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Abstract

A growing area of research investigates aug-
menting language models with tools (e.g.,
search engines, calculators) to overcome their
shortcomings (e.g., missing or incorrect knowl-
edge, incorrect logical inferences). Various
few-shot tool-usage strategies have been pro-
posed. However, there is no systematic and
fair comparison across different strategies, or
between these strategies and strong baselines
that do not leverage tools. We conduct an exten-
sive empirical analysis, finding that (1) across
various datasets, example difficulty levels, and
models, strong no-tool baselines are compet-
itive to tool-assisted strategies, implying that
effectively using tools with in-context demon-
strations is a difficult unsolved problem; (2) for
knowledge-retrieval tasks, strategies that refine
incorrect outputs with tools outperform strate-
gies that retrieve relevant information ahead of
or during generation; (3) tool-assisted strate-
gies are expensive in the number of tokens they
require to work—incurring additional costs by
orders of magnitude—which does not translate
into significant improvement in performance.
Overall, our findings suggest that few-shot tool
integration is still an open challenge, empha-
sizing the need for comprehensive evaluations
of future strategies to accurately assess their
benefits and costs.

1 Introduction

Augmenting language models (LMs) with tools has
been proposed to overcome LMs’ inherent weak-
nesses (Mialon et al., 2023; Qian et al., 2022),
such as the lack of grounding to reliable or up-
dated sources (Jiang et al., 2023), incoherent logi-
cal ability (Liu et al., 2022; Ling et al., 2023) and
arithmetic ability (Gao et al., 2023b), among others.
This is done through tool-assisted (TA) generation,
where LMs are trained or instructed to use external
tools, such as search engines over the web—e.g.,
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Google search (Gao et al., 2023a; Press et al., 2023;
Nakano et al., 2022), Wikipedia search (Trivedi
et al., 2022a), a calculator (Schick et al., 2023), or
a python interpreter (Paranjape et al., 2023). Often,
tool invocations are structured as Chain-of-Thought
(CoT) long-form answers (Wei et al., 2023).

Recent work proposed a variety of strategies for
interfacing between the LM and the tool, such as
through demonstrations of API calls (Paranjape
et al., 2023) or using the tool to refine the model’s
output (Gao et al., 2023a)—see Figure 2 for an
overview. But what are the advantages and trade-
offs of different TA strategies? For example, some
strategies incur significantly higher computation
costs than others with little to no improvement
in performance. There is a gap in the literature
on the evaluation of such strategies, in particular
against strong baselines and against each other.
Concretely, works that report empirical evaluations
are often restricted to comparisons of a single pro-
posed strategy against a limited selection of non-TA
baselines, using a limited selection of LMs or even
a single LM, or focus on evaluating various LMs
with a specific TA strategy (Li et al., 2023). Ad-
ditionally, comparisons often do not consider the
increase in computation that each TA strategy re-
quires, which vary significantly, and have a large
effect on inference time or cost.

The above issues are only some of the pitfalls
we observed in the literature, limiting the scope of
current evaluations. In §3, we analyze the literature
for common pitfalls and collect a set of guidelines
towards a fair and reliable evaluation procedure
specifically for TA strategies. Next (§4), we con-
duct a study which addresses all of the observed
pitfalls, using GPT3, Flan-UL2 and Flan-PaLM,
and complex reasoning benchmarks StrategyQA,
MuSiQue, GSM8K, and DROP. We report a fair,
systematic comparison of five few-shot TA strate-
gies across multiple models and demonstrations,
and all strategies use the same set of tools.



CoT demonstrations + 
question

answer generated

tool output

(b) Tool-assistance 
after generation

answer refinement

answer generated

…

Tool demonstrations + 
question

tool call

tool output

(a) Tool-assistance 
during generation

answer generated

…

Figure 1: Illustration of tool-assistance strategies that
invoke tools and insert their outputs into the prompt (a),
and strategies that first generate some output, and only
use tools to fix and refine it (b).

We analyze the study results (§5) and arrive at
surprising conclusions: (1) Non-TA baselines are
stronger than initially reported. In most cases, TA
strategies do not significantly or at all improve on
non-TA strategies on popular Question Answering
datasets. (2) For retrieval tools in knowledge tasks,
TA strategies that fix model output after it is gener-
ated perform better than TA strategies that prompt
the model to interface with the tool directly dur-
ing generation. For calculator tools in calculation-
intensive tasks, the relationship is not decisive. (3)
TA strategies incur significantly higher computa-
tion costs than non-TA baselines by multiplicative
factors, and there is no general correlation between
computation cost and performance, with the excep-
tion that refinement strategies in retrieval settings
are more costly than non-refinement strategies.

In §6 we report a fine-grained analysis of the
results. We investigate the effect of each example’s
difficulty—e.g., very large numbers, or very rare
entities) on improvement from tool usage, and find
that tools do not systematically improve model per-
formance on harder examples, where they were ex-
pected to have the strongest improvement. Finally,
based on an error analysis of failure cases, we find
that the majority of mistakes follow incorrect tool
invocations, rather than incorrect tool responses (in
the case of the retrieval tool) or incorrect inferences
based on correct tool usage.

In conclusion, we conduct an extensive evalua-
tion of few-shot TA strategies, finding that previous
estimates of tool-usage performance is not repre-
sentative. Overall, this suggests that few-shot tool

integration is still an open challenge. We call the
community to evaluate future strategies systemati-
cally, while taking into account the significant costs
that these strategies require in comparison to their
benefits. Towards this, we provide a set of concrete
guidelines for fair and reliable evaluation of TA
strategies. Moreover, We release the handcrafted
collection of 184 demonstrations used in our study
(attached in the supplementary material).

2 Tool-Assisted Language Models

We describe existing few-shot strategies for aug-
menting LMs with tools and discuss related work.

2.1 Few-shot TA strategies

Strategies for tool usage can be broadly divided
into two categories: (a) Using tools during genera-
tion and insert the tools’ outputs into the model’s
prompt (Figures 1a, 2a); (b) Using tools to refine
the LM’s output after generation (Figures 1b, 2b).
Strategies can be further categorized into settings
where the tool is heuristically called in a pipeline
or called when the model generates pre-specified
tool calls. Refer to Mialon et al. (2023) for a review
of the literature on TA strategies and models.

Among TA strategies of type (a): SelfAsk (Press
et al., 2023) decomposes the task into subtasks as
simpler questions, such that a tool can be called on
each question. A related strategy is Demonstrate-
Search-Predict (Khattab et al., 2023). Inline strate-
gies such as Toolformer (Schick et al., 2023)1, ART
(Paranjape et al., 2023), inter alia (Chen et al., 2022;
Gao et al., 2023b; Lyu et al., 2023) demonstrate
tool usage with pre-defined words or tokens and
tool arguments, halt generation when those tokens
and arguments are generated, invoke the tool, and
insert its output into the prompt to resume genera-
tion. Interleaving Retrieval (Trivedi et al., 2022a)
does not directly instruct the model to use tools,
but calls the tool on each reasoning step, to pro-
vide the model with additional context for future
steps. (Jiang et al., 2023) propose a similar strat-
egy, opting to re-write each step after using it as
a query. There are also strategies such as Decom-
posed Prompting (Khot et al., 2023) that are gen-
eralizations of the previous strategies.

Among TA strategies of type (b): RARR (Gao
et al., 2023a) involves a pipeline designed for
knowledge-based tasks: verifying the relevance

1Schick et al. primarily discusses tool usage with training.
We adapt only the few-shot strategy in our experiments.



Who lived longer, 
Muhammad Ali or Alan Turing?
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is: Muhammad Ali

Search(Muhammad Ali was 40 years old when he died.) ->

Muhammad Ali died at the age of 74.

Corrected: Muhammad Ali was 74 years old when he 
died.

Search(Alan Turing was 41 years old when he died.) ->

Alan Turing was only 41 when he took his own life.

Correct: Alan Turing was 41 years old when he died.

Check & Fix

Muhammad Ali was 40 years old when he died. Alan Turing was 41 
years old when he died. So the final answer is: Muhammad Ali

Q1: How old was Muhammad Ali when he died?
Search(How old was Muhammad Ali when he died?) ->

Muhammad Ali died at the age of 74.

Relevant, corrected: Muhammad Ali was 74 years old when he died.

Q2: How old was Alan Turing when he died?
Search(How old was Alan Turing when he died?) ->

Alan Turing was only 41 when he took his own life.

Relevant, correct: Alan Turing was 41 years old when he died.

RARR

Who lived longer, Muhammad Ali or Alan Turing?

(a)
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(c)
Yes. Follow up: How old was Muhammad Ali when 
he died? 
Intermediate answer: Muhammad Ali died at the age 
of 74.
Follow up: How old was Alan Turing when he died?
Intermediate answer: Alan Turing was only 41 when 
he took his own life.

Search(How old was Muhammad Ali 
when he died?) -> Muhammad Ali was 
74 years old when he died. Muhammad 
Ali was 74 years old when he died. 
Search(How old was Alan Turing when 
he died?) -> Alan Turing was 41 years 
old when he died. Alan Turing was 41 
years old when he died.

Muhammad Ali was 74 years old 
when he died. Turing was 41 years 
old when he died.

Are follow up questions needed here:
SelfAsk - Baseline Inline - Baseline Chain of Thought - Baseline

So the final answer is: Muhammad Ali

Figure 2: Overview of the TA strategies implemented in this work. Blue text marks tool queries, tool responses are
in turquoise cells, refinement is in orange cells and dashed arrows, and yellow cells are LM generations.

and factuality of each claim by generating ques-
tions based on the claim, retrieving snippets that
answer these questions, and checking if the answers
match the information in the claim. If not, the claim
is refined to match the snippets. Check & Fix, a
method we introduce in this work, uses each CoT
step as a search query, and checks whether the step
is entailed by the retrieved snippets by prompting
the model to classify this entailment. This strategy
is similar to Jiang et al. (2023, contemporaneous
work), which additionally uses low-confidence fil-
tering but omits the entailment verification.

2.2 Related Work

Training LMs to use tools. While we are primar-
ily concerned with few-shot tool assistance of LM
generation, the literature also explores LMs which

are trained to use specific tools (Parisi et al., 2022;
Hao et al., 2023; Patil et al., 2023). These methods
are constrained to the tools seen during training,
and require data (annotated, bootstrapped, or syn-
thetically constructed) of tool demonstrations.

Other tool-assisted neural networks. There is
adjacent research on augmenting neural networks,
in ways besides textual interfaces, with tools (e.g.,
Andor et al., 2019; Jacovi et al., 2019) or training
differentiable subnetworks that heavily mimic tools
(Neelakantan et al., 2017; Trask et al., 2018).

3 Evaluation Pitfalls

While there is a plethora of TA strategies (§2.1), no
systematic comparison of these strategies has been
conducted. Research that proposes TA strategies in



Pitfall Recommendation

(1) Coupling the TA strategy
and the tool together.

Comparisons of TA strategies should use the same tools across strategies.

(2) Forcing no-tool baselines to
the framework of the TA
strategy.

The optimal way to solve the task without tools may be different from solving the
task with tools: No-tool baselines should include multiple variants of both free-form
and structured strategies, to ensure the TA strategies are not given an advantage.

(3) Using one model across all
comparisons.

Different models may behave differently when it comes to using tools effectively,
based on their training data. Multiple models should be tested, if possible.

(4) Using one prompt and set
of demonstrations across all
comparisons.

Multiple different sets of demonstrations should be used to get reliable estimates of
few-shot performance.

(5) Not considering TA strategy
costs.

TA strategies can be efficient or inefficient with regards to the prompt tokens and
generation tokens they require to work, with respect to no-tool baselines or with
respect to each other. The differences can be significant (§5). Comparisons of TA
strategies should factor the computation cost of the strategy, which we term as token
efficiency.

Table 1: Summary of evaluation pitfalls of TA strategies (§3) and recommendations to mitigate them.

few-shot settings is often not focused on evaluat-
ing properties of those strategies, but other aspects
of LM capabilities (Press et al., 2023; Gao et al.,
2023a), usage in particular strict contexts (Paran-
jape et al., 2023), evaluating various LM models
themselves with a particular strategy (Mialon et al.,
2023), and so on.

Below we collect observations from the litera-
ture that demonstrate the limited evaluation scope
of TA strategies, in an effort to establish a set of
criteria for future evaluations to be reliable and fair
(a summary is provided in Table 1).

(1) Coupling the TA strategy and the tool to-
gether. Comparisons may vary the tools and meth-
ods together (e.g., a TA strategy A with a tool A
versus a TA strategy B with a tool B).

(2) Forcing baselines to the framework of the TA
strategy. Typical baselines to a given TA strategy
are to apply that strategy while letting the model
generate the tool’s output instead of the tool, and
using CoT prompting. However, the optimal way
to solve the problem without tools may not be the
same as the TA strategy in question. In this work,
we implement three different baselines (§4) and
find that there is no clear winner among two of
them (we explore this empirically in §5).

(3) Using one model across all comparisons. Of-
ten, a single model is chosen to use as the under-
lying model for the TA strategy. This limits the
insights from the evaluation to this model in par-
ticular, since conclusions may not carry over to
other models. In this work, we find that the best-
performing strategies vary significantly across dif-
ferent LMs (we explore this empirically in §5).

(4) Using one prompt and one set of demon-
strations across all comparisons. Few-shot eval-
uation is known to be unreliable when using a
single set of demonstrations as a single prompt
(Perez et al., 2021). Furthermore, some prompts
used in TA strategy evaluations—in particular, CoT
demonstrations—appear so often on the internet
that they are suspected to be part of the models’
training data, further compromising their function
(Jacovi et al., 2023).

(5) Not considering TA strategy costs. In many
cases, the TA strategy requires significantly more
compute than no-tool baselines, and different TA
strategies also require different amounts of compu-
tation. Computation cost is not traditionally con-
sidered in comparisons.

4 Experimental Setup

Our goal is to conduct a fair and reliable compari-
son of TA strategies, without being influenced by
properties of specific models, tools or prompts. To
this end, we focus on few-shot tool usage, a popular
TA scheme that allows flexibility around using new
tools and adapting tools to specific tasks.

In what follows, we describe our experimental
setup. What guides this experimental setup is to
perform a comprehensive, rigorous evaluation with-
out the pitfalls of §3. Our evaluation covers 5 differ-
ent TA strategies, 4 recent LMs, 4 complex reason-
ing datasets, 3 few-shot prompts, and 2 tools. For
each TA strategy + dataset + model combination,
we run three experiments with a different number
of demonstrations. Overall, our evaluation includes
an execution of 342 experiments, each of which



generates 250 (GPT-3) or 500 (non-GPT-3) long-
form answers. Additional implementation details
are in Appendix A.

Tool-assisted strategies. We evaluate the TA strate-
gies shown in Figure 2: SelfAsk, Inline, Interleav-
ing, C&F and RARR. We additionally include vari-
ants of SelfAsk and Inline where the model is sep-
arately called to summarize tool output in relevant
context, as it can often be very long (SelfAskQA
and InlineQA; see Appendix A for details). Finally,
in the retrieval settings, we use Top-1 retrieval for
all models, and additionally Top-5 retrieval for the
Flan-PaLM-540B model (see “Models” below)
to check whether additional retrieved information
can improve performance despite the significantly
longer input and processing cost.

For SelfAsk and RARR we use the original im-
plementation provided by the methods’ creators.
We implement Interleaving (Trivedi et al., 2022a),
as at the time of this research no implementation
was available. Importantly, this implementation
yields similar performance to that of existing ap-
proaches that combine CoT with retrieval from
Wikipedia by He et al. (2022); Jiang et al. (2023)
(see full results in Appendix B). Additionally, Jiang
et al. (2023, Figure 4) implemented methods that
apply retrieval and refinement over generated CoT
that are similar to C&F and achieve similar per-
formance to ours, as well (see Appendix B). For
Inline, we are not aware of reports on few-shot
performance of a similar strategy in the literature.

Baseline strategies. We use no-tool versions of
SelfAsk, Inline, and standard CoT prompting. The
SelfAsk and Inline baselines simply involve giv-
ing the model the prompts used for the tool-based
versions, while disabling tool calls (such that the
model generates the output in-place of the tools).
These are the baselines used by Press et al. (2023)
and Schick et al. (2023) respectively.

Datasets. We consider tasks that require complex
reasoning, where models could potentially benefit
from external tool usage. Specifically, we use Strat-
egyQA (Geva et al., 2021) and MuSiQue (Trivedi
et al., 2022b), which require reasoning about en-
tity knowledge, and GSM8k (Cobbe et al., 2021)
and DROP (Dua et al., 2019) that evaluate arith-
metic reasoning. In DROP we select examples
that have numerical answers. We randomly sample
500 examples from the development set of each
dataset (with the exception of StrategyQA, whose

test set has 229 examples), and use it for perfor-
mance evaluation of UL2, Flan-PaLM-540B and
Flan-PaLM-62B . For GPT-3, we use a subset of
250 examples of that set, due to cost. We use stan-
dard evaluation measures for every dataset (F1 in
the case of MuSiQue). We provide data examples
in Appendix A.

Models. We evaluate the methods across four
LMs: Flan-UL2-20B (Tay et al., 2023), GPT-3
(text-davinci-003) (Brown et al., 2020), Flan-
PaLM-540B and Flan-PaLM-62B (Chung et al.,
2022). We omit GPT-3 experiments on RARR and
Interleaving due to cost. Importantly, our focus is
not in comparing performance of these models, but
to use them as samples of different model instances
and training schemes against which to compare
different TA strategies.

Tools. We strictly use the same tools across all
strategies, to ensure a fair comparison: Google
Search (Press et al., 2023; Schick et al., 2023;
Lewis et al., 2021) for knowledge tasks, and a cal-
culator (Schick et al., 2023; Qin et al., 2023) for the
calculation tasks. RARR, SelfAsk and Interleav-
ing are designed for retrieval settings only, while
Inline and Check & Fix can be used in all settings.
For the retrieval settings using Google Search and
Flan-PaLM-540B , we test retrieval with both the
top 1 and top 5 tool-retrieved snippets: The two
formats are designed to cover both cases where a
shorter tool output may prevent the model’s answer
from degenerating, and a longer tool output may
help the model with more relevant information.

Few-shot demonstrations. In order to overcome
bias from using demonstrations from prior work
that were likely seen during training (Jacovi et al.,
2023), we re-annotate prompts for all TA strate-
gies, datasets and tools. We randomly sample 8
examples from each dataset’s training set, and an-
notate each example with demonstrations for each
TA strategy. Some of the strategies call the model
multiple times with different prompts (e.g., Check
& Fix, RARR), which requires separate annota-
tions. This effort results in a total of 184 annotated
demonstrations, which we release as a resource for
future works on TA generation. From each set of
8 demonstrations, we then construct three separate
prompts—3-shot, 5-shot and 7-shot—randomly
sampled from the original 8 demonstrations, to get
a better estimation of few-shot performance.
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Figure 3: A comparison of evaluation scores across two areas (§5): (a) No-tool baselines vs. TA strategies; (b)
Tool usage via refinement of generated text vs. tool usage during generation, where the generated text contains tool
arguments is conditioned on tool outputs. The dark line marks the confidence interval among samples.

5 Comparative Results

Organization of the results. Due to the
Tool vs. no tool. Previous work that propose TA
strategies found that using such strategies consis-
tently improve performance in comparison to no-
tool baselines (Press et al., 2023; Jiang et al., 2023;
Trivedi et al., 2022a, inter alia).

Figure 3 shows that the TA strategies do not im-
prove performance over the no-tool baselines in
our selection of datasets. The figure shows results
against the average of the different few-shot scores,
though we observe similar trends when using the
maximum of scores as well. Full results are in
Appendix B. Similarly to us, Gao et al. (2023a,
§6.2) found that StrategyQA performance slightly
decreased with tools in RARR compared to no-
tool baselines for PaLM-540B (Chowdhery et al.,
2022), and Jiang et al. (2023, §6.2) found that per-
formance decreased on StrategyQA in two settings
comparable to our implementations of Interleaving
and Check & Fix with GPT-3.

We conclude that for the settings in this work,
the no-tool baselines are stronger than initially
expected based on the literature. More research
is required to investigate whether this relationship
holds in other contexts, though we note that the
datasets and models used in our experiments are
common in TA research (Mialon et al., 2023).

Additionally, our experiments provide empirical
justification to Recommendations (2) and (3) in
§3. First, we find that the CoT and Inline base-
lines outperform each other at a roughly equal rate,
and neither emerges as a clear winner. This shows

Model Dataset Best strategy

GPT-3 StrategyQA Baseline-Inline
GPT-3 DROP Baseline-Inline
GPT-3 GSM8K Check & Fix
GPT-3 MuSiQue Inline
Flan-PaLM-540B StrategyQA Baseline-CoT
Flan-PaLM-540B DROP Baseline-Inline
Flan-PaLM-540B GSM8K Baseline-Inline
Flan-PaLM-540B MuSiQue RARR-Top5
Flan-UL2-20B StrategyQA Baseline-Inline
Flan-UL2-20B DROP Baseline-Inline
Flan-UL2-20B GSM8K Inline
Flan-UL2-20B MuSiQue Baseline-CoT
Flan-PaLM-62B StrategyQA Baseline-CoT
Flan-PaLM-62B DROP Baseline-CoT
Flan-PaLM-62B GSM8K Inline
Flan-PaLM-62B MuSiQue Check & Fix

Table 2: For each combination of dataset and model,
we derive the best-performing strategy on the aver-
age score across the few-shot prompts. Notably, the
best-performing strategy varies across different models,
datasets or prompts, which means that it is necessary
to evaluate over all axes to get a better estimation of
general performance.

that different baselines obtain different results, and
so, relying on only a single baseline in evaluation
does not necessarily provide a good estimation for
no-tool performance (recommendation (2)). Also,
the best-performing strategies vary significantly
across models, which highlights the importance of
using multiple models for evaluation (recommen-
dation (3))—for illustration, we report the highest-
performing strategies in each setting in Table 2, to



TA strategy
Prompt
tokens
(canonical)

Prompt tokens (empirical)
Retrieval Calculator

GPT-3 Flan-PaLM-540B GPT-3 Flan-PaLM-540B

Baseline n 353 353 1418 801
SelfAsk t(n+ kt+1

2
) 2281 1399 - -

SelfAskQA t(2n+ k) 3589 2736 - -
Inline t(n+ kt+1

2
) 1793 1775 3453 1083

InlineQA t(2n+ k) 3375 3672 - -
Check & fix t(2n+ k) 3839 3547 7548 3647
RARR 3n(t+ 1) 4729 - -
Interleaving t(n+ kt+1

2
) 3221 - -

Table 3: Average number of prompt tokens per strategy (5-shot), with n as the CoT prompt length, t as the number
of tool calls, k as the tool’s output length. Flan-PaLM-540B has a shorter context window than GPT-3, which limits
prompt length. The canonical formula for RARR favorably assumes a single verification question.

TA strategy
Answer
tokens
(canonical)

Answer tokens (empirical)
Retrieval Calculator

GPT-3 Flan-PaLM-540B GPT-3 Flan-PaLM-540B

Baseline m 44 42 58 88
SelfAsk m 20 72 - -
SelfAskQA 2m 59 64 - -
Inline m 103 248 62 102
InlineQA 2m 114 256 - -
Check & fix 2m 89 177 75 177
RARR 3m 181 - -
Interleaving m 72 - -

Table 4: Average number of answer tokens across the 5-shot experiments, for each strategy. The RARR formula
assumes a single verification question per step.

show that the overall conclusion can be distorted
by choosing a particular model or strtegy Extended
details are in Appendix B.1.

Tool use during generation vs. post-generation
refinement. In Figure 3 we compare the strategies
that use tools during generation against the strate-
gies that first generate an answer, and then use tools
to improve the answer. For retrieval tasks, refine-
ment clearly outperforms non-refinement strategies,
but the same does not apply to the calculation tasks.
We conjecture that planning calculations ahead of
time during generation is more aligned with LM
pretraining data, based on internet text, than plan-
ning retrieval queries in similar contexts.

Token efficiency. TA strategies are typically eval-
uated in terms of task performance and properties
such as factuality and logic correctness. We argue
that computational cost is another important factor
to consider. Specifically, we propose to evaluate to-
ken efficiency, that is, the amount of prompt tokens

and generated tokens, which have direct effect on
the cost of the TA strategy. Notably, the cost of a
TA strategy depends on various variables, includ-
ing model size, GPU type, caching optimizations,
vocabulary size, beam search size, and so on. How-
ever, token counts can serve as a plausibly generic
proxy for the purpose of comparing the cost of dif-
ferent TA strategies, as other factors are roughly
equal across strategies, as long as the same models
and tools are used. We consider prompt tokens
and generated tokens separately, as they often have
different consequences on cost.2

Tables 3, 4 show both canonical and empirical
comparisons across TA strategies with regards to
token efficiency. The canonical comparison is a
function of the relevant variables in the “canonical”
setting where the model was expected to answer

2Depending on model architecture and quantity of times
reusing the same prompt, prompt processing cost can be op-
timized, whereas the token generation cost varies with other
factors such as vocabulary size.



the question perfectly, and use the tool perfectly
as intended. Across all TA strategy experiments,
we found no general correlation between token
efficiency and performance. Concretely: (1) All
TA strategies are significantly more expensive than
the no-tool baselines by orders of magnitude, while
not incurring an improvement worthy of this extra
cost. Empirically, using tools in each case can
incur extra costs by a factor of 5x to 10x for prompt
processing, and 2x to 5x for generation. (2) The
refinement strategies are more expensive than the
no-refinement strategies. So while they improve
performance for retrieval tasks, it comes at a cost.

6 Analytical Results

We discuss further analyses of our results, find-
ings that (a) our observations generally hold across
different levels of example difficulty, and (b) most
prediction errors of tool-augmented LMs stem from
incorrect inputs to the tool and bad outputs from it,
and not from a lack of tool usage.

6.1 Example Difficulty
It has been shown that LMs have difficulty solv-
ing problems involving long-tail entities (Kandpal
et al., 2022; Mallen et al., 2022) and complex math-
ematical reasoning challenges (Mishra et al., 2022;
Imani et al., 2023). Accordingly, we ablate the
results from §5 along the following axes of exam-
ple difficulty, in order to understand how tools can
affect performance on difficult examples. We pro-
vide an overview of the trends here, and extended
results are available in Appendix B.

Measures of difficulty. We investigate the effec-
tiveness of tool-usage across varying levels of ex-
ample difficulty, which we approximate in two axes:
(A) Long-tail entities (retrieval): Following Mallen
et al. (2022), we extract the entities from the ques-
tion and associated gold answers in StrategyQA
and MuSiQue, and use the corresponding entity
Wikipedia page views as a measure of popular-
ity. (B) Large numbers (calculation): We segment
the examples in the calculation tasks based on the
range of the median and largest number in the ex-
ample (question and gold solution in GSM8k, or
question and context paragraph in DROP).

Results. Performance across increasing levels of
entity popularity and computation complexity, with
different LMs and TA strategies, are shown in Fig-
ure 4a and Figure 4b, respectively. We find that
performance uniformly decreases for harder ex-

amples in the retrieval setting for all models, but
in the calculation setting, this only manifests for
Flan-UL2-20B (implying that the larger models are
more robust to the numerical ranges in GSM8K
and DROP). Overall, in all cases tool use does not
improve upon the baselines even when controlling
for the harder cases where tools are expected to be
more useful. This conclusion is aligned with our er-
ror analysis in §6.3, which shows that the common
errors stem from incorrect tool arguments, more
than correct tool arguments but incorrect inferences
based on them. Flan-UL2 with a calculator is an
exception, where tool use indeed helps, though
moreso on the easier examples, likely due to a
higher rate of correct arguments to the calculator.

6.2 Tool Usage Statistics
A possible explanation for the similar performance
of no-tool baselines could be a lack of tool usage.
To check this, we aggregate usage over the differ-
ent TA strategies, and find that the models indeed
use tools in the majority of the cases; 70%-80% in
SelfAsk, and >90% in others (see Appendix B).
We also investigate usage across other axes, such
as models and number of demonstrations, and find
similar trends. However, the datasets and tasks we
investigate are designed to benefit from the tools
in all cases, which shows that few-shot demonstra-
tions are not always sufficient in inducing tool use
in models. In particular, the SelfAsk strategies re-
ceive the lowest tool use, being the strategies that
use natural language to query whether to use the
tool (the answer begins with “Are follow up ques-
tions needed here:’ to which the model answers
“No” in the cases where the tool is not used).

6.3 Error Analysis
We sampled 50 instances for which an error was
made by the TA models, randomly across the 5-shot
experiments, and categorized them across three
categories: (A) Incorrect tool input; (B) incorrect
tool output; (C) incorrect model inferences based
on correct tool usage. Error B applies only to the
retrieval settings, where the retrieval tool (Google
Search in our case) retrieved a wrong or irrelevant
snippet. The errors were distributed approximately
to 60% (A), 10% (B), and 30% (C) in the retrieval
setting, and 80% (A) and 20% (C) in the calculation
setting. Li et al. (2023) reported an error analysis
for tool-assistance in dialogue customer assistance
settings, with similar conclusions regarding error
A, although errors B and C do not apply in their
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Figure 4: We analyze performance of the strategies across two area (no-tool baselines vs. TA strategies), conditioned
on example difficulty as defined by the existence of rare or common entities in the retrieval settings (via percentile of
page views) and small or large numbers in the calculation settings (via percentile of numeric range). In (a), lower
page views imply higher difficulty, and in (b), larger numbers imply higher difficulty.

context, and other error types manifest instead.
Our results suggest that the majority of errors are

not due to the incorrect tool responses (i.e., issues
with Google Search as a choice of retriever), and
overall more influenced by incorrectly invoking
tools to begin with, in comparison to invoking them
correctly but composing the solution incorrectly.

7 Conclusions and Takeaways

We conduct a comprehensive assessment of few-
shot tool augmentation strategies for LMs, cover-
ing hundreds of experiments with multiple LMs,
datasets, and tools. Our experiments show that cur-
rent tool-usage integration approaches are presently
a false promise; prompting strategies that do not
use tools typically obtain similar task performance,
without the high cost of tool execution. Controlling
for example difficulty, where tools are expected to
provide the most benefit, does not explain the rela-
tive strength of the no-tool baselines. Instead, the
primary errors we observe are related to incorrect
usage of the tools to begin with (i.e., generating
incorrect arguments to the tool).

Our findings call for more robust evaluation of
future TA strategies, primarily in more practical
settings where models are not expected to leverage
inherent abilities to solve tasks. To this end, our
work provides concrete evaluation guidelines, such
as employing stronger baselines and factoring in
computation costs.

Limitations

While our study aims to provide a comprehensive
evaluation of TA strategies, there are some limita-
tions. First, recent work (Dodge et al., 2021; Magar
and Schwartz, 2022; OpenAI, 2023) suggests that
examples from public datasets, like those used in
our evaluation, may have leaked to the training data
of recent LMs. Such contamination can introduce
biases to the evaluation, such as lack of need for
external tools. We are not aware of alternatives
without this issue at the time of this writing.

Second, due to the high cost of executing large
LMs in an exhaustive evaluation, we ran only a
single experiment for each combination of TA strat-
egy, model, dataset, and number of demonstrations.
However, given the sensitivity of models to the
demonstrations (Perez et al., 2021), future work
should extend this evaluation to use multiple sets
of demonstrations for each such combination.

Last, while our findings show that non-tool mod-
els often perform on par with existing TA strategies,
our setting favors tool usage. For example, our
tasks only require a single type of tool such that the
model does not need to choose between multiple
tools. Future work that investigates when and how
tools can improve performance should consider
more realistic evaluation settings, for example, by
considering tasks where the model may need to
use multiple types of tools together, or tasks where
tools may sometimes give unhelpful answers.
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A Implementation Details

A.1 Tool-Assisted Strategies.

General Details. In all cases, if the tool invoca-
tion fails (e.g., with an ill-formatted calculation, or
a null response from Google Search), the model
is used to generate the tool’s output instead. For
all retrieval settings using Google Search, we test
both Top-1 and Top-5 retrieval: The two formats
are designed to cover both cases where a shorter
tool output may prevent the model’s answer from
degenerating, and a longer tool output may help the
model with more relevant information. Illustrative
examples of the data are available in Table 5.

SelfAsk and SelfAskQA. SelfAsk involves de-
composing each question into a series of simpler
sub-questions, and calling the tool directly for each
sub-question. The tool’s output is inserted into
the prompt as an intermediate answer. When the
model generates a step that begins with the string
“So the answer is:”, it is expected to generate an
answer that builds on the previous intermediate an-
swers which were tool outputs. In this work, we
use Google Search as the tool as in the original
work by (Press et al., 2023).

Our SelfAsk implementation reuses the origi-
nal implementation by Press et al. (2023). Since
Self-Ask is designed specifically for knowledge-
based QA, we only evaluate this strategy for the
knowledge tasks MuSiQue and StrategyQA.

The SelfAskQA variant involves calling the
model for each pair of sub-question and retrieved
snippet that (hopefully) contains its answer. This
method of recursively calling the model with dif-
ferent a different prompt as if it were another tool
is a technique proposed by Khot et al. (2023). We
collect all sub-questions from the SelfAsk prompts
in order to construct QA prompts (using the tool to
retrieve supporting snippets). The model is called
with the QA prompts in order to answer each sub-
question based on its snippet. The SelfAskQA
variant in essence summarizes each Google Search
snippet, which can be as long as a paragraph, into a
short answer to the given sub-question, effectively
simplifying and shortening the overall answer.

Among the two SelfAsk implementations, nei-
ther decisively outperforms the other: SelfAskQA
outperforms SelfAsk for GPT-3 and Flan-PaLM-
62B on both MuSiQue and StrategyQA, but for
Flan-PaLM-540B and Flan-UL2-20B the relation-
ship flips.

Inline and InlineQA. The Inline strategy format
largely mimics the Toolformer format by Schick
et al. (2023), but can also be cast into the ART
framework by Paranjape et al. (2023) or the Decom-
posed Prompting framework by Khot et al. (2023).
In general, the strategy simply calls for generating
the tool call in a predefined format—in our case,
square brackets and the tool name. The tool is in-
voked with the arguments generated by the model
inside the brackets, and the tool’s output is inserted
into the model. Our implementation is based on
the inference code implemented by Schick et al.
(2023), although notably, we focus on few-shot us-
age, and do not perform the tool-usage pretraining
step that largely concerns the referenced work.

We implement two variants: Inline, which uses a
tool called “Search” that appends the retrieved snip-
pet or calculation output directly into the prompt,
and InlineQA, which uses a tool called “QA” which
calls the model with a separate prompt in order to
summarize the retrieved snippet into a concise an-
swer, identically to the aforementioned SelfAskQA
variant. As with the SelfAsk and SelfAskQA vari-
ants, among Inline and InlineQA in the knowledge-
based tasks, neither consistently outperforms the
other in particular.

Interleaving. The Interleaving Retrieval strategy
(Trivedi et al., 2022a) proposes to use each rea-
soning step by the model in its CoT answer as a
query to a retrieval model. The retrieved snippet
is then added to the prompt in order to provide ad-
ditional information to the model. The structure
for each demonstration becomes: (1) All retrieved
documents thus far; (2) The question; (3) The gen-
erated answer thus far (see Trivedi et al., 2022a
for details). In this way, the tool is used heuris-
tically without explicit demonstrations from the
model, but the generation of the answer at each
CoT step is still conditioned on tool usage based
on the previous steps.

Check & Fix. We propose this strategy as a more
lightweight variant of refinement based on tools
in comparison to RARR, and it is comparable to
contemporaneously proposed (Jiang et al., 2023):
After each CoT step, the step is checked for accu-
racy using a tool, and if found inaccurate, a new
fixed step is generated to replace it.

In the retrieval setting, each step is verified and
fixed by prompting the model to classify whether
the step is contradicted by the retrieved paragraphs,



Model Dataset Strategy Example Model Answer

GPT-3 StrategyQA Baseline-CoT Question: Was a woman Prime
Minister directly before or after
Stanley Baldwin? Answer: No.

Stanley Baldwin was Prime Minister of the United King-
dom from 1923 to 1929. The woman Prime Minister
directly before him was Margaret Thatcher, who served
from 1979 to 1990. The woman Prime Minister directly
after him was Theresa May, who served from 2016 to
2019. So the answer is no.

Flan-UL2 MuSiQue SelfAsk Question: What administrative
territorial entity contains the
place where KPRM is licensed
to broadcast to? Answer: Hub-
bard County.

Are follow up questions needed here: Yes. What is the
place where KPRM is licensed to broadcast to? Interme-
diate answer: KPRM is licensed to broadcast to the city
of Houston. Follow up: What administrative territorial
entity contains the city of Houston? Intermediate answer:
The city of Houston is in Texas state. Follow up: What
is the administrative territorial entity that contains Texas
state? Intermediate answer: Texas state is in the United
States. So the final answer is: The United States

Flan-PaLM-62B DROP Check & Fix Context: [omitted paragraph
about the 2000 census] Ques-
tion: How many households and
families reside in the county ac-
cording to the 2000 census? An-
swer: 26484

26484 households and 12068 families reside in the
county. There were 40543 people, 15416 households,
and 11068 families residing in the county. Thus, 26484
+ 12068 = 38552. So the final answer is: 38552.

Flan-PaLM-540B GSM8K Inline Question: How many girls are
in the school if 40% of a school
population is made up of 240
boys? Answer: 360

If 40% of the school population is made up of 240 boys,
then 1% is made up of [Calculator(240 / 40) -> 6.0] 6
boys. Therefore, the total school population is made
up of [Calculator(6 * 100) -> 600] 600 students. If the
school population is made up of 600 students, and 40%
of them are boys, then the remaining 60% are girls, a
total of [Calculator(60 / 100) * 600 -> 360] 360 girls. So
the final answer is: 360.

Table 5: Illustrative examples of various datasets, strategies and model outputs. The answers from the Interleaving,
Check & Fix and RARR models are of the same format as the CoT baseline.

and if so, to generate the fixed step based on demon-
strations. In the calculation setting, each step is
first heuristically checked for whether it contains
a calculation, and if so, the calculation is inserted
into the calculator tool, and the model is prompted
to verify whether the tool output is consistent with
the calculation in the text. If this is incorrect, the
model generates the fixed step. In both cases, the
answer generation continues where the fixed step
completely replaces the original incorrect step.

RARR. RARR (Retrofit Attribution using Re-
search and Revision, Gao et al., 2023a) was pro-
posed as a post processing method for refining any
text, including LM chain-of-thought outputs. This
is done via automatically finding attribution for
each claim in the text, and post-editing the output
to fix unsupported content while preserving the
original output as much as possible. Our RARR
implementation reuses the original implementation
by Gao et al. (2023a).

The RARR process involves the following steps,
with each considered as a separate tool:

1. Question Generation: First, they generate a
series of questions that cover various aspects
of a passage, referred to as passage x. The
questions generated aim to verify and attribute

information from the passage. This is done via
prompting the LM with few-shot examples.

2. Evidence Retrieval: For each generated ques-
tion, the Google Search tool is utilized to re-
trieve the top-k passages that are related to
the question. In this work, we evaluate both
Top-1 and Top-5.

3. Evidence Ranking: The retrieved evidences
are next ranked using a query-document rel-
evance model scorer. Unlike the original
RARR implementation (Gao et al., 2023a),
which uses the GTR retrieval model (Ni et al.,
2022), we instead implement the scorer via
few-shot LM prompting, as suggested by the
authors. The output of this stage is thus the
top-1 ranked evidence.

4. Agreement Phase: Given a triplet of a text,
question, and an evidence, this phase deter-
mines whether both the text and the question
imply the same answer to the question. This
is implemented via few-shot LM prompting
using a chain-of-thought style prompt.

5. Editing Phase: If the previous Agreement
Phase outputs disagreement between the text
and the evidence, the (text, question, evidence)
triplet is fed to a model that outputs a revised



Model Dataset Best baseline

GPT-3 StrategyQA Inline
GPT-3 DROP Inline
GPT-3 GSM8K CoT
GPT-3 MuSiQue Inline
Flan-UL2-20B StrategyQA Inline
Flan-UL2-20B DROP Inline
Flan-UL2-20B GSM8K CoT
Flan-UL2-20B MuSiQue CoT
Flan-PaLM-540B StrategyQA CoT
Flan-PaLM-540B DROP Inline
Flan-PaLM-540B GSM8K Inline
Flan-PaLM-540B MuSiQue CoT
Flan-PaLM-62B StrategyQA CoT
Flan-PaLM-62B DROP CoT
Flan-PaLM-62B GSM8K Inline
Flan-PaLM-62B MuSiQue CoT

Table 6: For each combination of dataset and model,
we derive the best-performing baseline on the average
score across the few-shot experiments. There is no clear
winner: Two of the baselines achieve the best score in
50% of cases.

version of the text, considering the discrep-
ancy between the previous text and the evi-
dence. This is implemented via few-shot LM
prompting using a similar chain-of-thought
style prompt from the previous stage (see Gao
et al., 2023a for the exact prompting template).
The agreement and editing phases run itera-
tively until there are no needed revisions, de-
tected in the Agreement Phase.

A.2 Baselines
Chain-of-Thought. The CoT baseline is the stan-
dard baseline proposed by Wei et al. (2023) and
implemented as a baseline by Press et al. (2023);
Paranjape et al. (2023), inter alia. Often, the demon-
strations used for this baseline are those originally
published by Wei et al. (2023). In this work we
annotate a new sample of examples with CoT an-
swers for the purpose of a better estimation of CoT
few-shot performance, and release our annotations.

Self-Ask. The Self-Ask baseline uses the Self-
Ask tool demonstrations, but does not invoke the
tool after each “Follow up:” call, and instead gener-
ates the entire answer. This is the original no-tool
baseline in Press et al. (2023).

Inline. The Inline baseline uses the Inline tool
demonstrations, but does not invoke the tool after

Model Usage (%)

Flan-PaLM-540B 70.9
Flan-PaLM-62B 80.6
Flan-UL2-20B 82.6
GPT-3 95.1

Table 7: Note that RARR and Interleaving are guaran-
teed to use tools so they are omitted.

Strategy Usage (%)

Check & Fix 92.9
SelfAsk 80.4
SelfAskQA 72.8
Inline 99.9
InlineQA 96.1

Table 8: Overview of average rate of tool usage across
experiments. Note that RARR and Interleaving are guar-
anteed to use tools.

each tool call, and instead generates the entire an-
swer. This is the original no-tool baseline in Schick
et al. (2023).

B Extended Results

We provide the full results for our experiments
(described in §4) in §B.1, and further analysis of
TA strategy performance and tool usage in §B.2.

B.1 Full Experiment Results

Tables 9, 10 detail our experiment results. Tables
11, 12, 13, 14 detail average and max aggrega-
tions over the few-shot prompts. As mentioned, we
sample 500 examples for Flan-PaLM-62B , Flan-
PaLM-540B and Flan-UL2-20B experiments, and
250 for GPT-3 experiments, with the exception of
StrategyQA whose test set has 229 examples.

For DROP and MuSiQue, we report the F1 mea-
sures using the evaluation scripts provided by Dua
et al. (2019); Trivedi et al. (2022b) respectively. For
GSM8K, we normalize the numerical answers and
measure exact-match. For StrategyQA, we normal-
ize the answers (for capitalization, prefix and suffix
punctuation, and so on) and measure exact-match
to “yes” and “no”.

Best-performing strategies and baselines in
each setting. In Tables 2, 6 we show the best-
performing baseline and best-performing general
strategy for each setting of model and dataset,
among the average scores across the three few-shot



experiments. For strategies in general (Table 2),
we see that the winning strategies vary significantly
for different models, which supports Guideline (3)
in Table 1.

The distribution among the baselines is split
50%-50% among CoT and Inline. When consid-
ering each few-shot experiment separately (i.e.,
not taking the average), the distribution is 60.0%,
37.5%, and 2% for Baseline-CoT, Baseline-Inline
and Baseline-SelfAsk respectively for which base-
line achieves the best-performing score. This sup-
ports Guideline (2) in Table 1.

B.2 Analysis
Example Difficulty. Figures 5, 6 show extended
results for the example difficulty analyses in §6.
Here we consider the median of each difficulty
metric—i.e., the difficulty across all entities or
numbers in the example—rather than the minimum
or maximum, as well as the ablation of refinement
strategies against no-refinement strategies. We ad-
ditionally checked for two alternative axes: opera-
tion complexity (addition and substraction as “easy”
examples, and multiplication and division as “hard”
examples) and popularity links rather than popular-
ity views. The trends we observe in the main paper
hold in all of these cases.

Tool Usage. Tables 7, 8 show aggregate tool us-
age percentages over multiple axes. Overall, few-
shot demonstrations induce tool usage in the major-
ity of cases, though not completely so (i.e., below
100%).
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Figure 5: An extension of Table 3 with results for both the average across few-shot experiments (a-b) and the
maximum across few-shot experiments (c-d)—i.e., the maximum between 3-shot, 5-shot and 7-shot for each
experiments setting.



Strategy Model
MuSiQue StrategyQA

3-shot 5-shot 7-shot 3-shot 5-shot 7-shot

RARR Flan-PaLM-540B 34.86 35.09 34.14 80.35 81.22 80.79
RARR Flan-UL2-20B 13.40 12.01 12.98 55.90 40.17 42.79
RARR Flan-PaLM-62B 23.60 23.42 24.07 75.98 77.73 77.73
Baseline-CoT Flan-PaLM-540B 33.07 33.36 33.80 79.91 84.28 82.10
Baseline-CoT Flan-UL2-20B 15.14 16.50 16.10 67.25 71.62 72.05
Baseline-CoT GPT-3 27.37 29.31 30.25 70.74 71.62 71.62
Baseline-CoT Flan-PaLM-62B 23.60 23.42 24.27 75.98 79.04 80.35
Baseline-SelfAsk Flan-PaLM-540B 25.80 25.34 24.31 76.86 73.36 75.55
Baseline-SelfAsk Flan-UL2-20B 11.40 11.52 11.52 34.06 48.47 53.71
Baseline-SelfAsk GPT-3 27.98 28.13 29.80 72.05 74.24 73.36
Baseline-SelfAsk Flan-PaLM-62B 5.28 9.52 5.43 58.95 75.98 74.24
Baseline-Inline Flan-PaLM-540B 30.39 30.71 31.19 71.62 79.91 72.49
Baseline-Inline Flan-UL2-20B 13.66 13.33 9.74 72.05 68.56 71.18
Baseline-Inline GPT-3 29.11 30.33 28.15 70.31 75.98 78.60
Baseline-Inline Flan-PaLM-62B 23.42 22.69 21.86 75.11 73.36 75.55
SelfAsk Flan-PaLM-540B 20.02 23.14 23.26 71.62 71.18 73.80
SelfAsk Flan-UL2-20B 11.86 7.68 7.41 49.78 25.76 23.14
SelfAsk GPT-3 24.38 24.15 22.33 64.19 67.25 65.94
SelfAsk Flan-PaLM-62B 13.79 14.80 12.68 67.25 67.69 66.38
SelfAskQA Flan-PaLM-540B 21.08 21.92 22.91 71.62 69.43 73.80
SelfAskQA Flan-UL2-20B 8.53 5.35 2.30 47.16 17.03 11.79
SelfAskQA GPT-3 32.74 31.30 30.34 65.50 67.69 70.31
SelfAskQA Flan-PaLM-62B 15.42 17.49 14.51 67.25 68.12 69.00
InlineQA Flan-PaLM-540B 31.86 32.78 32.10 70.31 72.93 73.36
InlineQA Flan-UL2-20B 18.07 17.94 1.56 71.18 70.31 56.77
InlineQA GPT-3 34.90 36.65 31.32 70.31 72.05 70.31
InlineQA Flan-PaLM-62B 12.52 11.65 10.55 61.14 63.32 61.57
Check & Fix Flan-PaLM-540B 30.73 33.17 33.48 80.35 80.79 78.17
Check & Fix Flan-UL2-20B 10.90 11.77 13.52 52.40 60.70 69.87
Check & Fix GPT-3 29.66 32.95 32.26 72.05 73.80 70.74
Check & Fix Flan-PaLM-62B 25.21 26.39 26.47 75.55 71.18 76.42
Inline Flan-PaLM-540B 18.97 24.42 22.61 74.24 74.24 75.11
Inline Flan-UL2-20B 14.70 14.93 14.78 48.47 52.84 44.98
Inline GPT-3 28.85 31.03 33.54 70.31 69.43 68.56
Inline Flan-PaLM-62B 9.95 9.45 13.32 54.59 68.56 70.31
Interleaving Flan-PaLM-540B 23.71 21.29 20.51 76.86 78.60 75.98
Interleaving Flan-PaLM-62B 23.43 23.71 24.42 74.67 71.62 74.24
RARR-Top5 Flan-PaLM-540B 36.12 35.40 35.44 80.35 79.91 79.91
SelfAskQA-Top5 Flan-PaLM-540B 19.75 21.60 21.99 69.87 70.31 72.05
Inline-Top5 Flan-PaLM-540B 32.67 34.53 31.69 65.50 77.73 72.93
Check & Fix-Top5 Flan-PaLM-540B 31.74 32.68 33.87 78.60 81.66 81.22

Table 9: Results for the knowledge-retrieval tasks of MuSiQue and StrategyQA. MuSiQue scores are F1 scores.
Missing cells, such as “Interleaving” with Flan-UL2-20B, are experiments where the model failed to converge to an
answer.



Strategy Model
DROP GSM8K

3-shot 5-shot 7-shot 3-shot 5-shot 7-shot

Baseline-CoT Flan-PaLM-540B 77.2 75.0 74.2 67.4 70.8 70.8
Baseline-CoT Flan-UL2-20B 7.2 27.2 26.2
Baseline-CoT GPT-3 57.6 55.6 55.6 58.8 58.0 58.4
Baseline-CoT Flan-PaLM-62B 65.6 63.6 59.2 47.4 46.2 47.4
Baseline-Inline Flan-PaLM-540B 77.8 75.6 74.4 69.8 72.6 71.2
Baseline-Inline Flan-UL2-20B 3.6 5.6 3.6
Baseline-Inline GPT-3 57.6 66.0 59.6 51.6 54.0 53.2
Baseline-Inline Flan-PaLM-62B 59.0 64.0 59.2 48.8 47.8 48.0
Inline Flan-PaLM-540B 76.2 75.2 74.4 61.4 61.8 70.6
Inline Flan-UL2-20B 26.6 26.2 26.0
Inline GPT-3 56.8 66.0 45.2 50.8 52.4 52.8
Inline Flan-PaLM-62B 57.0 64.0 57.8 48.8 47.8 48.2
Check & Fix Flan-PaLM-540B 76.0 73.6 45.0 68.4 70.4 70.2
Check & Fix Flan-UL2-20B 23.2 25.8 23.2
Check & Fix GPT-3 54.8 54.4 54.8 56.0 58.4 61.6
Check & Fix Flan-PaLM-62B 65.0 63.6 44.2 46.8 44.0 46.6

Table 10: Results for the calculator settings of DROP and GSM8K. We omit Flan-UL2-20B results on DROP, as the
model could not converge to solve the task with our prompts, likely since each example in this task is very long.

Strategy Aggregation Model MuSiQue StrategyQA

Baseline-CoT Max GPT-3 30.2 71.6
Baseline-CoT Average GPT-3 29.0 71.3
Baseline-CoT Max Flan-UL2-20B 16.5 72.1
Baseline-CoT Average Flan-UL2-20B 15.9 70.3
Baseline-CoT Max Flan-PaLM-62B 24.3 80.3
Baseline-CoT Average Flan-PaLM-62B 23.8 78.5
Baseline-CoT Max Flan-PaLM-540B 33.8 84.3
Baseline-CoT Average Flan-PaLM-540B 33.4 82.1
Baseline-SelfAsk Max GPT-3 29.8 74.2
Baseline-SelfAsk Average GPT-3 28.6 73.2
Baseline-SelfAsk Max Flan-UL2-20B 11.5 53.7
Baseline-SelfAsk Average Flan-UL2-20B 11.5 45.4
Baseline-SelfAsk Max Flan-PaLM-62B 9.5 76.0
Baseline-SelfAsk Average Flan-PaLM-62B 6.7 69.7
Baseline-SelfAsk Max Flan-PaLM-540B 25.8 76.9
Baseline-SelfAsk Average Flan-PaLM-540B 25.1 75.3
Baseline-Inline Max GPT-3 30.3 78.6
Baseline-Inline Average GPT-3 29.2 75.0
Baseline-Inline Max Flan-UL2-20B 13.7 72.1
Baseline-Inline Average Flan-UL2-20B 12.2 70.6
Baseline-Inline Max Flan-PaLM-62B 23.4 75.5
Baseline-Inline Average Flan-PaLM-62B 22.7 74.7
Baseline-Inline Max Flan-PaLM-540B 31.2 79.9
Baseline-Inline Average Flan-PaLM-540B 30.8 74.7

Table 11: Aggregations by few-shot prompt of the results in Table 9 (baselines).
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Figure 6: An extension of Table 4. (a-b) refer to taking the minimum of entity page views to ablate examples that
have rare entities, and maximum of numbers to ablate examples with large numbers. (c-e) take the median in both
cases, and (f) shows the results when comparing TA strategies between refinement and non-refinement types.



Strategy Aggregation Model MuSiQue StrategyQA

Interleaving Max Flan-PaLM-62B 24.4 74.7
Interleaving Average Flan-PaLM-62B 23.9 73.9
Interleaving Max Flan-PaLM-540B 23.7 78.2
Interleaving Average Flan-PaLM-540B 21.8 77.0
RARR Max Flan-UL2-20B 13.4 55.9
RARR Average Flan-UL2-20B 12.8 46.3
RARR Max Flan-PaLM-62B 24.1 77.7
RARR Average Flan-PaLM-62B 23.7 77.1
RARR Max Flan-PaLM-540B 35.1 81.2
RARR Average Flan-PaLM-540B 34.7 80.6
RARR-Top5 Max Flan-PaLM-540B 36.1 80.3
RARR-Top5 Average Flan-PaLM-540B 35.7 80.1
Check & Fix Max GPT-3 32.9 73.8
Check & Fix Average GPT-3 31.6 72.2
Check & Fix Max Flan-UL2-20B 13.5 69.9
Check & Fix Average Flan-UL2-20B 12.1 61.0
Check & Fix Max Flan-PaLM-62B 26.5 76.4
Check & Fix Average Flan-PaLM-62B 26.0 74.4
Check & Fix Max Flan-PaLM-540B 33.5 80.8
Check & Fix Average Flan-PaLM-540B 32.3 79.6
Check & Fix-Top5 Max Flan-PaLM-540B 33.9 81.7
Check & Fix-Top5 Average Flan-PaLM-540B 32.8 80.5

Table 12: Aggregations by few-shot prompt of the results in Table 9 (TA strategies).



Strategy Aggregation Model MuSiQue StrategyQA

SelfAsk Max GPT-3 24.4 67.2
SelfAsk Average GPT-3 23.6 65.8
SelfAsk Max Flan-UL2-20B 11.9 49.8
SelfAsk Average Flan-UL2-20B 9.0 32.9
SelfAsk Max Flan-PaLM-62B 14.8 67.7
SelfAsk Average Flan-PaLM-62B 13.8 67.1
SelfAsk Average Flan-PaLM-540B 22.3 72.2
SelfAsk Max Flan-PaLM-540B 23.4 74.2
SelfAskQA Max GPT-3 32.7 70.3
SelfAskQA Average GPT-3 31.5 67.8
SelfAskQA Max Flan-UL2-20B 8.5 47.2
SelfAskQA Average Flan-UL2-20B 5.4 25.3
SelfAskQA Max Flan-PaLM-62B 17.5 69.0
SelfAskQA Average Flan-PaLM-62B 15.8 68.1
SelfAskQA Max Flan-PaLM-540B 22.8 75.1
SelfAskQA Average Flan-PaLM-540B 21.9 71.9
SelfAskQA-Top5 Max Flan-PaLM-540B 22.0 72.1
SelfAskQA-Top5 Average Flan-PaLM-540B 21.1 70.7
InlineQA Max GPT-3 36.7 72.1
InlineQA Average GPT-3 34.3 70.9
InlineQA Max Flan-UL2-20B 18.1 71.2
InlineQA Average Flan-UL2-20B 12.5 66.1
InlineQA Max Flan-PaLM-62B 12.5 63.3
InlineQA Average Flan-PaLM-62B 11.6 62.0
InlineQA Max Flan-PaLM-540B 32.4 73.4
InlineQA Average Flan-PaLM-540B 32.1 72.2
Inline Max GPT-3 33.5 70.3
Inline Average GPT-3 31.1 69.4
Inline Max Flan-UL2-20B 14.9 52.8
Inline Average Flan-UL2-20B 14.8 48.8
Inline Max Flan-PaLM-62B 13.3 70.3
Inline Average Flan-PaLM-62B 10.9 64.5
Inline Max Flan-PaLM-540B 24.3 74.7
Inline Average Flan-PaLM-540B 22.0 74.2
InlineQA-Top5 Max Flan-PaLM-540B 34.5 77.7
InlineQA-Top5 Average Flan-PaLM-540B 33.0 72.1

Table 13: Aggregations by few-shot prompt of the results in Table 9 (TA strategies).



Strategy Aggregation Model DROP GSM8K

Baseline-CoT Max GPT-3 57.6 58.8
Baseline-CoT Average GPT-3 56.3 58.4
Baseline-CoT Max Flan-UL2-20B 27.2
Baseline-CoT Average Flan-UL2-20B 20.2
Baseline-CoT Max Flan-PaLM-62B 65.6 47.4
Baseline-CoT Average Flan-PaLM-62B 62.8 47.0
Baseline-CoT Max Flan-PaLM-540B 77.2 70.8
Baseline-CoT Average Flan-PaLM-540B 75.5 69.7
Baseline-Inline Max GPT-3 66.0 54.0
Baseline-Inline Average GPT-3 61.1 52.9
Baseline-Inline Max Flan-UL2-20B 9.2 5.6
Baseline-Inline Average Flan-UL2-20B 4.2 4.3
Baseline-Inline Max Flan-PaLM-62B 64.0 48.8
Baseline-Inline Average Flan-PaLM-62B 60.7 48.2
Baseline-Inline Max Flan-PaLM-540B 77.8 72.6
Baseline-Inline Average Flan-PaLM-540B 75.9 71.2
Check & Fix Max GPT-3 54.8 61.6
Check & Fix Average GPT-3 54.7 58.7
Check & Fix Max Flan-UL2-20B 25.8
Check & Fix Average Flan-UL2-20B 24.1
Check & Fix Max Flan-PaLM-62B 65.0 46.8
Check & Fix Average Flan-PaLM-62B 57.6 45.8
Check & Fix Max Flan-PaLM-540B 76.0 70.4
Check & Fix Average Flan-PaLM-540B 64.9 69.7
Inline Max GPT-3 66.0 52.8
Inline Average GPT-3 56.0 52.0
Inline Max Flan-UL2-20B 26.6
Inline Average Flan-UL2-20B 26.3
Inline Max Flan-PaLM-62B 64.0 48.8
Inline Average Flan-PaLM-62B 59.6 48.3
Inline Max Flan-PaLM-540B 76.2 70.8
Inline Average Flan-PaLM-540B 75.3 64.5

Table 14: Aggregations by few-shot prompt of the results in Table 10.


