
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

AssistanceZero: Scalably Solving Assistance Games
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Abstract
Assistance games are a promising alternative
to reinforcement learning from human feedback
(RLHF) for training AI assistants. Assistance
games resolve key drawbacks of RLHF, like in-
centives for deceptive behavior, by explicitly mod-
eling the interaction between assistant and user
as a two-player game where the assistant cannot
observe the user’s goal. Despite their potential,
assistance games have only been explored in sim-
ple settings. Scaling them to more complex en-
vironments is difficult because it requires both
accurately modeling human users’ behavior and
determining optimal actions in uncertain sequen-
tial decision-making problems. We tackle these
challenges by introducing a deep reinforcement
learning (RL) algorithm called AssistanceZero
for solving assistance games and applying it to a
Minecraft-based assistance game with over 10400

possible goals. We show that an AssistanceZero
assistant effectively assists simulated humans in
achieving unseen goals and outperforms assistants
trained with imitation learning and model-free RL.
Our results suggest that assistance games are more
tractable than previously thought, and that they
are an effective framework for assistance at scale.

1. Introduction
Reinforcement learning from human feedback (RLHF) and
its variants have become the dominant paradigm for training
general AI assistants. RLHF involves fine-tuning pretrained
foundation models to take actions (i.e., produce responses)
that are preferred by human annotators according to criteria
like helpfulness and harmlessness (Bai et al., 2022).

However, RLHF-trained assistants have a number of draw-
backs. In particular, the objective in RLHF—generating sin-
gle actions preferred by annotators—is not always aligned
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with the overall goal of effectively assisting users. For ex-
ample, imagine a coding assistant trained with RLHF that
interacts with a user in a pair-programming setup. One
misalignment between RLHF and assisting the user is that
convincing deceptive actions may be rated highly by anno-
tators but will ultimately cause harm (Lang et al., 2024).
For example, annotators may accidentally choose subtly
buggy code, causing the assistant to introduce bugs that are
difficult to detect during deployment. This issue will only
become more significant as AI systems become more intel-
ligent, since their outputs may become harder for humans to
reliably evaluate. Furthermore, RLHF does not encourage
models to maintain uncertainty about a user’s goals. An
assistant that accounts for this uncertainty might ask clarify-
ing questions and preserve option value (the ability to help
with a variety of possible goals). Instead, since RLHF-based
models are training on single-turn responses, the primary
incentive is to immediately act based on a best-guess about
the user’s goal. For example, when considering a function
whose purpose is ambiguous, the coding assistant might
choose an incorrect interpretation and implement it without
consulting the user. Finally, RLHF does not explicitly ac-
count for the interactive, collaborative nature of assistance.
When an AI assistant and user interact in a shared environ-
ment, it is often better for the assistant to take actions that
complement the user’s actions rather than replace them. For
example, it may be more helpful for the coding assistant
to look for existing bugs or write helper functions. Instead,
current assistants like GitHub Copilot (Chen et al., 2021)
try to predict what the user will write next and write it for
them. Since RLHF does not consider the joint effects of the
assistant’s and user’s actions, or their effects on one another,
it may not produce the most helpful assistant.

An alternative paradigm for training AI assistants is assis-
tance games (Fern et al., 2014; Hadfield-Menell et al., 2016;
Shah et al., 2020). Assistance games avoid the aforemen-
tioned drawbacks of RLHF by explicitly accounting for both
the interactive nature of assistance and uncertainty about
the user’s goal. In particular, an assistance game is a two-
player game in which an assistant and a user take actions in
a shared environment. The two agents share a reward func-
tion, but crucially the assistant is initially uncertain about it.
Assistance games remove incentives for deception since the
assistant’s performance depends on the true latent reward
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Scalably Solving Assistance Games

function, rather than human feedback. They also incentivize
the assistant to interact with the user to resolve its uncer-
tainty about the reward function. Thus, solving an assistance
game can be viewed as a form of “meta-learning” where the
assistant learns how to learn about the user’s goals. Finally,
solving assistance games results in assistants whose actions
complement the user’s to achieve optimal joint performance.

Given the advantages of assistance games, why do they re-
main a poorly studied method for training AI assistants?
While assistance games have been used to solve very small-
scale problems, there are two major challenges in applying
them to more realistic settings. First, there are many co-
operative equilibria in an assistance game, and humans are
unlikely to exactly play any of them. If the AI assistant fails
to account for human irrationality and conventions, it could
perform poorly with real humans (Carroll et al., 2020). Sec-
ond, the AI assistant must maintain uncertainty over reward
functions and reason under that uncertainty, which deep
learning-based AI systems struggle to do (Gleave & Irving,
2022). Furthermore, solving sequential decision-making
problems with uncertainty is considered computationally
intractable in many cases (Papadimitriou & Tsitsiklis, 1987;
Madani et al., 2003). While prior work on interacting with
humans in uncertain environments has been limited to small
amounts of unstructured uncertainty (Hu et al., 2020), real
human preferences are complex and structured.

We tackle these challenges and show that complex assis-
tance games can be tractably solved. We overcome the first
challenge by fixing a reward-conditioned human policy and
seeking to find a best-response AI policy. This reduces the
assistance game to a partially-observable Markov decision
process (POMDP), which unlike a game has a well-defined
solution. We address the second challenge by developing a
hybrid learning–planning approach called AssistanceZero
to effectively solve the assistance POMDP. AssistanceZero
extends AlphaZero (Silver et al., 2017) by predicting the
unseen goal and human actions, allowing it to effectively
plan how to best assist the human.

We test AssistanceZero in a new environment, the Minecraft
Building Assistance Game (MBAG), in which an AI assis-
tant must help a human build a goal structure in a Minecraft-
based environment without prior knowledge of the goal
(Figure 1). The assistant must interact with the user to learn
about their reward function (which in this case has a one-
to-one relationship with the goal structure) and help them
optimize it. The distribution over goal structures in MBAG
is complex but structured, reflecting human preferences in
other domains. Creating an effective assistant in MBAG
is a major challenge because it has a far larger number of
possible goals than in prior work (over 10400, compared
to less than 20). Despite this challenge, we show that as-
sistants trained with AssistanceZero are highly effective at

Figure 1. The Minecraft Building Assistance Game (MBAG), in
which we test our AssistanceZero algorithm for scalably solving
complex assistance games. See Section 4 for a full description.

collaborating with simulated humans. We also compare As-
sistanceZero to other methods of solving assistance games
and other paradigms for building AI assistants. We find that
AssistanceZero greatly outperforms a highly optimized PPO
baseline and imitation-learning based methods. Finally, we
also shed light on the choice of human policy by training
a number of human models and evaluating their accuracy
at predicting real human behavior in MBAG. Our results
suggest that assistance games are tractable to scale and can
be a superior framework for training helpful assistants in
challenging environments.

Our contributions may be summarized as: we introduce
AssistanceZero for tractably solving complex assistance
games; we demonstrate that it can be used to solve MBAG,
an assistance game with exponentially more possible goals
than those in previous work; and, we empirically investigate
a number of human models for MBAG.

2. Background and Related Work
We begin by introducing the assistance game formalism and
surveying related work. An assistance game is a Markov
game in which two players, the human H and the assistant
R, interact to optimize a shared reward function. It consists
of a state space S , action spaces AH and AR for the human
and assistant, a set of possible reward parameters Θ, and a
discount factor γ ∈ [0, 1]. Reward parameters and an initial
state are sampled from a predefined distribution p(s1, θ). At
each timestep t = 1, . . . , T , both agents select actions aHt ∈
AH, aRt ∈ AR; receive shared reward R(st, a

H
t , aRt ; θ);

and the environment transitions to state st+1 according to a
transition distribution p(st+1 | st, aHt , aRt ).

A human policy πH : S × Θ → ∆(AH) defines a dis-
tribution over actions πH(aH | s, θ) given an environ-
ment state and reward parameters. An assistant policy
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Scalably Solving Assistance Games

πR : (S × AH × AR)∗ × S → ∆(AR) defines a dis-
tribution over actions πR(aRt | ht) conditioned on the
state-action history up until the current timestep: ht =
(s1, a

H
1 , aR1 , . . . , st−1, a

H
t−1, a

R
t−1, st). Note that the assis-

tant policy is not conditioned on the reward parameters
since it cannot observe them. While in general a human
policy might also depend on ht, for simplicity we assume
that πH is only conditioned on (s, θ); previous results show
there is an optimal human policy conditioned only on (s, θ)
(Hadfield-Menell et al., 2016). Given a pair of policies
(πH, πR), we can define their joint expected return as

J(πH, πR) = E
[∑T

t=1 γ
tR(st, a

H
t , aRt ; θ)

]
,

the expected discounted sum of their shared reward, where
(s1, θ) ∼ p(s1, θ); aHt ∼ πH(aH | st, θ); aRt ∼ πR(aR |
ht); and st+1 ∼ p(st+1 | st, aHt , aRt ). For a fixed human
policy πH, we define a best response to it as an assistant
policy πR that maximizes J(πH, πR).

Related work Assistance games were introduced by Fern
et al. (2014) and Hadfield-Menell et al. (2016) under the
names “hidden-goal MDPs” and “cooperative inverse re-
inforcement learning.” A few prior works have explored
small-scale assistance games (Dragan & Srinivasa, 2013;
Javdani et al., 2015; Malik et al., 2018; Fisac et al., 2020;
Woodward et al., 2020; Zhi-Xuan et al., 2024) with around
ten or fewer discrete reward parameters. We aim to scale
assistance games to much larger structured reward param-
eter spaces, similar to the goals real humans have when
interacting with assistants; in our environment |Θ| ≈ 10400.

Our approach to solving assistance games builds on tech-
niques for scalably solving games (Silver et al., 2017; Brown
et al., 2020; Hu et al., 2021a), modeling human behavior
(Carroll et al., 2020; Laidlaw & Dragan, 2021; Yang et al.,
2022; Jacob et al., 2022), and training effective collabora-
tive agents (Stone et al., 2010; Hu et al., 2020; Treutlein
et al., 2021; Strouse et al., 2021; Hu et al., 2021b; Bakhtin
et al., 2022). Minecraft and Minecraft-like environments
have been previously used as testbeds for assistance and col-
laboration (Szlam et al., 2019; Gray et al., 2019; Bara et al.,
2021; Skrynnik et al., 2022; Kiseleva et al., 2022; Zholus
et al., 2022; Mehta et al., 2024) as well as for general inter-
active learning (Kanervisto et al., 2022; Baker et al., 2022;
Fan et al., 2022; Milani et al., 2023; Wang et al., 2023).

3. Solving Assistance Games with
AssistanceZero

Solving an assistance game requires finding an assistant pol-
icy πR that performs well with real users. Shah et al. (2020)
propose to fix a human policy πH(aH | s, θ) (i.e., human
model) and find a best-response policy πR. However, these
steps are difficult to scale to complex settings. Developing
robust and accurate human models is an ongoing area of

research, and simple models of human behavior like Boltz-
mann rationality fail to predict human behavior beyond the
smallest of environments (Laidlaw & Dragan, 2021). Shah
et al. (2020) show that finding a best response to a fixed
human model can be reduced to solving a POMDP, which
we call an assistance POMDP. Unfortunately, large-scale
POMDPs are notoriously difficult to solve.

We explore how to find good human models in Section 5
and focus here on solving assistance POMDPs. We aim to
do this with deep reinforcement learning (DRL) algorithms,
since they are a scalable technique for solving complex se-
quential decision-making problems. We apply DRL by fol-
lowing the training procedure from Woodward et al. (2020).
Each of several episodes of data are collected by sampling
reward parameters θ ∼ p(θ) and rolling out the remainder
of the episode according to the fixed human model πH and
the current assistant policy πϕ

R with parameters ϕ. Next,
the parameters ϕ are updated according to some loss func-
tion defined over the episodes, and the process repeats by
collecting more data. For example, proximal policy opti-
mization (PPO) (Schulman et al., 2017) can be applied to
an assistance POMDP; it uses the collected data to estimate
∇ϕJ(πH, πϕ

R) and then updates ϕ with gradient ascent.

While PPO has shown promise in partially observable and
multi-agent settings (Yu et al., 2022), we find that it strug-
gles to solve assistance POMDPs, which require reasoning
about structured uncertainty over a potentially large space
of reward parameters θ ∈ Θ. Solving an assistance POMDP
requires balancing learning more about θ and using that
information to help the human. We generally found that
applying vanilla PPO to assistance POMDPs results in an
assistant policy that does nothing. Thus, we turned to a
different DRL algorithm: AlphaZero (Silver et al., 2017).
AlphaZero has achieved superhuman performance in com-
plex competitive games like Go and chess, but it is not clear
if it is applicable to solving assistance POMDPs.

We propose an extension of AlphaZero, which we call As-
sistanceZero, that can effectively solve assistance POMDPs
better than even a carefully-tuned PPO baseline trained with
auxiliary losses. Similarly to AlphaZero, AssistanceZero
chooses actions using a variant of Monte Carlo tree search
(MCTS) (Kocsis & Szepesvári, 2006). MCTS builds a
search tree by simulating the results of taking different se-
quences of actions in the current state. It requires both the
reward and the next state resulting from an action. However,
in an assistance POMDP, neither is known: the next state
depends on both the assistant’s and human’s actions, not
just the assistant’s action, and the reward R(s, aH, aR; θ)
depends on the reward parameters θ, which are not visible to
the assistant. To overcome these challenges, AssistanceZero
employs a recurrent neural network with parameters ϕ that
takes as input a state-action history h and has four heads:
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Scalably Solving Assistance Games

a policy head πϕ(aR | h), a value head V̂ ϕ(h), a reward
parameter prediction head p̂ϕ(θ | h), and a human action
prediction head p̂ϕ(aH | h). The policy and value heads
select actions and evaluate the value of states, respectively.
The reward parameter and human action prediction heads
predict distributions over θ and aH so that MCTS can esti-
mate the reward and next state given a selected action.

To train the AssistanceZero network, we collect episodes
by selecting assistant actions using MCTS with the current
network parameters; then, the four heads are trained using
separate loss terms. As in AlphaZero, the policy head is
updated to minimize the KL divergence towards the policy
output from MCTS, and the value head to minimize the
squared error with the reward-to-go. The reward parameter
and human action prediction heads are trained with negative
log-likelihood loss to predict θ and aH, respectively. The
full AssistanceZero loss can be written for an episode as

L(ϕ) = 1
T

∑T
t=1

[
λpolicyDKL

(
πMCTS
t ∥πϕ(· | ht)

)
+ λvalue

(
V̂ ϕ(ht)−

∑T
t′=t γ

t′−tR(st′ , a
H
t′ , a

R
t′ ; θ)

)2

− λreward log p̂
ϕ(θ | ht)− λaction log p̂

ϕ(aHt | ht)
]
, (1)

where λpolicy, λvalue, λreward, and λaction are weights that trade
off the four loss terms, and πMCTS

t refers to the action dis-
tribution output by MCTS at timestep t. The technique of
learning an approximate belief distribution over the reward
parameters θ from rollouts is similar to learned belief search
(Hu et al., 2021a). After a few epochs of gradient descent on
L(ϕ) over the collected episodes, AssistanceZero collects
new episodes by running MCTS with the updated network
parameters and repeats the process. See Appendix A for a
full description of AssistanceZero and our variant of MCTS.

4. The Minecraft Building Assistance Game
To investigate whether solving complex assistance games is
possible with AssistanceZero, we introduce the Minecraft
Building Assistance Game (MBAG). When designing
MBAG, we aimed to satisfy a few desiderata to make it
a useful environment for studying assistance games more
broadly. First, we want the distribution over reward parame-
ters p(θ) to be complex but structured, similarly to human
preferences in other domains. As described in the related
work, most past work on assistance games has considered
only a small number of possible reward functions. Second,
we want there to be a variety of ways for the assistant to
help the human that require varying amounts of information
about the reward function. Finally, we want an environ-
ment in which it is tractable for academic labs to to train
RL agents, making it feasible to empirically study more
complex assistance games. In the remainder of this section,
we describe the structure and implementation of MBAG.

A state in MBAG consists of a 3-dimensional grid of blocks,

player locations within the grid, and player inventories.
Each location in the grid can be one of ten block types,
including air; we use an 11× 10× 10 grid for our experi-
ments. Each agent, or player, can be at any discrete location
within the 3-dimensional grid as long as that grid cell and
the one above it are air. The action space consists of a no-op,
moving in one of the six cardinal directions, placing a block,
breaking a block, or giving a block to another player. Place,
break, and give actions are parameterized by a location, and
place and give actions are additionally parameterized by a
block type. This means that in the 11 × 10 × 10 environ-
ment there are over 20,000 possible actions, although in
most states only a small subset of those can be taken.

The reward parameters θ consist of a goal grid of blocks. At
the start of an episode, the goal is sampled from a dataset of
houses based on the CraftAssist dataset (Gray et al., 2019).
We maintain separate train and test datasets to evaluate
generalization. While the human agent can observe the
goal, it is not visible to the assistant. MBAG satisfies our
first desideratum because there is an exponentially large
number of possible goals (on the order of 10400), making
the goal distribution much more complex than prior studies
of assistance games. However, due to the structured nature
of the houses, the assistant can still infer information about
the goals from human interaction. MBAG also satisfies the
second desideratum because some assistant strategies, like
collecting resources or digging a foundation, require very
little knowledge of the goal. On the other hand, adding final
decorations requires specific information. For more details
about the MBAG environment, see Appendix B.1.

5. Experiments
Human models Training and evaluating assistants in
MBAG requires a human policy πH(aH | s, θ) that se-
lects actions based on the current state s and the goal struc-
ture θ. We trained three human models for MBAG using
PPO, AlphaZero, and behavior cloning (BC) using the same
Transformer-based architecture (see Appendix B.3 for de-
tails). The reward function for PPO and AlphaZero is based
on goal similarity: the agent receives a reward of 1 (−1)
for correctly (incorrectly) placing and breaking blocks, and
0 otherwise. For BC, we collected 18 episodes of human
data from 5 subjects; in half the episodes the subject played
alone and in the other half they played with a human as-
sistant. Subjects were able to see a “blueprint” overlay
showing the goal structure, while the human assistant was
not. The BC human model is trained to imitate human ac-
tions from the dataset of subjects playing alone, while the
PPO and AlphaZero models are trained with goal structures
sampled from the train house dataset. Besides initializing
BC from random weights, we also fine-tuned the PPO and
AlphaZero policy networks with BC; Yang et al. (2022) find
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Scalably Solving Assistance Games

that initializing imitation learning with a near-optimal policy
can improve human modeling.

We evaluate each model’s accuracy at predicting human
actions and performance at building goal structures in the
test dataset. We evaluate the human models on the first
objective by measuring the cross-entropy (CE) between the
model’s predicted actions and human actions in the dataset;
we use 5-fold cross-validation for the BC policies. For
the second objective, we report the percentage of the goal
structure completed after 5, 10, and 20 minutes of acting in
the environment, where one timestep is 0.8 seconds.

Table 5 shows the results of the evaluating the five human
models. As expected, the BC models achieve the lowest
CE since they are trained solely to imitate human actions;
in contrast, the RL-based models are poor predictors of hu-
man behavior. Initializing BC from the PPO policy network
results in slightly lower CE compared to initializing from
AlphaZero. We also compare each model’s goal percentages
with those of the human subjects during data collection. The
PPO and AlphaZero models are significantly better at build-
ing the goal structure than real humans. BC with random
initialization performs worse than the human subjects, while
BC models initialized from PPO and AlphaZero perform
better. Overall, we found the BC model initialized from PPO
to be the most human-like when considering both the CE
and goal completion metrics.For this reason, we use this as
the human policy πH for the remainder of the experiments.

Model Cross- Goal percentage
entropy 5 min. 10 min. 20 min.

AlphaZero 5.70 85.56 95.24 95.85
PPO 9.40 85.34 92.11 94.45
BC (random init) 2.32 22.96 41.51 58.33
BC (AlphaZero init) 2.41 49.86 79.39 91.69
BC (PPO init) 2.38 41.98 68.50 83.33

Human subjects – 27.54 55.71 87.87

Table 1. We evaluate five policies as human models based on their
accuracy at predicting human actions (cross-entropy) and perfor-
mance at building goal structures (goal percentage).

AI assistant policies We now turn to developing effective
AI assistant policies. In particular, we aim to find an as-
sistant policy that performs well in the assistance POMDP
defined using our fixed BC human model πH. We explore
two methods of explicitly solving the assistance POMDP.
First, we train a policy using AssistanceZero, as described
in Section 3. To compare to a model-free baseline, we also
train an assistant with PPO that uses the same policy net-
work architecture (see Appendix B.3 for details). Our PPO
baseline incorporates two auxiliary losses, without which
we found training an even marginally effective PPO assistant
was impossible; see Appendix B.4 for more information.

Besides assistants which explicitly solve the assistance
POMDP, we also compare to baselines based on imitation
learning. Assistants like GitHub Copilot (Chen et al., 2021)
work by predicting human actions based on a large dataset
of human behavior (e.g., all open source repositories on
GitHub) and then taking those actions more quickly than
a human can. To train an equivalent assistant in MBAG,
we create a non-goal-conditioned (NGC) human model π̃H

based on πH, which we call, that marginalizes over the hid-
den goal θ: π̃H(at | ht) =

∫
Θ
p(θ | ht)πH(at | st, θ)dθ. In

practice, we approximate this integral by sampling 10,000
goal structures from the CraftAssist dataset, generating roll-
outs using πH, and training π̃H with BC to imitate these
rollouts. Similarly to how Copilot only makes a suggestion
when it is relatively sure about the right action to take, we
also explore thresholding π̃H’s actions based on their prob-
ability. In particular, if an action a sampled from π̃H has
π̃H(a | h) < c, then it is replaced with a no-op, where c is a
tunable confidence threshold. Our third imitation learning-
based assistant is trained by fine-tuning π̃H on actions taken
by the real human assistant during data collection. This
assistant is analogous that produced in the supervised fine-
tuning (SFT) phase of RLHF, so we call it the SFT assistant.

Table 5 shows the goal percentage achieved after 5, 10, and
20 minutes by each assistant paired with πH, evaluated over
100 episodes with goal structures from the test set. For
reference, we show the performance of πH alone and of real
human subjects both with and without a human assistant.
The confidence-thresholded non-goal-conditioned BC, SFT,
and PPO assistant policies all appear to slightly outperform
πH alone at 5 and 10 minutes, although the results are not
statistically significant. On the other hand, AssistanceZero
significantly boosts performance, achieving 17 and 11 more
goal percentage points at 5 and 10 minutes, respectively.
This is greater than the performance increase in our human
study between humans playing alone versus with a human
assistant. Our results show that AssistanceZero is effective
at solving complex assistance games. See this anonymized
video link of AssistanceZero playing with a real human.

Assistant 5 min. 10 min. 20 min.

None 42.0 ± 0.9 68.5 ± 1.0 83.3 ± 0.9
NGC BC 32.5 ± 4.1 52.3 ± 3.9 65.0 ± 4.5

(w/ conf. threshold) 45.4 ± 3.2 72.8 ± 3.0 84.3 ± 2.6
SFT 45.3 ± 3.0 70.2 ± 3.0 81.5 ± 2.8
PPO 44.5 ± 3.3 71.7 ± 3.2 85.7 ± 2.7
AssistanceZero (ours) 59.1 ± 2.8 79.6 ± 2.9 87.5 ± 2.7

Human subjects (alone) 27.5 ± 5.6 55.7 ± 12 87.9 ± 12
(w/ human assistant) 34.4 ± 10 63.1 ± 17 88.5 ± 10

Table 2. The goal percentage achieved by AI assistant policies
paired with the human model πH after 5, 10, and 20 minutes (each
timestep is 0.8 seconds) with 90% confidence intervals.
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Appendix
A. AssistanceZero details
In this appendix, we describe the full details of the AssistanceZero algorithm.

MCTS To choose actions during training and deployment, AssistanceZero uses Monte Carlo tree search. MCTS repeats a
three-stage process for Nsim simulations, adding one additional node during each simulation to a tree where nodes represent
histories and branches are action pairs (aH, aR).

In the selection stage, an assistant action aR is selected at the current history node h that maximizes

Q(h, aR) + cPUCT πϕ(aR | h)
√∑

b∈AR N(h, b)

1 +N(h, aR)
, (2)

where N(h, aR) is the number of times action aR has previously been selected at node h, πϕ(aR | h) is the output of the
network’s policy head, and cPUCT is a tunable parameter that balances exploration and exploitation. Q(h, aR) is an estimate
of the Q-value of aR; we will describe how this is calculated later. Once an assistant action is chosen, then a human action
aH is sampled according to the probabilities output by the human action predictor head p̂ϕ(aH | h). Then, the state s′

resulting from taking actions (aH, aR) is calculated and the state and actions are appended to h to reach a node h′. The
reward associated with the transition is estimated by marginalizing over the reward parameter distribution output by the
reward prediction head:

R̂(h, aH, aR) =
∑
θ∈Θ

R(s, aH, aR; θ) p̂ϕ(θ | h′).

Then, the selection process repeats until a node h is reached which has not previously been reached.

In the expansion stage, the new node is input to the network to calculate the policy head outputs πϕ(aR | h), the value
estimate V̂ ϕ(h), the human action predictions p̂ϕ(aH | h), and the reward parameter predictions p̂ϕ(θ | h). The policy
outputs at the root node have Dirichlet noise applied, similarly to AlphaZero.

In the backup stage, the Q-values of all ancestor nodes of h are recursively updated with the discounted sum of rewards along
edges of the tree plus the value estimate V̂ ϕ(h). As normally in MCTS, Q(h, aR) is simply the average of the Q-values
estimated over all previous simulations that have taken aR in node h. For actions with no visits, Q(h, aR) is set to the
average of all backed-up values for node h:

Q(h, aR) =

∑
b∈AR N(h, b)Q(h, b)∑

b∈AR N(h, b)
if N(h, aR) = 0.

When selecting actions according to (2), we normalize Q-values by the highest and lowest value seen among all visits to that
node, similarly to MuZero (Schrittwieser et al., 2020).

The resulting policy from MCTS is defined as

πMCTS(aR | h) ∝ N(h, aR)τ ,

where τ is an inverse temperature parameter.

Training procedure As described in Section 3, AssistanceZero alternates between rolling out episodes in the environment
by selecting actions with MCTS and updating the network according to the loss function in (1). In practice, we use a replay
buffer to store rollouts; then, after storing a certain number of new rollouts, we randomly sample a number of episodes from
the replay buffer and train on these. We found that using a replay buffer improves performance and stability.

B. Experimental Details
B.1. Environment

We make MBAG tractable to train and plan in by implementing it in a mix of pure Python and C, with no dependency on
Minecraft for training. However, we also provide an interface with the Microsoft Malmo (Johnson et al., 2016) mod that
allows the Python environment to sync with Minecraft. This can be used for video visualization of policies. It also enables
human-AI play, in which human actions detected in Minecraft are translated into their equivalents in MBAG, and AI actions
taken in MBAG are translated into actions in Minecraft.
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We provide two versions of MBAG: one where the players must collect resources by breaking a regenerating “palette” of
blocks located on one side of the environment, and one where the players have unlimited blocks. For the purposes of this
paper, we investigate the second version; this version of the environment is more difficult to build an assistant for, since the
assistant cannot simply collect resources to help the human.

B.1.1. REWARD FUNCTION

The human policy and the AI assistant policy receive the same shared reward at each time step primarily based on goal
distance, which is the fewest number of place and break actions needed to reach the goal from the current state. The joint
reward is equal to the goal distance before the actions were taken minus the goal distance after. That is, letting d(s, θ) be the
goal distance,

R(s, aH, aR; θ) = d(s, θ)− d(s′, θ),

where s′ is the state reached by taking actions (aH, aR) in state s. This definition of reward means that the maximum reward
achievable starting in a state is always d(s, θ).

B.1.2. GOAL STRUCTURES

We base the goal structures for MBAG on the CraftAssist houses dataset, which was collected by Gray et al. (2019); they
gave study participants the open-ended task of building any house in Minecraft and recorded the resulting structure. Since
we require that goal structures in MBAG have a one-block gap on all sides, they can only be at most of dimensions 9× 8× 8.
However, many of the goal structures in the CraftAssist dataset are much larger. When houses in the dataset are no more
than twice the desired dimensions, we scale them down to fit.

B.2. Data Collection

To train the human models, we collect 18 episodes of 5 human subjects building goal structures. For half of the total
episodes, the subject is given a goal structure and is instructed to build it quickly and efficiently without assistance. For the
other half, a single experienced human Minecraft player acts as the assistant to help build the house. The human assistant is
instructed to help the human subjects build their goal structures, but they are not shown the goal structure themselves. While
the human agent and assistant can observe each other’s actions, there is otherwise no communication between them.

B.3. Network Architecture

For both the human models and AI assistant policies, we use a Transformer architecture with 6 spatial layers, 64 hidden units,
and 4 heads. Each of the 1,100 blocks in the environment is a separate “token” and they are identified by 12-dimensional
positional embeddings. Due to the large world size, training would be computationally prohibitive if each spatial layer
attended across all 1,100 blocks. Thus, instead, we restrict attention in each layer to blocks in a slice along only a single
dimension. Layers 1 and 4 only allow attention along the X direction, layers 2 and 5 along the Y direction, and layers 3 and
6 along Z. The input to the Transformer at each block location is the concatenation of:

• an embedding representing the current block type present at that location,

• an embedding representing the goal block type at that location (if the goal is visible to the agent),

• an embedding representing which player, if any, is standing at that location,

• an embedding representing which player, if any, was the last to place or break a block at that location (this allows the
agents’ actions to be visible to each other),

• the counts of each type of block in the player’s inventory divided by 64,

• and the current timestep divided by 1,000.

For recurrent policies, we add two additional layers after the 3rd and 6th transformer layers. Each of these layers consists of
LSTM cells at each block location that share weights; these enable memory across time.
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Scalably Solving Assistance Games

B.4. Training Details

We develop different human and AI assistant policies using model-based RL, model-free RL, behavior cloning, and
combinations of these methods. Each policy uses similar model architectures (described in B.3) and is trained for an episode
length of 1, 500.

During training, we randomize the starting location of the human policy to improve generalization. Since some RL
algorithms sample experience in fragments shorter than a full episode, we randomize the length of the first episode in the
environment. This avoids the situation where in one iteration of PPO all fragments are from the beginning of episodes and in
the next they are all from the end.

Data augmentation We apply data augmentation during behavior cloning for only the goal-conditioned human models.
The data augmentation consists of choosing a random permutation of block types for each state and applying it to the current
blocks in the world, the block types in the goal structure, the players’ inventories, and any place or give actions. We found
that using data augmentation led to improved generalization in cross validation.

PPO human model (single-agent) The hyperparameters we used to train the PPO human model are shown in Table 3.

AlphaZero human model (single-agent) The hyperparameters we used to train the AlphaZero human model are shown
in Table 4.

We observed that the AlphaZero human policy could not successfully construct the goal structure when trained directly with
the full 1500 episode length. We hypothesize this is because, early in training, the policy gets stuck after the beginning
of the episode and thus does not collect useful experience for the remainder. As the episode length increases, the useless
experience where the policy is stuck becomes a greater proportion of the training data and leads to decreased performance.
To address this issue, we terminate the episode if the policy does achieve a new minimum goal distance for 100 time steps.
This allows us to train with the full episode length while skipping less useful experience.

We found it helpful to add a penalty of −0.2 for no-ops to the reward function to the encourage the policy to act and explore.

Behavior cloning human model (single-agent) We train three main BC human model variants: 1) initialized from scratch,
2) initialized from a checkpoint of the PPO human model, and 3) initialized from a checkpoint of the AlphaZero human
model. We use data from human subjects building goal structures on their own, as described in B.2.

Hyperparameters are shown in Table 5.

PPO assistant To effectively train an assistance PPO, we added two auxiliary loss terms and modified the reward function.
The first loss term, which we call the “block-placing loss,” is the cross-entropy between the block type placed by the assistant
and the goal block type at that location, if there is one. This loss provides some training signal when the assistant places a
block in a location that is part of the goal structure, even if the block type is incorrect. Without this loss, placing an incorrect
block type would simply result in a reward of 0, making it more challenging for the assistant to learn to place blocks at all.
We linearly decay this loss coefficient from 1 to 0 over the first 2× 106 time steps.

The second loss adds a goal prediction head similar to that used in AssistanceZero and trained with the same loss function.

Finally, we modify the reward function for PPO to only give reward directly attributable to the place/break actions of aand
disregard any place/break actions taken by the human. This means that PPO’s goal is not actually aligned with the assistance
game objective; however, without this modification we found that the PPO assistant just learned to take no-op actions
constantly.

All the hyperparameters for the PPO assistant are shown in Table 3.

AssistanceZero assistant For the first 25 iterations of AssistanceZero, we “pre-train” the assistant’s value, human action
prediction, and reward parameter prediction heads by having it only take no-op actions while observing the human policy.
This provides good initialization of all three heads without requiring the expense of running MCTS during these initial
iterations. After the pretraining iterations, we start using MCTS and training the policy head as well. We use the same
interleaved transformer-LSTM model architecture for the assistant’s network as for the PPO assistant.
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Scalably Solving Assistance Games

Hyperparameter Human model Assistant

Training iterations 150 100
Rollout length 512 512
Number of environments 125 64
SGD minibatch size 512 512
SGD epochs per iteration 3 3
Optimizer Adam Adam
Learning rate 3× 10−4 3× 10−4

Discount factor (γ) 0.95 0.95
GAE coefficient (λ) 0.95 0.95
Entropy coefficient (horizon) 0.03 1 → 0.01 (2× 106)
Clipping parameter 0.2 0.2
Grad clip norm threshold 10 10
Recurrent network No Yes
KL target 0.01 0.01
KL coeff. 0.2 0.2
Value function coeff. 0.01 0.01
Goal loss coeff. 0 3
Place block loss coeff. (horizon) 0 1 → 0 (2× 106)

Table 3. PPO hyperparameters for the human model (single-agent) and assistant training.

Hyperparameters are shown in Table 4.

Imitation learning assistants We train two main imitation learning assistants: 1) a non-goal-conditioned BC assistant,
and 2) a BC assistant fine-tuned on human assistant data. Hyperparameters are shown in Table 5.

The network architecture is the same as the recurrent network used for the PPO and AlphaZero assistants.

B.5. Evaluation

We evaluate each human model’s single-agent performance on 1,000 episodes with goal structures sampled from a held-out
test set which are not seen during training. We then evaluate each assistant policy’s performance on the same test set by
pairing it with a human model and evaluating for 100 episodes with goal structures from the test set. The episode terminates
when the goal structure is fully built or 1500 time steps have passed. When evaluating AlphaZero, we use 30 MCTS
simulations for computational reasons and to match the maximum number of simulations that can be executed in real-time.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Scalably Solving Assistance Games

Hyperparameter Human model Assistant

Training iterations 70 55-70
Rollout length per iteration 512 512
Number of environments 64 64
Timesteps sampled from replay buffer per iteration 261,632 131,072
SGD minibatch size 512 512
SGD epochs per iteration 1 2
Optimizer Adam Adam
Learning rate 3× 10−3 3× 10−3

Discount factor (γ) 0.95 0.95
Grad clip norm threshold 10 10
Recurrent network No Yes
Value function coeff. 0.01 0.01
Goal loss coeff. 0.5 3
Other agent action prediction loss coeff. N/A 1
No-op reward -0.2 -0.2
Number of MCTS simulations 100 100
Inverse temperature 1.5 1.5
Dirichlet noise (high-level action) 0.25 0.25
Dirichlet noise (low-level action) 10 10
Dirichlet epsilon 0.25 0.25
Prior temperature 1 1
PUCT coefficient 1 1
Replay buffer capacity 5,232,640 131,072
Terminate episode if no progress (steps) 100 N/A

Table 4. AlphaZero hyperparameters for the human model (single-agent) and assistant training.

Hyperparameter Human model Non-goal-conditioned assistant Fine-tuned assistant

Training iterations 20 20 20
Training batch size 9642 8192 9642
SGD minibatch size 128 512 512
SGD epochs per iteration 1 1 1
Optimizer Adam Adam Adam
Learning rate 1× 10−3 → 1× 10−4 (10 iters) 1× 10−3 1× 10−3

Grad clip norm threshold 10 10 10
Interleave spatial/temporal layers No Yes Yes

Table 5. BC hyperparameters for the human model (single-agent), non-goal-conditioned assistant, and fine-tuned assistant.
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