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ABSTRACT

Pioneering vision–language models such as CLIP have transformed multimodal
learning by aligning images and text in a shared embedding space. However,
CLIP’s training on short captions limits its ability to handle downstream tasks that
require longer text comprehension and fine-grained visual grounding. Recent ad-
vances mitigate this challenge by leveraging region-proposal information to map
visual regions with corresponding sentences from lengthy captions, yet incurring
notable deployment costs. In this paper, we introduce MulCLIP, a novel end-to-
end multi-level alignment framework that bridges long-text structures (long cap-
tions, sentences, words) with image components (global, regional), enabling
fine-grained capabilities while surpassing CLIP’s strength on short-text under-
standing. MulCLIP first preserves global contrastive alignment between images
and both summary and long captions, while extending positional embeddings for
longer text sequences. To further enhance fine-grained understanding, we propose
two novel strategies: (1) a token reconstruction alignment over locally calibrated
features to strengthen semantic connections between words and image patches,
and (2) a subcaption–aggregated patch alignment that automatically extracts and
aggregate context-rich patches for each subcaption. Experimental results demon-
strate MulCLIP outperforms baselines in both long- and short-text understanding,
while ablation studies confirm its multi-scale alignment is the key factor driving
better fine-grained capability than region-proposal–assisted approaches.

1 INTRODUCTION

Efforts to bridge the alignment gap between visual and linguistic modalities have prominently high-
lighted the CLIP model (Radford et al., 2021), a multimodal embedding framework trained via
contrastive learning on more than 400 million image–text pairs. CLIP effectively maps visual and
textual inputs into a shared representation space, showcasing impressive zero-shot generalization
across a wide range of downstream tasks including image retrieval, visual question answering, and
image captioning. Despite CLIP’s strong generalization ability, it remains limited in fine-grained
understanding, particularly in recognizing object attributes and their relationships (Wu et al., 2024;
Tong et al., 2024). This stems from two key factors: (i) although CLIP’s text encoder can process up
to 77 tokens, the model is predominantly trained on short, generic captions that emphasize high-level
semantics and lack detailed descriptions; and (ii) it performs global alignment between full images
and texts, making it difficult to associate localized visual regions with specific textual components.
These constraints hinder the model’s ability to handle complex scenes and long-form descriptions,
where nuanced alignment is essential.

To address such issue, LongCLIP (Zhang et al., 2024) extend CLIP’s capacity for long-text modeling
by modifying its positional encodings, enabling the model to process longer sequences without
disrupting the alignment learned from pre-trained CLIP weights. While effective, they still operate at
a global representation level and fail to capture the fine-grained correspondences that naturally arise
in detailed descriptions. FineLIP (Asokan et al., 2025) narrows this gap by introducing specialized
token-alignment mechanisms between image embeddings and long text embeddings. However, it
focus solely on long captions, overlooking the semantically rich short phrases describing specific
image regions (Onoe et al., 2024; Urbanek et al., 2024). In addition, training with only long caption
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Long-text Tuning Methods Long Caption Short Caption Word Region-Proposal-Assisted
LongCLIPZhang et al. (2024) ✓ ✓ ✗ ✗
FineLIP Asokan et al. (2025) ✓ ✗ ✓ ✗

GOAL Choi et al. (2025) ✓ ✓ ✗ ✓
FG-CLIP(Xie et al., 2025) ✓ ✓ ✗ ✓

MulCLIP (ours) ✓ ✓ ✓ ✗

Table 1: Comparison of components aligned with image features across methods.

leads to degradation in understanding short text, as demonstrated in prior findings of Wu et al.
(2024).

GOAL (Choi et al., 2025) tackles both long and short captions with a global–local alignment frame-
work. While it achieves strong fine-grained results and maintains solid zero-shot performance, it
relies heavily on external segmentation tools (e.g., SAM (Kirillov et al., 2023)) and post-hoc filter-
ing, adding computation and limiting deployment flexibility. Likewise, FG-CLIP (Xie et al., 2025)
focuses on fine-grained pre-training on large-scale data, leveraging YOLO-World (Cheng et al.,
2024) region proposals and hard-negative mining. As summarized in Table 1, these approaches dif-
fer in the textual granularities they align with image features and in their reliance on region-based
modules to locate fine-grained visual components.

In this paper, we introduce MulCLIP, a simple yet effective adaptation framework for multi-level
image–long text alignment. Unlike existing approaches that focus at most two granularities or re-
gion proposals and filtering, MulCLIP employ token reconstruction and sub-aggregated patch mech-
anism on top of semantic features to further refine them while jointly modeling (i) global-to-global
relationships between full images and corresponding long and summary short captions, (ii) local-
to-local correspondences between image patches and word embeddings, and (iii) sub-caption-to-
image-patches alignments, enabling richer and more precise cross-modal understanding. Our main
contributions are summarized as follows:

• We propose a unified multi-level alignment framework that bridging the gap between long-
form descriptions and complex visual content at three different scales.

• We conduct comprehensive experiments on a range of cross-modal retrieval benchmarks,
demonstrating that MulCLIP outperforms existing leading methods on both lengthy fine-
grained and standard retrieval tasks.

• We provide extensive ablations and qualitative analysis to elucidate the impact of each
component in our framework, highlighting the advantages of our approach for fine-grained
multimodal understanding.

2 RELATED WORK

Vision-Language Models (VLMs). Contrastive learning has established itself as a leading
paradigm for multimodal pre-training, significantly advancing the field of image-text alignment. The
pioneering work of CLIP (Radford et al., 2021), employing a dual-encoder architecture trained con-
trastively on approximately 400 million image–caption pairs, demonstrates robust zero-shot transfer
capabilities across various downstream tasks such as open-vocabulary recognition, object detection,
and semantic segmentation. Moreover, CLIP has become an essential component in numerous gen-
erative vision–language systems, including multimodal language models like LLaVA (Liu et al.,
2023) and diffusion models (Nichol et al., 2022; Rombach et al., 2022). Following CLIP success,
the next VLM foundation models train on hundred million to billions image-text pairs dataset (Jia
et al., 2021; Li et al., 2022) and this trend also propagates into domain-specific VLMs, such as med-
ical imaging application (Zhang et al., 2025). However, these models typically rely on short, broad
image descriptions as captions, causing them to miss crucial local-level detailed information.

Fine-grained understanding in VLMs. To address these limitations, recent work has shifted to-
wards fine-grained attributes in long text. Some approaches integrate the inherent short descriptions
from synthetic long text to vision-language models and retrained it from scratch (Zheng et al., 2024;
Wu et al., 2024; Xiao et al., 2025), but this forfeits the rich knowledge of pre-trained models like
CLIP, demands large-scale data and computation. CLOC (Chen et al., 2025) takes a different route:
it mines two billion image–text pairs, then employs open-vocabulary detectors to align local objects
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with phrase-level descriptions, achieving strong localization at the cost of heavy data collection and
detector inference.

An alternative, more efficient approach involves fine-tuning existing pre-trained CLIP model. Early
works (Huang et al., 2021; Bica et al., 2024), highlight token-level alignment between image patches
and text word embeddings, pushing the boundaries of fine-grained image–text understanding. In an
emerged direction, LongCLIP (Zhang et al., 2024) or TULIP (Najdenkoska et al., 2024) extends
the token capacity of CLIP’s text encoder, enabling it to process and represent longer, more de-
scriptive captions. In addition, several dense, detailed image-caption datasets such as DCI (Urbanek
et al., 2024) and DOCCI (Onoe et al., 2024) have been introduced, leveraging large vision–language
models (LVLMs) to generate fine-grained sub-captions that describe local visual details.

Recent methods, including GOAL (Choi et al., 2025) and FG-CLIP (Xie et al., 2025), exploit these
annotations by employing external segmentation tools for explicit region-level alignment. Specif-
ically, GOAL uses SAM to segment images and matches sub-captions with relevant regions via
CLIP-based filtering. It then jointly aligns both the full and segmented images with long and sub-
captions via unified learning objectives. FG-CLIP adopts a two-stage training strategy: in the first
stage, it finetuned on billions pairs to adapt a dual-head CLIP on long and short captions; in the
second, it continues training on millions of hard negative caption–image pairs and incorporates
grounding information from YOLO to achieve finer-grained understanding. FineLIP (Asokan et al.,
2025) adopt refinement modules for both CLIP branches followed by cross-modal late interaction
to achieve better alignment between image and long text tokens. However, all of these approaches
are either non-unified or address at most two granularities, leaving the gap of unified and effective
alignment strategy for fine-grained long-context learning.

3 METHOD

3.1 GLOBAL-LEVEL ALIGNMENT.

MulCLIP aligns images with both summary short and long captions at global level by leveraging
the global token embeddings produced by respective visual and textual encoders. To handle text
sequences longer than CLIP’s standard 77 token limit, we adopt LongCLIP’s positional embedding
interpolation strategy in our text encoder. This adjustment allows longer text inputs while minimiz-
ing disruptions to the strong crossmodal alignment achieved in the pretrained CLIP.

Formally, consider a CLIP-style vision–language model f = (fv, f
h
v , ft, f

h
t ), where fv and ft de-

note image and text backbone modules respectively, and fh
v and fh

t represent corresponding projec-
tion heads mapping embeddings to a shared d-dimensional space. Given an image I and its associ-
ated long-form caption Tlong, we first segment Tlong into M sentence-level subcaptions {T i

sub}Mi=1.
We then extract the image’s global and local features using fv and project them using fh

v :

[vcls, vloc] = fh
v (fv(I)) ∈ R(P+1)×d, (1)

where vcls ∈ Rd denoted the global [CLS] embedding of an image and vloc ∈ RP×d are P patch
local embeddings.

Similarly, text embeddings are obtained from the text encoder:[
tlongeot , tlongloc

]
= fh

t (ft(Tlong)) ∈ R(N+1)×d,
[
{tsub

eot,i}Mi=1,
]
= fh

t

(
ft
(
{T i

sub}Mi=1

))
∈ RM×d.

(2)

where tlongeot ∈ Rd and tlongloc ∈ RK×d denoted the global [EOT] and K local embeddings of long
text, while tsubeot = {tsub

eot,i}Mi=1 ∈ RM×d denoted the global embeddings of M subcaptions.

During training, every image is paired with a short summary caption and a longer detailed caption.
Modern long-text augmentation pipelines commonly expand raw summary captions or generate full
descriptions with LVLMs. Typically, the first sentence tsubeot,1 (or tshorteot ) of such a generated caption
serves as the summary. To exploit this hierarchical structure,we define the global objective as:

Lglobal = Lbatch
contrast(vcls, t

long
eot ) + λshortLbatch

contrast(vcls, t
short
eot ) (3)
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where λshort is a hyperparameter, and the batch-level contrastive loss Lbatch
contrast pulls matched im-

age–caption pairs (vcls, tlongeot ) and (vcls, tsubeot,1) closer in the shared embedding space while push-
ing apart the mismatch pairs within the batch. This global objective therefore aligns each image
with both its comprehensive and concise textual descriptions.

3.2 FINE-GRAINED CROSS-MODAL ALIGNMENT

Local Token Calibration In dense and highly-aligned image-text pairs, redundancy and ambigu-
ity frequently occur in both local image patches and local text tokens. On the image side, as shown
in previous works (Fu et al., 2024; Bolya et al., 2023), a large number of local patches generated
by vision transformers are either redundant or ambiguous, often corresponding to non-salient back-
grounds, repeated structures or regions lacking clear semantic content. Similarly, token embeddings
from lengthy captions can be repetitive or weakly informative, which dilutes the effectiveness of
cross-modal alignment. To mitigate these issues, we adopt aggregation network (Zong et al., 2022),
as adaptive calibration mechanism for both visual and textual local embeddings. Specifically, given
an input sequence of N tokens, each with dimension d, we denote the input as X ∈ RN×d. The
aggregated output X ′ ∈ RN ′×d is computed as:

X ′ = SoftMax
(Wq σ(XWk)

⊤

τ

)
X, (4)

where Wk ∈ Rd×dk and Wq ∈ RN ′×dk are learnable projection matrices (dk < d), which
N ′/N = 0.5 by default, σ(·) is a non-linear activation GELU (Hendrycks & Gimpel, 2016),
and τ is a learnable temperature parameter. We apply calibration modules independently to vi-
sual patches vloc ∈ RP×d and local long caption tokens tlongloc ∈ RK×d, yielding refined patches
v′ = {ṽi}rPi=1∈RrP×d and refined words t′ = {t̃i}rKi=1∈RrK×d.

To further leverage these semantic tokens for fine-grained matching, we propose two complementary
alignment strategies: token reconstruction alignment and subcaption–aggregated patch alignment
that operate on top of them.

Token Reconstruction Alignment To align semantic words with their corresponding visual
patches, we use the reduced sequences v′ and t′ as queries in a bidirectional dot-product attention:

Av→t = SoftMax
(v′ (t′)⊤√

d

)
, At→v = SoftMax

( t′ (v′)⊤√
d

)
(5)

These matrices select, for every image patch, the most relevant text token and vice-versa, yielding
cross-modal reconstructions V ′ ∈ R(rP )×d and T ′ ∈ R(rK)×d :

V ′ = {Ṽi}rPi=1 = (Av→t t
′), T ′ = {T̃i}rKi=1 = (At→v v

′). (6)

We introduce a self-sample alignment objective that applies two contrastive terms, one for images
and one for text, to make every refined token consistent with its cross-modal reconstruction. Specif-
ically, we impose contrastive losses for each token within the same sample; therefore, no cross-
sample negatives are needed. This considerably reduced computation and memory costs over align-
ing patch-words pairs across a batch:

Limage
recon (v

′, V ′) =
1

rP

rP∑
i=1

Lsample
contrast(ṽi, Ṽi), Ltext

recon(t
′, T ′) =

1

rK

rK∑
i=1

Lsample
contrast(t̃i, T̃i). (7)

The final Word-Patch Reconstruction (WPR) objective is simply the sum:

LWord(v
′, t′) = Limage

recon (v
′, V ′) + Ltext

recon(t
′, T ′) (8)

which enforces mutual, token-wise agreement across modalities.
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Figure 1: Overview of MulCLIP. An image encoder (ViT) produces a global image embedding
CLSimg and a sequence of local tokens LOCimg . The text encoder outputs local tokens LOCtext

and an end-of-text global embedding EOTtext for multiple textual inputs, including long captions,
summary captions, and other sub-captions. Independent calibration modules refine and shorten the
local sequences of image and long text into v′ and t′. MulCLIP further exploits these semantic
tokens through token reconstruction and the subcaption–aggregated patch mechanism

Subcaption- Aggregated Patch Alignment Descriptive captions from curated long-text image
datasets typically consist of multiple sentence-level subcaptions, each can describe local image re-
gions. To explicitly align these subcaptions with corresponding visual content, we obtain each
subcaption embedding tsub

eot,i ∈ R1×d from Eq.2 and associate them with the aggregated visual rep-
resentation from the refined local embeddings v′ ∈RrP×d. Specifically, we use attention weights
derived from dot-product similarity between each subcaption embedding and the visual patches:

αi = SoftMax

(
tsub
eot,i(v

′)⊤
√
d

)
∈ R1×rP , v̄i = αiv′ ∈ Rd (9)

We then impose a Subcaption-Aggregated Patch (SAP) objective that applies a contrastive loss be-
tween each subcaption embedding and its aggregated visual representation:

LSub(v
′, tsubeot ) =

1

M

M∑
i=1

Lbatch
contrast(v̄

i, tsubeot,i), (10)

Overall Alignment Objective. To enable robust and comprehensive vision–language alignment,
we jointly optimize three complementary objectives:

Ltotal = Lglobal + λWLWord(v
′, t′) + λSLSub(v

′, tsubeot ), (11)

where λW, λS are weighting factors. We adopt a sigmoid-based contrastive loss (Zhai et al., 2023)
as the main objective for all Lconstrast terms.
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Method DOCCI DCI
Text-to-Image Image-to-Text Text-to-Image Image-to-Text Avg

R@1 R@5 R@25 R@1 R@5 R@25 R@1 R@5 R@25 R@1 R@5 R@25
D

O
C

C
IF

T

V
iT

-B
/1

6 FineLip 70.94 92.98 96.82 71.50 93.24 97.38 58.58 78.64 85.09 59.88 80.39 86.34 80.98
GOAL 79.47 96.65 99.69 79.43 96.14 99.61 64.13 82.69 92.95 65.88 83.44 92.95 86.09
MulCLIP 82.2 97.12 99.78 80.26 96.88 99.67 69.08 85.99 93.44 67.13 84.24 94.75 87.55

V
iT

-L
/1

4 FineLip 74.70 94.24 97.32 75.44 94.60 97.72 62.88 81.69 87.14 63.68 83.44 88.29 83.43
GOAL 84.37 99.55 99.76 82.57 97.37 99.82 68.93 85.74 93.95 68.43 85.99 93.90 88.37
MulCLIP 86.73 98.10 99.84 84.80 97.88 99.84 72.93 88.00 94.94 72.03 86.64 95.65 89.78

D
C

IF
T V
iT

-B
/1

6 Finelip 65.50 89.30 94.92 66.32 90.72 95.24 60.38 80.39 86.79 63.58 82.94 88.39 80.37
GOAL 71.22 92.39 98.90 71.18 92.88 98.88 72.64 89.89 95.95 72.84 90.50 96.60 86.99
MulCLIP 73.78 93.86 99.04 71.75 92.96 99.26 75.13 89.44 95.90 72.00 89.24 96.34 87.39

V
iT

-L
/1

4 FineLip 68.84 90.92 95.36 71.54 92.56 96.58 66.03 84.49 89.29 65.58 85.19 90.40 83.07
GOAL 79.04 95.78 99.55 79.16 95.96 99.61 76.89 91.05 96.55 76.59 91.20 96.55 89.83
MulCLIP 81.04 96.33 99.54 78.35 95.31 99.54 78.83 91.39 96.79 76.83 92.09 97.34 90.28

Table 2: Long-text retrieval performance on DOCCI and DCI. Rows (DOCCI FT, DCI FT) indicate
the dataset that methods was trained on, while columns (DOCCI, DCI) report evaluation perfor-
mance. We highlight the models with best performance and second-best within each backbone,
and gray shading indicates in-domain retrieval (diagonal blocks). MulCLIP improves the overall
in-domain and out-of-domain performance on both datasets.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We fine-tune MulCLIP on the training splits of both DOCCI and DCI (Onoe et al., 2024;
Urbanek et al., 2024) and evaluate on the 3 test sets of DOCCI, DCI and Urban1K (Zhang et al.,
2024) to measure both in-domain and out-of-domain fine-grained long-text retrieval performance
comprehensively on Table 2 and Table 3 . The DOCCI dataset comprises 9,647 training examples
and a test split totaling 5,100 samples (5,000 from the official test set plus 100 from the qualification
set). To match this scale for DCI, whose original test partition contains only 100 examples, we
follow (Choi et al., 2025) to randomly sampled 2,000 instances from its 7,805-sample training pool,
yielding a comparable train–test ratio. To compare the short-text performance, we evaluate our
model on the validation set of COCO2017 (Lin et al., 2015) and Flickr30k (Plummer et al., 2016).

Training setting. To validate our approach, we fine-tune two CLIP variants, ViT-B/16 and ViT-
L/14, for 8 epochs, using a batch size of 16 for ViT-B/16 and 8 for ViT-L/14. Due to computational
constraints, we use a smaller batch size for ViT-L/14 compared to the baseline (GOAL), which
employs a batch size of 16. The total loss is a fixed weighted sum of global, detail, and token
alignment terms λshort = 0.5, λW = 1, λS = 1.

Training is performed on single NVIDIA A5000 GPU. We set the base backbone learning rate to
1× 10−5 and the refinement-module learning rate to 2× 10−4, so as to retain the pre-trained CLIP
representations while encouraging the refinement layers to adapt to our long-caption datasets. A
weight decay of 0.05 is applied to reduce overfitting, and we employ a linear warm-up over the first
200 iterations to stabilize the initial training phase.

Test settings and state-of-the-art comparisons We measure Text-to-Image (T2I) and Image-to-
Text (I2T) retrieval performance using Recall@k. We compare MulCLIP against leading methods
tailored for fine-grained, long-caption datasets, such as FineLIP and GOAL.

4.2 RESULTS

In-domain Long Caption Retrieval. On Tab. 2, MulCLIP establishes clear in-domain advantages
on both DOCCI and DCI. On DOCCI, MulCLIP achieves the highest scores across all metrics and
backbones, improving average R@1 over GOAL by nearly 2.5% and exceeding FineLIP by at least
10% in both T2I and I2T. On DCI, where description quality control is weaker than in DOCCI
(Onoe et al., 2024), although GOAL benefits from its segment-filtering procedure, MulCLIP is able
to achieve competitive performance with GOAL and continues to surpass FineLIP by a large margin.
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Zero-shot Long-Caption Cross-Modal Retrieval. MulCLIP generalizes robustly across fine-
grained long-text retrieval domains. When fine-tuned on DOCCI and tested on DCI (Tab. 2), it
surpasses GOAL on T2I R@1 by about 5% with ViT-B/16 (69.1% vs. 64.1%) and about 4% with
ViT-L/14 (72.9% vs. 68.9%). The trend persist in I2T where our model achieves an improvement
of 3.1% with ViT-B/16 (84.0% vs. 81.9%) and about 2% with ViT-L/14 (88.3% vs. 86.3%). In
the reverse setting (fine-tuned on DCI, evaluated on DOCCI), MulCLIP remains competitive with
GOAL. A consistent performance gain is observed on Urban1k (Tab. 3), where MulCLIP achieves
the highest recalls at nearly all thresholds, exceeding GOAL by at least 2% on both backbones.

Method Urban1k
Text-to-Image Image-to-Text Avg

R@1 R@5 R@25 R@1 R@5 R@25

V
iT

-B
/1

6

Zeroshot CLIP 53.30 76.70 91.05 68.90 88.80 97.90 79.44
FineLIP DOCCI FT 67.50 88.00 91.70 77.40 93.90 97.40 85.98
GOAL DOCCI FT 73.20 92.70 98.30 81.90 95.80 99.40 90.22
MulCLIP DOCCI FT 77.30 92.60 98.60 84.00 96.10 99.30 91.32

FineLIP DCI FT 64.00 84.60 91.60 78.60 94.90 97.00 85.12
GOAL DCI FT 77.20 93.70 98.60 82.90 96.80 99.40 91.43
MulCLIP DCI FT 80.90 93.90 98.70 85.20 97.00 99.50 92.53

V
iT

-L
/1

4

Zeroshot CLIP 53.90 78.40 92.20 68.20 88.40 97.00 79.68
FineLIP DOCCI FT 67.40 87.60 91.20 78.70 94.20 97.30 86.07
GOAL DOCCI FT 83.00 95.40 99.70 86.30 96.50 99.40 93.38
MulCLIP DOCCI FT 85.80 97.10 99.40 88.30 97.30 99.70 94.60

FineLIP DCI FT 68.50 86.10 90.10 79.50 94.80 97.30 86.05
GOAL DCI FT 84.50 96.40 99.50 89.80 97.80 99.60 94.60
MulCLIP DCI FT 88.10 97.00 99.80 89.70 97.90 99.70 95.37

Table 3: Zero-shot cross-modal long-caption retrieval on Urban1k.

Zero-shot Short Caption Retrieval. After fine-tuning on long-caption data, MulCLIP still per-
forms strongly on short-caption benchmarks. In many cases it improves over the pretrained
CLIP baseline and tends to be stronger on T2I while staying competitive on I2T. For example,
on Flickr30k, with ViT-L/14 trained on DCI, MulCLIP reaches I2T R@1 of 89.6% (vs. GOAL
88.1%, CLIP 86.7%); with ViT-B/16 trained on DOCCI, it attains T2I R@1 of 67.44% (vs. 66.92%,
63.20%). On COCO, it continues to lead T2I R@1 when trained on DCI for both backbones, and
otherwise stays within roughly 1–2% of GOAL. For I2T, results are comparable, occasionally trail-
ing GOAL by about 1–2%. Overall, MulCLIP preserves CLIP’s short-caption strength while also
delivering consistent improvements through long-caption fine-tuning.

Method COCO Flickr30k
Text-to-Image Image-to-Text Text-to-Image Image-to-Text Avg
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

V
iT

-B
/1

6

CLIP 33.95 59.46 54.14 77.74 63.20 86.30 82.90 97.20 69.36
FineLIP DOCCI FT 36.30 61.77 56.68 80.14 29.93 53.63 49.11 72.71 55.03
GOAL DOCCI FT 37.28 62.96 56.84 80.20 66.92 88.56 83.20 96.70 71.58
MulCLIP DOCCI FT 37.68 63.26 54.76 78.64 67.44 88.98 81.90 96.30 71.12

FineLIP DCI FT 35.44 61.18 55.48 79.38 29.07 53.24 48.43 72.64 54.36
GOAL DCI FT 37.20 63.17 55.82 79.10 66.12 88.42 82.70 96.60 71.14
MulCLIP DCI FT 37.69 63.34 53.84 78.00 67.34 88.98 83.00 96.50 71.09

V
iT

-L
/1

4

CLIP 37.29 61.82 57.68 80.20 65.38 87.36 86.70 94.50 71.37
FineLIP DOCCI FT 41.18 65.96 59.14 82.00 36.66 60.33 53.49 77.59 59.54
GOAL DOCCI FT 44.22 69.19 62.82 84.04 73.88 92.22 89.80 98.60 76.85
MulCLIP DOCCI FT 43.69 69.73 60.76 83.00 74.68 92.86 88.40 98.30 76.43

FineLIP DCI FT 40.95 65.70 58.80 81.94 36.30 60.22 52.36 76.56 59.10
GOAL DCI FT 43.90 68.60 61.12 83.30 72.88 91.68 88.10 98.10 75.96
MulCLIP DCI FT 44.25 69.20 62.86 83.44 74.04 92.44 89.60 98.50 76.79

Table 4: Zero-shot short caption retrieval on COCO and Flickr30k. MulCLIP shows competitive
performance, often matching or exceeding GOAL across different metrics and model backbones.
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Variant Global LC WPR SAP Fine-tuning objective
Global only ✓ Ltotal = Lglobal

W/o LC & w/o SAP ✓ ✓ Ltotal = Lglobal + Lword(v, t)

W/o SAP ✓ ✓ ✓ Ltotal = Lglobal + Lword(v
′, t′)

W/o WPR ✓ ✓ ✓ Ltotal = Lglobal + LSub(v
′, tsubeot )

MulCLIP (ours) ✓ ✓ ✓ ✓ Ltotal = Lglobal + Lword(v
′, t′) + LSub(v

′, tsubeot )

Table 5: Fine-tuning objectives for MulCLIP variants. ’LC’ refers to Local Calibration modules
for both branches. ’WPR’ refers to Word-Patch Reconstruction loss. ’SAP’ refers to Subcaption-
Aggregated Patch loss.

5 ABLATION STUDY & ANALYSIS

We conduct extensive ablation studies to evaluate the contribution of each component in MulCLIP,
using checkpoints fine-tuned on DOCCI and tested on long/short image–text retrieval. We further
report the degradation in zero-shot classification performance on CIFAR(Krizhevsky et al., 2009)
and ImageNet variants(Recht et al., 2019; Hendrycks et al., 2021).

5.1 CORE COMPONENT CONTRIBUTION.

To highlight the role of each component in MulCLIP, we consider the variants summarized in Tab. 5.
To compare against an alternative late-interaction design, we also evaluate a “MulCLIP w CLIM”,
which keeps the full MulCLIP objective but replaces the word-patch reconstruction with the Cross-
modal Late Interaction Module (CLIM) (Asokan et al., 2025; Yao et al., 2021) operating over the
refined local textual and visual tokens. Additional ablations with alternative design choices are
reported in the supplementary material.

Impact on Long-text Understanding As shown in Tab. 6, the “W/o LC & w/o SAP”
configuration-which combines the WPR objective with global alignment—already yields substan-
tial gains on Urban1k and DCI, most notably on the ViT-L/14 backbone, without degrading the
in-domain performance of the “global only” setting. This demonstrates that token-level word em-
beddings improve robustness and transferability in long-text retrieval. Building on this, when we in-
tegrate local calibration, the semantic word–patch objective works in concert with global alignment
(”W/o SAP” row), further boosting performance for both backbones. This suggests that redundancy
in image patches and long-text tokens can hinder alignment, consistent with observation from prior
study (Asokan et al., 2025). Finally, when we add the SAP alignment, we provide an additional layer
of fine-grained grounding, allowing completed MulCLIP to achieve the best overall results across
all metrics. Replacing MulCLIP’s word–patch reconstruction with the CLIM design leads to clear
underperformance relative to our proposed approach. We design a simple yet effective strategy to
use the completed natural structures of long text in CLIP model fine-tuning.

Method
Urban-1k DCI DOCCI

T⇒I I⇒T T⇒I I⇒T T⇒I I⇒T Avg
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

V
iT

-B
/1

6

Global only 71.2 90.7 80.9 95.7 65.0 83.0 63.9 82.8 81.1 97.1 79.9 96.3 82.30
W/o LC & w/o SAP 71.5 91.9 79.6 95.2 65.9 82.5 63.2 83.0 80.6 96.8 79.3 96.2 82.14
W/o SAP 74.4 91.6 80.1 95.2 65.4 84.0 64.1 83.2 80.6 96.9 78.9 96.5 82.58
W/o WPR 73.1 91.7 80.0 95.5 66.4 84.7 65.6 85.1 82.9 97.3 81.6 96.7 83.38
MulCLIP (ours) 77.3 92.6 84.0 96.1 69.1 86.0 67.1 84.2 82.2 97.1 80.3 96.9 84.41

MulCLIP w CLIM 68.3 87.8 78.8 93.4 64.0 82.2 62.8 81.7 78.5 95.8 77.2 95.2 80.48

V
iT

-L
/1

4

Global only 81.7 95.0 83.5 95.9 70.2 85.7 68.0 85.0 83.9 97.4 81.2 96.9 85.37
W/o LC & w/o SAP 85.8 96.1 85.2 96.5 71.4 86.3 67.7 84.8 84.1 97.6 81.2 96.8 86.12
W/o SAP 85.0 96.8 87.3 96.5 71.9 87.6 68.5 86.4 85.8 97.6 83.6 97.4 87.03
W/o WPR 80.6 95.5 85.6 97.1 72.2 87.4 71.8 87.4 86.0 98.3 84.3 97.9 87.01
MulCLIP (ours) 85.8 97.1 88.3 97.3 73.7 88.2 70.8 86.9 86.7 98.1 84.8 97.9 87.97

MulCLIP w CLIM 82.7 95.5 84.7 95.3 71.6 87.2 70.4 87.0 84.5 97.8 83.4 97.4 86.46

Table 6: Module ablations on long-text retrieval over Urban-1k, DCI, and DOCCI. Using all three
modules (LC, WPR, SAP) in MulCLIP yields the strongest performance among its variants.
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Method
Cifar ImageNet COCO Flickr

10 100 v2 O T⇒I I⇒T T⇒I I⇒T Avg
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

V
iT

-B
/1

6
Zeroshot CLIP 90.80 67.30 61.90 42.20 37.29 61.82 57.68 80.20 63.20 86.30 82.90 97.20 69.07

Global only 86.33 55.19 50.62 42.85 38.03 63.58 54.98 78.72 66.80 88.82 84.00 95.40 67.11
W/o LC & w/o SAP 85.48 58.39 51.49 42.60 38.02 64.09 55.40 79.36 67.92 88.94 84.80 96.30 67.73
W/o SAP 81.36 52.89 50.94 43.00 38.02 63.95 55.74 79.14 67.68 89.00 83.90 95.90 66.79
W/o WPR 84.98 55.07 51.82 41.65 37.12 62.71 54.88 78.00 65.74 88.30 83.00 96.50 66.65
MulCLIP (ours) 86.33 60.34 52.13 43.80 37.68 63.26 54.76 78.64 67.44 88.98 81.90 96.30 67.63

MulCLIP w CLIM 81.45 60.50 52.16 42.95 34.77 60.48 48.22 73.28 64.44 87.12 78.50 95.00 64.91

V
iT

-L
/1

4

Zeroshot CLIP 95.50 76.80 69.90 31.90 37.29 61.82 57.68 80.20 65.38 87.36 86.70 94.50 70.42

Global only 91.86 62.97 51.47 38.50 42.93 68.57 59.32 82.50 73.26 92.34 89.40 97.70 70.90
W/o LC & w/o SAP 90.31 64.34 54.29 37.35 38.17 64.09 55.40 79.36 74.24 92.76 88.70 98.30 69.78
W/o SAP 90.74 67.04 57.73 38.70 44.67 69.99 61.84 84.40 75.08 93.18 88.00 98.20 72.46
W/o WPR 91.71 67.79 56.95 36.25 43.22 68.78 60.92 83.28 74.30 92.36 88.10 98.50 71.85
MulCLIP (ours) 90.10 68.43 57.19 37.15 43.69 69.73 60.76 83.00 74.68 92.86 88.40 98.30 72.02

MulCLIP w CLIM 91.33 71.66 59.28 36.15 42.66 67.82 60.40 82.72 72.22 92.20 86.80 98.10 71.78

Table 7: Module ablations on short-text understanding across CIFAR-10/100 and ImageNet-
v2/O classification (top-1 accuracy), and COCO/Flickr short-text retrieval.

Impact on short-text understanding. As shown in Tab. 7, the “W/o SAP” configuration, which
includes global, local calibration and word–patch reconstruction, achieves the strongest short-text
retrieval performance on COCO and Flickr for both backbones. Howevers, the full MulCLIP model
and the “W/o WPR” variant, while improving ImageNet classification, slightly reduce retrieval per-
formance on short-caption datasets. This trade-off may stem from SAP: introducing coherent sub-
captions aligned with local visual regions helps longer descriptions but can act as noisy supervision
once taken out of their full context. Overall, the complete MulCLIP improves the performance of
pretrained CLIP on standard retrieval benchmarks, while show less degradation on zeroshot classi-
fication.

5.2 FINE-GRAINED ANALYSIS

5.2.1 FINE-GRAINED UNDERSTANDING ACROSS DIFFICULTY LEVELS

Table 8: Fine-grained understanding on FG-OVD.
Accuracy (%) on the four difficulty subsets (hard,
medium, easy, trivial) for different methods, all using a
ViT-B/16 backbone fine-tuned on DOCCI.

Method hard medium easy trivial Avg
FineLIP 18.17 38.68 41.96 73.79 43.15
GOAL 18.65 39.66 44.50 72.78 43.90
MulCLIP 19.24 40.73 47.27 68.63 43.97
W/o SAP 16.56 37.84 43.03 65.84 40.82
W/o WPR 17.38 38.51 45.42 68.41 42.43

While our previous experiments primarily
assess image-level retrieval, they mainly
capture how well a model aligns global
scene semantics with long or short de-
scriptions. To explicitly probe local
grounding, we further evaluate MulCLIP
on the fine-grained FG-OVD benchmark,
which is defined over localized regions
rather than full images.

In FG-OVD, each region is annotated with
one positive caption and a set of perturbed
negatives created by replacing specific at-
tribute words such as color, material, or
spatial relations. These candidates are grouped into four difficulty levels—hard, medium, easy,
and trivial—depending on how similar the negatives remain to the positive description, with the
hardest cases differing by only one or two attributes. Following the standard protocol, we rank each
region’s true caption among its candidates. As shown in Tab. 8, MulCLIP consistently outperforms
the other adaptation methods on the hard, medium, and easy splits, confirming that its multi-level
alignment enhances sensitivity to subtle attribute changes.

5.2.2 QUALITATIVE LOCALIZATION RESULTS

Figure 2 compares ViT-B/16 attention maps of GOAL, the ablations (W/o SAP, W/o WPR), and our
full MulCLIP model. MulCLIP consistently captures local details more precisely than any of the
baselines. Both MulCLIP and its ablations can detect subtle cues such as the camouflaged long-tailed
lizard on the rocks and black letters or the reflection of a car in mirrors. However, while the ablations
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a bunch of kites, a dragon kite, people in a distanceblack letters on mirror's surface, a silver car reflection

W/o WPR

W/o SAP

MulCLIP

MulCLIP

Original Attention map Overlay Original Attention map Overlay

GOAL

GOAL

a lizard with a long tail behind it

W/o WPR

W/o SAP

a small lizard on top of a stone surface, a brown sunglass

Figure 2: Qualitative comparison of attention maps. From left to right, we show: (1) the original
image, (2) the attention heatmap, and (3) the overlay of the heatmap on the image. Across diverse
scenes, MulCLIP produces sharper and more semantically aligned attention, successfully localiz-
ing fine-grained details that are often missed or diluted in baseline methods. Red circles highlight
regions where MulCLIP demonstrates effective attention localization.

attend to these details, MulCLIP produces sharper and more semantically aligned activations; in
contrast, ”W/o SAP” and GOAL yield more diffuse responses, whereas ”W/o WPR” produces less
diffuse but more fragmented patterns that often miss broader contextual regions (i.e the eyeglass,
people in a distance). Notably, GOAL completely misses the camouflaged lizard despite its use of
SAM-based region proposals to support localization, revealing a blind spot compared to MulCLIP’s
self-learned alignment mechanism. These qualitative comparisons reinforce the quantitative results,
indicating that MulCLIP effectively balances global comprehension with fine-grained localization
while avoiding the drawbacks of external region-proposal modules.

6 CONCLUSION

We presented MulCLIP, a simple yet effective adaptation framework that brings multi-scale align-
ment to CLIP-style models without relying on region-proposal tools. Comprehensive experi-
ments on long-caption retrieval and zero-shot transfer demonstrate that explicitly coupling global,
sentence-level, and word-level objectives consistently improves both in-domain accuracy and cross-
domain robustness. Ablation studies further show that each alignment branch plays a complementary
role and that the full model provides a stronger fine-grained understanding.
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REPRODUCIBILITY STATEMENT

We aim to make our results straightforward to verify. Sections 3 and 4 document the implementation,
model architectures, training/evaluation protocols, and all hyperparameters. To preserve double-
blind review, the full source code and scripts will be released upon acceptance. During the rebuttal
phase, if requested by reviewers or area chairs, we will provide an anonymous artifact bundle (e.g.,
source code, minimal pretrained checkpoints, configuration files, and step-by-step commands) via
an anonymized URL compliant with the ICLR anonymity policy. All experiments use fixed random
seeds; environment details are reported. Pretrained checkpoints and any preprocessed data will be
shared subject to licensing constraints.
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A APPENDIX

I. ZERO-SHOT CLASSIFICATION

Table 9 sums up the zero-shot results. With ViT-B/16, MulCLIP is consistently higher than GOAL
on all datasets for both DOCCI and DCI fine-tuning. With ViT-L/14, the picture is mixed: under
DOCCI fine-tuning, GOAL leads on CIFAR-10/100 and ImageNet-V2, while MulCLIP is stronger
on ImageNet-O; under DCI fine-tuning, MulCLIP improves on ImageNet-O, ImageNet-V2, and
CIFAR-10, with GOAL slightly ahead on CIFAR-100.

Method Top-1 Accuracy (%)

CIFAR-100 ImageNet-O ImageNet-V2 CIFAR-10 Avg

V
iT

-B
/1

6 GOAL DOCCI FT 55.41 42.15 49.85 84.95 58.09
MulCLIP DOCCI FT 60.34 43.80 52.13 86.33 60.65

GOAL DCI FT 57.70 40.85 53.19 86.16 59.48
MulCLIP DCI FT 60.81 41.95 54.77 86.90 61.11

V
iT

-L
/1

4 GOAL DOCCI FT 69.61 33.90 63.25 93.70 65.12
MulCLIP DOCCI FT 68.43 36.95 56.79 90.10 63.07

GOAL DCI FT 73.03 32.50 61.17 92.07 64.69
MulCLIP DCI FT 71.14 34.00 63.37 92.56 65.27

Table 9: Zeroshot top-1 accuracy classification performance on DOCCI and DCI checkpoints. We
highlight the models with best performance.
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II. ABLATION OF MULCLIP WITH DIFFERENT CHOICES OF WORD-PATCH LATE INTERACTION.

Ablation protocol. Table 10 compares MulCLIP against three ablated variants that modify the
word– patch objective:

(i) ”MulCLIP w/ Text-recon” is the full framework but sets LWord = Ltext
recon;

(ii) ”MulCLIP w/ Image-recon” is the full framework but sets LWord = Limage
recon ;

(iii) ”MulCLIP w/o Recon” (naive approach) is the full framework but replaces token reconstruc-
tion with a batch-contrastive alignment between refined tokens and patches, which sets LWord =
Lbatch

contrast(v
′, t′). Here v′ and t′ denote refined patch and token embeddings, respectively;

Across datasets and metrics, the full MulCLIP consistently delivers competitive performance, often
matching or surpassing all baselines across backbones. When reconstruction is restricted to a single
direction, the model remains effective on short captions, where one-to-one cues dominate. How-
ever, such one-sided objectives and naive approach reveal consistent shortcomings in cross-domain
long-text transfer. By contrast, the full bidirectional scheme balances both perspectives and avoids
collapsing into a single retrieval path, leading to more stable results under distribution shifts.

Method Urban-1K DCI DOCCI COCO Avg
T⇒I I⇒T T⇒I I⇒T T⇒I I⇒T T⇒I I⇒T

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 Avg

V
iT

-B
/1

6 MulCLIP w/ Text-recon 73.80 92.00 81.10 95.40 65.38 83.54 65.88 84.59 82.27 97.25 80.94 96.92 37.52 63.23 55.06 78.28 77.07
MulCLIP w/ Image-recon 73.20 91.60 80.80 94.90 67.08 84.89 65.73 84.79 82.71 97.45 80.78 96.92 37.31 63.28 54.52 78.16 77.13
MulCLIP w/o Reconstruction 73.90 92.30 80.60 95.60 66.88 83.84 66.68 85.04 82.73 97.00 80.96 96.90 37.19 62.78 54.26 78.14 77.18
MulCLIP (ours) 77.30 92.60 84.00 96.10 69.10 86.00 67.10 84.20 82.20 97.10 80.30 96.90 37.58 63.26 54.76 78.64 77.95

V
iT

-L
/1

4 MulCLIP w/ Text-recon 86.20 96.50 87.60 97.00 73.74 87.74 71.24 87.84 86.47 98.22 84.33 97.78 43.90 69.61 61.30 83.66 82.07
MulCLIP w/ Image-recon 84.80 96.90 86.60 97.20 73.54 88.84 72.14 88.54 86.02 98.41 84.67 97.96 44.02 69.54 61.50 84.02 82.17
MulCLIP w/o Reconstruction 83.00 95.20 87.20 96.50 72.54 87.79 71.29 87.84 86.27 98.35 84.12 97.94 43.48 68.86 60.60 83.24 81.51
MulCLIP (ours) 85.80 97.10 88.30 97.30 73.70 88.20 70.80 86.90 86.70 98.10 84.80 97.90 43.69 69.73 60.76 83.00 82.05

Table 10: Ablation of MulCLIP with different word–patch late-interaction objectives. All rows use
the checkpoint fine-tuned on DOCCI.

III. EXTENDED RETRIEVAL QUALITATIVE RESULTS

Figures 7 and Table 16 illustrate a recurring limitation of GOAL: it often misses small or low-
contrast details such as tiny numbers, faint text, background signs, or small logos. MulCLIP over-
comes this through multi-level alignment, when we start from global fine-tuning and introduce raw
word–patch alignment. It ensures that subtle cues, like route numbers, street-name plates, or curb
textures, are preserved rather than averaged out. In practice, this leads to fewer sign mismatches,
fewer counting errors, and more accurate grounding of in-image text. These qualitative improve-
ments are consistent with the quantitative gains observed on urban retrieval benchmarks.

IV. OPEN-VOCABULARY DETECTION EVALUATION (FG-OVD)

Setup. To further probe MulCLIP’s fine-grained localization ability, we follow the open-
vocabulary detection (FG-OVD) evaluation protocol of FG-CLIP (Xie et al., 2025). We plug differ-
ent vision–language backbones into the official FG-CLIP detection pipeline, keeping the detector,
training hyperparameters, and data splits fixed, with all three models fine-tuned on Docci. Using
the same ViT-B/16 backbone, we re-evaluate MulCLIP, GOAL, and FineLIP on the four FG-OVD
difficulty levels (hard/medium/easy/trivial).

Method Backbone Hard Medium Easy Trivial Avg

FG-CLIP ViT-B/16 46.10 66.60 68.70 83.40 66.20
MulCLIP ViT-B/16 19.24 40.73 47.27 68.63 43.97
FineLIP ViT-B/16 18.17 38.88 41.96 73.79 43.20
GOAL ViT-B/16 18.65 39.66 44.50 72.78 43.90

Table 11: Open-vocabulary detection (FG-OVD). Results under the official FG-CLIP pipeline
with a shared ViT-B/16 backbone.
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As expected, FG-CLIP is clearly best on FG-OVD, since it is trained with region-level supervision
and a detection-oriented objective. In contrast, MulCLIP is only fine-tuned for long-/short-caption
retrieval, without any box-level labels. Despite this, MulCLIP slightly outperforms GOAL and
FineLIP on the hard, medium, and easy splits, and remains competitive on the trivial split (Table 11).
This indicates that our multi-level alignment (Global + LC + WPR + SAP) transfers some fine-
grained localization ability to an open-vocabulary detection setting, even though a dedicated OVD
model like FG-CLIP still remains clearly stronger overall.

V. SENSITIVITY TO LOCAL-LOSS WEIGHTS

Setup. To examine sensitivity to the local losses, we tie the two local weights and sweep
λword = λsub ∈ {0.2, 0.6, 0.8, 1.0} on the ViT-B/16 checkpoint fine-tuned on DOCCI. For each
setting, we evaluate R@1 on long-text benchmarks (DOCCI, DCI, Urban1K) and short-text bench-
marks (Flickr30K, COCO), as summarized in Table 12.

λword = λsub
Text-to-Image R@1 (%) Image-to-Text R@1 (%) Avg

DOCCI DCI Urban1K Flickr30K COCO DOCCI DCI Urban1K Flickr30K COCO

0.2 82.2 66.9 72.6 67.1 37.4 80.3 64.1 82.0 84.4 55.1 69.21
0.6 82.6 67.3 74.0 66.8 37.6 80.7 66.1 81.9 82.2 54.8 69.40
0.8 82.2 66.3 72.2 66.7 37.5 80.7 65.2 82.0 81.4 54.8 68.90
1.0 82.2 69.1 77.3 67.4 37.7 80.3 67.1 84.0 81.9 54.8 70.18

Table 12: Ablation of tied local-loss weight λword = λsub (ViT-B/16, DOCCI FT). We report
R@1 (%) for text-to-image (T⇒I) and image-to-text (I⇒T) retrieval on long-text (DOCCI, DCI,
Urban1K) and short-text (Flickr30K, COCO) benchmarks.

When we vary λword = λsub from 0.2 to 1.0, both long-text (DOCCI/DCI/Urban1K) and short-text
(Flickr30K/COCO) R@1 scores change by at most about 1–2 points. In-domain performance on
DOCCI is almost flat, while DCI and Urban1K show mild gains as λ increases. Our default choice
λ = 1.0 slightly favors long-text retrieval (especially on DCI and Urban1K) without noticeably
degrading short-text performance. Overall, these results indicate that MulCLIP is robust with respect
to the local-loss weights within a broad mid-range.

VI. ROBUSTNESS TO NUMBER OF SUBCAPTIONS

Setup. We study how sensitive MulCLIP is to the number of sentence-level subcaptions. We fine-
tune ViT-B/16 on DOCCI while varying the maximum number of sentences per caption from 5 to
20, and evaluate R@1 on long-text (DOCCI, DCI, Urban1K) and short-text (Flickr30K, COCO)
retrieval. Subcaptions are defined at the sentence level using punctuation-based splitting.

Max sentences Text-to-Image R@1 (%) Image-to-Text R@1 (%) Avg

DOCCI DCI Urban1K Flickr30K COCO DOCCI DCI Urban1K Flickr30K COCO

5 82.9 66.4 76.2 65.6 37.1 81.1 65.5 81.2 81.5 54.2 69.17
10 82.3 65.8 74.8 66.3 37.3 81.4 66.7 82.1 81.9 54.5 69.31

15 (default) 82.6 67.5 75.3 66.1 36.9 80.9 66.5 81.1 82.3 54.3 69.35
20 82.2 69.0 77.5 67.4 37.9 80.3 67.1 83.9 81.9 53.8 70.10

Table 13: Effect of caption granularity (max sentences per caption). R@1 (%) for text-to-
image (T⇒I) and image-to-text (I⇒T) retrieval on long-text (DOCCI, DCI, Urban1K) and short-text
(Flickr30K, COCO) benchmarks.

Across the range from 5 to 20 sentences, short-text R@1 on Flickr30K and COCO remains almost
flat. DOCCI and DCI show small gains when increasing from very few sentences to around 10–
20, after which performance saturates. Urban1K shows a mild upward trend, but improvements are
incremental and never collapse.

Sentence-count histograms for DOCCI and DCI (Figures 5–6) show that most captions contain 3–10
sentences, with only a small fraction exceeding 20. Thus, our default cap of 15 sentences typically
includes all available sentences without over-fragmenting the caption. Overall, MulCLIP benefits
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Figure 3: Effect of maximum number of sentences on long-text retrieval (DOCCI / DCI / Urban1K).

Figure 4: Effect of maximum number of sentences on short-text retrieval (Flickr30K / COCO).

from multiple sentence-level subcaptions but remains stable across a wide range of reasonable caps,
indicating robustness to caption granularity.

VII. FAIR COMPARISON WITH FINELIP AND ROLE OF THE GLOBAL LOSS

Total loss and local modules. For clarity, the full MulCLIP objective can be written as

Ltotal = Lglobal
(
vcls, t

long
eot , t

short
eot

)
+ λW LWord

(
v′, t′

)
+ λS LSub

(
v′, tsub

eot

)
, (12)

where vcls is the global image embedding, tlong
eot , t

short
eot are global text embeddings for long and short

captions, and v′, t′ are locally calibrated tokens used by the word- and subcaption-level objectives.

Removing the global objective. To isolate the contribution of our local modules, we train a variant
that removes the global loss and keeps only local alignment:

Ltotal = LWord(v
′, t′) + LSub(v

′, tsub). (13)

As shown in Table 14, this “No Global” model suffers a large drop on all three long-text benchmarks
compared to full MulCLIP, with R@1 roughly halved in many cases. This confirms that local ob-
jectives alone are not sufficient for robust long-text understanding, and that they must work together
with a strong global alignment term.

Adding our global loss to FineLIP. We next equip FineLIP with the same long/short global ob-
jective and 50% token compression as MulCLIP. Let

V = v′ ⊕ vcls, T = t′ ⊕ teot (14)

be the concatenation of global and local tokens. The original FineLIP paper provides two runnable
variants of its triplet-based CLIM/FILIP objective R(·): R(V, T ) and R(v′, t′). We therefore define:
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Figure 5: Sentence count distribution on DOCCI.

Figure 6: Sentence count distribution on DCI.

FineLIP ver. 1 (+Global):

Ltotal = Lglobal(vcls, t
long
eot , t

short
eot ) +R(V, T ), (15)

FineLIP ver. 2 (+Global):

Ltotal = Lglobal(vcls, t
long
eot , t

short
eot ) +R(v′, t′). (16)

For a fair comparison, we match these two FineLIP variants against our W/o SAP model

Ltotal = Lglobal(vcls, t
long
eot , t

short
eot ) + LWord(v

′, t′), (17)
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Method DCI DOCCI Urban1K Avg

T⇒I I⇒T T⇒I I⇒T T⇒I I⇒T

MulCLIP (full) 69.1 67.1 82.2 80.3 77.3 84.0 76.67
No Global 33.47 28.86 40.25 29.41 25.00 36.30 32.22

Table 14: Effect of removing the global loss (ViT-B/16, DOCCI FT). R@1 (%) for text-to-image
(T⇒I) and image-to-text (I⇒T) retrieval.

so all methods share the same backbone, global loss, and token-compression ratio, differing only in
how local interactions are modeled (FineLIP’s CLIM/FILIP vs. our Word–Patch Reconstruction).

All three models are fine-tuned on DOCCI under the same protocol and evaluated on Urban1K, DCI,
and DOCCI. Tables 15 summarize R@1 for both directions.

Method Urban1K DCI DOCCI Avg
T⇒I I⇒T T⇒I I⇒T T⇒I I⇒T

V
iT

-B
/1

6 FineLIP (ver. 1, +Global) 64.9 71.4 56.4 44.8 65.6 60.0 60.5
FineLIP (ver. 2, +Global) 64.9 74.4 56.2 44.7 65.5 59.7 60.9
Ours — W/o SAP 74.4 80.1 65.4 64.1 80.6 78.9 73.9

V
iT

-L
/1

4 FineLIP (ver. 1, +Global) 68.6 73.2 59.6 43.3 72.9 67.0 64.1
FineLIP (ver. 2, +Global) 65.5 73.9 57.7 48.0 72.4 67.0 64.1
Ours — W/o SAP 85.0 87.3 71.9 68.5 85.8 83.6 80.4

Table 15: Fair comparison between FineLIP+Global and our Global+LC+WPR (W/o SAP).
All models share the same backbone, global loss, token-compression ratio, and DOCCI fine-tuning
protocol. Best score per backbone is highlighted.

Under a fully matched setup (same backbone, global loss, token compression, data, and optimiza-
tion), both FineLIP+Global variants remain consistently below our Global+LC+WPR (W/o SAP)
model on all three long-text benchmarks, in both directions and for both ViT-B/16 and ViT-L/14.
Since the only difference is how local tokens are used, this indicates that our Local Calibration
and Word–Patch Reconstruction modules exploit compressed local tokens more effectively than
FineLIP’s CLIM/FILIP interaction.

The comparison with the “No Global” variant further highlights the complementarity of compo-
nents: the global objective is essential for long-text robustness, while LC+WPR provide the addi-
tional fine-grained gains on top. In the main ablations, adding SAP on top of Global+LC+WPR then
yields further, stable improvements, suggesting that subcaption–patch alignment is complementary
rather than the sole driver of MulCLIP’s benefits.
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Retrieved by GOAL Retrieved by MulCLIP

Query: A dark-colored sedan is parked askew on the side of a
street, half on the asphalt road and half on the concrete sidewalk.
Patches of melting snow are present, indicating recent snowfall or
wintry conditions. In the background, a white sedan is parked cor-
rectly on the opposite side of the street. Residential buildings with
white fences, bare deciduous trees, and other parked cars line the
street. There’s a general sense of a suburban or residential neigh-
borhood on a clear day with sunlight casting shadows on the ground.
Visible tire tracks through the snow suggest recent vehicle move-

ment.

Retrieved by GOAL
Retrieved by MulCLIP

Query: The image displays a vibrant urban scene with two
modern double-decker buses on a road, presumably in a city in
the United Kingdom. The bus in the foreground is painted in
a bright yellow color with bold advertising on its side, while
the bus in the background is also yellow with visible route infor-

mation. Traffic lights appear on the left, indicating a cross-
walk or intersection. European-style architecture is prominent,
with elaborate stone buildings adorned with numerous windows
and ornamental details. The sky is overcast with hints of
blue peeking through the clouds , suggesting a typical cloudy day.

The greenery of trees is also visible, adding a touch of nature to the
urban environment.

Retrieved by GOAL Retrieved by MulCLIP

Query: The image depicts a bustling city street scene with
clear skies above. In the foreground, a white bus with a
digital sign that reads ’60 LOOP/LAKEFRONT’ stops near a

sidewalk, marked ’K412’ . A red traffic light hangs above, while

a ’DO NOT ENTER’ sign is prominently displayed on a post be-
low. The architecture includes tall, ornamented stone buildings in-
dicative of early 20th-century design, with one building featuring a
scaffolding structure along its facade. A pedestrian crosses the
street, another walks on the sidewalk, and a few flags, including a
green, white, and red one, are visible hanging from a building. The
urban environment suggests a downtown district, possibly in a large
metropolitan city.

Retrieved by GOAL Retrieved by MulCLIP

Query: The image captures a busy urban street scene with two

white articulated trolleybuses, featuring blue and red stripes , con-

nected to overhead wires. Above the buses, a streetlight
with a dual-globe design is visible. In the foreground,
a pole topped with a flying eagle statue anchors the composition.

Behind the buses, several red and white cars are parked. The back-
drop is lined with multistory buildings hosting various stores with
visible signage. Pedestrians can be seen walking along the side-
walks, and traffic lights are located at the street’s intersection. The
photo, taken from an elevated angle during daylight, shows the street
intersecting leftward, with designated lanes for different directions.

Legend: Correct retrieval Incorrect retrieval Highlighted text indicates visual details missing from GOAL’s retrieved
image but correctly matched by MulCLIP

Figure 7: Qualitative comparison of text-to-image retrieval between GOAL and MulCLIP. Each pair
shows retrieved images from both models for the same query. Colored borders indicate correctness
(green: correct; red: incorrect). Yellow highlights denote visual details missing from GOAL’s re-
trieved image but correctly matched by MulCLIP.
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Image query MulCLIP GOAL

This image depicts a vibrant urban street
corner on a clear day with blue skies. A
person in a blue checkered shirt and ca-
sual pants crosses the road at a pedestrian
crosswalk, heading towards a series of red
brick buildings with rounded and straight
corners. The architecture suggests a charm-
ing, historic neighborhood with storefronts
on the ground level, including one with a
blue awning. There’s a green streetlight vis-
ible and a black lamp post, adding to the
quaint ambiance. Vehicles are stopped at the
intersection, and the scene includes an over-
hanging metal structure that could be part of
a bus stop. The overall atmosphere is that
of a peaceful, sunny day in a bustling city
neighborhood.

The image depicts an urban street scene dur-
ing daytime. In the foreground, two individ-
uals with their backs to the camera are walk-
ing, one with a long ponytail and a white
shirt, the other with a patterned blouse, and
a red backpack. A silver car is visible on
the left side of the road, which is marked
with multiple round blue traffic signs, in-
dicating no waiting or no stopping restric-
tions. Across the street, there’s a red-bricked
five-story building with white stone trim-
mings and arched windows on the ground
floor. The windows on the upper floors are
regularly spaced, and the uppermost story
appears to be an attic with smaller win-
dows. The sky is clear, suggesting favorable
weather conditions.

The image shows an urban street scene un-
der a clear blue sky. In the foreground, a
black car is driving down the road, which is
lined with electrical wires above. The archi-
tecture is a mix of multi-story brick build-
ings with visible signs of wear and faded
paint, suggesting a historical urban area.
The buildings vary in height, with some hav-
ing flat facades and others featuring recessed
windows and ornate detailing. The street ap-
pears to be relatively empty, with no pedes-
trians visible and minimal vehicular traf-
fic. The structures’ color palette is predom-
inantly red brick, with accents of tan and
white on the secondary building elements.

The image captures a daytime scene on a
city street named ”Main Street,” indicated
by a street sign hanging above. Vehicles,
including a red sedan in the foreground,
are parked along one side of the street,
while others, including white vans, are vis-
ible in motion. Pedestrians are present on
the sidewalks, some standing and others
seated beside buildings; a group congregates
near an American flag. Utility poles, traf-
fic signals, and signs, including one indi-
cating a “Drug-Free School Zone,” dot the
streetscape. Overhead, a concrete overpass
spans the thoroughfare. The sky is slightly
overcast, casting even lighting across the ur-
ban environment.

This image captures an urban street scene
with tall residential buildings lining one side
and leafy trees displaying autumn colors.
The scene includes a city bus in the center
of the frame, showing the number 36 on its
indicator, and various other vehicles such as
cars and SUVs. The road features a dedi-
cated bike lane on the right, demarcated by
white lines and identified by painted bicycle
symbols. The overcast sky and the presence
of a streetlight that is turned on suggest that
this is either early morning or late afternoon.
The photo appears to be taken from the per-
spective of a pedestrian or cyclist at street
level, focused on capturing the flow of ur-
ban traffic.

This image depicts an overcast day on an
urban street lined with tall, modern office
buildings. A blue public bus marked with
the number 421 is at the forefront on the
road, while a red bus can be seen farther
down the street. There is a white car on the
left and traffic lights are visible overhead,
with a red light illuminated. The road has
multiple lanes and a pedestrian zebra cross-
ing in the foreground. There’s also a traf-
fic sign indicating no left turn for motorcy-
cles. Leafless trees suggest it may be winter
or early spring. The overall scene appears to
be calm with moderate traffic.

This image captures a British urban scene,
highlighted by a classic red double-decker
bus on the right, displaying route number 30.
The bus has yellow text and advertisements
printed on its sides. On the left, a pedes-
trian wearing a green jacket and carrying a
bag seems to be briskly walking on the side-
walk. There’s a yellow street sign indicating
a diversion ahead. In the background, an or-
nate building towers with a clock at its apex
under a clear blue sky. The street is flanked
by various other buildings, likely a mix of
residential and commercial structures, typi-
cal of a UK cityscape.

This image captures a bustling urban scene,
likely in London, with a red double-decker
bus dominating the foreground, bearing the
signage ’Arriva’ and a route number 176 to
Penge via Elephant & Castle and Forest Hill.
A person at a pedestrian crossing is using a
push-button signal post, while others wait by
a bus stop shelter where someone points up-
wards. To the right, a classic red telephone
box is in use by an individual. In the back-
ground, neoclassical architecture suggests a
historical district, with a dome-topped build-
ing visible in the distance. The street is lined
with cars and traditional black iron fenc-
ing, contributing to a distinctly British urban
landscape.

Table 16: Qualitative comparison of image-text retrieval results between MulCLIP (middle column)
and GOAL (right column). Borders are embedded to indicate correctness (green: correct; red: incor-
rect). Yellow highlights denote visual details missing from GOAL’s retrieved image but correctly
matched by MulCLIP.
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