Inversion, inspired by diffusion-based inversion, which searches for a Gumbel noise
realization that exactly reconstructs the input token sequence and treats the recovered noise as a
discrete latent for editing. Although we also employ Gumbel sampling, our use and objective are
different: instead of searching for a specific noise code of the latent z to locate the source image in
the distribution, we simply synchronize Gumbel draws between reconstruction and editing. Because
logits in non-edit regions remain close to their reconstruction counterparts, reapplying the same draws
faithfully simulates multinomial sampling for background preservation while leaving edit regions
unconstrained. In summary, despite the natural alignment of AR editors with LLM-style token
interfaces and their fine-grained token-level control, the literature consistently reports vulnerability to
error accumulation and background drift—issues our method is designed to mitigate.

3 METHOD

The proposed ERec targets background-preserving editing for the instruction-based AR editor baseline
EditAR (Mu et al., 2025), which has two stages: (1) background token trajectory alignment via a
dual-path inference (reconstruction and editing) with synchronized Gumbel-max sampling; and (2)
post-refinement that leverages distributional discrepancy and source-token confidence with simple
spatial connectivity and residual compositing. We first review the AR editing paradigm in Section 3.1,
then detail inference in Section 3.2 and post-refinement in Section 3.3.
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Figure 2: Pipeline of ERec. (a) Inference. Background token choices are traced via a reconstruction
path, and identical standard-Gumbel perturbations are injected into the logits of both reconstruction
and editing at each step. When the logits are similar, token selections in non-edit regions (green
boxes) are aligned; where the logits differ substantially, tokens in true edit regions (red boxes) remain
unconstrained. (b) Post-refinement. The edit mask is derived by combining token-wise probability
discrepancy with spatial connectivity, after which non-edited regions are restored to the original input
(tokens and pixels). Best viewed in color.

3.1 PRELIMINARIES

The instruction-based AR editor EditAR (Mu et al., 2025), instantiated with LlamaGen (Sun et al.,
2024), is fine-tuned on interventional triplets and casts image editing as next-token prediction
conditioned on the source image and the instruction.

Tokenization. Let X € R7*Wx3 pe the input RGB image. A pre-trained VQ-VAE (van den
Oord et al., 2017; Razavi et al., 2019) encodes X into a latent map z € RHxWexn: Each vector

Z,» € R"= is quantized to its nearest codebook entry from C = {ey, ..., ey}, yielding a discrete
index ¢y, € {1,...,V}. Using the flattened index ¢ € {1, ..., N} with N = H,W,, the token is ;.
The source token sequence is ¢ € VN with V = {1,...,V}. An instruction P is processed by a

pretrained tokenizer and text encoder (e.g., TS (Raffel et al., 2020b) used in LlamaGen) to obtain a
text representation &'!!,

Conditioning & decoding. For instruction-based editing, conditioning is provided by concatenating
the text representation and the source token sequence, [ k™, ¢™°], and the AR model outputs a target
token sequence c'8' = (c}¥', ..., c}&") of the same length as c**°. After inference, c*8' is mapped
back to a latent code map via codebook lookup, z,,, = €t with {er}}_, denoting the VQ-VAE
codebook vectors, and subsequently decoded by the VQ- VAE decoder to produce the edited image
thereby realizing pixel-space image editing X&',

AR factorization. Decoding proceeds autoregressively: tokens are generated sequentially and each
prediction conditions on the already produced prefix. Accordingly, by the chain rule, the conditional
likelihood factorizes as

N

tat | . text tgt | .tgt  text tet tet tgt
p(e | w, ) = [[p(d® e, 1 ), e = (@)

Sampling strategy. Token-level sampling directly governs background preservation and instruction
fidelity. Common choices include greedy (arg max), full multinomial, and truncated variants such as
top-k and nucleus (top-p). While arg max tends to preserve non-edited content, it often suppresses
the stochasticity needed to realize edits, leading to degeneration or instruction failure (Welleck et al.,

"We omit vocabulary-to-embedding conversion details on the text side as they are orthogonal to our analysis.
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2019; Holtzman et al., 2020). Conversely, sampling from a large candidate set (large &k or full
multinomial) increases off-target tokens in background regions; due to exposure-bias accumulation,
local mistakes can cascade into broader background drift (Bengio et al., 2015; Arora et al., 2022).

3.2 RECONSTRUCTION-GUIDED INFERENCE

We now describe stage (1) in Fig. 2(a). In AR-based image editing, background drift arises from
the interplay of model interpretation and sampling randomness. Empirically, regions susceptible to
edit-induced drift also exhibit high variability under the reconstruction prompt. Exploiting this, we
synchronize the sampling noise between reconstruction and editing: at each decoding step we inject
the same standard-Gumbel perturbation vector to both logits, making the two samplers stochastically
identical given their logits. This procedure couples background choices where the logits are similar,
while leaving true edit regions unconstrained where the logits differ.

Tokenization with Reconstruction. ERec augments the standard editing generation with an auxiliary
reconstruction pipeline. That is, we run two pipelines in parallel at inference: (i) editing, conditioned
on the original editing instruction, and (ii) reconstruction. Given a source image and an editing
instruction, we additionally define a reconstruction prompt phrased as “reconstruct the image without
any changes” to elicit reconstruction. Denote the text embeddings of the editing and reconstruction
prompts by k°%it and k™, respectively. Let c*™ be the tokenized source image, and let c**® and
c®di* be the token sequences produced by the pre-trained AR model under the reconstruction and
editing prompts with elements c}*® and c$%it, respectively.

Record-and-replay with shared Gumbel noise. In AR-based image generation, output diversity and
editability stem from per-token multinomial sampling. Yet this randomness is hard to align across
runs: even with the same seed and nearly identical logits, the editing and reconstruction pipelines
condition on different prompts, yielding different token choices on background. To expose and
synchronize this randomness, we adopt Gumbel-max sampling, i.e., sampling by adding i.i.d. Gumbel
noise to logits. This lets us record the Gumbel draws during reconstruction and replay the same draws
at background tokens during editing. At position ¢, ERec evaluates two logit vectors

E;rec _ fe(cr<elg; Rrec7 Csrc)’ ezgdit _ fe(ce<diit; Hedit’ Csrc)7 (2)

where fj is the pre-trained autoregressive decoder. Applying a softmax over the vocabulary converts
these logits into categorical distributions, denoted by pi°® and p<it.

We draw a single Gumbel noise vector g; ~ Gumbel(0, 1)!V!, with the draw deterministically keyed
by (i, seed). This ensures that g; = (gs,1,- - ., gi,|v|) is identical across the reconstruction and editing
pipelines and remains independent of their conditioning. We then add the same noise to the logits
and select by argmax for both pipelines:

rec edit

N
i =argmax{lif +gix}, N = argma{fE" + gixl. 3)

This Gumbel-max procedure is exactly equivalent in distribution to sampling from the multinomial
(categorical) defined by the softmax of the logits; it merely makes the randomness explicit, hence
recordable and replayable (see Appendix B for the equivalence). Sharing the same g; induces a stable
coupling: when the two logits are similar (typically in non-edited regions), the argmaxes coincide
with high probability and the chains align; when they differ (edited regions), the choices naturally
diverge, preserving editability while reproducing the reconstruction-time behavior elsewhere.

Integration with top-kt sampling. In contrast to existing methods (Hu et al., 2025; Dao et al.,
2025), ERec does not explicitly steer the model toward copying the original input tokens during
inference stage. Instead, reconstruction serves as guidance to record background token choices and to
synchronize sampling there by reusing the same Gumbel draws. The mechanism is plug-and-play
with common sampling strategies such as top-k and nucleus (top-p) sampling: when using top-k
or top-p, we first form the candidate set KC; from the original logits, then add Gumbel noise to the
logits restricted to C; and take an argmax. By the truncation corollary (in Appendix B), this is
exactly equivalent to sampling from the renormalized distribution over X;; thus ERec does not alter
the underlying sampling probabilities. As a result, the edit region remains fully editable while the
background replays the reconstruction trajectory without additional intervention. The per-token
record-and-replay step with shared Gumbel noise is given in Algorithm 2.
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3.3 POST-REFINEMENT

During inference, we steer the AR model to keep background regions aligned with the reconstruction
trajectory. Building on this, we apply a lightweight post-refinement to identify the actual edited
regions. We rely on two token-wise signals: (i) a distributional distance between the reconstruction
and editing predictions (e.g., JS divergence), and (ii) the probability assigned to the source token
as a proxy for background confidence (negative log-likelihood, NLL). We index locations either by
a flattened index 4 or by 2D coordinates (u,v) on the H, x W) latent grid; let M € {0, 1}HexWe
denote the edit mask, where M, ,, = 1 marks an edit location and M, ,, = 0 marks background.

JS-based seeding. Under shared Gumbel noise, reconstruction and editing tokens in background
regions are likely to follow the same sampling chain with similar logits. We thus measure the
discrepancy between p'®¢ and p2lt using the Jensen—Shannon (JS) divergence (Lin, 1991):

uU,v u,v
IS(u,v) := § KLo(Pf5 [ mue) + 5 KLa(PS0' I M), mue = 3(PF5 +P505), @)

where KL uses base-2 logarithms, so JS € [0, 1]. JS is symmetric and bounded and smaller values
indicate higher similarity. Given a JS threshold 735, we first threshold the JS map to obtain a coarse
edit mask and then apply a one-hop 8-connected dilation:

Méog = 1{ max JS(a,b) > TJS}, Nalu,v] := {(a,b) : la—u| <1, |b—v| <1}, (5)
’ (a,b)eNsg[u,v]

which preserves edit coverage and enforces local spatial consistency.

NLL-based refinement. The JS-seeded mask covers most edits but also may include background
false positives. Empirically, reconstruction tokens are more volatile than editing ones in background
regions (editing concentrates attention near the instruction, while reconstruction is more diffuse), so
we refine using per-location NLL on the source token:

NLL{M = — In(pSit(ere]), NLL* = — In(p5[e)s]). (6)

u,v u,v u,v

Let Tiow and Tyign be thresholds hyper-parameters for NLL. Mark a location as background if either
condition holds: )

(@) NLLSY' < 765 or  (b) NLLIYS > . (7
Intuitively, (a) accepts locations that the editing pass confidently assigns to the background, preventing
spurious changes caused by occasional reconstruction errors while (b) covers cases with jointly high
uncertainty, potentially arising from token-selection cascades; we conservatively treat such locations
as background. Denote the indicator by S, , € {0,1}, with S, ,, = 1 indicating a background
location. We then shrink the initial editing mask by abstaining on background positions:

My = MO A (1= Suy). (®)

Pixel-level refinement. After obtaining the binary edit mask M € {0, 1}#¢XWe (1 = edit), we lock
the background in token space:

edit — Cirﬁ)’ Muﬂ) = 07 X =D ( Cdit) (9)
Cu,v Ccdit M. -1 edit — ec(c s
u,v — 1y

u,v

where Dec is the pre-trained VQ-VAE decoder and ¢ are source image tokens. With the mask in
hand, we further mitigate VQ-VAE decoding losses by aligning at the pixel level, akin to background-
preserving compositing widely used in image editing and recent text-driven editing pipelines (Hur &
Roth, 2019; Avrahami et al., 2022):

Xsrc = Dec(csrc)7 R=X- Xsrm Y = Xedit + (]- - ]\4]*) ® R7 (10)

where M, is the binary edit mask upsampled to image resolution, 1 is the all-ones matrix of matching
dimension, and ® denotes element-wise multiplication. Here Y denotes the final refined output:
the edited image Xedit corrected with residual details R in background regions. This residual
compositing recovers high-frequency textures and subtle color cues lost to quantization of VQ-VAE,
while leaving the edited regions unchanged. Our post-refinement is detailed in Algorithm 3 and the
full ERec is in Algorithm 1.
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Figure 3: Qualitative results and intermediate process visualization. Left: Visual comparisons
between the baseline EditAR and our method ERec. Middle: ERec reconstruction, initial editing,
and post-refined output (without pixel alignment). Right: Inference-time diagnostics: NLL of
reconstruction, NLL of editing, JS distance between their token distributions, and the estimated
background mask. Brighter colors indicate higher NLL/JS values.
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Table 1: Comparison of the proposed ERec, baseline EditAR and various diffusion-based approaches.

Method T2I Structure Background Preservation CLIP Similarity
Model Distance | | PSNR1 | LPIPS | | MSE | | SSIM 1 | Whole 1 | Edited T
Prompt-to-Prompt SD1.4 88.46 16.80 270.38 | 241.89 | 69.93 26.70 21.43
Null-text Inversion SD1.4 18.42 25.68 77.70 42.92 85.71 24.55 20.73
Pix2pix-zero SD1.4 59.43 19.71 193.44 147.19 | 76.48 23.56 19.76
MasaCtrl SD1.4 34.20 21.59 124.35 83.60 81.31 22.90 18.52
PnPInversion SD1.5 24.81 22.16 114.15 74.07 81.81 25.56 21.50
InstructPix2Pix SD1.5 67.49 19.69 164.27 | 23562 | 76.98 23.37 20.48
MGIE SD1.5 53.46 20.62 131.13 | 205.09 | 79.55 22.67 19.58
EditAR LlamaGen 38.46 2143 117.80 132.51 75.09 24.03 21.45
ERec (Ours) LlamaGen 26.52 26.63 76.50 75.24 88.20 24.13 21.44

4 EXPERIMENTS

Implementation details. Our backbone is EditAR (Mu et al., 2025), which builds on LlamaGen (Sun
et al., 2024) and is fine-tuned on triplet-paired editing datasets (source image, instruction, target),
including SEED-Data-Edit-Unsplash (Ge et al., 2024) and PIPE dataset (Wasserman et al., 2025),
to enable instruction-based image editing. We follow the default hyperparameters of EditAR (see
Appendix C.1 for the full configuration) with top-£ = 1000 unless stated otherwise. For the hyper-
parameters in ERec, we set the JS threshold to 735 = 0.7, and the NLL thresholds to 7oy, = 3.0 and
Thigh = 10. The reconstruction prompt is fixed as: “reconstruct the image without changes” .

Evaluation protocol and metrics. We evaluate on standard instruction-based image editing bench-
mark, PIE-Bench (Ju et al., 2024), which contains 700 examples covering 10 editing types. Our
method takes the source image and editing instruction from the dataset as input and predicts the
edited target with the reconstruction guidance. Following prior work, we assess both reconstruction
fidelity and text-alignment of the edited content with the dataset’s provided foreground masks. For
quantitative evaluation, we follow common practice. Background preservation (outside the edit mask)
is measured by Structure Distance, PSNR, LPIPS, MSE, and SSIM. Prompt-image consistency is as-
sessed with the CLIP similarity score between the target prompt and the generated image. Additional
details about datasets and metric computation are provided in Appendix C.2.
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Table 2: Comparison under different top-k samplers. Bold marks the better score within each pair.

Structure Background Preservation CLIP Similarity

TopK | Methods |y nce | [ PSNRT [ LPIPS | | MSE | | SSIMT | Whole T | Edited T
| Baseline 28.53 23.40 81.42 162.34 78.58 23.06 20.42
ERec (Ours) 13.83 35.63 34.46 46.18 99.60 23.17 20.47
512 Baseline 37.25 21.57 113.62 132.65 75.51 24.12 21.43
ERec 23.09 30.08 62.93 55.77 95.11 24.13 21.45
16K Baseline 41.08 21.15 127.86 | 138.20 | 73.96 24.03 21.61
ERec 30.80 27.96 85.86 82.54 86.60 24.24 21.63

4.1 EXPERIMENTAL RESULTS

Quantitative comparison. Table 1 compares our method ERec with the AR baseline EditAR (Mu
et al., 2025) and a suite of diffusion-based approaches, including Prompt-to-Prompt (Hertz et al.,
2022), Null-text Inversion (Mokady et al., 2023), Pix2Pix-Zero (Parmar et al., 2023), MasaCtrl (Cao
etal., 2023), PnP Inversion (Ju et al., 2024), InstructPix2Pix (Brooks et al., 2023), and MGIE (Fu et al.,
2023). Our primary focus is the comparison with EditAR: quantitatively, ERec improves background
consistency and overall similarity to the target while maintaining strong editing performance within
the edited regions, and it is competitive with diffusion-based approaches.

Qualitative comparison. Figure 3 presents qualitative comparisons on several representative cases.
EditAR often introduces stochastic changes in non-edited regions, whereas ERec better preserves
background content. On closer inspection, although ERec can also make occasional sampling errors
during reconstruction, these errors are propagated to the editing run with a small JS distance and
are therefore identified as non-edited areas (background in (a) and foreground in (b)). In case (c),
even when reconstruction deviates, our NLL;,—based criterion still isolates the true edit region. In
case (d), because ERec estimates an edit/background mask, we perform pixel-space alignment to
reduce VQ-VAE quantization artifacts—most visible on fine details such as facial expressions and
text. More examples are provided in Figure 6. Overall, ERec robustly localizes edit regions and
preserves background.
Table 3: Runtime.

Top-k sampling. Our method integrates naturally with existing sampling
strategies. Using top-k, the results in Table 2 show that: whether using Methods Time(s)
argmax, full multinomial or any intermediate k, our approach consistently Bascline  33.86 + 0.09
achieves better background preservation while maintaining fidelity in the ERec 37'19 T 0.06
edited regions compared to the baseline. For additional k values, please ; )
refer to Table 5 in the Appendix.

Inference time. ERec can parallelize the reconstruction pipeline in batch to avoid redundant passes.
Table 3 gives the per-image runtime on a single NVIDIA H100, averaged over 10 trials.

4.2 ALBATION STUDY

In this section, we assess the contribution of each component in ERec, as summarized in Table 4.

Direct Replacement. We begin with a straightforward variant, Direct Replacement: under shared-
Gumbel sampling, whenever the JS divergence between reconstruction and editing distributions falls
below a threshold, we directly substitute the edited token with the source token, i.e., ity st T
our experiments, we apply this rule with JS < 0.3. From the results, although this strategy yields
strong background preservation, it severely degrades editing ability: the model tends to output source
tokens without applying the intended edits, leading to poor target fidelity.

Ablation on main modules. In the middle block of Table 4, we further dissect the effect of ERec’s
main components. (1) Independent vs. shared Gumbel. We replace shared-Gumbel sampling with
independent Gumbel draws while keeping post-refinement and pixel alignment unchanged. This
substitution markedly degrades background preservation compared with shared Gumbel. Figure 4
gives a visualization: with independent Gumbel, both the edited and reconstruction trajectories
make occasional background mistakes, but because their samples differ, the JS distance becomes
high and these locations are (wrongly) flagged as edit regions—expanding the predicted edit mask.
In contrast, with shared Gumbel the same background errors occur in both trajectories, yielding
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Post-Refined

NLL*™¢

Source

NLIcdit JS 1oMaskc M Initial

Change the color of
the tea cup to white

With shared Gumbel sampling

Figure 4: Comparison of independent vs. shared Gumbel sampling. Sharing Gumbel draws between
reconstruction and editing suppresses sampling-induced JS spikes, yielding cleaner edit masks and
stronger background preservation.

Table 4: Ablation study (Top-k=2048).

Structure Background Preservation CLIP Similarity

Method Distance | | PSNRT LPIPS| MSE] SSIMT | Whole T Edited T
EditAR (Baseline) 39.56 21.42 12025 13824  74.83 24.10 21.45
Direct Replacement 17.11 25.08 66.70 57.59 79.59 23.57 20.73
ERec (Ours) 26.21 25.99 80.19 75.11 87.56 24.09 21.44
ERec w/o Shared Gumbel 28.12 24.44 84.04 95.43 83.78 24.06 21.45
ERec w/o Post-Refinement 42.38 20.75 128.82  198.63  74.04 23.98 21.51
ERec w/o Pixel Alignment 30.71 22.68 100.65 98.37 76.98 24.06 21.42
Base: +]S 27.32 26.18 76.39 130.52  87.82 23.97 21.26
+ dilation 35.41 23.51 101.03  165.58  82.65 24.02 21.43
+ NLLjow 30.97 25.02 90.01 134.16  84.33 24.07 24.42
+ NLLj;gn (ERec) 26.21 25.99 80.19 75.11 87.56 24.09 21.44

low JS and correctly classifying these locations as background, thereby maintaining consistency.
This indicates that shared-Gumbel sampling effectively steers the model to select identical tokens
in non-edit regions, which can be restored to the source tokens later. (2) Without post-refinement.
Removing post-refinement causes ERec to underperform the baseline in background preservation,
indicating that reconstruction alone tends to introduce background changes. With post-refinement
enabled, ERec can correct such errors and robustly restore background consistency. (3) Without pixel
alignment. Disabling pixel alignment degrades background metrics, indicating that our mask-guided
alignment can more faithfully preserve textures, consistent with the visual evidence in Figure 3.

Ablation on post refinement. We further ablate the mask design within post-refinement, starting
from a base that uses only shared Gumbel and pixel alignment, and then adding components step by
step. (1) JS-only seeds. Using only high-JS locations yields poor performance on both background
preservation and edit similarity, indicating that the initial mask is too coarse. (2) + Dilation. Adding 8-
connected dilation raises edit similarity to roughly match the baseline, but further harms background
preservation, suggesting substantial background leakage in the mask. (3) + Editing-NLL filter.
Incorporating an editing-confidence filter (low NLL°4") reassigns tokens that the editor is confident
to keep (non-edits) back to background, improving background consistency without suppressing true
edits. (4) + Reconstruction-NLL safeguard. Finally, adding a reconstruction-deviation safeguard
(high NLL**°) prevents misclassification when reconstruction drifts, stabilizing the background while
preserving edits. Hyperparameter analysis of post-refinement is provided in Appendix D.2.

5 CONCLUSION

In this paper, we presented ERec, a finetuning-free, reconstruction-guided approach for background
preservation in AR-based image editing. By introducing shared Gumbel sampling across reconstruc-
tion and editing pipelines and coupling it with a lightweight post-refinement stage, ERec enforces
background consistency while preserving editing fidelity. Extensive experiments demonstrate that
ERec achieves robust background preservation without compromising edit quality, establishing a
practical and effective framework for AR-based image editing.
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ETHICS STATEMENT

This work focuses on improving background preservation in instruction-based image editing using
autoregressive models. Our method, ERec, is finetuning-free and operates only at inference time,
without requiring additional data collection or fine-tuning. We restrict our evaluation to publicly
available benchmarks (PIE-Bench) and do not introduce new sensitive datasets. While image editing
methods may be misused for generating deceptive or harmful content, our contribution is primarily
methodological, reducing unintended background alterations rather than enabling novel manipulations.
We encourage responsible use of this method within research and creative applications.

REPRODUCIBILITY STATEMENT

We make every effort to ensure reproducibility. Detailed algorithmic descriptions are provided in
Sec. 3, with pseudocode in Algorithms 1-3. Hyperparameters, datasets, and evaluation protocols are
documented in Appendix C. Our method introduces no new training and relies on publicly available
pretrained backbones (EditAR/LlamaGen). We will release inference code, implementation details,
and scripts for evaluation upon publication, enabling others to reproduce our reported results.
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APPENDICES

ACKNOWLEDGMENT OF LLLM USAGE

In preparing this manuscript, large language models (LLMs) were employed solely as general-purpose
writing aids. Their use was limited to word- and sentence-level polishing, including correcting typos,
improving grammar, and refining phrasing. LLMs were not used for research ideation, scientific
analysis, generation of results, or interpretation of findings. All scientific concepts, methods, analyses,
and conclusions presented in this work are entirely the responsibility of the authors.

A ALGORITHM

Algorithm 1 ERec Algorithm (Main)

Input: Source image X; source tokens ¢ € A prompts (KEdit K™°); AR decoder fy; VQ-VAE
decoder Dec; thresholds (75s, Tiow, Thigh); seed
Output: Edited image Y
1: for: =1to N do
Erec f9 (Crec rec Csrc) gedit — f9 (cedlt pedit Csrc)
<7 b . b 2 <1 ? b .
2: (cree, egdit prec pedit) ¢ SHAREDGUMBELSTEP(£:°¢, £54i . seed) > Algorithm 2

K2 ’ Z

3: Reshape {p}°°}, {p{*"'} to per-location {p}<s}, {pSi'} on the Hy x Wy grid

u,v u,v
4: 'Y < POSTREFINEMENT({pi }, {plif}, ¢, ¢ edit X Dec , TJS Tlow, Thigh) > Algorithm 3
5: return Y

Algorithm 2 Reconstruction-guided inference (Sec. 3.2)

Input: Logits (£:°¢, £5%1t) € RV, step i, seed
Output: Tokens (c°¢, c¢4i*) and distributions (pt°, pfdlt)
1: Draw a shared Gumbel vector g; ~ Gumbel(0, 1)V with deterministic key (4, seed)
2: pre€<—softmax(£:°°);  p¢dit «softmax(£4it)
3: o —arg maxgev {6 + gik ) ccdit < arg maxkev{é"d‘t + gik}
4:

rec edlt rec edit
return( , 5t pree pedit)

Algorithm 3 Post Refinement (Sec. 3.3)

Input: Per-location distributions {p}5}, {pShi'}: source tokens ¢*'°; edited tokens c®4i*;

image X; decoder Dec; thresholds (7ss, Tiow, Thigh)
Output: Final image Y and final mask M

1: JS seeding and dilation: compute JS(u, v) via Eq. 4.

M) = 1{ max  JS(a,b) > TJS}
’ (a,b)ENs[u,v]

2: NLL refinement: get per-location NLLs via Eq. 6.
Suw = 1{NLLEY < 710y or NLLIS > 7 |
My, =MOA1—=S,,).

3: Background lock (token space):

edit _ Cisirfu? uv“ - O’
wr = e, g, = 1
4: Pixel-level residual compositing:
Xedit = Dec(chlt)7 Xgre = Dec(c®),
R =X - X, M, = UpsampleTolmage(M),
YZXedit-‘r(l—M)@R.
5: return Y

source

C
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B GUMBEL-MAX IS EXACTLY CATEGORICAL SAMPLING

Proposition B.1 (Gumbel-max trick (Jang et al., 2016)). Let £ € RY denote unnormalized log-
probabilities (logits) over a finite setV = {1, ..., V'}, and let {g, }vecy be i.i.d. random variables
with distribution Gumbel(0, 1). Define

b= i .
0 = argmax{ly +go}

Then, for every j € V,
Z .
eI
P(0=j) = —=—— = softmax(¥),.
Zmev elm J
In particular, arg max (€ + g) is exactly a sample from the categorical distribution with probabilities

softmax(£).

Proof. Leta, = e’ for each v € V, and let

(= am

mey
denote the normalizing constant. The CDF and PDF of Gumbel(0, 1) are
Fity=e ",  flt)=ete "

Then
P =37)=P(l; + gj > by + gm, VM €V)

:/_Oo Fe—0) T Fz = ) dz

m#j

= /ef(zfej) exp [ - Z 67(Z7Zm)} dz

=a; /672 exp| — Ce 7] dz.

With the substitution u = (e~ * (so du = —Ce~* dz and e * dz = —du/(), the limits change from
u : oo — 0, yielding

S ) 45

P(ﬁ:j)—a—] e tdu=49 =

- CJo ¢ et
O

Corollary B.1 (truncation/top-k/top-p). Let KK C V be any nonempty candidate subset (e.g., obtained
via top-k or nucleus/top-p filtering from £), and let { g, } ycy be i.i.d. Gumbel(0, 1). Define

Uk = l .
VK arg Izl;lea}%({ vt gv}

Then, for every j € K,

eli

P(ox =j) = S e
mek

= softmax(£X); .

Proof. Define masked logits ¢, = ¢, for v € K and ¢, = —oc for v ¢ K. Then

¢ = l :
argmax{l, +go} = argmax{ly + g,}

Applying Proposition B.1 (Gumbel-max trick) to £ yields

171 £

Bix = ) = < -
U’C = j = = = 7 5
Ymey € Y omex €
which is the renormalized restriction of softmax(€) to K. O
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C IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION DETAILS

We use the default configuration of EditAR (Mu et al., 2025). All images are resized to 512 x 512
for both training and inference. The VQ-VAE tokenizer has a downsampling ratio of 16, yielding
a 32 x 32 latent grid (N = 1024 tokens). Its codebook size is 16,384 (16K) and the codebook
embedding dimensionality is 8. The text encoder is Flan-T5-XL (Raffel et al., 2020a; Chung et al.,
2024), producing a sequence of 120 embeddings. As the text-to-image autoregressive backbone we
use the pre-trained LlamaGen GPT-XL model with 36 layers and model dimension 1280. Classifier-
free guidance (Ho & Salimans, 2022) is enabled with scale 7 = 3 by default. The reconstruction
prompt is fixed as “reconstruct the image without changes.”

C.2 EVALUATION AND METRICS

We evaluate on PIE-Bench (Ge et al., 2024), which contains 700 images spanning ten editing types:
(0) random editing, (1) change object, (2) add object, (3) delete object, (4) change object content, (5)
change object pose, (6) change object color, (7) change object material, (8) change background, and
(9) change image style. Each scene includes four categories (animal, human, indoor, outdoor) with
balanced sampling. Our method (and all other feed-forward baselines) takes the source image and
editing instruction as input and predicts the edited target. Inversion-based approaches use the source
image, the source prompt, and the target prompt.

For quantitative comparison, we follow common practice:

 Structure Distance (DINO-ViT) (Caron et al., 2021). Cosine distance between DINO-ViT
(Caron et al., 2021) global features,

$(X)Tp(X)

StructDist(X, X) = 1 — -
[(X)l2llP(X) 2

where ¢(-) denotes the DINO-VIT global feature embedding. This metric assesses structural
preservation. Lower is better (reported x 103).

* MSE (background) (Gonzalez & Woods, 2018). Mean squared error averaged over non-
edited pixels M:
Zu,v MU’U ”X’U«,U - XU,U |%
Zu v M’U«»U ’

MSEp, =

where M denotes the complement of the edit mask. Lower is better (reported x 10%).

» PSNR (background) (Gonzalez & Woods, 2018). Peak signal-to-noise ratio on M, derived
from MSEy,:

PSNRy, = 101og;((1/MSEp) ,

with pixel intensities scaled to [0, 1]. Higher is better.

* LPIPS (background) (Zhang et al., 2018). Perceptual distance from deep features (e.g.,
SqueezeNet/VGG), averaged over M. Lower is better (reported x 103).

e SSIM (background) (Wang et al., 2004). Structural similarity index (lumi-
nance/contrast/structure) averaged over M. Higher is better (reported x 102).

e CLIP score (whole & edit-region) (Radford et al., 2021). Cosine similarity between
image and text embeddings. For the edit-region score, pixels outside M are masked before
encoding to emphasize local text alignment. Higher is better (reported x 102).
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D MORE EXPERIMENTAL RESULTS
D.1 TopP-k SAMPLING

Table 5: Comparison under different top-k samplers. Bold marks the better score within each pair.
Our proposed ERec integrates well with top-k sampling and consistently improves background
preservation over the baseline across different k& values.

TopK Methods Structure Background Preservation CLIP Similarity
P Distance | | PSNR 1 \ LPIPS | \ MSE | \ SSIM 1 | Whole 1 \ Edited 1

| Baseline 28.53 23.40 81.42 162.34 | 78.58 23.06 20.42

ERec (Ours) 13.83 35.63 34.46 46.18 99.60 2317 20.47

16 Baseline 29.76 23.25 81.93 141.78 | 78.12 23.68 20.93

ERec 13.23 34.21 41.65 48.23 98.73 23.76 20.92

128 Baseline 32.87 22.12 101.00 | 126.31 76.63 24.10 21.39

ERec 18.78 31.27 54.23 51.01 96.76 24.07 21.31

256 Baseline 34.81 21.87 105.40 132.10 | 76.10 24.18 21.36

ERec 23.15 29.86 64.00 62.37 95.23 24.15 21.33

512 Baseline 37.25 21.57 113.62 | 132.65 | 75.51 24.12 21.43

ERec 23.09 30.08 62.93 55.77 95.11 24.13 21.45

1K Baseline 37.62 21.57 115.37 141.51 75.10 24.07 21.53

(1024) ERec 28.12 28.87 74.97 7093 | 9345 24.10 21.54

K Baseline 39.12 21.16 126.47 148.13 | 7448 24.01 21.50

ERec 26.21 27.99 80.19 75.11 92.56 24.09 21.48

4K Baseline 40.82 21.10 127.92 149.38 | 74.17 2391 21.50

ERec 26.40 27.88 82.13 75.05 92.15 24.05 21.46

K Baseline 42.02 20.94 129.82 | 15697 | 73.91 24.05 21.49

ERec 29.36 28.44 81.17 78.18 92.55 24.20 21.58

16K Baseline 41.08 21.15 127.86 | 138.20 | 73.96 24.03 21.61

ERec 30.80 27.96 85.86 82.54 86.60 24.24 21.63
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D.2 HYPER-PARAMETERS ANALYSIS

Table 6: Hyper-parameter analysis on JS threshold in Eq. 5 73s. Setting: Top-k=512, 7o = 3.0 and
Thigh = 10.0. Increasing 735 produces a more conservative mask that shrinks the detected edit region,
typically lowering CLIP-Edited scores while elevating background-preservation metrics.

s Structure Background Preservation CLIP Similarity
Distance | | PSNR*T | LPIPS | | MSE | | SSIM 1T | Whole T | Edited 1
0.6 23.16 27.06 68.99 63.37 89.19 24.10 21.40
0.7 22.32 27.46 66.11 60.33 89.74 24.10 21.39
0.8 20.90 28.04 61.51 55.35 90.55 24.05 21.34
0.9 18.22 29.18 52.83 45.26 91.89 23.92 21.14

Table 7: Hyper-parameter analysis on the low threshold 7o, applied on NLL®%" in Eq.7. Setting:
Top-k=512, 1735 = 0.7 and Tygn = 10.0. Raising 7,y makes the classifier more prone to labeling
tokens as background, which can erroneously absorb portions of true edit regions into the background
mask and thus reduce edit completeness.

- Structure Background Preservation CLIP Similarity
" | Distance | | PSNR+ | LPIPS | | MSE | | SSIM 1 | Whole 1 | Edited 1
0 24.35 25.85 75.70 69.80 86.72 24.09 21.40
1 23.75 26.63 71.72 66.18 88.34 24.11 21.40
2 23.19 27.03 69.27 63.72 89.02 24.10 21.43
3 22.32 27.46 66.11 60.33 89.74 24.10 21.39
5 19.57 28.48 57.99 51.27 91.19 24.01 21.26

Table 8: Hyper-parameter analysis on the high threshold 7y, applied on NLL™ in Eq.7. Settings:
Top-k=512, 735 = 0.7 and i,y = 3.0.

. Structure Background Preservation CLIP Similarity
"h MPistance J | PSNR1T | LPIPS | | MSE | | SSIM 1 | Whole T | Edited
5 18.18 28.87 55.54 43.19 91.06 24.00 21.26
8 21.20 27.89 63.22 55.03 90.13 24.09 21.38
10 22.32 27.46 66.11 60.33 89.74 24.10 21.39
12 23.64 27.10 68.30 65.20 89.35 24.09 21.40
15 26.35 26.72 71.40 80.37 88.80 24.05 21.38

Table 9: Hyperparameter analysis of the dilation kernel size. Here, kernel size = 3 denotes the
default 3x 3 8-connected dilation. Larger kernels expand the effective edit region under the same JS
threshold 755. Settings: Top-k=512, 735=0.7, Tiow =3.0, Thigh=10.0.

kernel | Structure Background Preservation CLIP Similarity
size | Distance | | PSNRT | LPIPS | | MSE | | SSIM 1 | Whole 1 | Edited 1

3 22.32 27.46 66.11 60.33 89.74 24.10 21.39

5 23.38 26.96 69.65 64.23 89.05 24.10 21.40
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D.3 MORE QUALITATIVE RESULTS

ERec with dlfferent seeds

S 7 -,

—

Change“'r'l'i_ew room to a garden

Change the animal from a cat to a dog

Replace the trees with a city

Figure 5: Editing results by ERec with different seeds. Our method does not impair the model’s
inherent editing ability: diverse styles can still be produced within the edited regions while preserving
background consistency.
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NLL™ NLLe(ht Mask M

(2) Change ‘rhe cat to ‘rlger

Source EditAR ERec (Ours) Initial Post-Refined

l (4) Replace the garland wrrh

5) Change the color of the ‘ruhps to yellow

EE

1
1
1
to leaves covered

’ (9) Change ‘rhe path from snow covere

s/ R & e i : : G
ww,x,gg“ﬁ&’“&i-‘&“ﬁ&?'

(10) Add a beach background to t

S mm——————

e image

(11) Change The mug toa glass
Figure 6: More qualitative results and intermediate process visualization. Correspondence to example
cases: (1-4) background preservation; (5) foreground preservation; (6—8) robustness under noticeable
reconstruction deviations; (9-10) mask-guided pixel-level restoration of fine details (e.g., facial
expressions and text). Higher NLL/JS values indicate potential drift; our post-refinement localizes
true edit regions while preserving background consistency.
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E LIMITATIONS

Our method often struggles on the following types of cases: (1) imprecise localization when mul-
tiple objects are present or the target object is not salient; (2) edits requiring object or viewpoint
transformations; (3) actions that entail large-scale scene changes; and (4) edits that demand external
priors or physical reasoning (e.g., Earth illumination). In these scenarios, the output often shows little
change or deviates from the instruction. We attribute these failures primarily to the underlying model
capacity and the training data distribution. Notably, the baseline EditAR exhibits similar failure
modes, typically with worse background preservation.

Source EditAR ERec (Ours) Source EditAR ERec (Ours)

Change the position of the Change the perspective of this sculpture
chair to face backwards from the front to the side

make the woman looking at
the right side

Change dimly illuminated to
sunlit illuminated

Figure 7: Failure cases
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