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Abstract

Recently, neural networks (NN) have made great strides in combinatorial optimiza-1

tion problems (COPs). However, they face challenges in solving the capacitated2

arc routing problem (CARP) which is to find the minimum-cost tour that covers all3

required edges on a graph, while within capacity constraints. Actually, NN-based4

approaches tend to lag behind advanced metaheuristics due to complexities caused5

by non-Euclidean graph, traversal direction and capacity constraints. In this6

paper, we introduce an NN-based solver tailored for these complexities, which7

significantly narrows the gap with advanced metaheuristics while with far less8

runtimes. First, we propose the direction-aware attention model (DaAM) to in-9

corporate directionality into the embedding process, facilitating more effective10

one-stage decision-making. Second, we design a supervised reinforcement learning11

scheme that involves supervised pre-training to establish a robust initial policy for12

subsequent reinforcement fine-tuning. It proves particularly valuable for solving13

CARP that has a higher complexity than the node routing problems (NRPs). Finally,14

a path optimization method is introduced to adjust the depot return positions within15

the path generated by DaAM. Experiments show that DaAM surpasses heuristics16

and achieves decision quality comparable to state-of-the-art metaheuristics for the17

first time while maintaining superior efficiency, even in large-scale CARP instances.18

The code and datasets are provided in the Appendix.19

1 Introduction20

The capacitated arc routing problem (CARP) [7] is a combinatorial optimization problem, frequently21

arising in domains such as inspection and search-rescue operations. Theoretically, the CARP is22

established on an undirected connected graph G = (V,E,ER) that includes a set of nodes V23

connected by a set of edges E, and an edge subset ER ⊆ E that needs to be served, called required24

edges. Each required edge has a demand value which spends the capacity of the vehicle when it is25

served. In this context, all vehicles start their routes from the depot node depot ∈ V and conclude26

their journey by returning to the same depot. The main goal of a CARP solver is to serve all required27

edges with the lowest total path cost, while ensuring that the vehicle does not exceed its capacity Q.28

According to [7], the CARP is recognized as an NP-Hard problem. Among all solver solutions, the29

Memetic Algorithms (MA) [15, 25], first proposed in 2005, have still maintained unrivaled results in30

solving the CARP challenge to this day. However, they have struggled with high time costs and the31

exponential growth of the search space as the problem scale increases. Compared to the traditional32

methods, NN-based solvers [16, 10, 20] are faster with the assistance of GPU, have therefore gained33

increasing attention in recent years. However, unlike the decent performance in solving NRP, such as34

vehicle routing problem (VRP) and travelling salesman problem (TSP), or ARP defined in Euclidean35

graphs, such as rural postman problem (RPP) and Chinese postman problem (CPP), NN-based36
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methods usually lags far behind the traditional ones in solving CARP. This discrepancy is attributed37

to the inability of existing methods to effectively reduce the high complexity of solving CARP:38

• Lack of edge direction in embedding learning: ARP solvers need to determine the edges39

to be traversed along with the direction of traversal, easy for humans to achieve in one step40

but extremely challenging for computers. Existing methods didn’t encode edge directionality41

in embedding, making them have to build edge sequences and determine edges’ directions42

separately and leading to path generation without sufficient consideration.43

• Ineffective learning for solving CARP: CARP is more complex than NRPs and Euclidean44

ARPs owing to the non-Euclidean input, edge direction, and capacity constraints. Thus,45

learning methods for NRPs and Euclidean ARPs cannot be directly transferred to solve46

CARP or work well even if adapted, leaving a lack of effective learning strategies for CARP.47

In this paper, we aim to address both above issues and propose an NN-based solver for CARP that48

competes with the state-of-the-art MA [25] while with far less runtimes. Firstly, we propose the49

direction-aware attention model (DaAM). It computes embeddings for directed arcs decomposed50

from undirected edges to align with the nature of ARP, thus avoiding missing direction information51

and enabling concise one-stage decision-making. Secondly, we design a supervised reinforcement52

learning method to learn effective heuristics for solving CARP. DaAM is pre-trained to learn an initial53

policy by minimizing the difference from the decisions made by experts, and fine-tuned on larger-54

scale CARP instances by Proximal Policy Optimization with self-critical strategy. Finally, to further55

boost the path quality, we propose a path optimizer (PO) to re-decide the vehicles’ optimal return56

positions by dynamic programming. In the experiments, our method approaches the state-of-the-art57

MA with an average gap of 5% and is 4% better than the latest heuristics and gains high efficiency.58

2 Related Work59

2.1 Graph Embedding Learning60

Graph embedding [3] aims to map nodes or edges in a graph to a low-dimensional vector space.61

This process is commonly achieved via graph neural networks (GNNs) [31]. Kipf et al. [13]62

introduced graph convolutional operations to aggregate information from neighboring nodes for63

updating node representations. Unlike GCN, GAT [27] allowed dynamic node attention during64

information propagation by attention mechanisms. Other GNN variants [9, 30] exhibited a similar65

information aggregation pattern but with different computational approaches. In this paper, since66

an arc is related to the outgoing arc of its endpoint but irrelevant to the incoming arc of that, we use67

attention mechanisms to capture the intricate relationships between arcs for arc embedding learning.68

2.2 Learning for Routing Problems69

The routing problem is one of the most classic COPs, and it is mainly categorized into two types70

according to the decision element: node routing problems and arc routing problems.71

Node routing problems (NRPs), such as TSP and VRP, aim to determine the optimal paths that72

traverse all nodes in the Euclidean space or graphs. As the solutions to these problems are context-73

dependent sequences of variable size, they cannot be directly modeled by the Seq2Seq model [24].74

To address this problem, Vinyals et al. [28] proposed the Pointer network (PN) to solving Euclidean75

TSP, which achieves variable-size output dictionaries by neural attention. Due to the scarcity of labels76

for supervised learning, Bello et al. [2] modeled the TSP as a single-step reinforcement learning77

problem and trained the PN using policy gradient [29] within Advantage Actor-Critic (A3C) [17]78

framework. Nazari et al. [19] replaced the LSTM encoder in PN with an element-wise projection79

layer and proposed the first NN-based method to solve the Euclidean VRP and its variants. To better80

extract correlations between inputs, Kool et al. [14] utilized multi-head attention for embedding81

learning and trained the model using REINFORCE [29] with a greedy baseline. To solve COPs82

defined on graphs, Khalil et al. [11] proposed S2V-DQN to learn heuristics, employing structure2vec83

[5] for graph embedding learning and n-step DQN [18] for training. While the mentioned NN-based84

approaches have achieved comparable performance to metaheuristics, they cannot be directly applied85

to solve ARP due to the modeling differences between ARP and NRP.86

Arc routing problems (ARPs) involve determining optimal paths for traversing arcs or edges in87

graphs, with variants like RPP, CPP, and CARP. Truong et al. [26] proposed a DRL framework to88
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address the CPP with load-dependent costs on Euclidean graphs and achieved better solution quality89

than metaheuristics. However, CARPs are defined on non-Euclidean graphs. Unlike Euclidean graphs90

with given node coordinates, non-Euclidean graphs require manually extracting and aggregating the91

node representations, a task that is typically learnable. Although several NN-based algorithms have92

been proposed, they still lag significantly behind traditional methods. Li et al. [16] pioneered the use93

of the NN-based approach in solving the CARP by transforming it into an NRP. They first determined94

the sequence of edges and then decided the traversal direction for each edge. Hong et al. [10] trained a95

PN in a supervised manner to select undirected edges in each time step, and also determined the edge96

traversal direction as post-processing. Ramamoorthy et al. [20] proposed to generate an initial tour97

based on edge embeddings and then split it into routes within capacity constraint. These approaches98

lack edge directionality encoding, leading to edge selection without sufficient consideration and99

necessitating a two-stage decision process or an additional splitting procedure.100

3 Background101

The attention model (AM) [14] exhibits superior effectiveness in solving classic Euclidean COPs due102

to its attention mechanisms for extracting correlations between inputs. Therefore, we use the AM103

as the backbone and give a brief review in terms of the TSP. Given an Euclidean graph G=(V,E),104

the AM defines a stochastic policy, denoted as π(x|S), where x = (x0, ..., x|V|−1) represents a105

permutation of the node indexes in V, and S is the problem instance expressing G. The AM is106

parameterized by θ as:107

πθ(x|S) =
∏|V|

t=1
πθ(xt|S,x0:t−1) (1)

where t denotes the time step. Specifically, the AM comprises an encoder and a decoder. The108

encoder first computes initial dh-dimensional embeddings for each node in V as h0
i through a learned109

linear projection. It then captures the embeddings of h0
i using multiple attention layers, with each110

comprising a multi-head attention (MHA) sublayer and a node-wise feed-forward (FF) sublayer.111

Both types of sublayers include a skip connection and batch normalization (BN). Assuming that112

l ∈ {1, ..., N} denotes the attention layer, the lth layer can be formulated as hl
i:113

hl
i = BNl(ĥi + FFl(ĥi)); ĥi = BNl(hl−1

i + MHAl
i(h

l−1
0 , . . . , hl−1

|V|−1)) (2)

The decoder aims to append a node to the sequence x at each time step. Specifically, a context114

embedding h(c) is computed to represent the state at the time step t. Then a single attention head is115

used to calculate the probabilities for each node based on h(c):116

u(c)j =

{
C · tanh

(
d
− 1

2

h [WQh(c)]
T WKhN

j

)
if j ̸= xt′(∀t′ < t)

−∞ otherwise,

pi = πθ(xt = i|S,x0:t−1) = u(c)i/
∑

j
u(c)j (3)

where WQ and WK are the learnable parameters of the last attention layer. u(c)j is an unnormalized117

log probability with (c) indicating the context node. C is a constant, and pi is the probability118

distribution computed by the softmax function based on u(c)j .119

4 Method120

4.1 Direction-aware Attention Model121

In this section, we propose the direction-aware attention model (DaAM). Unlike previous methods122

that separately learn edge embeddings and determine edge directions, our model encodes direction123

information directly into the embedding, enabling one-stage decision-making. As shown in Fig. 1,124

the DaAM makes sequential decisions in two phases to select arcs. The first phase is a one-time125

transformation process, in which the arcs of the input graph are represented as nodes in the new126

directed complete graph. The second phase is executed at each time step, in which GAT is used to127

aggregate the inter-arc weights. Subsequently, AM is used to select the arc of the next action.128

4.1.1 Arc Feature Formulation via Graph Transformation129

Graph Transformation Motivated by the need to consider direction when traversing edges, we130

explicitly encode the edge direction by edge-to-arc decomposition. Let G=(V,E,ER) denotes131
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Figure 1: DaAM Pipeline consists of two parts. The first part transforms the input graph G by
treating the arcs on G as nodes of a new directed graph G, only executing once. The second part
leverages the GAT and AM to update arc embeddings and select arcs, executing at each time step.

the undirected connected graph as input, where V is the node set of G, E is the edge set of G,132

and ER ⊆ E is the required edge set. Firstly, given that an edge has two potential traversal133

directions, we decompose each edge enm=(costnm, demandnm, allow_servenm)∈ER into two134

arcs {arcnm, arcmn} with opposite directions but the same cost, demand and serving state. Here135

n,m are the indexes of node in V. To simplify the representation below, we replace nm and mn136

with single-word symbols, such as i and j. In this way of edge decomposition, we obtain a set of arcs137

denoted as AR. Secondly, we build a new graph G = (AR, E). Specifically, each arc in AR serves138

as a node in G, and directed edge set E is created, with eij ∈ E representing the edge from node139

arci to arcj . The weight |eij | represents the total cost of the shortest path from the end node of arci140

to the start node of arcj . In addition, we treat the depot as a self-loop zero-demand arc that allows141

for repeated serving, denoted as arc0. Consequently, we transform the input graph G into a directed142

complete graph G. By decomposing all edges in ER into arcs, it is natural to directly select the arcs143

from G during the decision-making. Given that the Floyd-Warshall algorithm is used to calculate the144

shortest path cost between any pair of nodes in G, the time complexity of our graph transformation is145

max(O(|ER|2),O(|V|3)).146

Table 1: Feature Detail of arci at time step t for CARP.

No. Features Field Description No. Features Field Description

1 is_depoti F2 Is arci the depot? 5 allow_serve(i)t F2 Is arci at time step t allowed to serve?

2 costi R+ Cost of arci. 6 mdsstart(i) Rd Euclidean coordinates of arci’s start node.

3 demandi R+ Demand of arci. 7 mdsend(i) Rd Euclidean coordinates of arci’s end node.

4 |ext−1i| R+ Edge weight from arcxt−1
to arci.

Arc Feature Formulation To establish a foundation for decision-making regarding arc selection,147

the features of the arcs are constructed as input for the subsequent model. Specifically, multi-148

dimensional scaling (MDS) is used to project the input graph G into a d-dimensional Euclidean149

space. The Euclidean coordinates of arci’s start and end nodes, denoted as mdsstart(i) and mdsend(i),150

are then taken as the features of arci to indicate its direction. As shown in Table 1, at time step t,151

arci can be featured as:152

F
(i)
t = (is_depoti, costi, demandi, |ext−1i|, allow_serve(i)t ,mdsstart(i),mdsend(i)) (4)

where xt−1 is the index of the selected arc at the last time step, and t ∈ [1,+∞). Our feature models153

arcs rather than edges and encodes the direction attribute of arcs through MDS. Therefore, it is more154

suitable than previous methods [10, 16] for ARPs that need to consider the direction of traversing.155

4.1.2 Arc Relation Encoding via Graph Attention Network156

Although AM is efficient in decision-making, according to Eq. (2), it cannot encode the edge weights157

between nodes in G, an important context feature, during learning. Therefore, we use graph attention158

network (GAT) [27] to encode such weights. At each time step t, for each arc arci, we integrate the159
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weights between arci and all arcs in AR along with their features into the initial embedding of arci.160

cij = softmax
(
α(W[F

(i)
t ||F (j)

t || |eji| ])
)
; h0

i = σ
(∑|AR|−1

j=0
cijWF

(j)
t

)
(5)

where W is a shared learnable parameter, [·||·] is the horizontal concatenation operator, α(·) is a161

mapping from the input to a scalar, and σ(·) denotes the activation function. h0
i denotes the initial162

feature embedding of arci, which is taken as the input of subsequent AM. Since G is a complete163

graph, we use one graph attention layer to avoid over-smoothing [4].164

4.1.3 Arc Selection via Attention Model165

After aggregating the edge weights of G into the initial embeddings, we utilize AM to learn the final166

arc embeddings and make arc selection decisions. In the encoding phase described by Eq.2, for each167

arc {arci}, we leverage N attention layers to process the initial embeddings {h0
i } and obtain the168

output embeddings of the N th layer, i.e., {hN
i }. In the decoding phase, we define the context node169

applicable to CARP:170

hN
(c)=

[
|AR|−1

∑|AR|−1

i=0
hN
i , hN

xt−1
, δt,∆t

]
, t ∈ [1,+∞) (6)

where xt−1 indicates the chosen arc index at time step t − 1 and x0 is arc0. δt is the remaining171

capacity at time step t, ∆t = ∆(δt >
Q
2 ) is a variable to indicate whether the vehicle’s remaining172

capacity exceeds half. Finally, according to Eq.(3), the decoder of AM takes the context node hN
(c)173

and arc embeddings {hN
i } as inputs and calculates the probabilities for all arcs, denoted as pi. The174

serviceable arc selected at time step t, i.e., arcxt , is determined by sampling or greedy decoding.175

4.2 Supervised Reinforcement Learning for CARP176

The decision-making of selecting arcs can be modeled as a Markov decision process with the177

following symbols regarding reinforcement learning:178

• State st is the newest path of arcs selected from G: (arcx0
, ..., arcxt−1

), while the terminal state179

is sT with T indicating the final time step.180

• Action at is the selected arc at time step t, i.e., arcxt
. Selecting the action at would add arcxt

to the181

end of the current path st and tag the corresponding arcs of arcxt
with their features allow_serve182

changed to 0. Notably, arc0 can be selected repeatedly but not consecutively.183

• Reward rt is obtained after taking action at at state st, which equals the negative shortest path184

cost from the last arc arcxt−1 to the selected arc arcxt .185

• Stochastic policy π(at|st) specifies the probability distribution over all actions at state st.186

We parameterize the stochastic policy of DaAM with θ:187

π(xt| S,x0:t−1) = πθ(at|st) (7)

where S is a CARP instance. Starting from initial state s0, we get a trajectory τ =188

(s0, a0, r0, ..., rT−1, sT ) using πθ. The goal of learning is to maximize the cumulative reward:189

R(τ) =
∑T−1

t=0 rt. However, due to the high complexity of CARP, vanilla deep reinforcement learn-190

ing methods learn feasible strategies inefficiently. A natural solution is to minimize the difference191

between the model’s decisions and expert decisions. To achieve this, we employ supervised learning192

to learn an initial policy based on labeled data and then fine-tune the model through reinforcement193

learning.194

4.2.1 Supervised Pre-training via Multi-class Classification195

In the pre-training stage, we consider arc-selection at each time step as a multi-class classification196

task, and employ the state-of-the-art CARP method MAENS to obtain high-quality paths as the label.197

Assuming that yt ∈ R|AR| denotes the one-hot label vector at time step t of any path, with y
(k)
t198

indicating each element. We utilize the cross-entropy loss to train the policy represented in Eq. (7):199

L = −
∑T−1

t=0

∑|AR|−1

k=0
y
(k)
t log

(
πθ(arck|st)

)
(8)

We use the policy optimized by cross-entropy, denoted as πs, to initialize the policy network πθ and200

as the baseline policy πb in reinforcement learning.201
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4.2.2 Reinforcement Fine-tuning via PPO with self-critical strategy202

During the fine-tuning phase, we use Proximal Policy Optimization (PPO) to optimize our model203

πθ(at|st) due to its outstanding stability in policy updates. Considering the low sample efficiency in204

reinforcement learning, we employ a training approach similar to self-critical training [21] to reduce205

gradient variance and expedite convergence. Specifically, We use another policy πb to generate a206

trajectory and calculate its cumulative reward, serving as a baseline function. Our optimization207

objective is based on PPO-Clip [23]:208

E(s,a)∼πb

[
min

(
πθ(a|s)
πb(a|s)

(
R(τθs )−R(τ bs )

)
, clip

(
πθ(a|s)
πb(a|s)

, 1−ϵ, 1+ϵ

)(
R(τθs )−R(τ bs )

))]
(9)

where s is used to replace current state st for symbol simplification, and a for at. clip(w, vmin, vmax)209

denotes constraining w within the range [vmin, vmax], and ϵ is a hyper-parameter. τθs denotes a210

trajectory sampled by πθ with s as the initial state, while τ bs for the trajectory greedily decoded by πb.211

In greedy decoding, the action with the maximum probability is selected at each step. R(τθs )−R(τ bs )212

serves as an advantage measure, quantifying the advantage of the current policy πθ compared to πb.213

We maximize Eq. (9) through gradient descent, which forces the model to select actions that yield214

higher advantages. The baseline policy’s parameters are updated if πθ outperforms πb.215

4.3 Path Optimization via Dynamic Programming216

The complexity of the problem is heightened by the increasing capacity constraint, making it challeng-217

ing for the neural network to make accurate decisions regarding the depot return positions. In this sec-218

tion, we propose a dynamic programming (DP) based strategy to assist our model in optimizing these219

positions. Assuming that P is assigned with the terminal state sT = (arcx0
, arcx1

, ..., arcxT−1
),220

representing a generated path. Initially, we remove all the depot arcs in P to obtain a new221

path P
′
= (arcx′

0
, arcx′

1
, ..., arcx′

T ′−1
), where {x′

i|i ∈ [0, T ′ − 1]} denotes a subsequence of222

{xi|i ∈ [0, T −1]}. Subsequently, we aim to insert several new depot arcs into the path P
′

to223

achieve a lower cost while adhering to capacity constraints. To be specific, we recursively find the224

return point that minimizes the overall increasing cost, which is implemented by the state transition225

equation as follows:226

f(P
′
) = min

i
(f(P

′

0:i) + SC(arcx′
i
, arc0) + SC(arc0, arcx′

i+1
)− SC(arcx′

i
, arcx′

i+1
))

s.t. 0 ≤ i < T
′
− 1,

∑T
′
−1

j=i+1
demandx′

j
≤ Q (10)

where SC(arcx′
i
, arc0) = |ex′

i0
| denotes the shortest path cost from arcx′

i
to the depot. Q is the227

vehicle capacity. According to Eq. (10), we insert the depot arc arc0 after an appropriate position228

arcx′
i
, which meets with the capacity constraint of the subpath P

′

i+1:T
′
−1. f(·) denotes a state229

featuring dynamic programming. By enumerating the position i, we compute the minimum increasing230

cost f(P
′
) utilizing its sub-state f(P

′

0:i). The final minimum cost for path P is f(P ′)+ g(P ′), here231

g(P ′) is the unoptimized cost of P ′. Since P
′

includes only the required edges, i.e., T ′ = |ER|,232

the time complexity of DP is O(|ER|2). During Path Optimization, we use beam search to generate233

two paths with the trained policy, one with capacity-constrained and one without. Both paths are234

optimized using DP and the one with the minimum cost is selected as the final result.235

5 Experiments236

5.1 Setup237

Problem Instances. We extracted sub-graphs from the roadmap of Beijing, China, obtained from238

OpenStreetMap [8], to create CARP instances for both the training and testing phases. All instances239

are divided into seven datasets, each representing different problem scales, as presented in Table 2.240

Each dataset consists of 30,000 instances, further divided into two disjoint subsets: 20,000 instances241

for training and the remaining for testing. For each instance, the vehicle capacity is set to 100.242

Implementation Details. Our neural network is implemented using the PyTorch framework and243

trained on a single NVIDIA RTX 3090 GPU. The heuristics and metaheuristics algorithms are244
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Table 2: Datasets information. |V| is the number of nodes, |ER| is the number of required edges.
demand represents the demand range for each required edge. Each dataset has 20,000 training
instances and 10,000 test instances.

CARP instances |V| |ER| demand CARP instances |V| |ER| demand

Task 20 25-30 20 5-10 Task 200 205-210 200 1000
Task 40 45-50 40 5-10 Task 300 305-310 300 1000
Task 60 65-70 60 5-10 Task 400 405-410 400 1000
Task 80 85-90 80 5-10 Task 500 505-510 500 1000
Task 100 105-110 100 5-10 Task 600 605-610 600 1000

Table 3: Solution quality comparison. All methods are evaluated on 10,000 CARP instances in each
scale. We measure the gap (%) between different methods and MAENS. Methods marked with an
asterisk were originally proposed for NRP, but we modified them to solve CARP. The best results are
indicated in bold, while the second-best results are underlined.

Method Task20 Task40 Task60 Task80 Task100
Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%)

MAENS [25] 474 0 950 0 1529 0 2113 0 2757 0
PS [6] 544 14.72 1079 13.56 1879 22.84 2504 18.49 3361 21.90
PS-Ellipse [22] 519 9.49 1006 5.89 1709 11.77 2299 8.80 3095 12.26
PS-Efficiency [1] 514 8.44 1007 6.00 1684 10.14 2282 8.00 3056 10.85
PS-Alt1 [1] 514 8.44 1007 6.00 1685 10.20 2283 8.04 3057 10.88
PS-Alt2 [1] 521 9.92 1009 6.21 1720 12.49 2314 9.51 3102 12.51
S2V-DQN* [11] 590 24.42 1197 26.02 1900 24.23 2820 33.43 3404 23.42
VRP-DL* [19] 528 11.39 1193 25.57 2033 32.96 2898 37.15 3867 40.26

DaAM (SL) 509 7.43 1066 12.24 - - - - - -
DaAM (SL+RL) 495 4.48 1009 6.19 1639 7.16 2275 7.67 2980 8.06
DaAM (SL+RL+PO) 482 1.65 992 4.39 1621 5.98 2255 6.70 2958 7.28

evaluated on an Intel Core i9-7920X with 24 cores and a CPU frequency of 4.4GHz. We optimize245

the model using Adam optimizer [12]. The dimension of MDS coordinates d is set to 8, and the246

learning rate is set to 1e−4. We set ϵ in the PPO training at 0.1. Notably, our PPO training does not247

incorporate discounted cumulative rewards, i.e., γ is set to 1.248

Metrics and Settings. For each method and dataset, We compute the mean tour cost across all test249

instances, indicated by “Cost”. Employing the state-of-the-art MAENS [25] as a baseline, we measure250

the “Cost” gap between alternative algorithms and MAENS, indicated by “Gap”. We compare our251

method against the heuristic Path-Scanning algorithms (PS) [6, 22, 1] and two NN-based algorithms.252

In the absence of publicly available code for prior NN-based CARP methods, we modify two NN-253

based NRP solvers to suit CARP, i.e, S2V-DQN [11] and VRP-DL [19]. Note that, for S2V-DQN,254

we replace structure2vec with GAT to achieve more effective graph embedding learning. For our255

method, we incrementally add supervised pre-training (SL), reinforcement learning fine-tuning (RL),256

and path optimization (PO) to assess the effectiveness of our training scheme and optimization,257

respectively. Due to the excessively long computation times of MAENS on larger-scale datasets, SL258

is only performed on Task20, Task 30, and Task40. The batch size for SL is set to 128. During the RL259

stage, greedy decoding is used to generate solutions, and except for the Task20 dataset, we utilize the260

training results obtained from the preceding smaller-scale dataset to initialize the model. The beam261

width in the PO stage is set to 2. For each dataset, we compare the mean cost of different methods on262

10,000 problem instances.263

5.2 Evaluation Results264

Solution Quality Table 6 shows the result. Our algorithm outperforms all heuristic and NN-based265

methods across all scales, achieving costs comparable to MAENS, trailing by less than 8%. The266

advantage over PS demonstrates that neural networks can learn more effective policies than hand-267

crafted ones, attributed to our well-designed modeling approach. Moreover, as the problem scale268

increases, it becomes time-consuming to obtain CARP annotation by MAENS. Therefore, we leverage269

the model pre-trained on small-scale instances as the initial policy for RL fine-tuning on Task50,270

Task60, Task80, and Task100, yielding commendable performance. This proves the generalization of271

our training scheme across varying problem scales. The performance gap with MAENS highlights272

our algorithm’s superiority in CARP-solving approaches.273
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Table 4: Generalization to larger problem instances. All methods are evaluated on 10,000 CARP
instances in each scale. For DaAM, we employ the policy trained on Task100. The best results are
indicated in bold, while the second-best results are underlined.

Method Task200 Task300 Task400 Task500 Task600
Cost Cost Cost Cost Cost

PS-Ellipse [22] 4240 6563 8600 10909 13377
PS-Efficiency [1] 4233 6544 8583 10883 13338
PS-Alt1 [1] 4233 6544 8580 10884 13338
PS-Alt2 [1] 4244 6569 8606 10922 13393

DaAM (SL+RL) 4189 6372 8610 10938 13340
DaAM (SL+RL+PO) 4132 6281 8473 10633 13100
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Figure 2: Run time comparison. For each dataset, the total run time of each method on 100 CARP
instances is shown.

274 Generalization Ability. In Table 4, we assess DaAM’s generalization on large-scale CARP in-275

stances using the policy trained on Task100. We remove MAENS and PS due to failing to run on276

large-scale graphs, and remove S2V-DQN and VRP-DL due to poor performance. Although DaAM277

is not trained on large-scale instances, it achieves or even exceeds the performance of PS, which278

shows its potential application on larger-scale CARP instances.279

Run Time. We compare the total time required for solving 100 CARP instances across datasets280

Task20 to Task100 datasets using our method, MAENS, and PS algorithms, and show the run time in281

log space. For datasets Task200 to Task600, we compare the same metric using variants of PS and282

out method. For our method, we measured the solving time with and without PO. Fig. 2 demonstrates283

that our method exhibits a significant speed advantage over MAENS, even outperforming variants of284

PS [1] on most datasets. In comparison, the consumption time of MAENS increases exponentially as285

the problem scale increases. Our method efficiently generates paths for large-scale CARP instances286

by leveraging GPU data-level parallelism and CPU instruction-level parallelism.287

Table 5: Costs of DaAM using different encoder.
Method Task30 Task40 Task50 Task60

MDS 743 1017 1338 1699
GAT 746 1019 1317 1684
MDS + GAT 741 1011 1322 1683

Effectiveness of Combining MDS and GAT.288

To evaluate the combination of MDS and GAT289

for embedding exhibiting, we individually evalu-290

ate the performance of models using only MDS291

or GAT, as well as their combined performance.292

The experiment is conducted on Task30, Task40,293

Task50, and Task60 by comparing the average performance of 1,000 instances on each dataset. In the294

RL stage, we use the policy pre-trained on Task30 for initialization. Table 5 indicates that using MDS295

or GAT individually yields worse quality in most cases, highlighting that combining MDS and GAT296

enhances the model’s capacity to capture arc correlations. Fig. 3 depicts the convergence trends in297

these scenes, which shows that the synergy of MDS and GAT contributes to the stability of training.298

Solution Visualization. For a more intuitive understanding of the paths generated by different299

methods, we visualize and compare the results of our method with PS [6] and MAENS across four300

road scenes in Beijing. Fig. 4 visualizes all results alongside scene information. We observe that our301

model obtains similar paths with MAENS since we leverage the annotation generated by MAENS for302
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Figure 4: Qualitative comparison in four real street scenes. The paths are marked in different colors,
with gray indicating roads that do not require service and red points indicating depots.

supervised learning. MAENS paths exhibit superior spatial locality, clearly dividing the scene into303

regions, whereas PS paths appear more random.304

6 Conclusion and Limitations305

In this paper, we propose a learning-based CARP solver that competes with state-of-the-art meta-306

heuristics. Firstly, we encode the potential serving direction of edges into embeddings, ensuring307

that edge directionality is taken into account in decision-making. Secondly, we present a supervised308

reinforcement learning approach that effectively learns policies to solve CARP. With the aid of309

these contributions, our method surpasses all heuristics and achieves performance comparable to310

metaheuristics for the first time while maintaining excellent efficiency.311

Limitations and future work. Decomposing undirected edges increases the decision elements,312

which complicates the problem and may widens the gap between DaAM and traditional state-of-the-313

art approaches as the problem instance scale increases. Our future work focuses on designing an314

efficient graph transformation method that does not significantly increase problem complexity.315
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A Appendix397

A.1 Source Code and Dataset398

The source code of DaAM and the datasets used for testing are available at DaAM. Once the paper is399

accepted, we will promptly release the source code and datasets.400

A.2 Pseudocode of PPO with self-critical strategy401

Algorithm 1 presents the pseudocode for the PPO training algorithm we used. In the code implemen-402

tation, the trajectory τθs can be replaced by (s, a)’s original trajectory τo for efficiency. Once τo is403

sampled, the cumulative rewards from any state s ∈ τo can be quickly computed.404

Algorithm 1 PPO algorithm with self-critical strategy
Input: batch size B, number of episodes K, train instances P , test instances T
Initialize policies πθ, πb ← πs

1: for episode k = 1 to K do
2: Initialize data batchM,M′ ← ()
3: while |M| < B do
4: Sample a CARP instance S from P
5: Sample τo = (s0, a0, . . . , sT ) from S using πb

6: M←M∪ {(s0, a0), . . . , (sT−1, aT−1)}
7: end while
8: for each (s, a) ∈M do
9: Generate trajectory τθ

s using πθ from s by sampling
10: Generate trajectory τ b

s using πb from s by greedy decoding
11: Compute advantage As = R(τθ

s )−R(τ b
s )

12: M′ ←M′ ∪ {(s, a,As)}
13: end for
14: Update πθ using Adam over (9) based onM′

15: if πθ outperforms πb on T then
16: πb ← πθ

17: end if
18: end for

A.3 Experimental Results of Additional Datasets405

For small-scale problem instances, we generated two additional datasets, Task30 and Task50. In406

Task30 the range of |V | is 25-30, while in Task50, it spans 55-60. Correspondingly, |ER| is set to407

30 and 50, respectively The demand for each edge ranges from 5 to 10 in both tasks. Table 6 is the408

complete experimental data from the solution quality experiments.

Table 6: Solution quality comparison. All methods are evaluated on 10,000 CARP instances in each
scale. We measure the gap (%) between different methods and MAENS. Methods marked with an
asterisk were originally proposed for NRP, but we modified them to solve CARP. The gray indicates
that MAENS is taken as the baseline when calculating “Gap”. The best results are indicated in bold,
while the second-best results are underlined.
Method Task20 Task30 Task40 Task50 Task60 Task80 Task100

Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%)

MAENS [25] 474 0.00 706 0.00 950 0.00 1222 0.00 1529 0.00 2113 0.00 2757 0.00

PS [6] 544 14.72 859 21.76 1079 13.56 1448 18.45 1879 22.84 2504 18.49 3361 21.90
PS-Ellipse [22] 519 9.49 798 13.03 1006 5.89 1328 8.67 1709 11.77 2299 8.80 3095 12.26
PS-Efficiency [1] 514 8.44 790 11.90 1007 6.00 1311 7.28 1684 10.14 2282 8.00 3056 10.85
PS-Alt1 [1] 514 8.44 791 12.04 1007 6.00 1312 7.36 1685 10.20 2283 8.04 3057 10.88
PS-Alt2 [1] 521 9.92 802 13.60 1009 6.21 1336 9.33 1720 12.49 2314 9.51 3102 12.51
S2V-DQN* [11] 590 24.42 880 24.65 1197 26.02 1520 24.32 1900 24.23 2820 33.43 3404 23.42
VRP-DL* [19] 528 11.39 848 20.11 1193 25.57 1587 29.87 2033 32.96 2898 37.15 3867 40.26

DaAM (SL) 509 7.43 785 11.18 1066 12.24 - - - - - - - -
DaAM (SL+RL) 495 4.48 741 5.05 1009 6.19 1303 6.58 1639 7.16 2275 7.67 2980 8.06
DaAM (SL+RL+PO) 482 1.65 725 2.73 992 4.39 1283 5.07 1621 5.98 2255 6.70 2958 7.28

409
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A.4 Licences of Assets Used for Experiments410

The code we used does not require special consent from the authors. We follow their licenses as411

specified below:412

• https://github.com/wouterkool/attention-learn-to-route: MIT Licence.413

• https://github.com/Hanjun-Dai/graph_comb_opt: MIT Licence.414
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NeurIPS Paper Checklist415

1. Claims416

Question: Do the main claims made in the abstract and introduction accurately reflect the417

paper’s contributions and scope?418

Answer: [Yes]419

Justification: See Abstract and Introduction.420

Guidelines:421

• The answer NA means that the abstract and introduction do not include the claims422

made in the paper.423

• The abstract and/or introduction should clearly state the claims made, including the424

contributions made in the paper and important assumptions and limitations. A No or425

NA answer to this question will not be perceived well by the reviewers.426

• The claims made should match theoretical and experimental results, and reflect how427

much the results can be expected to generalize to other settings.428

• It is fine to include aspirational goals as motivation as long as it is clear that these goals429

are not attained by the paper.430

2. Limitations431

Question: Does the paper discuss the limitations of the work performed by the authors?432

Answer: [Yes]433

Justification: See section Conclusion and Limitations.434

Guidelines:435

• The answer NA means that the paper has no limitation while the answer No means that436

the paper has limitations, but those are not discussed in the paper.437

• The authors are encouraged to create a separate "Limitations" section in their paper.438

• The paper should point out any strong assumptions and how robust the results are to439

violations of these assumptions (e.g., independence assumptions, noiseless settings,440

model well-specification, asymptotic approximations only holding locally). The authors441

should reflect on how these assumptions might be violated in practice and what the442

implications would be.443

• The authors should reflect on the scope of the claims made, e.g., if the approach was444

only tested on a few datasets or with a few runs. In general, empirical results often445

depend on implicit assumptions, which should be articulated.446

• The authors should reflect on the factors that influence the performance of the approach.447

For example, a facial recognition algorithm may perform poorly when image resolution448

is low or images are taken in low lighting. Or a speech-to-text system might not be449

used reliably to provide closed captions for online lectures because it fails to handle450

technical jargon.451

• The authors should discuss the computational efficiency of the proposed algorithms452

and how they scale with dataset size.453

• If applicable, the authors should discuss possible limitations of their approach to454

address problems of privacy and fairness.455

• While the authors might fear that complete honesty about limitations might be used by456

reviewers as grounds for rejection, a worse outcome might be that reviewers discover457

limitations that aren’t acknowledged in the paper. The authors should use their best458

judgment and recognize that individual actions in favor of transparency play an impor-459

tant role in developing norms that preserve the integrity of the community. Reviewers460

will be specifically instructed to not penalize honesty concerning limitations.461

3. Theory Assumptions and Proofs462

Question: For each theoretical result, does the paper provide the full set of assumptions and463

a complete (and correct) proof?464

Answer: [NA]465
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Justification: This papar does not include theoretical results.466

Guidelines:467

• The answer NA means that the paper does not include theoretical results.468

• All the theorems, formulas, and proofs in the paper should be numbered and cross-469

referenced.470

• All assumptions should be clearly stated or referenced in the statement of any theorems.471

• The proofs can either appear in the main paper or the supplemental material, but if472

they appear in the supplemental material, the authors are encouraged to provide a short473

proof sketch to provide intuition.474

• Inversely, any informal proof provided in the core of the paper should be complemented475

by formal proofs provided in appendix or supplemental material.476

• Theorems and Lemmas that the proof relies upon should be properly referenced.477

4. Experimental Result Reproducibility478

Question: Does the paper fully disclose all the information needed to reproduce the main ex-479

perimental results of the paper to the extent that it affects the main claims and/or conclusions480

of the paper (regardless of whether the code and data are provided or not)?481

Answer: [Yes]482

Justification: This papar discusses the detail to reproduce the main experimental results of483

the paper.484

Guidelines:485

• The answer NA means that the paper does not include experiments.486

• If the paper includes experiments, a No answer to this question will not be perceived487

well by the reviewers: Making the paper reproducible is important, regardless of488

whether the code and data are provided or not.489

• If the contribution is a dataset and/or model, the authors should describe the steps taken490

to make their results reproducible or verifiable.491

• Depending on the contribution, reproducibility can be accomplished in various ways.492

For example, if the contribution is a novel architecture, describing the architecture fully493

might suffice, or if the contribution is a specific model and empirical evaluation, it may494

be necessary to either make it possible for others to replicate the model with the same495

dataset, or provide access to the model. In general. releasing code and data is often496

one good way to accomplish this, but reproducibility can also be provided via detailed497

instructions for how to replicate the results, access to a hosted model (e.g., in the case498

of a large language model), releasing of a model checkpoint, or other means that are499

appropriate to the research performed.500

• While NeurIPS does not require releasing code, the conference does require all submis-501

sions to provide some reasonable avenue for reproducibility, which may depend on the502

nature of the contribution. For example503

(a) If the contribution is primarily a new algorithm, the paper should make it clear how504

to reproduce that algorithm.505

(b) If the contribution is primarily a new model architecture, the paper should describe506

the architecture clearly and fully.507

(c) If the contribution is a new model (e.g., a large language model), then there should508

either be a way to access this model for reproducing the results or a way to reproduce509

the model (e.g., with an open-source dataset or instructions for how to construct510

the dataset).511

(d) We recognize that reproducibility may be tricky in some cases, in which case512

authors are welcome to describe the particular way they provide for reproducibility.513

In the case of closed-source models, it may be that access to the model is limited in514

some way (e.g., to registered users), but it should be possible for other researchers515

to have some path to reproducing or verifying the results.516

5. Open access to data and code517

Question: Does the paper provide open access to the data and code, with sufficient instruc-518

tions to faithfully reproduce the main experimental results, as described in supplemental519

material?520
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Answer: [Yes]521

Justification: The source code and datasets are provided in the Appendix.522

Guidelines:523

• The answer NA means that paper does not include experiments requiring code.524

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/525

public/guides/CodeSubmissionPolicy) for more details.526

• While we encourage the release of code and data, we understand that this might not be527
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benchmark).530

• The instructions should contain the exact command and environment needed to run to531

reproduce the results. See the NeurIPS code and data submission guidelines (https:532

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.533

• The authors should provide instructions on data access and preparation, including how534

to access the raw data, preprocessed data, intermediate data, and generated data, etc.535

• The authors should provide scripts to reproduce all experimental results for the new536

proposed method and baselines. If only a subset of experiments are reproducible, they537

should state which ones are omitted from the script and why.538

• At submission time, to preserve anonymity, the authors should release anonymized539

versions (if applicable).540

• Providing as much information as possible in supplemental material (appended to the541

paper) is recommended, but including URLs to data and code is permitted.542

6. Experimental Setting/Details543

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-544

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the545

results?546

Answer: [Yes]547

Justification: See section Experiments.548
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• The answer NA means that the paper does not include experiments.550

• The experimental setting should be presented in the core of the paper to a level of detail551

that is necessary to appreciate the results and make sense of them.552

• The full details can be provided either with the code, in appendix, or as supplemental553

material.554

7. Experiment Statistical Significance555

Question: Does the paper report error bars suitably and correctly defined or other appropriate556

information about the statistical significance of the experiments?557

Answer: [No]558

Justification: Since the experimental results are deterministic, we did not repeat the exper-559

iments multiple times. However, to reduce errors, we calculated the average over 10,000560

problem instances for each dataset of any scale.561

Guidelines:562

• The answer NA means that the paper does not include experiments.563

• The authors should answer "Yes" if the results are accompanied by error bars, confi-564

dence intervals, or statistical significance tests, at least for the experiments that support565

the main claims of the paper.566

• The factors of variability that the error bars are capturing should be clearly stated (for567

example, train/test split, initialization, random drawing of some parameter, or overall568

run with given experimental conditions).569

• The method for calculating the error bars should be explained (closed form formula,570

call to a library function, bootstrap, etc.)571

• The assumptions made should be given (e.g., Normally distributed errors).572

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error573

of the mean.574

• It is OK to report 1-sigma error bars, but one should state it. The authors should575

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis576

of Normality of errors is not verified.577

• For asymmetric distributions, the authors should be careful not to show in tables or578

figures symmetric error bars that would yield results that are out of range (e.g. negative579

error rates).580

• If error bars are reported in tables or plots, The authors should explain in the text how581

they were calculated and reference the corresponding figures or tables in the text.582

8. Experiments Compute Resources583

Question: For each experiment, does the paper provide sufficient information on the com-584

puter resources (type of compute workers, memory, time of execution) needed to reproduce585

the experiments?586

Answer: [Yes]587

Justification: See section Experiments.588

Guidelines:589

• The answer NA means that the paper does not include experiments.590

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,591

or cloud provider, including relevant memory and storage.592

• The paper should provide the amount of compute required for each of the individual593

experimental runs as well as estimate the total compute.594

• The paper should disclose whether the full research project required more compute595

than the experiments reported in the paper (e.g., preliminary or failed experiments that596

didn’t make it into the paper).597

9. Code Of Ethics598

Question: Does the research conducted in the paper conform, in every respect, with the599

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?600

Answer: [Yes]601

Justification:602

Guidelines:603

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.604

• If the authors answer No, they should explain the special circumstances that require a605

deviation from the Code of Ethics.606

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-607

eration due to laws or regulations in their jurisdiction).608

10. Broader Impacts609

Question: Does the paper discuss both potential positive societal impacts and negative610

societal impacts of the work performed?611

Answer: [No]612

Justification: The aim of our work is to provide a better solution for a class of combinatorial613

optimization problems, though it is difficult to predict its impact on society.614

Guidelines:615

• The answer NA means that there is no societal impact of the work performed.616

• If the authors answer NA or No, they should explain why their work has no societal617

impact or why the paper does not address societal impact.618

• Examples of negative societal impacts include potential malicious or unintended uses619

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations620

(e.g., deployment of technologies that could make decisions that unfairly impact specific621

groups), privacy considerations, and security considerations.622
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• The conference expects that many papers will be foundational research and not tied623

to particular applications, let alone deployments. However, if there is a direct path to624

any negative applications, the authors should point it out. For example, it is legitimate625

to point out that an improvement in the quality of generative models could be used to626

generate deepfakes for disinformation. On the other hand, it is not needed to point out627

that a generic algorithm for optimizing neural networks could enable people to train628

models that generate Deepfakes faster.629

• The authors should consider possible harms that could arise when the technology is630

being used as intended and functioning correctly, harms that could arise when the631

technology is being used as intended but gives incorrect results, and harms following632

from (intentional or unintentional) misuse of the technology.633

• If there are negative societal impacts, the authors could also discuss possible mitigation634

strategies (e.g., gated release of models, providing defenses in addition to attacks,635

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from636

feedback over time, improving the efficiency and accessibility of ML).637

11. Safeguards638

Question: Does the paper describe safeguards that have been put in place for responsible639

release of data or models that have a high risk for misuse (e.g., pretrained language models,640

image generators, or scraped datasets)?641

Answer: [NA]642

Justification:643

Guidelines:644

• The answer NA means that the paper poses no such risks.645

• Released models that have a high risk for misuse or dual-use should be released with646

necessary safeguards to allow for controlled use of the model, for example by requiring647

that users adhere to usage guidelines or restrictions to access the model or implementing648

safety filters.649

• Datasets that have been scraped from the Internet could pose safety risks. The authors650

should describe how they avoided releasing unsafe images.651

• We recognize that providing effective safeguards is challenging, and many papers do652

not require this, but we encourage authors to take this into account and make a best653

faith effort.654

12. Licenses for existing assets655

Question: Are the creators or original owners of assets (e.g., code, data, models), used in656

the paper, properly credited and are the license and terms of use explicitly mentioned and657

properly respected?658

Answer: [Yes]659

Justification: See the Appendix.660

Guidelines:661

• The answer NA means that the paper does not use existing assets.662

• The authors should cite the original paper that produced the code package or dataset.663

• The authors should state which version of the asset is used and, if possible, include a664

URL.665

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.666

• For scraped data from a particular source (e.g., website), the copyright and terms of667

service of that source should be provided.668

• If assets are released, the license, copyright information, and terms of use in the669

package should be provided. For popular datasets, paperswithcode.com/datasets670

has curated licenses for some datasets. Their licensing guide can help determine the671

license of a dataset.672

• For existing datasets that are re-packaged, both the original license and the license of673

the derived asset (if it has changed) should be provided.674
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• If this information is not available online, the authors are encouraged to reach out to675

the asset’s creators.676

13. New Assets677

Question: Are new assets introduced in the paper well documented and is the documentation678

provided alongside the assets?679

Answer: [Yes]680

Justification: See the Appendix.681

Guidelines:682

• The answer NA means that the paper does not release new assets.683

• Researchers should communicate the details of the dataset/code/model as part of their684

submissions via structured templates. This includes details about training, license,685

limitations, etc.686

• The paper should discuss whether and how consent was obtained from people whose687

asset is used.688

• At submission time, remember to anonymize your assets (if applicable). You can either689

create an anonymized URL or include an anonymized zip file.690

14. Crowdsourcing and Research with Human Subjects691

Question: For crowdsourcing experiments and research with human subjects, does the paper692

include the full text of instructions given to participants and screenshots, if applicable, as693

well as details about compensation (if any)?694

Answer: [NA]695

Justification:696

Guidelines:697

• The answer NA means that the paper does not involve crowdsourcing nor research with698

human subjects.699

• Including this information in the supplemental material is fine, but if the main contribu-700

tion of the paper involves human subjects, then as much detail as possible should be701

included in the main paper.702

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,703

or other labor should be paid at least the minimum wage in the country of the data704

collector.705

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human706

Subjects707

Question: Does the paper describe potential risks incurred by study participants, whether708

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)709

approvals (or an equivalent approval/review based on the requirements of your country or710

institution) were obtained?711

Answer: [NA]712

Justification:713

Guidelines:714

• The answer NA means that the paper does not involve crowdsourcing nor research with715

human subjects.716

• Depending on the country in which research is conducted, IRB approval (or equivalent)717

may be required for any human subjects research. If you obtained IRB approval, you718

should clearly state this in the paper.719

• We recognize that the procedures for this may vary significantly between institutions720

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the721

guidelines for their institution.722

• For initial submissions, do not include any information that would break anonymity (if723

applicable), such as the institution conducting the review.724
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