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ABSTRACT

Pioneering vision—language models such as CLIP have transformed multimodal
learning by aligning images and text in a shared embedding space. However,
CLIP’s training on short captions limits its ability to handle downstream tasks that
require longer text comprehension and fine-grained visual grounding. Recent ad-
vances mitigate this challenge by leveraging region-proposal information to map
visual regions with corresponding sentences from lengthy captions, yet incurring
notable deployment costs. In this paper, we introduce MulCLIP, a novel end-to-
end multi-level alignment framework that bridges long-text structures (long cap-
tions, sentences, words) with image components (global, regional), enabling
fine-grained capabilities while surpassing CLIP’s strength on short-text under-
standing. MulCLIP first preserves global contrastive alignment between images
and both summary and long captions, while extending positional embeddings for
longer text sequences. To further enhance fine-grained understanding, we propose
two novel strategies: (1) a token reconstruction alignment over locally calibrated
features to strengthen semantic connections between words and image patches,
and (2) a subcaption—aggregated patch alignment that automatically extracts and
aggregate context-rich patches for each subcaption. Experimental results demon-
strate MulCLIP outperforms baselines in both long- and short-text understanding,
while ablation studies confirm its multi-scale alignment is the key factor driving
better fine-grained capability than region-proposal—assisted approaches.

1 INTRODUCTION

Efforts to bridge the alignment gap between visual and linguistic modalities have prominently high-
lighted the CLIP model (Radford et al., 2021), a multimodal embedding framework trained via
contrastive learning on more than 400 million image—text pairs. CLIP effectively maps visual and
textual inputs into a shared representation space, showcasing impressive zero-shot generalization
across a wide range of downstream tasks including image retrieval, visual question answering, and
image captioning. Despite CLIP’s strong generalization ability, it remains limited in fine-grained
understanding, particularly in recognizing object attributes and their relationships (Wu et al.| 2024;
Tong et al.,|2024)). This stems from two key factors: (i) although CLIP’s text encoder can process up
to 77 tokens, the model is predominantly trained on short, generic captions that emphasize high-level
semantics and lack detailed descriptions; and (ii) it performs global alignment between full images
and texts, making it difficult to associate localized visual regions with specific textual components.
These constraints hinder the model’s ability to handle complex scenes and long-form descriptions,
where nuanced alignment is essential.

To address such issue, LongCLIP (Zhang et al.|[2024) extend CLIP’s capacity for long-text modeling
by modifying its positional encodings, enabling the model to process longer sequences without
disrupting the alignment learned from pre-trained CLIP weights. While effective, they still operate at
a global representation level and fail to capture the fine-grained correspondences that naturally arise
in detailed descriptions. FineLIP (Asokan et al., 2025) narrows this gap by introducing specialized
token-alignment mechanisms between image embeddings and long text embeddings. However, it
focus solely on long captions, overlooking the semantically rich short phrases describing specific
image regions (Onoe et al., 2024} |Urbanek et al.,2024). In addition, training with only long caption
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Long-text Tuning Methods | Long Caption | Short Caption | Word | Region-Proposal-Assisted

LongCLIFZhang et al.|(2024)
FineLIP|Asokan et al.|(2025)

GOAL|Choi et al.|(2025)
Table 1: Comparison of components aligned with image features across methods.

FG-CLIP(Xie et al.||2025)
MulCLIP (ours) |
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leads to degradation in understanding short text, as demonstrated in prior findings of [Wu et al.
(2024).

GOAL (Chot et al.,[2025) tackles both long and short captions with a global-local alignment frame-
work. While it achieves strong fine-grained results and maintains solid zero-shot performance, it
relies heavily on external segmentation tools (e.g., SAM (Kirillov et al.l |2023))) and post-hoc filter-
ing, adding computation and limiting deployment flexibility. Likewise, FG-CLIP (Xie et al., [2025)
focuses on fine-grained pre-training on large-scale data, leveraging YOLO-World (Cheng et al.,
2024) region proposals and hard-negative mining. As summarized in Table[T] these approaches dif-
fer in the textual granularities they align with image features and in their reliance on region-based
modules to locate fine-grained visual components.

In this paper, we introduce MulCLIP, a simple yet effective adaptation framework for multi-level
image-long text alignment. Unlike existing approaches that focus at most two granularities or re-
gion proposals and filtering, MulCLIP employ token reconstruction and sub-aggregated patch mech-
anism on top of semantic features to further refine them while jointly modeling (i) global-to-global
relationships between full images and corresponding long and summary short captions, (ii) local-
to-local correspondences between image patches and word embeddings, and (iii) sub-caption-to-
image-patches alignments, enabling richer and more precise cross-modal understanding. Our main
contributions are summarized as follows:

* We propose a unified multi-level alignment framework that bridging the gap between long-
form descriptions and complex visual content at three different scales.

* We conduct comprehensive experiments on a range of cross-modal retrieval benchmarks,
demonstrating that MulCLIP outperforms existing leading methods on both lengthy fine-
grained and standard retrieval tasks.

* We provide extensive ablations and qualitative analysis to elucidate the impact of each
component in our framework, highlighting the advantages of our approach for fine-grained
multimodal understanding.

2 RELATED WORK

Vision-Language Models (VLMs). Contrastive learning has established itself as a leading
paradigm for multimodal pre-training, significantly advancing the field of image-text alignment. The
pioneering work of CLIP (Radford et al.,|2021)), employing a dual-encoder architecture trained con-
trastively on approximately 400 million image—caption pairs, demonstrates robust zero-shot transfer
capabilities across various downstream tasks such as open-vocabulary recognition, object detection,
and semantic segmentation. Moreover, CLIP has become an essential component in numerous gen-
erative vision—language systems, including multimodal language models like LLaVA (Liu et al.,
2023)) and diffusion models (Nichol et al.| 2022; Rombach et al. [2022). Following CLIP success,
the next VLM foundation models train on hundred million to billions image-text pairs dataset (Jia
et al., 2021} |Li et al.,[2022) and this trend also propagates into domain-specific VLMs, such as med-
ical imaging application (Zhang et al., 2025)). However, these models typically rely on short, broad
image descriptions as captions, causing them to miss crucial local-level detailed information.

Fine-grained understanding in VLMs. To address these limitations, recent work has shifted to-
wards fine-grained attributes in long text. Some approaches integrate the inherent short descriptions
from synthetic long text to vision-language models and retrained it from scratch (Zheng et al., 2024;
Wu et al.| 2024} Xiao et al.| [2025)), but this forfeits the rich knowledge of pre-trained models like
CLIP, demands large-scale data and computation. CLOC (Chen et al.,[2025) takes a different route:
it mines two billion image—text pairs, then employs open-vocabulary detectors to align local objects
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with phrase-level descriptions, achieving strong localization at the cost of heavy data collection and
detector inference.

An alternative, more efficient approach involves fine-tuning existing pre-trained CLIP model. Early
works (Huang et al., 2021} Bica et al.,|2024), highlight token-level alignment between image patches
and text word embeddings, pushing the boundaries of fine-grained image—text understanding. In an
emerged direction, LongCLIP (Zhang et al., 2024) or TULIP (Najdenkoska et al., [2024) extends
the token capacity of CLIP’s text encoder, enabling it to process and represent longer, more de-
scriptive captions. In addition, several dense, detailed image-caption datasets such as DCI (Urbanek
et al.,[2024) and DOCCI (Onoe et al.|[2024) have been introduced, leveraging large vision—language
models (LVLMs) to generate fine-grained sub-captions that describe local visual details.

Recent methods, including GOAL (Choit et al., [2025) and FG-CLIP (Xie et al., [2025), exploit these
annotations by employing external segmentation tools for explicit region-level alignment. Specif-
ically, GOAL uses SAM to segment images and matches sub-captions with relevant regions via
CLIP-based filtering. It then jointly aligns both the full and segmented images with long and sub-
captions via unified learning objectives. FG-CLIP adopts a two-stage training strategy: in the first
stage, it finetuned on billions pairs to adapt a dual-head CLIP on long and short captions; in the
second, it continues training on millions of hard negative caption—image pairs and incorporates
grounding information from YOLO to achieve finer-grained understanding. FineLIP (Asokan et al.,
2025) adopt refinement modules for both CLIP branches followed by cross-modal late interaction
to achieve better alignment between image and long text tokens. However, all of these approaches
are either non-unified or address at most two granularities, leaving the gap of unified and effective
alignment strategy for fine-grained long-context learning.

3 METHOD

3.1 GLOBAL-LEVEL ALIGNMENT.

MulCLIP aligns images with both summary short and long captions at global level by leveraging
the global token embeddings produced by respective visual and textual encoders. To handle text
sequences longer than CLIP’s standard 77 token limit, we adopt LongCLIP’s positional embedding
interpolation strategy in our text encoder. This adjustment allows longer text inputs while minimiz-
ing disruptions to the strong crossmodal alignment achieved in the pretrained CLIP.

Formally, consider a CLIP-style vision-language model f = (f,, ", fi, '), where f, and f; de-
note image and text backbone modules respectively, and f/* and f/* represent corresponding projec-
tion heads mapping embeddings to a shared d-dimensional space. Given an image I and its associ-
ated long-form caption T},,4, we first segment Tj,,4 into M sentence-level subcaptions {Tjub}ij\il.
We then extract the image’s global and local features using f, and project them using ff}:

[Uclsv vloc] = fq}}(fv(])) € R(P+1)Xd7 (l)

where v, € R? denoted the global [CLS] embedding of an image and v;,. € R”*? are P patch
local embeddings.

Similarly, text embeddings are obtained from the text encoder:

[t3, 41007 | = £ (FuTiong)) € RNFDXE [ 1] = £ (H({T L)) € R
2

where t2°79 ¢ R and tizzg € RE>4 denoted the global [EOT] and K local embeddings of long

eot

text, while 540 = {#%8 1M ¢ RM>d denoted the global embeddings of M subcaptions.

eot T eot,i

During training, every image is paired with a short summary caption and a longer detailed caption.
Modern long-text augmentation pipelines commonly expand raw summary captions or generate full
descriptions with LVLMs. Typically, the first sentence tzfjf”l (or t3hert) of such a generated caption
serves as the summary. To exploit this hierarchical structure,we define the global objective as:

__ pbatch long batch short
‘CgIOba] = ‘Ccontrast(UClé‘? leot ) + AShOTtﬁcontrast(UCl& leot ) (3)
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where Aghort is @ hyperparameter, and the batch-level contrastive loss £2%¢h = pulls matched im-

age—caption pairs (vgs, ti(;?) and (vegs, t;gfl) closer in the shared embedding space while push-
ing apart the mismatch pairs within the batch. This global objective therefore aligns each image

with both its comprehensive and concise textual descriptions.

3.2 FINE-GRAINED CROSS-MODAL ALIGNMENT

Local Token Calibration In dense and highly-aligned image-text pairs, redundancy and ambigu-
ity frequently occur in both local image patches and local text tokens. On the image side, as shown
in previous works (Fu et al., 2024} Bolya et al.| [2023), a large number of local patches generated
by vision transformers are either redundant or ambiguous, often corresponding to non-salient back-
grounds, repeated structures or regions lacking clear semantic content. Similarly, token embeddings
from lengthy captions can be repetitive or weakly informative, which dilutes the effectiveness of
cross-modal alignment. To mitigate these issues, we adopt aggregation network (Zong et al., |[2022),
as adaptive calibration mechanism for both visual and textual local embeddings. Specifically, given
an input sequence of N tokens, each with dimension d, we denote the input as X € RV*<, The

aggregated output X’ € RN *? is computed as:

qu(XWk)T)X

X = SoftMax(
-

“4)

where W), € R%¥9 and W, € RN'%di gre learnable projection matrices (dx < d), which
N’/N = 0.5 by default, o(-) is a non-linear activation GELU (Hendrycks & Gimpel, 2016),
and 7 is a learnable temperature parameter. We apply calibration modules independently to vi-
sual patches vj,. € R”*? and local long caption tokens tl‘mq € RExd  yielding refined patches
v' = {;}1F, e R"P*4 and refined words t' = {t;}7 %X e RrExd,

To further leverage these semantic tokens for fine-grained matching, we propose two complementary
alignment strategies: token reconstruction alignment and subcaption—aggregated patch alignment
that operate on top of them.

Token Reconstruction Alignment To align semantic words with their corresponding visual
patches, we use the reduced sequences v’ and ¢’ as queries in a bidirectional dot-product attention:

(T / NnNT
T SoftMax(v \% ) Ay = SoftMax(t (\”[d) ) (5)

These matrices select, for every image patch, the most relevant text token and vice-versa, yielding
cross-modal reconstructions V/ € R("P)xd and 77 € R("K)xd .

= {V}1 1= ( v—t t'), = {T }1 1= (At—w Ul)- (6)

We introduce a self-sample alignment objective that applies two contrastive terms, one for images
and one for text, to make every refined token consistent with its cross-modal reconstruction. Specif-
ically, we impose contrastive losses for each token within the same sample; therefore, no cross-
sample negatives are needed. This considerably reduced computation and memory costs over align-
ing patch-words pairs across a batch:

sample / ~ sample /7
E;gcli)gne(v V TP Z ‘CcontPr)dst 1) ‘C;?c(i)n t T/ ’I"K Z ’CCOan[‘db[ ) (7)
The final Word-Patch Reconstruction (WPR) objective is simply the sum:

Lwora(v', 1) = L& (', V') + Liggen(t', T") ®)

which enforces mutual, token-wise agreement across modalities.



Under review as a conference paper at ICLR 2026

Text Encoder
EOThert P r— ,
Indoor downward angled shot of a toy DeLorean Hot Wheels car text VL L L L L pocens B ror
facing the right between two wooden child blocks with the red . EOT"™ g text
letters, "D" and "L" on their front faces with a red double lined text 1
bordes Textual Token Calibration Module
The left block slightly angled towards the right with a blue number Local lang toks
3" on its left side and a yellow letter, "F" on the top. ocal long tokens
The rightmost block slightly angled towards the left with a faded @
yellow letter, "G" on its top.
The three objects sit on a plain white surface. Legiobal { J Ly
7777{777 Token
AR Reconstruction
CLSwge H— === Alignment
! | ! Visual Token Calibration Module 1. Dot-product
| : :L‘ Attention
I I
i L '
ision | ! bt ue:
Enceay 1 I ‘ ‘L‘ Query
I I
o L
i I
1 i
I
gy o
LOCimage
T t' t'
=g o= =o- ro----o text
y . HEER e L
1 - r- |
.y o 71| I il i 1
i ! i
‘J: £ - % :—H I} = i | ik o '
o E||E||B| |8 |& )i o 22 Wiy o D 22| W o
1 7 I z = o 3 3 o o g3 ‘| [Nk g3 m T
| ! | | g e ! gs| /M,
! B = 25 W ! I 22 m
1 :J\ BN LB ' H [
I gt - s !
I image
gy L e
Token Calibration Module Token Reconstruction Alignment

Figure 1: Overview of MulCLIP. An image encoder (ViT) produces a global image embedding
CLS;mg and a sequence of local tokens LOC;,,,4. The text encoder outputs local tokens LOC; ¢+
and an end-of-text global embedding EOT}.,; for multiple textual inputs, including long captions,
summary captions, and other sub-captions. Independent calibration modules refine and shorten the
local sequences of image and long text into v’ and ¢'. MulCLIP further exploits these semantic
tokens through token reconstruction and the subcaption—aggregated patch mechanism

Subcaption- Aggregated Patch Alignment Descriptive captions from curated long-text image
datasets typically consist of multiple sentence-level subcaptions, each can describe local image re-
gions. To explicitly align these subcaptions with corresponding visual content, we obtain each

subcaption embedding ti‘i}’t’i € R4 from Eq and associate them with the aggregated visual rep-

resentation from the refined local embeddings v’ € R"*<, Specifically, we use attention weights
derived from dot-product similarity between each subcaption embedding and the visual patches:

) sub ( /)T
o' = SoftMax | <2~

Vd

c IRerP7 ,E'L' _ Oéi’l)/ c Rd (9)

We then impose a Subcaption-Aggregated Patch (SAP) objective that applies a contrastive loss be-
tween each subcaption embedding and its aggregated visual representation:

M
1 )
b = b
Loun(v',1257) = 57 D Loomana (0 £2073), (10)
i=1

Overall Alignment Objective. To enable robust and comprehensive vision—language alignment,
we jointly optimize three complementary objectives:

Liotal = Eglobal + )\WACWc;rd (U/, t,) + )\SACSub (Ula t:gf)v (1D

where \w, \s are weighting factors. We adopt a sigmoid-based contrastive loss (Zhai et al., [2023)
as the main objective for all L opsyras; terms.
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Method DOCCI DCI
Text-to-Image Image-to-Text Text-to-Image Image-to-Text Avg
R@l R@5 R@25 R@l R@5 R@25 R@l1 R@5 R@25 R@]1 R@5 R@25

2 FineLip 7094 9298 96.82 7150 9324 97.38 5858 78.64 8509 59.88 8039 86.34 80.98
£ 2 GOAL 7947 96.65 99.69 79.43 96.14 99.61 64.13 82.69 9295 65.88 8344 9295 86.09
5 © MulCLIP 822 97.12 99.78 80.26 96.88 99.67 69.08 8599 9344 67.13 8424 9475 8155
9
2 = FineLip 74770 9424 9732 7544 9460 97.72 62.88 81.69 87.14 63.68 8344 8829 83.43

= GOAL 84.37 99.55 99.76 82.57 97.37 99.82 6893 8574 9395 6843 8599 93.90 88.37

Z MulCLIP 86.73 98.10 99.84 84.80 97.88 99.84 7293 88.00 9494 7203 86.64 95.65 89.78

2 Finelip 65.50 89.30 9492 6632 90.72 9524 60.38 8039 86.79 63.58 8294 88.39 80.37

2 GOAL 7122 9239 9890 71.18 92.88 98.88 72.64 89.89 9595 7284 90.50 96.60 86.99
E = MulCLIP 7378 9386 99.04 7175 9296 99.26 75.13 89.44 9590 72.00 89.24 96.34 87.39
|9}

S 2 FineLip 68.84 90.92 9536 71.54 9256 96.58 66.03 84.49 89.29 6558 8519 9040 83.07

E; GOAL 79.04 9578 99.55 79.16 9596 99.61 76.89 91.05 96.55 76.59 91.20 96.55 89.83

> MulCLIP 81.04 9633 99.54 7835 9531 99.54 78.83 9139 9679 76.83 92.09 97.34 90.28

Table 2: Long-text retrieval performance on DOCCI and DCI. Rows (DOCCI FT, DCI FT) indicate
the dataset that methods was trained on, while columns (DOCCI, DCI) report evaluation perfor-
mance. We highlight the models with best performance and second-best within each backbone,
and gray shading indicates in-domain retrieval (diagonal blocks). MulCLIP improves the overall
in-domain and out-of-domain performance on both datasets.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We fine-tune MulCLIP on the training splits of both DOCCI and DCI (Onoe et al., 2024;
Urbanek et al., [2024) and evaluate on the 3 test sets of DOCCI, DCI and UrbanlK (Zhang et al.,
2024) to measure both in-domain and out-of-domain fine-grained long-text retrieval performance
comprehensively on Table [2]and Table [3|. The DOCCI dataset comprises 9,647 training examples
and a test split totaling 5,100 samples (5,000 from the official test set plus 100 from the qualification
set). To match this scale for DCI, whose original test partition contains only 100 examples, we
follow (Choi et al.,2025) to randomly sampled 2,000 instances from its 7,805-sample training pool,
yielding a comparable train—test ratio. To compare the short-text performance, we evaluate our
model on the validation set of COC02017 (Lin et al.,[2015) and Flickr30k (Plummer et al., [2016).

Training setting. To validate our approach, we fine-tune two CLIP variants, ViT-B/16 and ViT-
L/14, for 8 epochs, using a batch size of 16 for ViT-B/16 and 8 for ViT-L/14. Due to computational
constraints, we use a smaller batch size for ViT-L/14 compared to the baseline (GOAL), which
employs a batch size of 16. The total loss is a fixed weighted sum of global, detail, and token
alignment terms Agport = 0.5, Aw =1, Ag=1.

Training is performed on single NVIDIA A5000 GPU. We set the base backbone learning rate to
1 x 1075 and the refinement-module learning rate to 2 x 10™%, so as to retain the pre-trained CLIP
representations while encouraging the refinement layers to adapt to our long-caption datasets. A
weight decay of 0.05 is applied to reduce overfitting, and we employ a linear warm-up over the first
200 iterations to stabilize the initial training phase.

Test settings and state-of-the-art comparisons We measure Text-to-Image (T2I) and Image-to-
Text (I2T) retrieval performance using Recall@k. We compare MulCLIP against leading methods
tailored for fine-grained, long-caption datasets, such as FineLLIP and GOAL.

4.2 RESULTS

In-domain Long Caption Retrieval. On Tab.[2] MulCLIP establishes clear in-domain advantages
on both DOCCI and DCI. On DOCCI, MulCLIP achieves the highest scores across all metrics and
backbones, improving average R@1 over GOAL by nearly 2.5% and exceeding FineLIP by at least
10% in both T2I and I2T. On DCI, where description quality control is weaker than in DOCCI
(Onoe et al.,2024), although GOAL benefits from its segment-filtering procedure, MulCLIP is able
to achieve competitive performance with GOAL and continues to surpass FineLIP by a large margin.
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Zero-shot Long-Caption Cross-Modal Retrieval. MulCLIP generalizes robustly across fine-
grained long-text retrieval domains. When fine-tuned on DOCCI and tested on DCI (Tab. [2), it
surpasses GOAL on T2I R@1 by about 5% with ViT-B/16 (69.1% vs. 64.1%) and about 4% with
ViT-L/14 (72.9% vs. 68.9%). The trend persist in I2T where our model achieves an improvement
of 3.1% with ViT-B/16 (84.0% vs. 81.9%) and about 2% with ViT-L/14 (88.3% vs. 86.3%). In
the reverse setting (fine-tuned on DCI, evaluated on DOCCI), MulCLIP remains competitive with
GOAL. A consistent performance gain is observed on Urbanlk (Tab. [3), where MulCLIP achieves
the highest recalls at nearly all thresholds, exceeding GOAL by at least 2% on both backbones.

Method Urbanlk
Text-to-Image Image-to-Text Avg
R@] R@5 R@25 R@]1 R@5 R@25

Zeroshot CLIP 5330 76.70 91.05 6890 88.80 9790 79.44

FineLIP DOCCI FT 67.50 88.00 91.70 77.40 9390 97.40 85.98
= GOAL DOCCIFT 73.20 9270 98.30 8190 95.80 99.40 90.22
a MulCLIP DOCCIFT 7730 92.60 98.60 84.00 96.10 99.30 91.32
£

FineLIP DCI FT 64.00 8460 91.60 78.60 9490 97.00 85.12

GOAL DCI FT 7720 93.70 98.60 8290 96.80 99.40 91.43

MulCLIP DCI FT 80.90 9390 98.70 8520 97.00 99.50 92.53

Zeroshot CLIP 5390 7840 9220 6820 8840 97.00 79.68

FineLIP DOCCI FT 6740 87.60 9120 7870 9420 97.30 86.07
2 GOAL DOCCI FT 83.00 9540 99.70 86.30 96.50 99.40 93.38
o MulCLIP DOCCIFT 8580 97.10 99.40 8830 9730 99.70 94.60
£

FineLIP DCI FT 68.50 86.10 90.10 79.50 94.80 97.30 86.05

GOAL DCIFT 84.50 9640 9950 89.80 97.80 99.60 94.60

MulCLIP DCI FT 88.10 97.00 99.80 89.70 97.90 99.70 9537

Table 3: Zero-shot cross-modal long-caption retrieval on Urbanlk.

Zero-shot Short Caption Retrieval. After fine-tuning on long-caption data, MulCLIP still per-
forms strongly on short-caption benchmarks. In many cases it improves over the pretrained
CLIP baseline and tends to be stronger on T2I while staying competitive on I2T. For example,
on Flickr30k, with ViT-L/14 trained on DCI, MulCLIP reaches I2T R@1 of 89.6% (vs. GOAL
88.1%, CLIP 86.7%); with ViT-B/16 trained on DOCCI, it attains T2I R@1 of 67.44% (vs. 66.92%,
63.20%). On COCO, it continues to lead T2I R@1 when trained on DCI for both backbones, and
otherwise stays within roughly 1-2% of GOAL. For I2T, results are comparable, occasionally trail-
ing GOAL by about 1-2%. Overall, MulCLIP preserves CLIP’s short-caption strength while also
delivering consistent improvements through long-caption fine-tuning.

COCO Flickr30k
Method
Text-to-Image Image-to-Text Text-to-Image Image-to-Text Avg
R@! R@5 R@] R@5 R@] R@5 R@] R@5
CLIP 3395 5946 54.14 7774 6320 8630 8290 97.20 69.36
FineLIP DOCCI FT 36.30 61.77 56.68 80.14 2993 5363 49.11 7271 55.03
o GOAL DOCCIFT 37.28 62.96 56.84 80.20 66.92 88.56 83.20 96.70 71.58
= MulCLIP DOCCIFT 37.68 6326 5476 78.64 6744 8898 8190 9630 71.12
[
= FineLIP DCI FT 3544 6118 5548 79.38 29.07 5324 4843 72.64 54.36
GOAL DCIFT 37.20 63.17 55.82 79.10 66.12 88.42 8270 96.60 71.14
MulCLIP DCI FT 37.69 6334 53.84 78.00 6734 8898 83.00 96.50 71.09
CLIP 3729 61.82 57.68 80.20 6538 8736 86.70 9450 71.37
FineLIP DOCCI FT 41.18 6596 59.14 8200 36.66 6033 53.49 7759 59.54
- GOAL DOCCIFT 4422 69.19 62.82 84.04 73.88 9222 89.80 98.60 76.85
S MulCLIP DOCCIFT 43.69 69.73 60.76 83.00 7468 92.86 8840 9830 76.43
g
> FineLIP DCIFT 4095 65770 5880 81.94 3630 60.22 5236 76.56 59.10
GOAL DCIFT 4390 68.60 61.12 8330 72.88 91.68 88.10 98.10 75.96

MulCLIP DCIFT 4425 6920 62.86 8344 74.04 9244 89.60 98.50 76.79

Table 4: Zero-shot short caption retrieval on COCO and Flickr30k. MulCLIP shows competitive
performance, often matching or exceeding GOAL across different metrics and model backbones.
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Variant | Global LC WPR SAP | Fine-tuning objective

Global only v Liotal = Lglobal

W/o LC & w/o SAP v v Liotal = Lgiobal + Lword (v, 1)

W/o SAP v v v Liotal = Lglobal + Lword (v', 1)

W/o WPR v v V| Liotal = Lglobal + Lsub (v, 515)

MulCLIP (ours) v v v V| Liotal = Lgobal + Luora (V') + Lsun (v, £52)

Table 5: Fine-tuning objectives for MulCLIP variants. "LC’ refers to Local Calibration modules
for both branches. "WPR’ refers to Word-Patch Reconstruction loss. *SAP’ refers to Subcaption-
Aggregated Patch loss.

5 ABLATION STUDY & ANALYSIS

We conduct extensive ablation studies to evaluate the contribution of each component in MulCLIP,
using checkpoints fine-tuned on DOCCI and tested on long/short image—text retrieval. We further
report the degradation in zero-shot classification performance on CIFAR(Krizhevsky et al.l 2009)
and ImageNet variants(Recht et al.| 2019} Hendrycks et al.,[2021)).

5.1 CORE COMPONENT CONTRIBUTION.

To highlight the role of each component in MulCLIP, we consider the variants summarized in Tab.[5]
To compare against an alternative late-interaction design, we also evaluate a “MulCLIP w CLIM”,
which keeps the full MulCLIP objective but replaces the word-patch reconstruction with the Cross-
modal Late Interaction Module (CLIM) (Asokan et al., 2025} [Yao et al.| [2021)) operating over the
refined local textual and visual tokens. Additional ablations with alternative design choices are
reported in the supplementary material.

Impact on Long-text Understanding As shown in Tab. [6] the “W/o LC & w/o SAP”
configuration-which combines the WPR objective with global alignment—already yields substan-
tial gains on Urbanlk and DCI, most notably on the ViT-L/14 backbone, without degrading the
in-domain performance of the “global only” setting. This demonstrates that token-level word em-
beddings improve robustness and transferability in long-text retrieval. Building on this, when we in-
tegrate local calibration, the semantic word—patch objective works in concert with global alignment
("W/o SAP” row), further boosting performance for both backbones. This suggests that redundancy
in image patches and long-text tokens can hinder alignment, consistent with observation from prior
study (Asokan et al.,2025)). Finally, when we add the SAP alignment, we provide an additional layer
of fine-grained grounding, allowing completed MulCLIP to achieve the best overall results across
all metrics. Replacing MulCLIP’s word—patch reconstruction with the CLIM design leads to clear
underperformance relative to our proposed approach. We design a simple yet effective strategy to
use the completed natural structures of long text in CLIP model fine-tuning.

Urban-1k DCI DOCCI
Method T=1 I=T T=1 =T T=1 I=T Avg
R@l R@5 R@l R@5 R@l R@5 R@l R@5 R@lI R@5 R@l R@5
Global only 712 907 809 957 650 830 639 828 811 971 799 963 8230
. WOLC&WoSAP 715 919 796 952 659 825 632 830 806 968 793 962 82.14
£ WioSAP 744 916 80.1 952 654 840 641 832 806 969 789 965 82.58
£ W/oWPR 731 917 800 955 664 847 656 851 829 973 816 967 83.38

MulCLIP (ours) 773 926 840 961 69.1 860 67.1 842 822 971 803 969 84.41
MulCLIP w CLIM 683 87.8 788 934 640 822 628 81.7 785 958 772 952 8048

Global only 817 950 835 959 702 857 630 850 839 974 812 969 8537
. WOLC&WwoSAP 858 961 852 965 714 863 677 848 841 976 812 968 86.12
S Wio SAP 850 96.8 873 965 719 876 685 864 858 976 836 974 87.03
£ Wi WPR 806 955 856 971 722 874 718 874 860 983 843 979 87.01

MulCLIP (ours) 858 971 883 973 737 882 708 8.9 867 98.1 848 979 8797
MulCLIP w CLIM 827 955 847 953 716 872 704 870 845 978 834 974 8646

Table 6: Module ablations on long-text retrieval over Urban-1k, DCI, and DOCCI. Using all three
modules (LC, WPR, SAP) in MulCLIP yields the strongest performance among its variants.



Under review as a conference paper at ICLR 2026

Cifar ImageNet COCO Flickr
Method 10 100 v O T=I1 I=T T=1 1T Avg
R@1 R@5 R@l1 R@5 R@l R@5 R@l R@5

Zeroshot CLIP 90.80 67.30 61.90 4220 3729 61.82 57.68 80.20 63.20 86.30 82.90 97.20 69.07

< Global only 86.33 55.19 50.62 4285 38.03 6358 5498 78.72 66.80 88.82 84.00 9540 67.11
g W/oLC&w/oSAP 8548 5839 5149 4260 38.02 64.09 5540 79.36 6792 88.94 8480 96.30 67.73
; W/o SAP 81.36 52.89 5094 43.00 38.02 6395 5574 79.14 67.68 89.00 83.90 9590 66.79
W/o WPR 8498 55.07 51.82 41.65 37.12 62.71 5488 78.00 6574 8830 83.00 96.50 66.65

MulCLIP (ours) 86.33 60.34 52.13 43.80 37.68 63.26 5476 78.64 6744 8898 8190 96.30 67.63
MulCLIP w CLIM 8145 60.50 52.16 4295 3477 6048 4822 7328 6444 87.12 7850 9500 6491

Zeroshot CLIP 95.50 76.80 6990 3190 3729 61.82 57.68 8020 6538 8736 86.70 94.50 70.42
- Global only 91.86 6297 51.47 3850 4293 6857 5932 8250 7326 9234 89.40 97.70 70.90
S W/OLC&w/oSAP 9031 6434 5429 3735 38.17 64.09 5540 79.36 7424 9276 88.70 98.30 69.78
£ W/o SAP 90.74 67.04 57.73 3870 44.67 6999 61.84 8440 75.08 93.18 88.00 98.20 72.46
W/o WPR 91.71 67.79 5695 3625 4322 6878 6092 83.28 7430 9236 88.10 98.50 71.85

MulCLIP (ours) 90.10 68.43 57.19 37.15 43.69 69.73 60.76 83.00 74.68 92.86 88.40 98.30 72.02
MulCLIPw CLIM 9133  71.66 59.28 36.15 42.66 67.82 6040 8272 7222 9220 86.80 98.10 71.78

Table 7: Module ablations on short-text understanding across CIFAR-10/100 and ImageNet-
v2/0 classification (top-1 accuracy), and COCO/Flickr short-text retrieval.

Impact on short-text understanding. As shown in Tab. [/} the “W/o SAP” configuration, which
includes global, local calibration and word—patch reconstruction, achieves the strongest short-text
retrieval performance on COCO and Flickr for both backbones. Howevers, the full MulCLIP model
and the “W/o WPR” variant, while improving ImageNet classification, slightly reduce retrieval per-
formance on short-caption datasets. This trade-off may stem from SAP: introducing coherent sub-
captions aligned with local visual regions helps longer descriptions but can act as noisy supervision
once taken out of their full context. Overall, the complete MulCLIP improves the performance of
pretrained CLIP on standard retrieval benchmarks, while show less degradation on zeroshot classi-
fication.

5.2 FINE-GRAINED ANALYSIS

5.2.1 FINE-GRAINED UNDERSTANDING ACROSS DIFFICULTY LEVELS

While our previous experiments primarily Typle 8: Fine-grained understanding on FG-OVD.
assess image-level retrieval, they mainly Accuracy (%) on the four difficulty subsets (hard,
capture how well a model aligns global medium, easy, trivial) for different methods, all using a

scene semantics with long or short de-  v41.B/16 backbone fine-tuned on DOCCI.
scriptions.  To explicitly probe local

grounding, we further evaluate MulCLIP
on the fine-grained FG-OVD benchmark,
which is defined over localized regions
rather than full images.

Method hard medium easy trivial Avg

FineLIP  18.17 38.68 4196 73.79 43.15
GOAL 18.65 39.66 4450 72.78 43.90
MulCLIP 19.24 40.73 4727 68.63 43.97
In FG-OVD, each region is annotated with W/o SAP  16.56 37.84 43.03 65.84 40.82
one positive caption and a set of perturbed WioWPR 1738 3851 4542 6841 4243
negatives created by replacing specific at-

tribute words such as color, material, or

spatial relations. These candidates are grouped into four difficulty levels—hard, medium, easy,
and trivial—depending on how similar the negatives remain to the positive description, with the
hardest cases differing by only one or two attributes. Following the standard protocol, we rank each
region’s true caption among its candidates. As shown in Tab.[8] MulCLIP consistently outperforms
the other adaptation methods on the hard, medium, and easy splits, confirming that its multi-level
alignment enhances sensitivity to subtle attribute changes.

5.2.2 QUALITATIVE LOCALIZATION RESULTS

Figurecompares ViT-B/16 attention maps of GOAL, the ablations (W/o SAP, W/o WPR), and our
full MulCLIP model. MulCLIP consistently captures local details more precisely than any of the
baselines. Both MulCLIP and its ablations can detect subtle cues such as the camouflaged long-tailed
lizard on the rocks and black letters or the reflection of a car in mirrors. However, while the ablations
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Original Attention map Overlay Original Attention map Overlay

W/o WPR

W/o SAP

GOAL

MulCLIP

W/o WPR

W/o SAP

GOAL

MulCLIP

b 4

a lizard with a long tail behind it a small lizard on top of a stone surface, a brown sunglass

Figure 2: Qualitative comparison of attention maps. From left to right, we show: (1) the original
image, (2) the attention heatmap, and (3) the overlay of the heatmap on the image. Across diverse
scenes, MulCLIP produces sharper and more semantically aligned attention, successfully localiz-
ing fine-grained details that are often missed or diluted in baseline methods. Red circles highlight
regions where MulCLIP demonstrates effective attention localization.

attend to these details, MulCLIP produces sharper and more semantically aligned activations; in
contrast, "W/o SAP” and GOAL yield more diffuse responses, whereas "W/o WPR” produces less
diffuse but more fragmented patterns that often miss broader contextual regions (i.e the eyeglass,
people in a distance). Notably, GOAL completely misses the camouflaged lizard despite its use of
SAM-based region proposals to support localization, revealing a blind spot compared to MulCLIP’s
self-learned alignment mechanism. These qualitative comparisons reinforce the quantitative results,
indicating that MulCLIP effectively balances global comprehension with fine-grained localization
while avoiding the drawbacks of external region-proposal modules.

6 CONCLUSION

We presented MulCLIP, a simple yet effective adaptation framework that brings multi-scale align-
ment to CLIP-style models without relying on region-proposal tools. Comprehensive experi-
ments on long-caption retrieval and zero-shot transfer demonstrate that explicitly coupling global,
sentence-level, and word-level objectives consistently improves both in-domain accuracy and cross-
domain robustness. Ablation studies further show that each alignment branch plays a complementary
role and that the full model provides a stronger fine-grained understanding.
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REPRODUCIBILITY STATEMENT

We aim to make our results straightforward to verify. Sections[3|andddocument the implementation,
model architectures, training/evaluation protocols, and all hyperparameters. To preserve double-
blind review, the full source code and scripts will be released upon acceptance. During the rebuttal
phase, if requested by reviewers or area chairs, we will provide an anonymous artifact bundle (e.g.,
source code, minimal pretrained checkpoints, configuration files, and step-by-step commands) via
an anonymized URL compliant with the ICLR anonymity policy. All experiments use fixed random
seeds; environment details are reported. Pretrained checkpoints and any preprocessed data will be
shared subject to licensing constraints.
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A APPENDIX

1. ZERO-SHOT CLASSIFICATION

Table 9] sums up the zero-shot results. With ViT-B/16, MulCLIP is consistently higher than GOAL
on all datasets for both DOCCI and DCI fine-tuning. With ViT-L/14, the picture is mixed: under
DOCCI fine-tuning, GOAL leads on CIFAR-10/100 and ImageNet-V2, while MulCLIP is stronger
on ImageNet-O; under DCI fine-tuning, MulCLIP improves on ImageNet-O, ImageNet-V2, and
CIFAR-10, with GOAL slightly ahead on CIFAR-100.

Top-1 Accuracy (%)

Method
CIFAR-100 ImageNet-O ImageNet-V2 CIFAR-10 Avg
° GOAL DOCCI FT 55.41 42.15 49.85 84.95 58.09
A MulCLIP DOCCI FT 60.34 43.80 52.13 86.33 60.65
=
S GOAL DCIFT 57.70 40.85 53.19 86.16 59.48
MulCLIP DCI FT 60.81 41.95 54.77 86.90 61.11
X GOAL DOCCI FT 69.61 33.90 63.25 93.70 65.12
3 MulCLIP DOCCI FT 68.43 36.95 56.79 90.10 63.07
=
= GOAL DCIFT 73.03 32.50 61.17 92.07 64.69
MulCLIP DCI FT 71.14 34.00 63.37 92.56 65.27

Table 9: Zeroshot top-1 accuracy classification performance on DOCCI and DCI checkpoints. We
highlight the models with best performance.
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II. ABLATION OF MULCLIP WITH DIFFERENT CHOICES OF WORD-PATCH LATE INTERACTION.

Ablation protocol. Table [I0| compares MulCLIP against three ablated variants that modify the
word- patch objective:

(1) "MulCLIP w/ Text-recon” is the full framework but sets Lworg = L

recon?
(i) "MulCLIP w/ Image-recon’ is the full framework but sets Lyorg = Limee:
(iii) "MulCLIP w/o Recon” (naive approach) is the full framework but replaces token reconstruc-
tion with a batch-contrastive alignment between refined tokens and patches, which sets Lwog =
£hach (v', ¢'). Here v’ and ¢’ denote refined patch and token embeddings, respectively;
Across datasets and metrics, the full MulCLIP consistently delivers competitive performance, often
matching or surpassing all baselines across backbones. When reconstruction is restricted to a single
direction, the model remains effective on short captions, where one-to-one cues dominate. How-
ever, such one-sided objectives and naive approach reveal consistent shortcomings in cross-domain
long-text transfer. By contrast, the full bidirectional scheme balances both perspectives and avoids
collapsing into a single retrieval path, leading to more stable results under distribution shifts.

Method Urban-1K DCI DOCCI COCO Avg
T=1 I=T T=1 =T T=1 =T T=1 =T

R@l1 R@5 R@! R@5 R@l R@5 R@l R@5 R@l R@5 R@l R@5 R@l R@5 R@1 R@5 Avg

MulCLIP w/ Text-recon 7380 92.00 81.10 9540 6538 83.54 65.88 8459 8227 97.25 80.94 96.92 37.52 6323 5506 78.28 77.07

MulCLIP w/ Image-recon 7320 91.60 80.80 9490 67.08 8489 6573 8479 8271 9745 80.78 96.92 3731 6328 5452 78.16 77.13
MulCLIP w/o Reconstruction  73.90  92.30 80.60 95.60 66.88 83.84 66.68 85.04 82.73 97.00 80.96 96.90 37.19 62.78 54.26 78.14 77.18

VIT-B/16

MulCLIP (ours) 77.30 92.60 84.00 96.10 69.10 86.00 67.10 8420 8220 97.10 80.30 96.90 37.58 63.26 54.76 78.64 77.95
- MulCLIP w/ Text-recon 86.20 96.50 87.60 97.00 73.74 87.74 7124 87.84 86.47 9822 8433 9778 4390 69.61 61.30 83.66 82.07
S MulCLIP w/ Image-recon 84.80 9690 86.60 97.20 73.54 88.84 7214 8854 86.02 9841 84.67 9796 44.02 69.54 6150 84.02 82.17
£ MuICLIP w/o Reconstruction  83.00 9520 87.20 96.50 72.54 8779 71.29 87.84 86.27 98.35 84.12 97.94 4348 6886 60.60 8324 81.51
MulCLIP (ours) 8580 97.10 8830 9730 7370 8820 70.80 86.90 86.70 98.10 84.80 97.90 43.69 69.73 60.76 83.00 82.05

Table 10: Ablation of MulCLIP with different word—patch late-interaction objectives. All rows use
the checkpoint fine-tuned on DOCCI.

III. EXTENDED RETRIEVAL QUALITATIVE RESULTS

Figures [7] and Table [T6] illustrate a recurring limitation of GOAL: it often misses small or low-
contrast details such as tiny numbers, faint text, background signs, or small logos. MulCLIP over-
comes this through multi-level alignment, when we start from global fine-tuning and introduce raw
word—patch alignment. It ensures that subtle cues, like route numbers, street-name plates, or curb
textures, are preserved rather than averaged out. In practice, this leads to fewer sign mismatches,
fewer counting errors, and more accurate grounding of in-image text. These qualitative improve-
ments are consistent with the quantitative gains observed on urban retrieval benchmarks.

IV. OPEN-VOCABULARY DETECTION EVALUATION (FG-OVD)

Setup. To further probe MulCLIP’s fine-grained localization ability, we follow the open-
vocabulary detection (FG-OVD) evaluation protocol of FG-CLIP (Xie et al., [2025)). We plug differ-
ent vision—language backbones into the official FG-CLIP detection pipeline, keeping the detector,
training hyperparameters, and data splits fixed, with all three models fine-tuned on Docci. Using
the same ViT-B/16 backbone, we re-evaluate MulCLIP, GOAL, and FineLIP on the four FG-OVD
difficulty levels (hard/medium/easy/trivial).

Method Backbone Hard  Medium Easy Trivial Avg

FG-CLIP  ViT-B/16 46.10 66.60 68.70 83.40 66.20
MulCLIP  ViT-B/16 19.24 40.73 47.27 68.63 43.97
FineLIP ViT-B/16 18.17 38.88 41.96 73.79 43.20
GOAL ViT-B/16 18.65 39.66 44.50 72.78 43.90

Table 11: Open-vocabulary detection (FG-OVD). Results under the official FG-CLIP pipeline
with a shared ViT-B/16 backbone.
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As expected, FG-CLIP is clearly best on FG-OVD, since it is trained with region-level supervision
and a detection-oriented objective. In contrast, MulCLIP is only fine-tuned for long-/short-caption
retrieval, without any box-level labels. Despite this, MulCLIP slightly outperforms GOAL and
FineLIP on the hard, medium, and easy splits, and remains competitive on the trivial split (Table[TT).
This indicates that our multi-level alignment (Global + LC + WPR + SAP) transfers some fine-
grained localization ability to an open-vocabulary detection setting, even though a dedicated OVD
model like FG-CLIP still remains clearly stronger overall.

V. SENSITIVITY TO LOCAL-LOSS WEIGHTS

Setup. To examine sensitivity to the local losses, we tie the two local weights and sweep
Aword = Aswp € {0.2,0.6,0.8,1.0} on the ViT-B/16 checkpoint fine-tuned on DOCCI. For each
setting, we evaluate R@1 on long-text benchmarks (DOCCI, DCI, Urban1K) and short-text bench-
marks (Flickr30K, COCO), as summarized in Table[T2]

A - Text-to-Image R@1 (%) Image-to-Text R@1 (%) Avg
word — Asub
DOCCI DCI UrbanlK Flickr30K COCO DOCCI DCI UrbanlK Flickr30K COCO
0.2 82.2 66.9 72.6 67.1 37.4 80.3 64.1 82.0 84.4 55.1  69.21
0.6 82.6 67.3 74.0 66.8 37.6 80.7 66.1 81.9 82.2 548  69.40
0.8 82.2 66.3 72.2 66.7 37.5 80.7 65.2 82.0 81.4 548  68.90
1.0 82.2 69.1 713 67.4 37.7 80.3 67.1 84.0 81.9 54.8  70.18

Table 12: Ablation of tied local-loss weight \yora = Asup (ViT-B/16, DOCCI FT). We report
R@1 (%) for text-to-image (T=-I) and image-to-text (I=T) retrieval on long-text (DOCCI, DCI,
Urban1K) and short-text (Flickr30K, COCO) benchmarks.

When we vary Ayorda = Agup from 0.2 to 1.0, both long-text (DOCCI/DCI/Urban1K) and short-text
(Flickr30K/COCO) R@1 scores change by at most about 1-2 points. In-domain performance on
DOCCI is almost flat, while DCI and Urban1K show mild gains as A increases. Our default choice
A = 1.0 slightly favors long-text retrieval (especially on DCI and Urban1K) without noticeably
degrading short-text performance. Overall, these results indicate that MulCLIP is robust with respect
to the local-loss weights within a broad mid-range.

VI. ROBUSTNESS TO NUMBER OF SUBCAPTIONS

Setup. We study how sensitive MulCLIP is to the number of sentence-level subcaptions. We fine-
tune ViT-B/16 on DOCCI while varying the maximum number of sentences per caption from 5 to
20, and evaluate R@1 on long-text (DOCCI, DCI, UrbanlK) and short-text (Flickr30K, COCO)
retrieval. Subcaptions are defined at the sentence level using punctuation-based splitting.

Max sentences Text-to-Image R@1 (%) Image-to-Text R@1 (%) Avg
DOCCI DCI UrbanlK Flickr30K COCO DOCCI DCI UrbanlK Flickr30K COCO

5 829 664 76.2 65.6 37.1 81.1 65.5 81.2 81.5 542 69.17

10 823 65.8 74.8 66.3 37.3 814  66.7 82.1 81.9 545  69.31

15 (default) 826 675 75.3 66.1 36.9 809 665 81.1 82.3 543  69.35

20 822  69.0 71.5 67.4 379 80.3  67.1 83.9 81.9 53.8  70.10

Table 13: Effect of caption granularity (max sentences per caption). R@1 (%) for text-to-
image (T=-I) and image-to-text (I=T) retrieval on long-text (DOCCI, DCI, Urban1K) and short-text
(Flickr30K, COCO) benchmarks.

Across the range from 5 to 20 sentences, short-text R@1 on Flickr30K and COCO remains almost
flat. DOCCI and DCI show small gains when increasing from very few sentences to around 10—
20, after which performance saturates. Urban1K shows a mild upward trend, but improvements are
incremental and never collapse.

Sentence-count histograms for DOCCI and DCI (Figures[5H6) show that most captions contain 3—10
sentences, with only a small fraction exceeding 20. Thus, our default cap of 15 sentences typically
includes all available sentences without over-fragmenting the caption. Overall, MulCLIP benefits
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Effect of number of sentences on R@1 - Long-text (DOCCI / DCI / Urban1K) datasets
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Figure 3: Effect of maximum number of sentences on long-text retrieval (DOCCI/ DCI/ Urban1K).

Effect of number of sentences on R@1 - Short-text (Flickr30K / COCO) datasets
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Figure 4: Effect of maximum number of sentences on short-text retrieval (Flickr30K / COCO).

from multiple sentence-level subcaptions but remains stable across a wide range of reasonable caps,
indicating robustness to caption granularity.

VII. FAIR COMPARISON WITH FINELIP AND ROLE OF THE GLOBAL LOSS

Total loss and local modules. For clarity, the full MulCLIP objective can be written as
Liotal = Latovat (Vetss to®s ) + Aw Lword (v, 1) + As Lsup (v, 1520, (12)

where v is the global image embedding, tle((’)‘:g, tshort are global text embeddings for long and short

captions, and v, ¢’ are locally calibrated tokens used by the word- and subcaption-level objectives.

Removing the global objective. To isolate the contribution of our local modules, we train a variant
that removes the global loss and keeps only local alignment:

Liotal = Lword (7}/7 t/) + »CSub('Ulv tsub)~ (13)

As shown in Table[T4] this “No Global” model suffers a large drop on all three long-text benchmarks
compared to full MulCLIP, with R@]1 roughly halved in many cases. This confirms that local ob-
jectives alone are not sufficient for robust long-text understanding, and that they must work fogether
with a strong global alignment term.

Adding our global loss to FineLIP. We next equip FineLIP with the same long/short global ob-
jective and 50% token compression as MulCLIP. Let

V=iea Vesy, 1= t' D teot (14)

be the concatenation of global and local tokens. The original FineLIP paper provides two runnable
variants of its triplet-based CLIM/FILIP objective R(-): R(V,T) and R(v’,t"). We therefore define:
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Sentence Count Distribution — Docci Full Captions
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Figure 5: Sentence count distribution on DOCCI.
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Figure 6: Sentence count distribution on DCI.

FineLIP ver. 1 (+Global):
Etotal = ﬁglobal(vclsa t::%l:g’ t‘seg(tm) + R(Vva T)a

FineLIP ver. 2 (+Global):

1
Elotal = Eglobal(vcls; te(())rtlg7 ti}é?n) =+ R(U/a t/)'
For a fair comparison, we match these two FineLIP variants against our W/o SAP model

long short rogl
Liotal = [’global('UCISa Leot s Leot ) + Lword (U )t )7
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Method DCI DOCCI UrbanlK Avg

T=1 I=T T=I I=T T=I I=T

MulCLIP (full)  69.1 67.1 82.2 80.3 71.3 84.0  76.67
No Global 3347 28.86 4025 2941 2500 3630 32.22

Table 14: Effect of removing the global loss (ViT-B/16, DOCCI FT). R@1 (%) for text-to-image
(T="1) and image-to-text (I=T) retrieval.

so all methods share the same backbone, global loss, and token-compression ratio, differing only in
how local interactions are modeled (FineLIP’s CLIM/FILIP vs. our Word—Patch Reconstruction).

All three models are fine-tuned on DOCCI under the same protocol and evaluated on Urban1K, DCI,
and DOCCI. Tables |15 summarize R@1 for both directions.

Method UrbanlK DCI DOCCI Avg
T=1 I=T T=1 I=T T=I I=T

o FineLIP (ver. 1, +Global) 649 714 564 448 656 600 60.5
o) FineLIP (ver. 2, +Global) 649 744 562 447 655 597 609
> Ours — W/o SAP 744 80.1 654 o641 80.6 789 739
3 FineLIP (ver. 1, +Global) 68.6 732 59.6 433 729 670 64.1
o FineLIP (ver. 2, +Global) 655 739 577 480 724 670 64.1
= Ours — W/o SAP 850 873 719 685 858 83.6 804

Table 15: Fair comparison between FineLIP+Global and our Global+LC+WPR (W/o SAP).
All models share the same backbone, global loss, token-compression ratio, and DOCCI fine-tuning
protocol. Best score per backbone is highlighted.

Under a fully matched setup (same backbone, global loss, token compression, data, and optimiza-
tion), both FineLIP+Global variants remain consistently below our Global+LC+WPR (W/o SAP)
model on all three long-text benchmarks, in both directions and for both ViT-B/16 and ViT-L/14.
Since the only difference is how local tokens are used, this indicates that our Local Calibration
and Word-Patch Reconstruction modules exploit compressed local tokens more effectively than
FineLIP’s CLIM/FILIP interaction.

The comparison with the “No Global” variant further highlights the complementarity of compo-
nents: the global objective is essential for long-text robustness, while LC+WPR provide the addi-
tional fine-grained gains on top. In the main ablations, adding SAP on top of Global+LC+WPR then
yields further, stable improvements, suggesting that subcaption—patch alignment is complementary
rather than the sole driver of MulCLIP’s benefits.
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Retrieved by GOAL

Query: A dark-colored sedan is parked askew on the side of a
street, half on the asphalt road and half on the concrete sidewalk.
Patches of melting snow are present, indicating recent snowfall or
wintry conditions. In the background, a white sedan is parked cor-
rectly on the opposite side of the street. Residential buildings with
white fences, bare deciduous trees, and other parked cars line the
street. There’s a general sense of a suburban or residential neigh-
borhood on a clear day with sunlight casting shadows on the ground.

Visible tire tracks through the snow suggest recent vehicle move-
ment.

Retrieved by GOAL Retrieved by MulCLIP

Query: The image depicts a bustling city street scene with
clear skies above. In the foreground, a white bus with a

digital sign that reads '60 LOOP/LAKEFRONT’
sidewalk, marked 'K412’ . A red traffic light hangs above, while

stops near a

a DO NOT ENTER'’ sign is prominently displayed on a post be-

low. The architecture includes tall, ornamented stone buildings in-
dicative of early 20th-century design, with one building featuring a
scaffolding structure along its facade. A pedestrian crosses the
street, another walks on the sidewalk, and a few flags, including a
green, white, and red one, are visible hanging from a building. The
urban environment suggests a downtown district, possibly in a large
metropolitan city.

Retrieved by MulCLIP
Retrieved by GOAL

Query: The image displays a vibrant urban scene with two
modern double-decker buses on a road, presumably in a city in
the United Kingdom. The bus in the foreground is painted in
a bright yellow color with bold advertising on its side, while

the bus in the background is also yellow with visible route infor-

mation.  Traffic lights appear on the left, indicating a cross-
walk or intersection. European-style architecture is prominent,
with elaborate stone buildings adorned with numerous windows
and ornamental details.  The sky is overcast with hints of

blue peeking through the clouds , suggesting a typical cloudy day.

The greenery of trees is also visible, adding a touch of nature to the
urban environment.

Retrieved by GOAL Retrieved by MulCLIP

Query: The image captures a busy urban street scene with two

white articulated trolleybuses, featuring blue and red stripes , con-

nected to overhead wires.  Above the buses, a streetlight

with a dual-globe design is visible. In the foreground,

a pole topped with a flying eagle statue anchors the composition.
Behind the buses, several red and white cars are parked. The back-
drop is lined with multistory buildings hosting various stores with
visible signage. Pedestrians can be seen walking along the side-
walks, and traffic lights are located at the street’s intersection. The
photo, taken from an elevated angle during daylight, shows the street
intersecting leftward, with designated lanes for different directions.

Legend: E Correct retrieval E Incorrect retrieval ~ Highlighted text indicates visual details missing from GOAL'’s retrieved
image but correctly matched by MulCLIP

Figure 7: Qualitative comparison of text-to-image retrieval between GOAL and MulCLIP. Each pair
shows retrieved images from both models for the same query. Colored borders indicate correctness
(green: correct; red: incorrect). Yellow highlights denote visual details missing from GOAL’s re-
trieved image but correctly matched by MulCLIP.
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Image query

MulCLIP

GOAL

This image depicts a vibrant urban street
corner on a clear day with blue skies. A
person in a blue checkered shirt and ca-
sual pants crosses the road at a pedestrian
crosswalk, heading towards a series of red
brick buildings with rounded and straight
corners. The architecture suggests a charm-
ing, historic neighborhood with storefronts
on the ground level, including one with a
blue awning. There’s a green streetlight vis-
ible and a black lamp post, adding to the
quaint ambiance. Vehicles are stopped at the
intersection, and the scene includes an over-
hanging metal structure that could be part of
a bus stop. The overall atmosphere is that
of a peaceful, sunny day in a bustling city
neighborhood.

The image depicts an urban street scene dur-
ing daytime. In the foreground, two individ-
uals with their backs to the camera are walk-
ing, one with a long ponytail and a white
shirt, the other with a patterned blouse, and
a red backpack. A silver car is visible on
the left side of the road, which is marked
with multiple round blue traffic signs, in-
dicating no waiting or no stopping restric-
tions. Across the street, there’s a red-bricked
five-story building with white stone trim-
mings and arched windows on the ground
floor. The windows on the upper floors are
regularly spaced, and the uppermost story
appears to be an attic with smaller win-
dows. The sky is clear, suggesting favorable
weather conditions.

The image shows an urban street scene un-
der a clear blue sky. In the foreground, a
black car is driving down the road, which is
lined with electrical wires above. The archi-
tecture is a mix of multi-story brick build-
ings with visible signs of wear and faded
paint, suggesting a historical urban area.
The buildings vary in height, with some hav-
ing flat facades and others featuring recessed
windows and ornate detailing. The street ap-
pears to be relatively empty, with no pedes-
trians visible and minimal vehicular traf-
fic. The structures’ color palette is predom-
inantly red brick, with accents of tan and
white on the secondary building elements.

The image captures a daytime scene on a
city street named “Main Street,” indicated
by a street sign hanging above. Vehicles,
including a red sedan in the foreground,
are parked along one side of the street,
while others, including white vans, are vis-
ible in motion. Pedestrians are present on
the sidewalks, some standing and others
seated beside buildings; a group congregates
near an American flag. Ultility poles, traf-
fic signals, and signs, including one indi-
cating a “Drug-Free School Zone,” dot the
streetscape. Overhead, a concrete overpass
spans the thoroughfare. The sky is slightly
overcast, casting even lighting across the ur-
ban environment.

This image captures an urban street scene
with tall residential buildings lining one side
and leafy trees displaying autumn colors.
The scene includes a city bus in the center
of the frame, showing the number 36 on its
indicator, and various other vehicles such as
cars and SUVs. The road features a dedi-
cated bike lane on the right, demarcated by
white lines and identified by painted bicycle
symbols. The overcast sky and the presence
of a streetlight that is turned on suggest that
this is either early morning or late afternoon.
The photo appears to be taken from the per-
spective of a pedestrian or cyclist at street
level, focused on capturing the flow of ur-
ban traffic.

This image depicts an overcast day on an
urban street lined with tall, modern office
buildings. A blue public bus marked with
the number 421 is at the forefront on the
road, while a red bus can be seen farther
down the street. There is a white car on the
left and traffic lights are visible overhead,
with a red light illuminated. The road has
multiple lanes and a pedestrian zebra cross-
ing in the foreground. There’s also a traf-
fic sign indicating no left turn for motorcy-
cles. Leafless trees suggest it may be winter
or early spring. The overall scene appears to
be calm with moderate traffic.

This image captures a British urban scene,
highlighted by a classic red double-decker
bus on the right, displaying route number 30.
The bus has yellow text and advertisements
printed on its sides. On the left, a pedes-
trian wearing a green jacket and carrying a
bag seems to be briskly walking on the side-
walk. There’s a yellow street sign indicating
a diversion ahead. In the background, an or-
nate building towers with a clock at its apex
under a clear blue sky. The street is flanked
by various other buildings, likely a mix of
residential and commercial structures, typi-
cal of a UK cityscape.

This image captures a bustling urban scene,
likely in London, with a red double-decker
bus dominating the foreground, bearing the
signage "Arriva’ and a route number 176 to
Penge via Elephant & Castle and Forest Hill.
A person at a pedestrian crossing is using a
push-button signal post, while others wait by
a bus stop shelter where someone points up-
wards. To the right, a classic red telephone
box is in use by an individual. In the back-
ground, neoclassical architecture suggests a
historical district, with a dome-topped build-
ing visible in the distance. The street is lined
with cars and traditional black iron fenc-
ing, contributing to a distinctly British urban
landscape.

Table 16: Qualitative comparison of image-text retrieval results between MulCLIP (middle column)
and GOAL (right column). Borders are embedded to indicate correctness (green: correct; red: incor-
rect). Yellow highlights denote visual details missing from GOAL’s retrieved image but correctly
matched by MulCLIP.
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