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ABSTRACT

In this work, we address the following question: What minimal structural assump-
tions are needed to prevent the degradation of statistical learning bounds with
increasing dimensionality? We investigate this question in the classical statistical
setting of signal estimation from n independent linear observations Yi = X⊤

i θ+ ϵi.
Our focus is on the generalization properties of a broad family of predictors that can
be expressed as linear combinations of the training labels, f(X) =

∑n
i=1 li(X)Yi.

This class — commonly referred to as linear prediction rules — encompasses a
wide range of popular parametric and non-parametric estimators, including ridge
regression, gradient descent, and kernel methods. Our contributions are twofold.
First, we derive non-asymptotic upper and lower bounds on the generalization error
for this class under the assumption that the Bayes predictor θ lies in an ellipsoid.
Second, we establish a lower bound for the subclass of rotationally invariant lin-
ear prediction rules when the Bayes predictor is fixed. Our analysis highlights
two fundamental contributions to the risk: (a) a variance-like term that captures
the intrinsic dimensionality of the data; (b) the noiseless error, a term that arises
specifically in the high-dimensional regime. These findings shed light on the role
of structural assumptions in mitigating the curse of dimensionality.

1 INTRODUCTION

Coined by Bellman et al. (1957), the curse of dimensionality (CoD) refers to the ubiquity of high-
dimensional bottlenecks in computer science. A classical manifestation in statistical learning is the
minimax lower bound for non-parametric regression: achieving an ϵ excess risk over the class of
Lipschitz functions f⋆ : Rd → R requires an exponential sample complexity n ≳ ϵ−

2
2+d (Tsybakov,

2008). This impossibility result shows that learning a generic high-dimensional function is intractable
in the worst case, thereby highlighting the necessity of structural assumptions on the target class.
A canonical example is linear regression, where the exponential dependence on d is replaced by a
minimax risk lower bound of order σ2d/n for n ≥ d (Tsybakov, 2003; Mourtada, 2022). In contrast,
when n < d the minimax risk diverges: in the worst case, no predictor can recover θ⋆ ∈ Rd, even in
the absence of noise. This illustrates how, in the high-dimensional regime, the noiseless error can be
made arbitrarily large within the minimax framework.

Although unusual from the perspective of classical statistics, the regime where the number of
parameters exceeds the number of samples has gained renewed attention in modern machine learning,
largely motivated by the widespread use of overparametrized neural networks. Strikingly, the minimax
rate for linear functions contrasts with recent results on high-dimensional linear models, which show
that under probabilistic assumptions on the covariates (e.g. sub-Gaussianity) the typical error in the
n < d regime remains bounded (Krogh and Hertz, 1991; Dobriban and Wager, 2018; Aubin et al.,
2020; Bartlett et al., 2020; Hastie et al., 2022; Cheng and Montanari, 2024). In particular, in the
noiseless setting the error can even decay faster than the classical n−1 rate.

The central aim of this paper is to reconcile these two perspectives. Specifically, we demonstrate
that restricting the minimax problem to the class of linear prediction rules (including popular
algorithms such as ridge regression and gradient-based methods) and target functions drawn from an
ellipsoid suffices to establish finite upper and lower bounds that capture the modern high-dimensional
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phenomenology. In doing so, we redeem the minimax framework in the overparametrized regime.
Our main contributions are:

• Proposition 3.1 gives a characterization of the averaged excess risk for the optimal linear prediction
rule under prior distribution on best predictor.

• Theorem 4.1 establishes simple non-asymptotic upper bounds — expressed in terms of the degrees
of freedom — for noisy tasks, while Theorems 4.5 and 4.7 provide complementary lower bounds
on the variance term of the optimal linear rule.

• We analyze the noiseless case in two regimes: (i) Theorem 4.10, when the covariance matrix has
heavy tails, and (ii) Theorem 4.15, when the spectrum decays rapidly. In both cases, we derive
non-asymptotic lower and upper bounds, which are shown to be optimal in certain examples.

• Finally, Proposition 5.1 completes our study by establishing a lower bound on the excess risk for a
fixed target θ⋆.

Related work — The classical non-asymptotic lower bound of σ2 d
n was established by Tsybakov

(2003) and later refined by Mourtada (2022). Numerous upper bounds have also been studied in the
literature, including those for ridge regression (Hsu et al., 2012) and SGD regression (Yao et al., 2007;
Bach and Moulines, 2013; Dieuleveut et al., 2017). High-dimensional asymptotics for ridge(less)
regression was studied under different assumptions on the covariate distribution by Krogh and Hertz
(1991); Dobriban and Wager (2018); Aubin et al. (2020); Wu and Xu (2020); Loureiro et al. (2021);
Hastie et al. (2022); Bach (2024). Sharp non-asymptotic results were also derived in Bartlett et al.
(2020); Cheng and Montanari (2024); Misiakiewicz and Saeed (2024). In particular, the noiseless
setting was shown to yield rates faster than 1/n (Berthier et al., 2020; Aubin et al., 2020; Varre
et al., 2021). Finally, works considering a prior on θ⋆ include (Dicker, 2016; Richards et al., 2021).
Excess risk rates under source and capacity conditions have been widely studied in the kernel ridge
regression literature (Caponnetto and De Vito, 2007; Richards et al., 2021; Cui et al., 2021; Defilippis
et al., 2024).

Notations. For n ∈ N, we denote [n] = {1, . . . , n}. For two symmetric matrices A,B, we use
A ⪯ B to denote that the matrix B − A is a symmetric semidefinite positive matrix, A† denotes
the Moore-Penrose pseudoinverse. We denote by λj(A) the j-th eigenvalue of A in non increasing
ordering. We use index i for inputs and the index j for features.

2 SETTING

We consider the statistical regression problem of predicting an output random variable Y ∈ R from
an input random variable X ∈ X = Rd related by a noisy linear model:

Y = X⊤θ⋆ + ϵ, (1)

with E[ϵ|X] = 0 (well-specified) and E[ϵ2|X] = σ2. Given n i.i.d. samples (Xi, Yi) drawn from the
model in Equation (1), our focus in this work is to investigate the hypothesis class of linear predictor
rules

f̂(X) =

n∑
i=1

li(X)Yi, (2)

defined by a (potentially random) function li that depends on the training covariates (Xi)i∈[n] and a
data-independent source of randomness.
Example 2.1 (Linear prediction rules). The class of linear prediction rules, also known as linear
smoothers (Buja et al., 1989), encompasses several examples of interest in the literature, such as:

• Ridge(less) regression: The ridge regression prediction rule is a linear rule with

li(X) =
1

n
X⊤

i (Σ̂n + λI)−1X, (3)

where Σ̂ = 1/n
∑

i∈[n] XiX
⊤
i is the empirical covariance matrix. Furthermore, li(X) =

1
nX

⊤
i Σ̂†X , corresponding to the minimal norm interpolator, is also a linear prediction rule.

2
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• Gradient flow: The predictor obtained by running gradient flow with learning rate η > 0 on a
linear model f(X) = θ⊤t X from θt=0 = 0 for t defines a linear predictor rule with:

li(X) =
1

n
X⊤

i (ηe−ηtΣ̂ + Σ̂†)X

More generally, some (S)GD recursion, minimizing ℓ2-penalized quadratic risk, can also be written
as a linear predictor rule, see Appendix A for a discussion.

• Nadaraya-Watson estimator: Let K(x, x′) = κ(x−x′

h ) denote a rotationally invariant kernel with
bandwidth h > 0. The Nadaraya-Watson estimator defines a linear predictor rule with

li(X) =
κ(X − Xi/h)∑

j∈[n] κ(
X − Xj/h)

• More generally, any of the above methods can be generalized by considering a fixed feature map
ϕ(X) of the covariates, while remaining a linear prediction rule. This includes methods such as
principal component regression, Nyström (Williams and Seeger, 2000; Smola and Schökopf, 2000)
and Random features methods (Rahimi and Recht, 2007), among others.

• A classical statistics example which is not a linear prediction rule is the LASSO (Tibshirani, 1996).

Our main goal in this work is to provide general statistical guarantees for the performance of this
class of predictors, as quantified by the population risk

R(f) := E
[
(Yn+1 − f (Xn+1))

2
]
, (4)

over the class of measurable functions f : X → R. The statistically optimal predictor f⋆ minimizing
R for the model in Equation (1), known as the Bayes predictor, is given by the conditional expectation
f⋆(X) = E[Y |X] = θ⊤⋆ X . This question, therefore, boils down to quantifying how well f⋆ can be
approximated by a linear prediction rule with a finite batch of data, and how close the corresponding
risk is to the Bayes risk R(f⋆) = σ2. Note that since f̂ is data-dependent, the corresponding risk
R(f̂) is random, and hence our focus will be in studying the averaged excess risk

Eσ2(f) := E [R(f)]−R(f⋆), (5)

where the expectation is taken over the training dataset.
Remark 2.2. In this paper, we focus on results in expectation. While these results can be extended to
high-probability guarantees under suitable assumptions, we chose to present them in expectation to
maintain clarity—particularly for the lower bounds, which are inherently more difficult to interpret
and especially challenging to establish in the high-probability setting.

A popular approach for bounding the performance of statistical methods for linear problems is the
minimax approach, consisting of looking at the performance of the best predictor under the hardest
possible rule

inf
f̂

sup
θ⋆∈Rd

Eσ2(f̂), (6)

where the infimum is typically taken over the class of all possible predictors (measurable functions of
the data). In other words, the minimax risk describes the performance of the best possible algorithm
evaluated on the worst-case data. While it provides a powerful tool for deriving bounds on the risk, it
suffers from poor scaling with the dimension d, a problem known as the curse of dimensionality. For
instance, as shown by Tsybakov (2003) and Mourtada (2022),

inf
f̂

sup
θ⋆∈Rd

Eσ2(f̂) ≥
{

σ2 d
n if d ≤ n,

+∞ if d > n,

thus the minimax risk in Equation (6) diverges with d as soon d > n. This is because the optimal
prediction function is supported on the span of observations. Then selecting θ⋆ divergent norm leads
to infinite minimax risk. This will be mitigated by following assumptions.

Therefore, providing statistical guarantees that remain meaningful for high-dimensional predictors
requires assuming further structure on the Bayes predictor.

3
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Mini-averaged risk It will be useful to define the optimal averaged excess risk, called mini-
averaged risk, where the Bayes predictor is sampled according to a distribution ν supported on
Θ ⊂ Rd:

Ē(ν;σ2) := inf
f̂

Eθ⋆∼ν

[
Eσ2(f̂)

]
, (7)

where, the infinimum is taken on linear predictor rule Equation (2).

Best predictor on an ellipsoid In order to mitigate the poor dimensional scaling of the minimax
risk, we consider the following assumption on the Bayes predictor.
Assumption 1 (Ellipsoidal Bayes predictor). We assume the Bayes predictor belongs to an ellipsoid

θ⋆ ∈ ΘA = {θ ∈ Rd s.t ∥Aθ∥2 = 1} ⊂ Rd, (8)

for a positive semi-definite symmetric matrix A ∈ Rd×d.

A natural choice of distribution νA supported on ΘA is A−1U(Sd−1). In Examples 2.4 and 2.5, we
explain that this distribution corresponds to a high dimensional assumption depending on the ellipsoid
described by A.
Remark 2.3 (Comparison with the minimax approach). Restricting the Bayes predictor to the ellipsoid
immediately provides a lower bound to the unconstrained minimax risk. More interestingly, the
optimal averaged risk is also a lower bound to the constrained minimax risk:

inf
f̂

sup
θ⋆∈Rd

Eσ2(f̂) ≥ inf
f̂

sup
θ⋆∈ΘA

Eσ2(f̂) ≥ inf
f̂

Eθ⋆∼νA

[
Eσ2(f̂)

]
= Ē(νA;σ2). (9)

However, note that minimizing the averaged risk does not give an optimal algorithm in the worst-case
sense, but rather an optimal algorithm in the typical case.
Example 2.4 (Explained variance). In the case of linear model (1), the risk associated with the naive
predictor f = 0 is

E[Y 2] = ∥Σ1/2θ⋆∥22 + σ2. (10)
Thus, assuming a bounded second moment for Y is equivalent to assuming that θ⋆ lies within an
ellipsoid defined by ∥Σ1/2θ⋆∥22 = ρ2 > 0. A bounded explained variance, i.e., ∥Σ1/2θ⋆∥22, is often
considered a minimal assumption in regression setting. We discuss the limitations of this assumption
in Example 4.13.
Example 2.5 (Source condition). A well-known example from the kernel literature satisfying As-
sumption 1 is the source condition Caponnetto and De Vito (2007), which can be seen as an extension
of the bounded explained variance assumption. Given r ≥ 0, the source condition is defined by the
ellipsoid described by ∥Σ1/2−rθ⋆∥2 =: ρr. The constant r parametrizes how fast the target decays
with respect to the basis of the covariates, and therefore quantifies the difficulty of the task. To study
the source condition, we can take νr such that Σ1/2−rθ⋆ ∼ ρrU(Sd−1). For comparison, we fix
ρ2r = dρ2/Tr(Σ2r), in order to have the average explained variance Eν∥Σ1/2θ⋆∥22 = ρ2 independent
of r. In this case, the covariance matrix of θ⋆ is given by Hr = ρ2Σ2r−1/Tr(Σ2r).

3 OPTIMAL AVERAGED RISK AND ALGORITHM

Our first main result concerns a characterization of the optimal averaged risk for Bayes predictors
in the ellipsoid. In the following, we denote by Σ = E[XX⊤] (resp. Σ̂ = 1/n

∑
i∈[n] XiX

⊤
i ) the

population (resp. empirical) covariance matrix of the training covariates.
Proposition 3.1. Let ν denote a distribution supported on Θ, and denote H := Eν [θθ

⊤] ⪰ 0. For
i ∈ [n+ 1], define the transformed observation X̃i = H1/2Xi. Then, the optimal averaged excess
risk over the class of linear prediction rules is given by ridge regression on the transformed covariates
(X̃i)i∈[n] and ridge penalty λ = σ2

n . In other words, the optimal linear prediction rule is

li(Xn+1) =

{
1
nX̃

⊤
i (Σ̂H + λI)−1X̃n+1 if σ2 > 0

1
nX̃

⊤
i Σ̂†

HX̃n+1 if σ2 = 0,
(11)

with averaged excess risk

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• (Variational form)

Ē(ν;σ2) = E

 inf
l∈Rn

∥∥∥∥∥
n∑

i=1

liX̃i − X̃n+1

∥∥∥∥∥
2

2

+ σ2
n∑

i=1

l2i

 . (12)

• (Matrix form)

Ē(ν;σ2) =
σ2

n
E
[
Tr(ΣH(Σ̂H + λI)−1)

]
, (13)

where ΣH (resp. Σ̂H ) the population (resp. empirical) covariance matrix of transformed observations
(X̃i)i∈[n].

Remark 3.2. A few remarks on Proposition 3.1 are in order.

(a) The form of the best linear rule is classical in Bayesian literature (Bishop and Nasrabadi, 2006)
and is yet used in Dobriban and Wager (2018); Richards et al. (2021) for studied ridge(less)
regression with random design.

(b) Proposition 3.1 shows that the optimal averaged excess risk in Equation (7) only depends
on the distribution ν through its second moment H . Furthermore, the optimal risk depends
only on the distribution of transformed observations (X̃i)i∈[n] of population covariance matrix
ΣH = H1/2ΣH1/2. Thus, to simplify the notation and the reading of the results, from now, we
will adopt the notation

Ē(ΣH ;σ2) := Ē(ν;σ2). (14)
Note that ΣH contains both information of the covariance structure of X and the signal θ⋆.

(c) In the case of θ⋆ ∼ νA distributed on ellipsoid ΘA (Assumption 1), we have H1/2 = A−1
√
d

and
ΣH = 1

dA
−1ΣA−1. Furthermore, we can complete (9), on the constrained minimax risk, by

Ē(ΣH ;σ2) ≤ inf
f̂

sup
θ⋆∈ΘA

Eσ2(f̂) ≤ Ē(dΣH ;σ2). (15)

The upper-bound is obtained using Proposition 3.1 variational form. Remarks that the constrained
minimax risk is upper bounded as soon as Θ is an ellipsoid.

(d) Both the matrix and variational form of Proposition 3.1 provide useful intuition on the optimal
algorithm. The matrix form is useful to obtain either (i) high-dimensional asymptotic equivalents,
for instance with random matrix theory tools such as in Dobriban and Wager (2018); Cheng
and Montanari (2024); (ii) lower-bounds using trace operator concavity/convexity properties.
Similarly, the variational form is useful to derive upper bounds on the optimal averaged error Ē ,
for instance by choosing an appropriate linear rule li for which the expectation in Equation (13)
is easy to compute explicitly.

Degrees of freedom and the noiseless error For k ∈ {1, 2}, define the k-th degree of freedom
dfk(Σ;λ) = Tr(Σk(Σ + λI)−k). The degrees of freedom is a key quantity to understand ℓ2 regular-
ization, and appears in a large number of works on ridge and kernel ridge regression (Caponnetto and
De Vito, 2007; Bach, 2017; 2024). It can be interpreted as a soft count of the number of eigenvalues
of Σ which are smaller than λ, as df1(Σ;λ) ≃ k if the first k eigenvalues of Σ are large with respect
to λ. Using Proposition 3.1, a crude lower bound on the optimal risk is given by

Ē(ΣH ;σ2) ≥ σ2 df1(ΣH ;λ)

n
. (16)

This lower bound can be compared to the low-dimensional lower bound for least-squares regression
σ2d/n, where df1(ΣH ;λ) plays the role of an effective dimension. However, note that in the noiseless
case σ2 = 0 this lower bound becomes vacuous, while it is well-known from high-dimensional
asymptotics that the excess risk can be non-zero even if σ2 = 0 (Hastie et al., 2022).

Capturing this behavior requires a finer analysis of the optimal averaged excess risk. Note that the
noiseless optimal excess risk Ē(ΣH ; 0) can be seen as a systematic high-dimensional error. Indeed,

5
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since for σ2 = 0 a linear prediction rule takes the form

f̂(X) =

n∑
i=1

li(X)X⊤
i θ⋆, (17)

the predictor has information on the target θ⋆ only through the low number n of explored directions
li(X). Consequently, we have Ē(ΣH ;σ2) ≥ Ē(ΣH ; 0) — but this lower bound does not capture the
impact of the noise.

This discussion motives the following decomposition of the optimal excess risk

Ē(ΣH ;σ2) = Ē(ΣH ; 0) + Ē(ΣH ;σ2)− Ē(ΣH ; 0), (18)

where the first term Ē(ΣH ; 0) is the noiseless error, equal to the averaged bias of an overparametrized
ridgeless regression problem, but lower than the bias of other linear predictor rules. The second term,
Ē(ΣH ;σ2)− Ē(ΣH ; 0), can be interpreted as a variance-like term, since Ē(ΣH ;σ2)− Ē(ΣH ; 0) = 0
if σ2 = 0. However, it is important to stress that this is not the standard variance of the bias-variance
decomposition, since it captures part of the bias of the optimal algorithm.

Our goal in the following will be to derive upper- and lower-bounds for each term in this decomposi-
tion.

4 UPPER- AND LOWER- BOUNDS ON THE OPTIMAL AVERAGED RISK

In this section we derive statistical guarantees for the optimal excess risk in Proposition 3.1. The
discussion will treat the noisy and noiseless cases separately, as these will require different technical
tools.

4.1 NOISY CASE

We start by discussing the noisy case σ2 > 0. Consider the following assumption on the covariate
distribution:
Assumption 2. There exists LH > 0 such that E[∥X̃∥22X̃X̃⊤] ⪯ L2

HΣH .

Assumption 2 assumption is satisfied for bounded data (∥X̃∥22 ≤ L2
H almost surely). It is also

satisfied by unbounded distributions satisfying the following assumption.
Assumption 3. We assume that there exist κ ≥ 1 such that E[(v⊤X)4] ≤ κ(v⊤Σv)2.

In that case, Assumption 2 holds with L2
H = κTr(ΣH). Assumption 3 is satisfied, for example, with

κ = 3 if X is a Gaussian vector. In particular, the strength of this assumption is that the constant κ is
invariant under linearly transformations of the covariates. These two assumptions are common in the
analysis of linear models, and have appeared before for instance in Bach and Moulines (2013).

General upper bound — Our first guarantee is an upper bound on the optimal excess risk under
Assumption 2 and for a finite number n of inputs.
Theorem 4.1. Under the setting introduced in Section 2 and Assumption 2,

λdf1 (ΣH ;λ) ≤ Ē(ΣH ;σ2) ≤ (λ+ λ0)df1 (ΣH ;λ+ λ0) , (19)

where λ = σ2/n, λ0 = L2
H/n.

Example 4.2 (Optimal risk on the sphere). Consider Example 2.5 with r = 1/2, corresponding to
the best algorithm on the sphere with averaged explained variance equal to ρ2. We have H1/2 =

ρ2I/Tr(Σ) and ΣH1/2
= ρ2Σ/Tr(Σ). Then the best predictor is the ridge with λ⋆ = Tr(Σ)

n
σ2

ρ2 and,
under Assumption 3, the averaged risk is upper-bounded by

Ē(ΣH1/2
;σ2) ≤ σ2 + κρ2

n
df1 (Σ;λ

′) , (20)

with λ′ = Tr(Σ)
n

σ2

ρ2 + κ
n = λ⋆ + κ

n . Note that this upper bound is meaningful even if σ2 = 0. In
particular, note that the ridge penalty λ′ appearing this upper bound is the sum of two terms: the

6
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optimal ridge regularization λ⋆ = Tr(Σ)
n

σ2

ρ2 and an effective regularization λ0 = κ1/n — which is
positive even in the noiseless case σ2 = 0. This is akin to the effective regularization observed in the
asymptotic analysis of ridge regression (Cheng and Montanari, 2024; Misiakiewicz and Saeed, 2024;
Defilippis et al., 2024; Bach, 2024). Interestingly, a similar phenomenon also appears in the context
of the optimal excess risk in the class of linear prediction rules.
Example 4.3 (Source and capacity conditions). Consider Example 2.5 with r > 0. Furthermore, we
assume that λj(Σ) = j−α. If rα > 1/2 then

Ē(ΣHr ;σ
2) ≤ Cαrρ

2

(
σ2

nρ2
+

κ

n

)1− 1
2αr

, (21)

with Cαr that depends only of αr. Thus, the rate decreases with r and α, which represent, respectively,
the complexity learning of the target θ⋆ and the inputs X .
Remark 4.4 (Infinite dimensional inputs). Theorem 4.1 extends to the setting where X lies in an
RKHS. In fact, Assumption 2 can be generalized to Hilbert spaces via operator theory, and the first
degree of freedom is defined whenever Tr(ΣH) < +∞.

Lower bounds — Deriving general lower bounds for the optimal excess risk is more challenging.
A first step in this direction is to derive a lower bound for the term Ē(ΣH ;σ2)− Ē(ΣH ; 0), which
plays a role similar to a variance in our analysis. Considering notation of Theorem 4.1, we have the
following result.
Theorem 4.5. Under the setting introduced in Section 2 and Assumption 2:

Cσ,LH

σ2

n
df2 (ΣH ;λσ,LH

) ≤ Ē(ΣH ;σ2)− Ē(ΣH ; 0), (22)

with

• Cσ,LH
= 1− L2

H/σ2 and λσ,LH
= λ+ λ0 = (σ2 + L2

H)/n if L2
H < σ2

• Cσ,LH
= 1/(1 + L2

H/σ2)2 and λσ,LH
= λ = σ2/n if ∥X̃∥22 ≤ LH almost-surely.

Remark 4.6. Theorem 4.5 provides two cases in which the variance-like term can be lower-bounded
by σ2deff/n, where the second degree-of-freedom plays the role of the effective dimension. This is
natural given the already highlighted similarities with the ridge regression literature. This lower
bound is mostly useful in the noisy case, i.e. when the noise variance σ2 is not negligeable with
respect to the signal strength and covariate variance, quantified here by LH . In particular, L2

H/σ2 can
be interpreted as a signal-to-noise ratio.

Theorem 4.5 can be completed by the following result that shows optimality of Theorem 4.1 under
the assumptions considered here.
Theorem 4.7 (Lower bound on supremum). Let P(ΣH , L2

H) denote the set of distributions of
covariates X̃ with covariance matrix ΣH satisfying Assumption 2. Then,

(λ+ λ0)df1 (ΣH ;λ+ λ0)− λ0df1 (ΣH ;λ0) ≤ sup
P∈P(ΣH ,L2

H)

{
Ē(ΣH ;σ2)− Ē(ΣH ; 0)

}
.

Remark 4.8. By construction, this is the tightest lower bound with respect to the upper bound in
Theorem 4.1. It corresponds to the difference between the noisy and noiseless cases in Equation (19),
implying that this upper bound cannot be improved in the large noise regime. For small noise, the
upper bound might not be tight. We expect it to be loose as soon as the following upper bound

Ē(ΣH ; 0) ≤ λ0df1 (ΣH ;λ0) ,

becomes loose. However, we note that the variance-like term is sub-proportional to the noise variance,
and therefore in the weak noise regime the contribution from this term is sub-leading.

4.2 NOISELESS CASE

In the last section, we saw that we can derive fairly general upper- and lower-bounds for the optimal
excess risk over the class of linear predictors which tightness depend on the noise level, and in

7
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particular become loose as the noise variance vanishes. Our goal in this section is to investigate the
optimality of the upper bound in Theorem 4.1 in the noiseless case σ2 = 0, which is explicitly given
by:

Ē(ΣH ; 0) ≤ λ0df1 (ΣH ;λ0) , (23)

with λ0 =
L2

H

n . In particular, we recall that under Assumption 3, we have λ0 = κTr(ΣH)
n . For

convenience, we also recall that the average noiseless risk is equal to:

Ē(ΣH ; 0) = E

 inf
l∈Rn

∥∥∥∥∥
n∑

i=1

liX̃i − X̃

∥∥∥∥∥
2

2

 , (24)

which can be rewritten as
Ē(ΣH ; 0) = E [Tr(ΣH(I − Pn))] , (25)

where Pn is the orthogonal projection on the the space spanned by (X̃i)i∈[n].
Remark 4.9 (Specificity of the noiseless case). A particular property of the noiseless model is that
the projection Pn does not depend on the norm of each input X̃i.

Remark 4.9 motivates the following assumption.

Assumption 4 (Isotropic latent variable). The latent covariates Z = Σ−1/2X satisfy Z/∥Z∥2 ∼
U(Sd−1).

Implicit noise — As noted in Theorem 4.1, the term λ0 acts as an implicit regularization. Indeed,
based on Proposition 3.1, this regularization effect emerges specifically when σ2 > 0, since the
optimal penalization parameter is given by λ = σ2/n. In other words, noise induces regularization.
This raises the question: how can we explain the presence of the extra term λ0 > 0 in the noiseless
upper bound? The following theorem shows that this term is not merely an artifact of the analysis,
but rather reflects a genuine underlying phenomenon.
Theorem 4.10. Consider the overparametrized case where d > n + 2. Then, under the setting
introduced in Section 2 and Assumption 4:

λ0df1 (ΣH ;λ0) ≤ Ē(ΣH ; 0) ≤ λ̄0df1
(
ΣH ; λ̄0

)
, (26)

where λ0 = σ2
0/n > 0, λ̄0 = 3Tr(ΣH)/n, where σ2

0 satisfies, for all k > n+ 2,

σ2
0 ≥ (k − 1)(k − n− 2)

 k∑
j=2

λj(ΣH)−1

−1

.

Remark 4.11. Theorem 4.10 can be interpreted as follows:

(a) The upper bound in Theorem 4.10 controls the convergence rate. Intuitively, it corresponds to the
contribution of the first degree of freedom and a penalization parameter that scales proportionally
to 1/n.

(b) The parameter σ2
0 emerges as the variance of an implicit noise in the problem. Indeed, this

interpretation is intuitive from the proof, where the leading eigenvectors of ΣH are perturbed
due to interactions with the large number of remaining eigenvectors. This is consistent with
known upper bounds for linear regression in the overparametrized regime d > n, where it was
shown that the effects of high-dimensionality can be captured by inflated noise levels (Bartlett
et al., 2020; Hastie et al., 2022).

(c) The noise variance σ2
0 can be lower-bounded across a broad class of scenarios, including those

involving decaying eigenvalue. However, the relevance of the bounds depends on the decay rate
of the spectrum. For instance, in the case of geometric decay, the gap between λ0 and λ̄0 can be
significant, potentially limiting the tightness of the bound.

Example 4.12 (Implicit noise of an isotropic covariance matrix). If Σ = I then

σ2
0 ≥ (d− n− 2) =

(
1− n+ 2

d

)
Tr(Σ).

8
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Example 4.13 (Bounded explained variance). Consider Example 2.5 with r = 0. The associated
covariance matrix is ΣH0

= ρ2I/d. Theorem 4.10 implies the noiseless error is bounded by

ρ2
(
1− n+ 2

d

)
≤ Ē(ΣH0

; 0) ≤ ρ2.

We observe that the optimal risk suffers from the curse of dimensionality for any Σ ≻ 0, as it
converges to the worst-case excess risk ρ2 as the dimension increases. This highlights that a bounded
explained variance is not a sufficient assumption in high-dimensional settings.

To complete these examples, we consider the following well-known family of spectra.
Corollary 4.14. Under assumptions of Theorem 4.10 and assume that λj = j−α (capacity condition)
for α ∈ (0, 1), then

cλ̄0df1
(
ΣH ; λ̄0

)
≤ Ē(ΣH ; 0) ≤ λ̄0df1

(
ΣH ; λ̄0

)
, (27)

with, c = (1− n+2
d ) (1+α)(1−α)

12 if α ∈ (0, 1).

In conclusion, Theorem 4.10 provides optimal bounds (up to a constant) when the spectrum of ΣH

decays slowly than 1/j. For stronger decay Theorem 4.10 is not optimal, but the following theorem
can complete this case.
Theorem 4.15. Let Rk :=

∑
j>k λj(ΣH). Under assumptions of Theorem 4.10, we have

Rn ≤ Ē(ΣH ; 0) ≤ min
k<n−1

n− 1

n− k − 1
Rk.

By choosing different values of k, we can obtain various upper bounds. For example, setting k = n/2
yields Rn ≤ Ē(ΣH ; 0) ≤ 4Rn/2. The advantage of this bound is that it allows us to exploit the faster
decay of the spectrum. In particular, in the context of Example 4.3, the eigenvalues satisfy λj(ΣH) ∝
j−2αr when 2αr > 1. In the limit d → ∞, we obtain cαrρ

2n1−2αr ≤ Ē(ΣH ; 0) ≤ Cαrρ
2n1−2αr.

Hence, the convergence rate is always better than in the noisy case, surpassing 1/n when αr > 1.

5 LOWER BOUND FOR A FIXED TARGET θ⋆

So far, all our results have been derived under the assumption that the target predictor is randomly
drawn from the ellipsoid. In this section, we discuss a lower bound result, which exchanges this
assumption for the rotationally invariant property:
Assumption 5. For any orthogonal matrix O, li(X, (Xi)i∈[d]) = li(OX, (OXi)i∈[d]) almost surely.

Note that all algorithms described in Example 2.1 (excepted LASSO) satisfy this assumption. Follow-
ing an idea of Richards et al. (2021), we can show that, for any linear rule f̂ satisfying Assumption 5,
and for a fixed θ⋆ ∈ Rd, we have Eσ(f̂) = Eθ⋆∼νEσ(f̂), where ν is a distribution on Rd with
covariance Hθ⋆ :=

∑
j∈[d](v

⊤
j θ⋆)

2vjv
⊤
j where vj are the eigen-directions of Σ. Thus, from our

results in previous sections, we can show the following proposition.
Proposition 5.1. Under setting of Section 2, Assumption 5, and assuming that (v⊤j X)j∈[d] have
symmetric and independent components, we have

Eσ2(f̂) ≥ Ē(Σθ⋆ ;σ
2), (28)

where Σθ⋆ =
∑

j∈[d] λj(Σ)(v
⊤
j θ⋆)

2vjv
⊤
j .

Remark 5.2. Proposition 5.1 can be interpreted as follows:

(a) The lower bounds in this paper can be used to bound below the excess risk of a specific linear
learning rule for a given θ⋆. In particular, thanks to Theorem 4.1, we have

σ2

n
df1(Σθ⋆ ;σ

2/n) ≤ Ē(Σθ⋆ ;σ
2) ≤ Eσ2(f̂), (29)

in the large-noise regime. Moreover, using the decomposition Ē(Σθ⋆ ;σ
2) = Ē(Σθ⋆ ; 0) +

Ē(Σθ⋆ ;σ
2)− Ē(Σθ⋆ ; 0), we can combine the results from Theorems 4.5 and 4.10 to obtain more

refined lower bounds.

9
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(b) The lower bound highlights that, to avoid the curse of dimensionality, the optimal predictor
θ⋆ must be well aligned with the top eigenvectors of Σ. For example, if we take (v⊤j θ⋆)

2 =

1/λj(Σ), then Σθ⋆ = Id. Applying Theorem 4.10, we obtain E0(f̂) ≥ ∥Σ1/2θ⋆∥22
(
1− n+2

d

)
.

Since ∥Σ1/2θ⋆∥22 corresponds to the explained variance, this result shows that the predictor is
adversely affected by the high dimensionality. In conclusion, assumptions about θ⋆ such as those
in Example 2.5, with r > 0, are necessary in high-dimensional settings.

6 CONCLUSION

This paper establishes that the optimal risk within the class of linear prediction rules can be decom-
posed into two components. The first is a variance-like term, Ē(ΣH ;σ2)− Ē(ΣH ; 0), which admits
a representation in terms of the degrees of freedom. In particular, we show that the lower bound,
which depends on the second degree of freedom, takes the form σ2deff/n. The second component
is the noiseless error Ē(ΣH ; 0), whose decay is governed by the spectral decay of the covariance
matrix ΣH . For heavy-tailed covariance structures, the noiseless error can be expressed in terms of
the first degree of freedom as σ2

0deff/n, where σ0 accounts for the effective noise generated by the
high-dimensional setting. Moreover, when the eigenvalues decay faster than 1/j, the noiseless error
decreases at a rate faster than 1/n, indicating that the classical rate deff/n overestimates the true risk.
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A LINEAR LEARNING RULE

Proposition A.1 (Linear combination). If f and g are linear predictor rules then, αf + βg, where α
and β are functions of , is a linear prediction rule.

Proof. Writing f(X) =
∑n

i=1 l
(f)
i (X)Yi and g(X) =

∑n
i=1 l

(g)
i (X)Yi, we proof the result consid-

ering l
(αf+βg)
i = αl

(f)
i + βl

(g)
i .

Proposition A.2 (Recursion scheme). All method based on a recursion, starting from θ0 = 0, of the
form,

θt = Mtθt−1 + γtYi(t), (30)

where i(t) ∈ [n],Mt ∈ Rd×d and γt ∈ Rd are independent of (Yi)i∈[n] given (Xi)i∈[n], are linear
predictor rules.

Proof. We denote by l(t) the linear predictor rule at time t.

• θ0 is linear in (Yi)i∈[n].

• If θt−1 is linear in (Yi)i∈[n] then θt−1 =
∑n

i=1 W
(t−1)
i Yi where W

(t)
i depends only on Xi.

Then

θt =

n∑
i=1

MtW
(t−1)
i Yi + γtYi(t). (31)

Then θt is linear in (Yi)i∈[n].

We conclude using l
(t)
i (X) = X⊤W

(t)
i .

This shows that any (S)GD method based on minimization of empirical risk, with or without ℓ2
penalization, and with or without averaging are linear predictor rules.

B PROOF OF SECTION 3

B.1 PROOF OF PROPOSITION 3.1

Lemma B.1 (Bias-variance decomposition). Under setting of Section 2,

E[(Y − f(X))2|X, (Xi)] = σ2 +

(X −
n∑

i=1

li(X)Xi

)⊤

θ⋆

2

+ σ2
n∑

i=1

li(X)2.

12
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Proof. Starting from f(X) =
∑

li(X)Yi and Yi = X⊤
i θ⋆ + ϵi, we have

Y − f(X) = ϵ+X⊤θ⋆ −
∑

li(X)X⊤
i θ⋆ −

∑
li(X)Yi

= ϵ+
(∑

li(X)Xi −X
)⊤

θ⋆ −
∑

li(X)ϵi.

Integrating (Y − f(X))2 over ϵ, ϵi concludes the proof.

Thus, we have

Eσ2(f) = E


(X −

n∑
i=1

li(X)Xi

)⊤

θ⋆

2

+ σ2
n∑

i=1

li(X)2

 . (32)

Integrating this decomposition on θ and using the Fubini theorem leads to the average excess risk:

EνEσ2(f) = E

∥∥∥∥∥X −
n∑

i=1

li(X)Xi

∥∥∥∥∥
2

H

+ σ2
n∑

i=1

li(X)2

 , (33)

with H = Eθ⋆θ⊤⋆ . Alternatively, considering the transformed inputs X̃i = H1/2Xi, we have

EνEσ2(f) = E

∥∥∥∥∥X̃ −
n∑

i=1

li(X)X̃i

∥∥∥∥∥
2

2

+ σ2
n∑

i=1

li(X)2

 , (34)

Thus, the linear rule that minimizes the average excess risk is given by the function li that minimizes

the integrand
∥∥∥∑ liX̃i − X̃

∥∥∥2
2
+ σ2

∑n
i=1 l

2
i (this function will be computed later). Then we obtain

the variational form:

Ē(ν;σ2) = E

 inf
l∈Rn

∥∥∥∥∥
n∑

i=1

liX̃i − X̃n+1

∥∥∥∥∥
2

2

+ σ2
n∑

i=1

l2i

 . (35)

For the matrix form, the idea is to consider l⋆ the minimizer of ϕ(l) =
∥∥∥∑ liX̃i − X̃

∥∥∥2
2
+σ2

∑n
i=1 l

2
i .

Considering Z = (X̃1, . . . , X̃d) the Rd×n matrix, we have ϕ(l) =
[
∥Z − Zl∥22 + σ2∥l∥22

]
. We use

Lemma H.1, to obtain l⋆ = (Z⊤Z+ σ2In)Z
⊤Z and

ϕ(l⋆) = σ2Tr(ZZ⊤(ZZ⊤ + σ2Id)
−1)

=
σ2

n
Tr

(
X̃X̃⊤

(
Σ̂H +

σ2

n
I

)−1
)
.

Then,

Ē(ν;σ2) = Eϕ(l⋆)

=
σ2

n
EX1,...,Xn

EXTr

(
X̃X̃⊤

(
Σ̂H +

σ2

n
I

)−1
)

=
σ2

n
ETr

(
ΣH

(
Σ̂H +

σ2

n
I

)−1
)
.

B.2 EXAMPLES OF DISTRIBUTION ν

• Uniform distribution on the sphere: If θ ∼ U(Sd−1) using Lemma G.3, we have Eθθ⊤ = I
d .

13
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• Distribution on ellipsoid described by ∥Aθ⋆∥ = 1: if Aθ⋆ ∼ U(Sd−1) thus θ⋆ = A−1θ. In
consequence, H = Eθ⋆θ⊤⋆ = A−1Eθθ⊤A−1 = A−2

d .

• Distribution on source condition ∥Σ1/2−rθ⋆∥ = ρr: This corresponds to the previous
case with A = Σ1/2−r/ρr. In consequence, Hr = ρ2rΣ

2r−1/d. Not that the average
explained variance is E∥Σ1/2θ⋆∥22 = ρ2rE∥Σ1/2−1/2+rθ∥22 = ρrTr(Σ

2r)/d. Thus, setting
ρ2r = dρ2/Tr(Σ2r) leads to the same average explained variance over r ≥ 0.

C PROOF OF SECTION 4.1

C.1 UPPER BOUND OF THEOREM 4.1

Proof. The idea is to use variational form of Proposition 3.1 with li(X̃) = 1
nX̃

⊤
i (ΣH + λI)−1X̃ ,

with λ > 0 chosen later. We have

Ē(ΣH ;σ2) ≤ E

∥∥∥∥∥X̃ −
n∑

i=1

li(X̃)X̃i

∥∥∥∥∥
2

H

+ σ2
n∑

i=1

li(X̃)2

 . (36)

Step 1 Bias: We have ∑
li(X̃)X̃i =

1

n

∑
X̃iX̃

⊤
i (ΣH + λI)−1X̃

= Σ̂H(ΣH + λI)−1X̃.

Then,

E
[∥∥∥∑ li(X̃)X̃i − X̃

∥∥∥2
2

]
= E

[∥∥∥(Σ̂H(ΣH + λ)−1 − I)X̃
∥∥∥2
2

]
= E

[∥∥∥(ΣH − Σ̂H + λI)(ΣH + λ)−1X
∥∥∥2
2

]
= ETr((ΣH − Σ̂H + λI)(ΣH + λ)−1ΣH(ΣH + λ)−1(ΣH − Σ̂H + λI))

= ETr((ΣH + λ)−2ΣH(ΣH − Σ̂H + λI)2)

= λ2Tr((ΣH + λ)−2ΣH) + Tr((Σ + λ)−2ΣHE[(ΣH − Σ̂H)2]),

using EΣ̂ = Σ. Furthermore,

E[(ΣH − Σ̂H)2] =
1

n
E[(X̃1X̃

⊤
1 − ΣH)2]

=
1

n

(
E[(X̃1X̃

⊤
1 )2]− ΣH

)
=

1

n

(
E[∥X̃1∥22X̃1X̃

⊤
1 ]− ΣH

)
⪯ 1

n

(
L2
HΣH − ΣH

)
(using Assumption 2.)

Thus, the bias term is bounded by

λ2Tr((ΣH + λ)−2ΣH) +
L2
H

n
Tr((ΣH + λ)−2Σ2

H).

Step 2: The variance is given by

σ2E
n∑

i=1

li(X̃)2 =
σ2

n2
E

n∑
i=1

X̃⊤(ΣH + λ)−1X̃iX̃
⊤
i (ΣH + λ)−1X̃

=
σ2

n
Tr((ΣH + λ)−2Σ2

H)

=
σ2

n
Tr((ΣH + λ)−2ΣH(ΣH + λ− λ))

=
σ2

n
Tr((ΣH + λ)−1ΣH)− λ

σ2

n
Tr((ΣH + λ)−2ΣH).

14
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Step 3: Putting terms together, Ē(ΣH ;σ2) is upper-bound by

σ2

n
Tr((ΣH + λ)−1ΣH) +

(
λ2 − λ

σ2

n

)
Tr((ΣH + λ)−2ΣH) +

L2
H

n
Tr((ΣH + λ)−2Σ2

H).

Then choosing λ = σ2

n + LH

n leads to λ2 − λσ2

n = λLH

n and(
λ2 − λ

σ2

n

)
Tr((ΣH + λ)−2ΣH)+

L2
H

n
Tr((ΣH + λ)−2Σ2

H)

=
L2
H

n
Tr(λ(ΣH + λ)−2ΣH + (ΣH + λ)−2Σ2

H)

=
L2
H

n
Tr((ΣH + λ)−1ΣH).

Finally, we obtain
Ē(ΣH ;σ2) ≤ λTr((ΣH + λ)−1ΣH), (37)

with λ = σ2

n + LH

n .

C.2 LOWER BOUND OF THEOREM 4.1

Proof. Using Proposition 3.1 matrix form,

Ē(ΣH ;σ2) =
σ2

n
ETr(ΣH(Σ̂H + (σ2/n)I)−1).

Using operator convexity of the inverse (Proposition G.2), we have

Ē(ΣH ;σ2) ≥ σ2

n
Tr(ΣH(EΣ̂H + (σ2/n)I)−1) = Tr(ΣH(ΣH + (σ2/n)I)−1).

C.3 PROOF OF THEOREM 4.5

Proof of Theorem 4.5. The first lower bound is just an application of Theorem 4.7. In the follow, we
focus on the bounded case with ∥X̃∥ ≤ LH .

Ē(ΣH ;σ2)− Ē(ΣH ; 0) =
σ2

n
ETr(ΣH(Σ̂H + (σ2/n)I)−1)− ETr(ΣH(I − P ))

=
σ2

n
ETr(ΣHP (Σ̂H + (σ2/n)I)−1),

where P is the orthogonal projection on X̃i.

Ē(ΣH ;σ2)− Ē(ΣH ; 0) =
σ2

n
ETr(ΣHP (Σ̂H + (σ2/n)I)(Σ̂H + (σ2/n)I)−2)

≥ σ2

n
ETr(ΣHΣ̂H(Σ̂H + (σ2/n)I)−2)

=:
σ2

n
V,

because P Σ̂H = Σ̂H .

Denoting by Sn =
∑

i∈[n] X̃iX̃
⊤
i , by exchangeability,

V =
1

n
E[Tr(ΣH(Σ̂H + λI)−1X̃nX̃n(Σ̂H + λI)−1)]

= E[Tr(ΣH(Sn + nλI)−1X̃nX̃n(Sn + nλI)−1)].

15
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Using Sherman-Morrison identity,

(Sn + nλI)−1X̃nX̃n(Sn + nλI)−1

=
1

(1 + ∥X̃n∥2(Sn−1+nλI)−1)2
(Sn−1 + nλI)−1XnXn(Sn−1 + nλI)−1.

Furthermore, ∥X̃n∥2(Sn−1+nλI)−1 ≤ L2
H/λ. Then, using that x 7−→ xM increases in a > 0 as soon

as M ⪰ 0,

E[(Sn−1 + nλI)−1X̃nX̃n(Sn−1 + nλI)−1)|Sn−1]

⪰ 1

(1 +
L2

Hn

λ )2
(Sn−1 + nλI)−1ΣH(Sn−1 + nλI)−1).

Using convexity of A 7−→ ABA where B is invertible (Proposition G.2),

E[(Sn−1 + nλI)−1X̃nX̃n(Sn−1 + nλI)−1)]

⪰ 1

(1 +
L2

Hn

λ )2
E((Sn−1 + nλI)−1)ΣHE((Sn−1 + nλI)−1).

Using A := E((Sn−1 + nλI)−1) ⪰ (n−1
n ΣH + nλI)−1 =: B, we have

E[Tr(Σ(Sn−1 + nλI)−1X̃nX̃n(Sn−1 + nλI)−1)] ≥ 1

(1 +
L2

Hn

λ )2
Tr(ΣHAΣHA)

≥ 1

(1 +
L2

Hn

λ )2
Tr(ΣHAΣHB)

=
1

(1 +
L2

Hn

λ )2
Tr(ΣHBΣHA)

≥ 1

(1 +
L2

Hn

λ )2
Tr(ΣHBΣHB),

using that ΣHAΣH ,ΣHBΣH ≻ 0. Then,

V ≥ 1

(1 +
L2

Hn

λ )2
Tr(Σ2

H((n− 1)/nΣH + nλI)−2)

≥ 1

(1 +
L2

Hn

λ )2
Tr(Σ2

H(ΣH + nλI)−2)

=
1

(1 +
L2

Hn

λ )2
df2(ΣH ;λ).

C.4 LOWER BOUND

We denote by
ϕ(λ) := λETr(Σ(Σ̂ + λI)−1).

We can differentiate over expectancy as soon as λ > 0.

ϕ′(λ) = ETr(Σ(Σ̂ + λI − λI)(Σ̂ + λI)−2) = ETr(ΣΣ̂(Σ̂ + λI)−2).

The idea of the proof of Theorem 4.7 is to lower bound ϕ′ and then integrate.
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Proof of Theorem 4.7. We consider the specific distribution satisfying Assumption 2. We consider
that X as a discrete distribution along eigenvector of ΣH =

∑
λjvjv

⊤
j . More precisely, we choose

P(X = LHvj) =
λj

Tr(ΣH)
. (38)

Thus, Σ̂H = LH

∑
j∈[d] Njuju

⊤
j , where Nj =

∑
i∈[n] 1Xi=LHvj is a binomial distribution. Denot-

ing by, Bij = 1Xi=LHvj , we have

Eϕ′(λ) = nE
∑
j∈[d]

λjLHNj

(LHNj + nλ)2

= n
∑
j∈[d]

∑
i∈[n]

E
λjLHBij

(LHNj + nλ)2

≥ n
∑
j∈[d]

∑
i∈[n]

E
λjLHBij

(LH

∑
k ̸=j Bkj + LH + nλ)2

≥ n
∑
j∈[d]

∑
i∈[n]

E
λ2
j

((n− 1)λj + LH + nλ)2
(using Jensen inequality)

=
∑
j∈[d]

λ2
j

(((n− 1)/n)λj + (1/n)LH + λ)2

≥ df2(ΣH ;λ+ LH/n).

The lower bound is obtained by integration.

D PROOF OF SECTION 4.2

D.1 REDUCTION TO THE GAUSSIAN CASE

The projection Pn does not depend of the norm of X̃i = Σ
1/2
H Zi. Then, the projection is the same

considering inputs X̃ ′
i = Σ

1/2
H

Zi

∥Zi∥∥Ni∥ where Ni ∼ N (0, Id). We remark that under Assumption 4,

we have Zi

∥Zi∥∥Ni∥ ∼ N (0, Id), then X̃ ′
i is a Gaussian vector. In consequence, without loss of

generality, we assume that X̃i is a Gaussian vector for the rest of this section.

D.2 UPPER-BOUND OF THEOREM 4.10

The upper bound is an application of Theorem 4.7 with LH = 3Tr(ΣH) because Assumption 3 is
satisfied with κ = 3 for Gaussian inputs.

D.3 LOWER-BOUND OF THEOREM 4.10

Let consider k = argmaxk>n+1(k − 1)(k − n− 2)(Tr(Σ†
2:k))

−1.

Step 1: Decomposition of the noiseless error The SVD of ΣH is

ΣH =
∑
j∈[d]

λjvjv
⊤
j .

Using the matrix form of the noiseless error, we have

E(ΣH ; 0) = ETr(ΣH(I − Pn)) =
∑
j∈[d]

λjETr(vjv⊤j (I − Pn)),

where Pn is the orthogonal projection on (X̃i)i∈[n]. Denoting by Ej = ETr(vjv⊤j (I −Pn)), we have

E(ΣH ; 0) =
∑
j∈[d]

λjEj ,

17
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Step 2: matrix form of Ej Using Lemma H.1 (in particular (47)), we have

Ej = E inf
l∈Rn


∥∥∥∥∥vj −∑

i

liX̃i

∥∥∥∥∥
2

2

 .

We denote by Ai = (v⊤j X̃i)vj , Ci =
∑d

l=d−k+1(v
⊤
l X̃i)vl1l ̸=j and Bi = X̃i − Ai − Ci. We have

X̃i = Ai +Bi + Ci. By definition Bi, Ci is orthogonal with vj and Ai, and Bi, Ci are orthogonal.
Then

Ej = E inf
l∈Rn


∥∥∥∥∥vj −∑

i

liAi

∥∥∥∥∥
2

2

+

∥∥∥∥∥∑
i

liBi

∥∥∥∥∥
2

2

+

∥∥∥∥∥∑
i

liCi

∥∥∥∥∥
2

2

 .

Thus,

Ej ≥ E inf
l∈Rn


∥∥∥∥∥vj −∑

i

liAi

∥∥∥∥∥
2

2

+

∥∥∥∥∥∑
i

liBi

∥∥∥∥∥
2

2

 .

Denoting by G the Gram matrix of (Bi)i∈[n], that is, for all k, i ∈ [n],

Gik = B⊤
i Bk

then, ∥∥∥∥∥∑
i

liBi

∥∥∥∥∥
2

2

= ∥l∥2G =
∥∥∥G1/2l

∥∥∥2
2
.

Denoting by A the matrix with columns equal to (A1, . . . , An) then we have

Ej ≥ E inf
l∈Rn

{
∥vj −Al∥22 +

∥∥∥G1/2l
∥∥∥2
2

}
.

Furthermore, denoting by Σ(j) =
∑k

l=1 1l ̸=jλlvlv
⊤
l then Bj ∼ N (0,Σ(j)). Remarking that

rank(Σ(j)) ≥ k − 1 > n then G is almost-surely invertible. In consequence,

Ej ≥ E inf
l∈Rn

{∥∥∥vj −AG−1/2l
∥∥∥2
2
+ ∥l∥22

}
.

Using Lemma H.1, we have

Ej ≤ ETr
(
vjv

⊤
j (AG−1A⊤ + I)−1

)
.

Step 3: Fubini and Jensen theorems A and G are independent because (Ai) and (Bi) are
independent, then

Ej ≥ EE
[
Tr
(
vjv

⊤
j (AG−1A⊤ + I)−1

)
|A
]
.

By convexity of inverse operator,

E
[
Tr
(
vjv

⊤
j (AG−1A⊤ + I)−1

)
|A
]
≥ Tr

(
vjv

⊤
j (AE[G−1|A]A⊤ + I)−1

)
.

Using Corollary H.4, E[G−1|A] = E[G−1] = σ−2
j I with σ−2

j := ETr(G−1)/n. Then

Ej ≥ ETr
(
vjv

⊤
j (A(1/σ2

j )InA
⊤ + I)−1

)
= σ2

jETr
(
vjv

⊤
j (AA⊤ + σ2

j I)
−1
)

≥ σ2
jTr

(
vjv

⊤
j (E[AA⊤] + σ2

j I)
−1
)
.

Futhermore, E[AA⊤] = nλiviv
⊤
i then

Ej ≥
σ2
j

n

1

λj + σ2
j /n

. (39)
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Step 4: σ2
j lower bound Using Corollary H.4,

σ2
j =

n

ETr(G−1)

≥ (k − 1)(k − n− 2)(Tr((Σ(j))−1)−1

≥ σ2
0

Step 5: putting things together Combining the previous steps gives

E(ΣH ; 0) =
∑
j∈[d]

λjEj

≥
∑
j∈[d]

λj

σ2
j

n

1

λj + σ2
j /n

≥
∑
j∈[d]

λj
σ2
0

n

1

λj + σ2
0/n

=
σ2
0

n
df1(ΣH , σ2

0/n),

with σ2
0 = maxk>n+1(k − 1)(k − n− 2)(Tr(Σ†

2:k))
−1.

D.4 EXAMPLE OF σ2
0 LOWER BOUNDS

• Isotropic case: where λ1 = · · · = λd,

σ2
0 ≥ max

k>n+1
(k − 1)(k − n− 2)(Tr(Σ†

2:k))
−1

≥ max
k>n+1

(k − n− 2)λ1

≥ (d− n− 2)λ1

=

(
1− n+ 2

d

)
Tr(ΣH).

• Large minimum eigenvalue (near isotropic case):

σ2
0 ≥ (d− n− 2)λd.

• Comparison with λn:

σ2
0 ≥ max

k>n+1
(k − 1)(k − n− 2)(Tr(Σ†

2:k))
−1

≥ max
k>n+1

(k − n− 2)λk

≥ λn+3.

• Specific cases: λj = 1/j then Tr(ΣH) ∼ log(d) and

σ2
0 ≥ max

k>n+1
(k − 1)(k − n− 2)(Tr(Σ†

2:k))
−1

= max
k>n+1

2
k − n− 2

k

= 2(1− (n+ 2)/d).

The difference is a factor log.
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D.5 OPTIMALITY OF THE LOWER/UPPER BOUNDS AND PROOF OF COROLLARY 4.14

The aim of this section is to prove that the two bounds are close to a constant factor in high dimensions.
We can start with the following computation:

λ̄0df1(ΣH ; λ̄0)

λ0df1(ΣH ;λ0)
≤ λ̄0

λ0

=
3Tr(ΣH)

σ2
0

≤ 3

1− n−2
d

Tr(ΣH)

d

Tr(Σ−1
H,2:d)

d− 1
.

Proof of Corollary 4.14. Assume that λj = j−α. First, if 1 > α > 0, we have,

Tr(ΣH) =

d∑
j=1

1

jα

≤ 1 +

∫ d

1

x−αdx

= 1 +
d1−α − 1

1− α

≤ −α

1− α
+

d1−α

1− α
.

And,

Tr(Σ†
H,2:d) =

d∑
j=2

jα

≤
∫ d+1

2

xαdx

=
(d+ 1)1+α − 21+α

1 + α

≤ (d+ 1)1+α

1 + α
.

Thus,

Tr(ΣH)Tr(Σ†
H,2:d) ≤

1

(1 + α)(1− α)
(−α(d+ 1)1+α + (d+ 1)1+αd1−α).

Then, using α < 1,

Tr(ΣH)

d

Tr(Σ−1
H,2:d)

d− 1
≤ 1

(1 + α)(1− α)

(
d+ 1

d− 1

)α

.

Then, for d > 3,
λ̄0df1(ΣH ; λ̄0)

λ0df1(ΣH ;λ0)
≤ 3

1− n−2
d

21+α

(1 + α)(1− α)
. (40)

Then, if α = 1, using similar arguments, we have

Tr(Σ) =

d∑
j=1

1

jα

≤ 1 +

∫ d

1

x−1dx

= 1 + log(d),
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and

Tr(Σ†
2:d) =

d∑
j=2

j

=
d(d+ 1)− 2

2

≤ d(d+ 1)

2
.

We obtain, for d > 3,
λ̄0df1(ΣH ; λ̄0)

λ0df1(ΣH ;λ0)
≤ 6

1− n−2
d

log(d). (41)

D.6 PROOF OF THEOREM 4.15

Lemma D.1. If X has a centered gaussian distribution with Σ ≻ 0 and n < d− 1, then

Ē(Σ, σ2) ≤ σ2d

n− d− 1
.

Proof. We use the variational form with li(X) = X⊤
i Σ̂−1X , the bias is zero for this choice, thus

Ē(Σ, σ2) ≤ σ2E
∑
i∈[n]

l2i (X)

=
σ2

n
ETr(ΣΣ̂−1)

=
σ2

n
ETr((Σ−1/2Σ̂Σ−1/2)−1)

= σ2ETr(W−1),

with W ∼ Wn(Id). Thus

Ē(Σ, σ2) ≤ σ2d

n− d− 1
.

Proposition D.2. If inputs are gaussian, we have for two non-negative matrix A and B,

Ē(A+B; 0) ≤ Ē(A; Tr(B)) + Tr(B).

Proof. Let start by the decomposition, Xi = XA
i +XB

i with XA
i ∼ N (0, A) and XB

i ∼ N (0, B).

Ē(A+B; 0) = E inf
l∈Rn

∥∥∥XA +XB −
∑

li(X
A
i +XB

i )
∥∥∥2
2

Thus,

Ē(A+B; 0) = E inf
l∈Rn{∥∥∥XA −

∑
liX

A
i

∥∥∥2
2
+
∥∥∥XB −

∑
liX

B
i

∥∥∥2
2
+ 2

(
XA −

∑
liX

A
i

)⊤ (
XB −

∑
liX

B
i

)}
Using tower rules (marginalizing over XB

i and XB), and inequality E inf ≤ inf E, we found

Ē(A+B; 0) ≤ E inf
l∈Rn

{∥∥∥XA −
∑

liX
A
i

∥∥∥2
2
+ E

[∥∥∥XB −
∑

liX
B
i

∥∥∥2
2

]}
.
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Furthermore, (XB
i ), XB are i.i.d. and centered thus

E
[∥∥∥XB −

∑
liX

B
i

∥∥∥2
2

]
= E[∥XB∥22] +

∑
i

l2iE[∥XB
i ∥22]

= Tr(B) + Tr(B)
∑
i

l2i .

Then,

Ē(A+B; 0) ≤ E inf
l∈Rn

{∥∥∥XA −
∑

liX
A
i

∥∥∥2
2
+Tr(B)

∑
i

l2i

}
+Tr(B)

= Ē(A; Tr(B)) + Tr(B).

Proof of Theorem 4.15 upper-bound. Let k < n− 1. Let the SVD ΣH =
∑d

j=1 λjvjv
⊤
j . We used

the previous lemma for A =
∑k

j=1 λjvjv
⊤
j and B =

∑d
j=k+1 λjvjv

⊤
j . We have

Ē(ΣH ; 0) ≤ Ē(A; Tr(B)) + Tr(B).

Using Lemma D.1,

Ē(ΣH ; 0) ≤ Tr(B)
k

n− k − 1
+ Tr(B).

Using Tr(B) = Rk, we conclude

Ē(ΣH ; 0) ≤ Rk
n− 1

n− k − 1
.

Proof of Theorem 4.15 lower-bound. We have Ē(ΣH ; 0) = ETr(ΣH(I−P )) where P is the orthog-
onal projection on (X̃i)i∈[n]. Using Von Neumann’s trace inequality, we have

Tr(ΣHP ) ≤
∑
j∈[d]

λj(ΣH)λj(P )

=
∑
j∈[n]

λj(ΣH),

because, as an orthogonal projection on n observations, λj(P ) = 1 for j ≤ n and 0 for j > n. Then

Tr(ΣH(I − P )) = Tr(ΣH)− Tr(ΣHP ) ≥
∑
j>n

λj(ΣH).

Furthermore,
∑

j>n λj(ΣH) = Rn, thus

Ē(ΣH ; 0) = ETr(ΣH(I − P )) ≥ Rn.

E PROOFS FOR EXAMPLE 4.3

Lemma E.1. If λj(Σ) = j−α for α > 1, then for all λ > 0

df1(Σ, λ) ≤ Cαλ
1/α.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof.

df1(Σ, λ) =

d∑
j=1

j−α

j−α + λ

=

d∑
j=1

1

1 + λjα

≤
∫ +∞

0

1

1 + xαλ
dx,

because α > 1. Using y = λxα, x = yλ1/α thus

df1f(Σ, λ) ≤ λ1/α

∫ +∞

0

1

1 + yα
dy.

We conclude using Cα =
∫ +∞
0

1
1+yα dy < +∞.

Proof of Example 4.3. ΣH = ρ2Σ2r/Tr(Σ2r) then, using Theorem 4.1,

Ē(ΣH ;σ2) ≤ σ2 + 3Tr(ΣH)

n
df1

(
ΣH ,

σ2 + κTr(ΣH)

n

)
=

σ2 + κρ2

n
df

(
Σ2r,

σ2/(ρ2Tr(Σ2r)) + κ

n

)
≤ σ2 + κρ2

n
df1

(
Σ2r,

σ2/ρ2 + κ

n

)
,

using Tr(Σ2r) ≥ 1. Then, using Lemma E.1, for λj(Σ
2r) = j−2αr, we have

Ē(ΣH ;σ2) ≤ C2αr
σ2 + κρ2

n

(
σ2/ρ2 + κ

n

)1/2αr

≤ C2αrρ
2

(
σ2/ρ2 + κ

n

)1−1/2αr

.

Lemma E.2. Let Sm,p =
∑p

j=m j−α with 0 ≤ α ̸= 1, with p ≥ m > 1, then

(p+ 1)1−α −m1−α

1− α
≤ Sm,p ≤ p1−α − (m− 1)1−α

1− α
.

In particular,

• If α < 1,

(p+ 1)1−α −m1−α

1− α
≤ Sm,p ≤ p1−α

1− α
.

• If α > 1,

m1−α − (p+ 1)1−α

α− 1
≤ Sm,p ≤ (m− 1)1−α

α− 1
.
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Proof. Using that x 7−→ x−α non increasing, we have

Sm,p =

p∑
j=m

1

jα

≤
p∑

j=m

∫ j

j−1

x−αdx

=

∫ p

m−1

x−αdx

=
p1−α − (m− 1)1−α

1− α
.

Using similar arguments,

Sm,p =

p∑
j=m

1

jα

≥
p∑

j=m

∫ j+1

j

x−αdx

=

∫ p+1

m

x−αdx

=
(p+ 1)1−α −m1−α

1− α
.

Using this lemma, if λj(Σ) = j−α then Tr(Σ2rα) is a convergent serie (in d) as soon as 2rα > 1.
Thus, there exists c, C > 0, that does not depend on d, such that 0 < c ≤ Tr(Σ2rα) ≤ C. Thus
the eigenvalues of ΣH = ρ2Σ2r/Tr(Σ2r) satisfy C−1ρ2j−2αr ≤ λj(ΣH) ≤ c−1ρ2j−2αr. Using
previous lemma, we obtain

C−1ρ2
n1−2rα − (d+ 1)1−2rα

2rα− 1
≤ Rn ≤ c−1ρ2

(n− 1)1−2rα

2rα− 1
. (42)

F PROOF OF SECTION 5

Lemma F.1. If (X⊤vj)j∈[d] are independent and have symmetric components then for all R =∑
j∈[d] ϵjvjv

⊤
j with ϵ ∈ {−1, 1}d RX have the same law than X .

Proof. RX =
∑

j∈[d](ϵjv
⊤
j X)vj . Using that ϵjv⊤j X has the same law than v⊤j X and (X⊤vj)j∈[d]

independent, we have RX that have the same law than
∑

j∈[d](v
⊤
j X)vj = X because (vj) is an

orthogonal basis of Rd.

Proof of Proposition 5.1. Let start by recall Lemma B.1:

E[(Y − f(X))2|X, (Xi)] = σ2 +

(X −
n∑

i=1

li((Xi)i, X)Xi

)⊤

θ⋆

2

+ σ2
n∑

i=1

li((Xi)i, X)2.

Let R =
∑

j∈[d] ϵjvjv
⊤
j , with ϵ ∈ {−1, 1}d, we have R−1 = R⊤ (orthogonal matrix). Thus

= σ2 +

(RX −
n∑

i=1

li((Xi)i, X)RXi

)⊤

Rθ⋆

2

+ σ2
n∑

i=1

li((Xi)i, X)2

= σ2 +

(RX −
n∑

i=1

li((RXi)i, RX)RXi

)⊤

Rθ⋆

2

+ σ2
n∑

i=1

li((RXi)i, RX)2.
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because under Assumption 5, li((Xi)i, X) = li((RXi)i, RX). Using that RX has the same distri-
bution than X , we have Eθ⋆ [(Y − f(X))2] = ERθ⋆ [(Y − f(X))2]. Thus, integrated Rθ⋆ for (ϵj)j
independent Rademacher, gives us

Eθ⋆ [(Y − f(X))2]− σ2 = EERθ⋆ [(Y − f(X))2]− σ2 ≥ Ē(ν, σ), (43)

where ν is the distribution of Rθ⋆. Furthermore, H = E[Rθ⋆(Rθ⋆)
⊤] =

∑
j∈d(v

⊤
j θ⋆)

2vjv
⊤
j , thus

ΣH =
∑

j∈d λj(v
⊤
j θ⋆)

2vjv
⊤
j = Σθ⋆ . Then

Eσ2(f) ≥ Ē(Σθ⋆ , σ).

G PRIOR RESULTS ON LINEAR ALGEBRA AND RANDOM MATRIX

G.1 SINGULAR VALUES DECOMPOSITION

We provide here a reminder on singular values decomposition and Moore-Penrose pseudoinverse. We
can found these results and more on linear algebra in Giraud (2021, appendix).
Theorem G.1. Any n× p real-valued matrix of rank r can be decomposed as

A =

r∑
j=1

σjujv
⊤
j ,

where

• σ1 ≥ · · · ≥ σr > 0,

• (σ1, . . . , σr) are the nonzero eigenvalues of A⊤A and AA⊤, and

• (u1, . . . , ur) and (v1, . . . , vr) are two orthonormal families of Rn and Rp, such that
AA⊤uj = σ2

juj and A⊤Avj = σ2
j vj .

Furthermore, the Moore-Penrose pseudo inverse defined as

A† =

r∑
j=1

σ−1
j vju

⊤
j ,

satisfied

1. A†A is the orthogonal projector on lines of A,

2. AA† is the orthogonal projector on columns of A,

3. (AO)† = O⊤A† for any orthogonal matrix O.

G.2 SYMMETRIC MATRIX

Definitions

• Mahalanobis norm: For a symmetric matrix A ∈ Rd×d and u ∈ Rd, the Mahalanobis
notation is defined by

∥u∥2A := u⊤Au.

∥∥A is a pseudo-norm if A is positive and a norm if A is positive semi-definite.
• Loewner order: for two matrix A,B, A ⪯ B if and only if ∥∥A ≤ ∥∥B .
• Operator monotony: a function f : Rd×d → Rd×d is operator monotone if

A ⪯ B ⇒ f(A) ⪯ f(B).

• Operator convexity: a function f : Rd×d → Rd×d is operator convex if for all random
matrix, defined on positive symmetric matrix, M such that EM exists,

f(EM) ⪯ Ef(M).
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Prior results
Proposition G.2. We use in this paper the following prior results

1. If C ⪰ 0 then
A ⪯ B ⇒ Tr(AC) ≤ Tr(BC).

2. Function M 7−→ M−1 is operator convex and M 7−→ −M−1 is operator monotone on
M ≻ 0.

3. (A,B) 7−→ ABA is operator convex in A and operator monotone in B.

These prior results are classical, see Carlen (2010) for more precisions.

G.3 RANDOM MATRIX

Lemma G.3. Let M ∈ Rp×p be a random symmetric matrix, such that for all vectors u, v ∈ Sp−1,
Law(u⊤Mu) = Law(v⊤Mv). Then,

EM =
ETr(M)

p
Ip,

and for all β ∈ Rp,

E
[
β⊤Mβ

]
= ∥β∥22

ETr(M)

p
.

This is in particular satisfied if, for any orthogonal matrix O, OMO⊤ has the same law as M .

Proof. By assumption, for all u, v ∈ Sd−1, Eu⊤Mu = Ev⊤Mv. Thus, there exists α such that, for
all v ∈ Sd, v⊤EMv = Ev⊤Mv = α, which entails that EM = αI by characterization of symmetric
matrices. Therefore, ETr(M) = Tr(EM) = pα, and EM = ETr(M)

p I . Hence, for all β ∈ Rp

E
[
β⊤Mβ

]
= β⊤EMβ = ∥β∥22

ETr(M)

p
.

The last point easily follows, see for example Page Jr (1984, Proposition 2.14) for the case of invariant
distributions by orthogonal transforms.

Lemma G.4. For θ ∼ ρU(Sd−1), then for all matrix M ∈ Rd×d,

E[∥θ∥2M ] =
ρ2

d
Tr(M).

Proof.

E[∥θ∥2M ] = E[θ⊤Mθ]

= ETr(θ⊤Mθ)

= ETr(Mθθ⊤)

= Tr(ME[θθ⊤]),

Then, E[θθ⊤] = aI because Oθ has the same law of θ for all orthogonal matrix O. Futhermore,
Tr(θθ⊤) = θ⊤θ = ρ2 then da = ρ2, thus E[θθ⊤] = ρ2

d I .

H TECHNICAL LEMMAS

H.1 RIDGE

Lemma H.1. For X ∈ Rn×d and y ∈ Rn, the minimizer of

F (β) := ∥y −Xβ∥22 + λ∥β∥22,
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is given by βλ = (X⊤X+ λI)−1X⊤y and

F (βλ) = ∥y − Py∥22 + λ

r∑
i=1

1

σ2
i + λ

(y⊤ui)
2 (44)

= λTr(yy⊤(XX⊤ + λIn)
−1), (45)

where P is the orthogonal projection on columns of X and the SVD of X is X =
∑r

i=1 σiuiv
⊤
i .

Proof. F is a strongly convex function, then the minimizer βλ = (X⊤X + λI)−1X⊤y is found
considering ∇F (βλ) = 0. Using X =

∑r
i=1 σiuiv

⊤
i , we have

βλ =
∑
i∈[r]

σi

σ2
i + λ

(u⊤
i y)vi.

Thus

Xβλ =
∑
i∈[r]

σ2
i

σ2
i + λ

(u⊤
i y)ui.

Using that P is the orthogonal projection on u1, . . . , ur,

y −Xβλ = y − Py + Py −Xβλ

= y − Py +
∑
i∈[r]

σ2
i + λ− σ2

i

σ2
i + λ

(u⊤
i y)ui

= y − Py +
∑
i∈[r]

λ

σ2
i + λ

(u⊤
i y)ui.

Then,

∥y −Xβλ∥22 = ∥y − Py∥22 +
∑
i∈[r]

λ2

(σ2
i + λ)2

(u⊤
i y)

2.

Furthermore,

∥βλ∥22 =
∑
i∈[r]

σ2
i

(σ2
i + λ)2

(u⊤
i y)

2.

Combining these two terms, we found

F (βλ) = ∥y − Py∥22 +
∑
i∈[r]

λ2

(σ2
i + λ)2

(u⊤
i y)

2 + λ
∑
i∈[r]

σ2
i

(σ2
i + λ)2

(u⊤
i y)

2

= ∥y − Py∥22 +
∑
i∈[r]

λ(σ2
i + λ)

(σ2
i + λ)2

(u⊤
i y)

2

= ∥y − Py∥22 + λ
∑
i∈[r]

1

σ2
i + λ

(u⊤
i y)

2.

In the case, where the rank r < n, we obtain the second equality completing the bases u1, ..., ur by
ur+1, ..., un.

As a consequence of this lemma, we will use the useful variational characterization.

inf
β
{∥y −Xβ∥22 + λ∥β∥22} = λTr(yy⊤(XX⊤ + λIn)

−1). (46)

Note that this result is valid for any proper sized y and X. This result can be supplemented by the
case λ → 0+,

inf
β
{∥y −Xβ∥22} = Tr(yy⊤(I − P ))), (47)

with P the orthogonal projection on X.
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H.2 MOORE-PENROSE PSEUDOINVERSE

Lemma H.2 (Trace inequality). Let A ⪰ 0, and A− a reflexive symmetric pseudoinverse, i.e.

• A−AA− = A−,

• AA−A = A,

• A− ⪰ 0,

Then,
Tr(A†) ≤ Tr(A−).

Proof. We denote A =
∑

j∈[r] λjvjv
⊤
j , and we complete the bases by (vr+1, . . . , vd),

Tr(A−) =
∑
j∈[d]

v⊤j A
−vj

=
∑
j∈[r]

v⊤j A
−vj +

d∑
j=r+1

v⊤j A
−vj

For j ≤ d, using Avj = λjvj ,

v⊤j A
−vj =

1

λ2
j

v⊤j AA−Avj

=
1

λ2
j

v⊤j Avj

= v⊤j A
†AA†vj

= v⊤j A
†vj ,

using A†vj = (1/λj)vj . Then

Tr(A−) = Tr(A†) +

d∑
j=r+1

v⊤j A
−vj .

We conclude using A− ⪰ 0.

This lemma is particularly usefull to control the pseudoinverse of a overparametrized Wishart
distribution pseudoinverse. W ∼ Wn(Σ) if W =

∑
i∈[n] XiX

⊤
i where (Xi)i ∈ [n] are i.i.d N (0; Σ)

Theorem H.3. If d > n+ 1, and W ∼ Wn(Σ), then

ETr(W †) ≤ n

d

Tr(Σ−1)

d− n− 1
.

Proof. We consider the inverse A− = Σ−1/2(Σ−1/2AΣ−1/2)†Σ−1/2 that satisfies assumptions of
Lemma H.2, thus

ETr(W †) ≤ ETr(W−)

= ETr(Σ−1/2(Σ−1/2WΣ−1/2)†Σ−1/2)

= Tr(Σ−1/2E[(Σ−1/2WΣ−1/2)†]Σ−1/2).

The matrix Σ−1/2WΣ−1/2 ∼ Wn(Id), then using (Cook and Forzani, 2011) theorem 2.1, we have
E[(Σ−1/2WΣ−1/2)†] = n

d(d−n−1)Id, then

ETr(W †) ≤ n

d(d− n− 1)
Tr(Σ−1).
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Corollary H.4 (Inverse of Gramm matrix). Let (Xi)i∈[n] i.i.d. copies of N (0,Σ), we denote by
G ∈ Rn×n the Gramm matrix such that Gij = X⊤

i Xj . If n < d− 1 then G is invertible with

EG−1 =
ETr(G−1)

n
In,

and
ETr(G−1) ≤ n

d(d− n− 1)
Tr(Σ−1)

Proof. Let v ∈ Sn−1, we have

v⊤Gv =
∑
i,j

viGijvj

=
∑
i,j

viX
⊤
i Xjvj

=

(∑
i

viXi

)⊤
∑

j

vjXj

 .

Using ∥v∥2 = 1, we remarks that
∑

i viXi ∼ N (0,Σ) thus the law of v⊤Gv does not depends
on v. In other words, for all orthogonal matrix O, OGO⊤ and G have the same law. Thus,
OG−1O⊤ = (O⊤GO)−1 has the law of G−1. Using, Lemma G.3, we have EG−1 = Tr(G−1)

n In.
Furthermore, G−1 have the same spectra than W † with W =

∑
XiX

⊤
i . We conclude using

Theorem H.3.
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