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Abstract

Diffusion models are initially designed for image generation. Recent research
shows that the internal signals within their backbones, named activations, can
also serve as dense features for various discriminative tasks such as semantic
segmentation. Given numerous activations, selecting a small yet effective subset
poses a fundamental problem. To this end, the early study of this field performs a
large-scale quantitative comparison of the discriminative ability of the activations.
However, we find that many potential activations have not been evaluated, such as
the queries and keys used to compute attention scores. Moreover, recent advance-
ments in diffusion architectures bring many new activations, such as those within
embedded ViT modules. Both combined, activation selection remains unresolved
but overlooked. To tackle this issue, this paper takes a further step with a much
broader range of activations evaluated. Considering the significant increase in
activations, a full-scale quantitative comparison is no longer operational. Instead,
we seek to understand the properties of these activations, such that the activa-
tions that are clearly inferior can be filtered out in advance via simple qualitative
evaluation. After careful analysis, we discover three properties universal among
diffusion models, enabling this study to go beyond specific models. On top of
this, we present effective feature selection solutions for several popular diffusion
models. Finally, the experiments across multiple discriminative tasks validate the
superiority of our method over the SOTA competitors. Our code is available at this
url.

1 Introduction

Diffusion models [21, 10, 37, 36] are powerful generative models that progressively reconstruct
images from Gaussian noises through a series of denoising steps. Typically, a U-Net [38] is trained
as the noise predictor backbone to perform denoising. Recently, the impressive generative capability
inspires the application to discriminative tasks such as semantic segmentation [52, 58] or semantic
correspondence [29, 56]. In this direction, diffusion feature is one simple yet effective approach,
where the intermediate signals, named activations, are extracted from the pre-trained diffusion U-Net
as dense features [2, 58, 56, 29, 53, 13, 14].
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Figure 1: Prior arts only consider a small fraction of potential activations in diffusion models. As a
result, more advanced diffusion architecture fails to achieve better performance (SDXL v.s. SDv1.5).
In contrast, we consider a broader range of candidate activations. To facilitate the quantitative
comparison, we first make a comprehensive and generalizable analysis to qualitatively filter out many
candidates in advance. On top of this, our method achieves superior performance (75.2 PCK@0.1).

The complex architecture of the diffusion U-Net provides many activations that can serve as features.
However, these activations inherently vary in quality, inducing significant performance gaps on
discrimination. Hence, selecting a small yet effective subset from these activations has become a
fundamental problem. In the early stage, Baranchuk et. al [2] perform a large-scale quantitative
comparison among activations within Guided Diffusion [10]. Later, the activations they select are
followed by most studies in this field, pursuing other improvements [29, 56, 58, 52, 60, 53, 24, 27].

However, we find that this fundamental issue is far from solved. On one hand, Baranchuk et. al [2]
only consider activations between neighboring modules that comprise the main residuals. This
means that many potential activations are excluded from the candidate pool, such as the queries
and keys in the self-attention blocks. Moreover, recent developments of diffusion architecture,
such as cross-attention [37] or embedded deep vision transformers (ViTs) [36], have introduced
additional types of activations. Hence, as shown in upper Figure 1, only a small fraction of potential
activations in modern diffusion models have been evaluated for their discriminative ability, which
might hinder future work in this direction. For example, lower Figure 1 shows that Stable Diffusion
XL (SDXL) [36], which is more advanced than Stable Diffusion v1.5 (SDv1.5) [37], fails to achieve
better performance with the feature selection solution proposed in [2].

In this paper, we revisit the fundamental problem of feature selection, considering a more comprehen-
sive candidate pool of activations. Due to its large volume, a full-scale quantitative comparison is
no longer operational, urging us to modify the previous research methodology in [2]. As illustrated
in Figure 1, instead of a direct quantitative comparison, we first explore the properties of diffusion
U-Nets. These properties allow us to qualitatively and efficiently filter out many activations that are
highly likely to be sub-optimal, shrinking the candidate pool for the quantitative comparison. More
importantly, we find these properties are universal among diffusion models, making it possible to
generalize our findings to more models beyond those covered in this paper.

Specifically, the properties we find, which are distinct to existing knowledge of model properties
[1, 38], exactly correspond to three top-to-bottom levels of the diffusion U-Net: (i) Diffusion
noises at the macro level: the diffusion process induces a new type of noise on both low- and
high-frequency signals. (ii) In-resolution granularity changes at the in-resolution level: the changes
in information granularity are not only across but also within resolutions. (iii) Locality without
positional embeddings at the sub-module level: the embedded ViTs in diffusion U-Nets present a new
type of local information different from that induced by the conventional positional embeddings [44].
Based on these insights, we develop effective feature selection solutions for several popular diffusion
models. Finally, the experiments on three discriminative tasks, including semantic correspondence,
semantic segmentation, and label-scarce segmentation, validate the superiority of our solutions over
the SOTA methods.
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In summary, the contributions of this work are three-fold:

• Revisit of a fundamental problem: To the best of our knowledge, we are the first to point out that
the fundamental issue of feature selection remains unresolved in the realm of diffusion feature.

• Generic insights: The properties we find are universal among different diffusion U-Nets, which
can provide valuable insights for future work.

• Extensive validation: Extensive experiments on three discriminative tasks validate the effective-
ness of the feature selection solutions induced by our insights.

2 Related Work

Diffusion models for discrimination. We discuss three mainstream ways to use diffusion models
for discrimination. (i) Diffusion classifier [26, 7] utilizes Bayes’ theorem to transform a pre-trained
diffusion model into an image classifier. This method enjoys a theoretical guarantee and does
not need additional training. However, it is limited to image-level tasks. (ii) The second way is
to model discriminative tasks as image-to-image generation tasks with diffusion models [22, 23].
This method is suitable for various dense vision tasks but requires heavy training. (iii) Diffusion
feature [2, 58, 56, 41, 29], the focus of this paper, follows the traditional practice of feature extraction
to pursue the balance between wider applicability and less training. This makes it adaptable for
different tasks and alleviates the training needs for the diffusion model. Only small downstream
models may require training.

The diffusion feature approach has seen various improvements. Some techniques toggle the input
settings of diffusion models, such as seeking better timesteps [60, 29]. The others add trainable
parameters outside the diffusion model to refine the outputs or provide an efficient fine-tuning alter-
native [58, 27, 46]. Additionally, some studies explore completely training-free methods that utilize
spatial attention information [51, 43], and some attempts focus on text-free diffusion models [32, 33].

Despite the progress, previous methods only consider activations between neighboring modules,
leaving many potential candidates unevaluated. Our work shows that such an overlook can hinder
model performance. By introducing a more comprehensive feature selection solution, our method
could generically enhance both existing and future diffusion feature approaches.

Analysis on model properties. The inner properties of neural networks have consistently received
much attention [5, 34]. For transformers, Geva et al. [15] show that the feed-forward layers act as
key-value memories and are interpretable for humans. Amir et al. [1] extend this insight to vision
transformers and put it into practical applications such as image classification, while Vilas et, al. [45]
try to make more detailed interpretation of ViT activations.

The methodology of these studies provides valuable guidance for our research. However, since
diffusion models are trained for generation, our study relies more on qualitative analysis and feature
visualization compared to previous work.

3 Preliminaries: Architecture of Diffusion U-Nets

Diffusion models typically involve a forward pass and a reverse pass [21]. During the forward
pass, noise is gradually added to a clean image x0 ∈ R3×w×h until the image resembles Gaussian
noise, where w and h denote the width and height, respectively. This process can be denoted by
xt ∼ q(xt|x0), where q represents the noise posterior and t is the timestep. In the reverse pass, an
end-to-end neural network ϵθ, as parameterized by θ, learns to predict the noises and thus reconstruct
the image. One such denoising step can be denoted as ϵ = ϵθ(xt, t, c), where ϵ is the predicted
noise, and c is the condition that describes the expected image content. Although there are alternative
formulations for diffusion models [39, 28, 40], they all rely on this neural network backbone ϵθ. This
study focuses on this backbone, typically implemented as U-Net [38], rather than other components
of diffusion models. Next, we will detail the architecture of the diffusion U-Net and standardize the
terminology referring to different parts of the model, as shown in Figure 2.

We start with an overview. Following the initial U-Net design [38], the U-Net has three main stages:
down-stage, mid-stage, and up-stage. The down-stage reduces the resolution of activations, while the
up-stage increases it. Both stages contain multiple resolutions, in each of which the activations share
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Figure 2: U-Net architecture (upper) and the ViT module (lower), taking SDXL as an example.

the same resolution. Furthermore, each resolution includes several modules, including ResModule
(convolutional ResNet [20] structures), ViT Module [12], and Downsampler/Upsampler (simple
convolutional layers). Previous diffusion feature approaches only consider activations between these
adjacent modules, i.e., inter-module activations.

We next dive into the details below the module level. Among these modules, ResModule and ViTs
adopt residual connection [20], where an increment activation is added element-wise to the residual
activation to refine it. Specifically, ResModule uses simple convolutional layers to produce increments,
whereas ViTs use complex attention mechanisms, which will be further explained next. Typically,
ViT operates as a standalone model followed by a decoder that produces the output predictions for
visual tasks [12, 25, 9, 18]. However, in the diffusion U-Net, multiple ViTs are embedded into the
network, and their outputs serve as increment activations.

Furthermore, each ViT module consists of several stacked basic blocks. A basic block typically has a
self-attention layer to perform attention on the image itself and a feed-forward layer , essentially

a two-layer MLP [15]. Modern diffusion U-Net introduces an additional cross-attention layer
between the two layers, enabling the fusion of the image and additional textual prompts. Besides,
each layer includes a residual connection, meaning that the increment activation added to the outer
residual is also the internal residual.

In a nutshell, the architecture described above provides abundant activations that can serve as dense
features. Given the massive activations, it is no longer operational to perform a full-scale quantitative
comparison. Hence, we next make a comprehensive analysis of model properties to better understand
these activations, which can help the qualitative filtering.

4 Distinct Properties of Diffusion U-Nets

The diffusion U-Net has many interesting properties, but now we only focus on those distinct from the
knowledge of traditional U-Net [38] or ViTs [44]. As shown in Figure 3, this section highlights three
noticeable properties, each of which corresponds to a different level of the diffusion U-Net architecture
described in Section 3. Notably, these properties can be universally observed in different samples
and diffusion models, though all visualization in the main content is conducted on the same
image and SDXL model for consistency. Additional visualization is provided in Appendix A.
Besides, the omitted properties are available in Appendix E.
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Figure 3: We highlight three properties of diffusion U-Nets that are distinct from existing knowledge
about other models: (a) Asymmetric diffusion noises. (b) In-resolution granularity changes. (c)
Locality without positional embeddings: pixels within the orange circle resemble nearby background
pixels more than distant pixels on the horse’s neck that are semantically closer.

4.1 Asymmetric Diffusion Noises

The first property is at the macro level and closely related to the overall diffusion process. It is
common that high-frequency signals are typically noisy [5, 34]. This phenomenon can also be
observed in diffusion U-Nets, especially within the increment activations of residual connection.
However, this does not mean that low-frequency signal activations in diffusion U-Nets are free from
noises. As shown in Figure 3(a), the diffusion process introduces a new type of noise that also impacts
low-frequency signals. This is not surprising since the diffusion process requires the backbone to
process noisy inputs and predict noises as outputs. As a result, activations near the inputs or outputs,
regardless of their frequency, also suffer from such noises. Considering the special cause, we name
such noises diffusion noises.

How does the influence of diffusion noises spread across diffusion U-Nets? As shown in Figure 3(a),
diffusion noises exist throughout the entire down-stage, with a decreasing magnitude. Remarkably,
during the early half of the up-stage, activations are rather clean, with no perceivable diffusion noises.
Only in the later half do diffusion noises start to resurface. The existence of this asymmetric behavior
can also be indirectly supported by the ablation curves in many fellow studies such as [2, 32, 33].
Furthermore, as shown in Appendix A, such an asymmetric pattern is consistent across activations in
different diffusion models.

Similar to common high-frequency noises, diffusion noises can degenerate feature quality. Hence,
this property can serve as a criterion for identifying and filtering out sub-optimal activations, which
we will delve into in Section 5.

4.2 In-Resolution Granularity Changes

The second property is at the in-resolution level and closely related to recent advances in diffusion
architectures. Specifically, the design of U-Net follows the idea of resolution hierarchy [38]. Conse-
quently, the overall architecture displays a fine-coarse-fine granularity trend, looking like the alphabet
“U”. Traditional U-Nets implement this architecture with a relatively large number of resolutions,
while each resolution is typically small, equipped with two or three simple convolutional layers.
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Hence, the understanding of traditional U-Net focuses on the granularity changes across resolutions,
implicitly assuming that the change within a single resolution is negligible.

However, diffusion U-Nets become much “fatter”. In other words, modern diffusion U-Nets typically
have much fewer resolutions, but each resolution is significantly enlarged. For example, SDv1.5
only has four resolutions [37], and SDXL further decreases this number to three [36], as shown in
Figure 2. Meanwhile, each resolution can produce much more activations, primarily thanks to the
embedded ViT modules. This architectural evolution makes the granularity change within a single
resolution more significant, as depicted in Figure 3(b).

Different granularity carries varied information and quality, resulting in different discriminative
performance on downstream tasks [2, 29]. Hence, this discovery of in-resolution granularity changes
highlights the necessity to evaluate more activations, especially those within the embedded ViTs, as
they are of different granularity.

4.3 Locality without Positional Embeddings

For the third distinct property, we delve into the sub-module level, i.e., the blocks in embedded ViT
modules. Positional embeddings, which are widely used in language transformers [44] and ViTs [12],
aim to provide spatial information for each input token. Consequently, the activations of traditional
ViTs display strong positional information, where the latent pixel resembles nearby pixels more than
those that are semantically similar but far away [1]. This phenomenon is significant for the layers
close to the inputs. When the layer goes deeper, the tokens are refined with semantic information,
making the activations display less positional information. However, only in the last few layers, such
positional information becomes negligible.

In contrast, ViT modules in diffusion U-Nets do not use positional embeddings [37, 36], perhaps
because the other U-Net components have provided sufficient spatial cues. This change results in
distinct properties of the activations. On one hand, positional information is negligible for most
activations despite how near they are to the inputs. For example, even in the first basic block, cross-
attention query activations contain no perceivable positional information. On the other hand, the
queries and keys of self-attention still display non-negligible positional information, marked with
orange circles in Figure 3(c). Specifically, the latent pixel on the horse’s neck is a light blue color,
similar to the pixels to its left that actually represent the background. In contrast, the pixels above the
circle are in purple color, though they also represent the horse’s neck. Such comparison shows that a
latent pixel is more similar to other pixels that are spatially near it than those semantically closer to it.

We name this phenomenon locality since it has a different mechanism from that induced by positional
embeddings. As pointed out in [12], self-attention allows ViT to integrate global and local information
even in the shallow layers, and the attention scope enlarges w.r.t. layer depth. Even without positional
embeddings, self-attention activations are generally consistent with this insight, leading to the
existence of locality. Nevertheless, the magnitude has indeed greatly reduced, compared to the
visualization of conventional ViT activations in [1]. As shown in Figure 3(c), in shallow activations,
locality exists but is inherently weaker, as much semantic information is still reserved. In addition,
locality quickly diminishes as the layer goes deeper.

Since positional information can degrade the quality of activations [1], its absence has the potential
to enhance the activations in ViT modules. Moreover, locality can play a special role in activation
filtering, as presented in Section 5.

4.4 Universality of Three Properties

Although the visualization in Figure 3 is conducted only on SDXL, the scope of these properties is
not limited to the specific architecture. Further supporting evidence is available in Appendix A.

(i) Diffusion noises directly arise from the diffusion process. Hence, it is promising to extend this
property to other diffusion backbones.

(ii) In-resolution granularity changes come from the “fatness” of U-Nets, making it potentially
applicable to more traditional U-Nets.

(iii) Locality originates from the self-attention mechanism in ViT architectures, so it is broadly
applicable to standalone or embedded ViTs where positional embeddings are absent.
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Figure 4: (a) Diffusion noises result in a significant performance degeneration (Resolution#1). (b)
Locality degrades the quality of self-attention activations (Block#0 and Block#5). (c) Locality in
self-attention activations can suppress diffusion noises, leading to better quality than noisy activations
(41.41 v.s. 34.58). All PCK@0.1img(↑) results are evaluated on the semantic correspondence task.

5 Enhanced Feature Selection from Diffusion U-Nets

So far, we have had a more comprehensive understating of the properties of diffusion U-Nets. All
these properties, especially in-resolution granularity changes, encourage us to reconsider the feature
selection solution, with a special emphasis on the activations in ViT modules. With these properties,
we are also able to filter out many low-quality activations qualitatively, followed by a thus simplified
quantitative comparison.

5.1 Qualitative Filtering

Avoiding Diffusion Noises. As shown in Figure 4(a), diffusion noises tend to degrade the quality
of activations. Hence, it is natural to filter out the activations severely affected by diffusion noises
from the candidate pool. Specifically, according to the asymmetric trend of diffusion noises, we only
consider activations in the early half of the up-stage, which are rather clean. This approach will
significantly reduce the number of candidate activations and simplify the quantitative comparison.

Avoiding Self-Attention Locality. The locality in self-attention modules is another important factor
that can degrade the activations. The empirical evidence in Figure 4(b) demonstrates that these
activations are generally inferior to the others, such as those from cross-attention layers or the outputs
of ViT basic blocks. Consequently, it is rather safe to filter out most activations in self-attention
modules from our candidate pool.

Using Locality to Suppress Diffusion Noises. So far, the activations in the candidate pool are
clean and free from locality. However, all these activations are low-resolution ones since high-
resolution activations are generally noisy and thus filtered out. This is unfavorable since some
detailed information might only exist in high-resolution activations. To address this issue, we exploit
a side effect of self-attention locality. Specifically, as indicated in Figure 4(c), locality can help
suppress diffusion noises via its focus on spatial structures. Although locality is sub-optimal, it is
still superior to severe diffusion noises. In view of this, the candidate pool reserves self-attention
activations extracted from the later half of the up-stage.

We have filtered out many candidate activations based on the distinct properties of diffusion U-Nets.
Additionally, all increment activations in residual connection can be further filtered out since they
introduce high-frequency noises [5, 34]. After such qualitative filtering, a small but high-quality
candidate pool is available. Taking SDXL as an example, the number of candidates decreases from
279 to 63, i.e., a 78% reduction. Next, we explain how to conduct this quantitative comparison briefly.
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Table 1: Experimental results on the semantic correspondence task. The best results are in bold font
and the runner-up is underlined.

Category Method PCK@0.1img ↑ PCK@0.1bbox ↑

SOTA

DINO 51.68 41.04
DHPF 55.28 42.63
DIFT - 52.90
DHF 72.56 64.61

Baseline Legacy-v1.5 75.14 66.73
Legacy-XL 66.00 59.16

Ours
Ours-v1.5 77.78 69.83
Ours-XL 81.72 75.18
Ours-XL-t 83.90 76.86

5.2 Quantitative Comparison

The quantitative comparison follows the protocol of [2]. Specifically, given an input image x0, we
first perform the forward pass with a pre-defined timestep t to generate the noisy image xt. Then,
the U-Net backbone conducts one denoising step. Instead of collecting the model output ϵ, we
gather U-Net activations and consolidate them to the candidate pool, as described in Section 5.1.
Afterward, each activation is individually fed to a downstream model to evaluate its discriminative
potential, with the details of the model described in Appendix C. Such comparison is made fair by
using the same dataset for all activations. Finally, we can obtain the capability ranking of activations
from each resolution, according to which features can be selected wisely. Notably, we conduct such
comparisons on multiple datasets to guarantee generalizability, since the best activations may differ
among different scenes [2]. Thanks to qualitative filtering, the time cost for each (model, dataset)
pair has been reduced by more than one week, equipped with Nvidia(R) RTX 3090 GPUs.

Given the capability ranking, feature selection is in fact flexible, as it is possible to combine multiple
activations and specifically tune the choice for a task. For practicality, we provide off-the-shelf
feature combinations for SDv1.5 and SDXL that are likely to generically perform well in Appendix B,
according to the results detailed in Appendix D. Each of them consists of four activations mainly
from ViT modules rather than inter-module positions. Taking SDv1.5 as an example, one of the
four selected features is from one self-attention layer in the highest resolution, which utilizes our
observation in Section 4.

6 Experimental Validation on Multiple Discriminative Tasks

To validate the effectiveness of our feature selection solution, the experiments are conducted on three
popular discriminative tasks: semantic correspondence, semantic segmentation, and label-scarce
segmentation. The SOTA methods for each task are selected as competitors. Besides, we also
compare with two baselines that select the conventional inter-module activations as features [2],
named Legacy-v1.5 and Legacy-XL. For our method, we provide the following implementations:

• Ours-v1.5 & Ours-XL: Features extracted from SDv1.5 and SDXL, respectively.

• Ours-XL-t: For fairness, we further enhance SDXL features with some additional techniques
that are also adopted by SOTAs. The techniques we select, i.e., attention maps [58] and feature
amalgamation [2, 29, 60], are relatively simple and lightweight.

More experimental details are in Appendix C, such as task information, evaluation metrics, and
implementation details. Besides, Appendix D presents additional results not covered here.

6.1 Empirical Results on Semantic Correspondence

We present the experimental results for semantic correspondence in Table 1. From the results, we
have the following observations:

8



Table 2: Experimental results on semantic segmentation and its altered version with scarce labeled
data, evaluated using mIoU↑ metric. The best results are in bold font and the runner-up is underlined.

Category Method Standard Setting Method Label-Scarce Setting
ADE20K CityScapes Horse-21

SOTA

MaskCLIP 23.70 - SwAVw2 54.0 ± 0.9
ODISE 29.90 - MAE 63.4 ± 1.4
VPD 37.63 55.06 DatasetDDPM 60.8 ± 1.0
Meta Prompts 40.89 71.94 DDPM 65.0 ± 0.8

Baseline Legacy-v1.5 40.26 64.01 Legacy-v1.5 59.4 ± 1.3
Legacy-XL 27.78 71.67 Legacy-XL 53.0 ± 0.9

Ours
Ours-v1.5 41.07 64.10 Ours-v1.5 60.2 ± 0.9
Ours-XL 43.45 74.47 Ours-XL 62.7 ± 0.7
Ours-XL-t 45.71 75.89 Ours-XL-t 66.3 ± 0.9

(i) Ours-v1.5 outperforms Legacy-v1.5 (77.78 v.s. 75.14 on PCK@0.1img). The main reason is
that Legacy-v1.5 fails to effectively handle the diffusion noises in high-resolution activations.
Previous approaches either reserve the noisy activations and thus suffer from performance
degradation [2, 52], or simply discard high-resolution activations and thus suffer from informa-
tion loss [58, 46]. In contrast, our approach uses self-attention locality to suppress diffusion
noises and harvest better high-resolution activations.

(ii) Legacy-XL is inferior to Legacy-v1.5 (66.00 v.s. 75.14 on PCK@0.1img). At first glance, this
result is counter-intuitive since SDXL is more advanced than SDv1.5. However, the analysis
in Section 4 can unravel the mystery. Specifically, since SDXL has more ViT modules, the
more valuable activations shift from inter-module positions to these embedded ViTs. Since
the baseline does not consider ViT modules, Legacy-XL fails to achieve better performance.
In contrast, Ours-XL shows improvement over Ours-v1.5 (81.72 v.s. 77.78 on PCK@0.1img).
This is consistent with the advance in model architecture and again validates our analysis.

(iii) Ours-XL-t significantly outperforms the SOTA method with a similar amalgamation technique,
i.e., DHF [29] (83.90 v.s. 72.56 on PCK@0.1img). This performance gain again validates the
effectiveness of our method.

6.2 Empirical Results on Semantic Segmentation

As shown in the left part of Table 2, Ours-XL-t and Ours-XL achieve state-of-the-art performance
on the semantic segmentation task (45.71 and 43.45 v.s. 40.89 on ADE20K), demonstrating its
effectiveness and generalizability. Furthermore, the most competitive SOTA, Meta Prompts [46],
introduces a large number of trainable parameters and uses the diffusion U-Net recurrently, which is
rather time-consuming. In contrast, our method delivers superior results with efficiency maintained.

Unlike the results in semantic correspondence, Legacy-XL outperforms Legacy-v1.5 on CityScapes
(71.67 v.s. 64.01), and the performance gap between Legacy-v1.5 and Ours-v1.5 is narrow (64.01
v.s. 64.10). This is because this task utilizes a relatively large-scale downstream model, which
can significantly refine the input features and thus reduce the gap in feature quality. Nevertheless,
Ours-XL still achieves a significant improvement over Legacy-XL (74.47 v.s. 71.67).

6.3 Empirical Results on Label-Scarce Segmentation

One advantage of diffusion features is the applicability to label-scarce scenarios [2]. For validation
under such conditions, we experiment on the label-scarce segmentation task, with results presented in
the right part of Table 2. The observations are generally similar to those on the semantic correspon-
dence task. For example, Ours-v1.5 outperforms Legacy-v1.5 (60.2 v.s. 59.4), Legacy-XL is inferior
to Legacy-v1.5 (53.0 v.s. 59.4), and Ours-XL is better than Ours-v1.5 (62.7 v.s. 60.2).

Next, we focus on the comparison with the SOTA method, DDPM [2]. Although DDPM is a
relatively early study, it outperforms the other competitors and our most implementations. This result
has two reasons. On one hand, DDPM performs the diffusion process directly in the image space
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rather than the currently common practice of compressed latent space. Although inefficient, such an
implementation yields better discriminative features. On the other hand, DDPM utilizes diffusion
models specifically trained on each dataset. In comparison, we use pre-trained general-purposed
SDv1.5 or SDXL to be more efficient and thus consistent with the motivation of diffusion feature.
Hence, it is rather challenging to surpass this SOTA method. Fortunately, our best implementation,
Ours-XL-t, achieves this goal with the help of additional lightweight techniques (66.3 v.s. 65.0).

7 Conclusion and Future Work

In this study, we revisit the fundamental problem of feature selection from diffusion U-Nets. We
point out that prior arts only consider a limited range of potential activations. In contrast, we consider
a much wider range of activations as candidates, especially those extracted from the embedded ViT
modules. Given the large volume of the candidate pool, we first analyze the properties of diffusion
U-Nets. The properties we find are universal such that our observations are not limited to the specific
diffusion architecture. Based on these properties, we qualitatively filter out many activations with low
quality, facilitating the following quantitative comparison. On top of this, concrete feature selection
solutions are proposed for two popular diffusion models, i.e., SDv1.5 and SDXL. Finally, extensive
experiments on three discriminative tasks validate the effectiveness of our method.

However, we are not sure whether our observations can generalize well to recently-developed DiT
models [35] since they have a markedly different architecture from U-Net-based diffusion models.
Thus, analyzing DiT models is a promising topic for future research.
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A Additional Visualization for Distinct Properties of Diffusion U-Nets

A.1 Visualization of Other Sample Images

We have provided activation visualization from SDXL in a simple outdoor scene presenting a horse in
the wild. Next, we will show visualization from the same model in different scenes to demonstrate the
universality of the observed properties. Another simple outdoor scene presenting a cat is in Figure 5.
Two simple indoor scenes are visualized in Figure 6 and Figure 7. Two complex outdoor scenes
of urban streets are visualized in Figure 8 and Figure 9. Two complex indoor scenes are shown in
Figure 10 and Figure 11.

Figure 5: Visualization of SDXL activations on a simple outdoor scene.

Figure 6: Visualization of SDXL activations on a simple indoor scene.

16



Figure 7: Visualization of SDXL activations on a simple indoor scene.

Figure 8: Visualization of SDXL activations on a complex outdoor scene.

A.2 Visualization from Other Diffusion Models

Playground v2 Activations. Playground v22 shares the same architecture as SDXL but is trained
independently, and it is claimed to be more powerful in generation. In Figure 12, we present its
activation visualization using the same horse image as the primary SDXL visualization. Compared to
SDXL, Playground v2 activations are less noisy, particularly in the down-stage. This supports the
claim that Playground v2 is a stronger model.

SDv1.5 Activations. SDv1.5, as an older model, has a slightly different architecture from SDXL.
Specifically, SDv1.5 has four resolutions instead of three, but its ViTs contain only one layer.
Moreover, in SDXL, only the highest resolution lacks ViT due to efficiency concerns, while in

2https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic
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Figure 9: Visualization of SDXL activations on a complex outdoor scene.

Figure 10: Visualization of SDXL activations on a complex indoor scene.

SDv1.5, only the lowest resolution lacks ViT due to its low resolution. Despite the architectural
changes, the three unique properties still apply to SDv1.5, as shown in Figure 13.

Video Diffusion Activations. To further demonstrate the universality, we even select a diffusion
model for video generation [6] for visualization. This model is based on the SDv1.5 architecture, with
an additional temporal attention layer inserted after cross-attention to enable sequential generation.
Although this model is designed for a different task, we can still observe the three unique properties
in Figure 14.

Conventional U-Net Activations. As comparison to diffusion U-Net, we also visualize some
activations from a conventional U-Net in Figure 15, where the three properties of diffusion U-Net can
hardly be observed.
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Figure 11: Visualization of SDXL activations on a complex indoor scene.

Figure 12: Visualization of Playground v2 activations on a simple outdoor scene.
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Figure 13: Visualization of SDv1.5 activations on a simple outdoor scene.

Figure 14: Visualization of the activations of a video diffusion model. The input is a short video, and
we visualize one frame of it.
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Figure 15: Activation visualization from a traditional U-Net for semantic segmentation [57].
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B Details of Our Method

In this section, we index all diffusion U-Net components in the order in which they are activated
during a network forward run. Besides descriptions in natural language, we also index the activations
using the same notations as used in our code implementation. These notations denote stages using
down/mid/up, resolutions as level, and module index as repeat. Index starts to count from 0 instead of
1, following the convention in coding.

B.1 Feature Selection Solution for SDv1.5

We select four activations from SDv1.5, maintaining the same total feature channels as the conven-
tional way to extract all output activations from each resolution.

(i) The cross-attention query activation from the 2nd ViT, the 2nd resolution. This provides coarse
information for simple scenes (up-level1-repeat1-vit-block0-cross-q).

(ii) The inter-module activation after the 3rd ResModule, the 2nd resolution. This provides coarse
information for complex scenes (up-level1-repeat2-res-out).

(iii) The cross-attention query activation from the 2nd ViT, the 3rd resolution. This provides finer
information with a higher resolution (up-level2-repeat1-vit-block0-cross-q).

(iv) The self-attention key activation from the 1st ViT, the 4th resolution. This extracts features
from the highest resolution, harnessing the noise suppression effect of self-attention locality
(up-level3-repeat0-vit-block0-self-k).

We omit the index of basic blocks in ViTs, as SDv1.5 only contains one-layer ViTs. Additionally,
we totally ignore the lowest resolution, as its activations have very low resolution (8× 8 if the input
image is 512× 512), suggesting inferiority, as supported by the quantitative comparison.

B.2 Feature Selection Solution for SDXL

Four activations are selected from SDXL, trying to get similar total feature channels to the SDv1.5
feature selection solution.

(i) The output activation after the 8th basic block, the 1st ViT, the 1st resolution. This provides
relatively coarse information for simple scenes (up-level0-repeat0-vit-block7-out).

(ii) The output activation after the 6th basic block, the 1st ViT, the 1st resolution. This provides
relatively coarse information for complex scenes (up-level0-repeat0-vit-block5-out).

(iii) The cross-attention query activation from the 1st basic block, the 1st ViT, the 2nd resolution.
This provides relatively fine information for simple scenes (up-level1-repeat0-vit-block0-cross-
q).

(iv) The output activation after the 1st basic block, the 1st ViT, the 2nd resolution. This provides
relatively fine information for complex scenes (up-level1-repeat0-vit-block0-out).

We ignore the highest resolution since it is affected by diffusion noises and lacks ViTs from which
we can extract self-attention activations. However, if the downstream model is strong enough to
learn to suppress noises, it may be possible to additionally extract inter-module activations from this
resolution to harness more information.

B.3 Feature Selection Solution with Additional Techniques

For the setting Ours-XL-t, we mainly utilize two simple techniques that are also adopted in some
SOTA methods: (i) We additionally extract attention maps, i.e., the similarity scores of cross-attention
query and key, as dense features [58, 52]. Such attention maps are closely related to the semantics of
prompts, thus providing important supplementary information. Despite its usefulness, this technique
only adds a few additional channels to the features. (ii) We amalgamate features from different
models [2, 29, 60] through simple concatenation. This technique is a common practice and can be
seen as an extension of amalgamating different activations together as a whole feature. We next
explain what activations are selected to implement the two techniquess.
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We first extract features according to the feature selection solution for SDXL. Afterward, we extract
additional features from SDv1.5:

(i) The cross-attention query activation from the 2nd ViT, the 2nd resolution (up-level1-repeat1-
vit-block0-cross-q).

(ii) The cross-attention query activation from the 2nd ViT, the 3rd resolution (up-level2-repeat1-
vit-block0-cross-q).

(iii) The upsampler output activation from the 3rd resolution, to harness high-resolution information
(up-level2-upsampler-out).

(iv) The self-attention key activation from the 1st ViT, the 4th resolution, to harness high-resolution
information (up-level3-repeat0-vit-block0-self-k).

(v) The attention maps averaged over all cross-attention layers in the up-stage.

We also extract one feature from Playground v2: the output activation after the 4th basic block, the
1st ViT, the 1st resolution (up-level0-repeat0-vit-block3-out).

B.4 Alternative Feature Selection Solution with Additional Techniques

Large-scale datasets for semantic segmentation mostly consist of images of complex scenes. In such
cases, we find attention maps can be too noisy to be useful. Therefore, we discard the attention map
technique and the entire SDv1.5 model, as it is weaker compared to the newer SDXL and Playground
v2 models. To compensate for the loss of activations, we select additional activations from SDXL
and Playground v2.

From SDXL, we select all the activations as described in the feature selection solution for SDXL and
select one additional activation: the upsampler output activation from the 2nd resolution, to harness
high-resolution information (up-level1-upsampler-out). From Playground v2, we select the following
activations:

(i) The output activation after the 6th basic block, the 1st ViT, the 1st resolution (up-level0-repeat0-
vit-block5-out).

(ii) The cross-attention query activation from the 1st basic block, the 1st ViT, the 2nd resolution
(up-level1-repeat0-vit-block0-cross-q).

(iii) The upsampler output activation from the 2nd resolution (up-level1-upsampler-out).

C Experimental Details

C.1 Semantic Correspondence

Task and Dataset. Semantic correspondence [18] involves finding a pixel in an image that semanti-
cally matches another keypoint pixel in a reference image, such as the hind legs of two different cats.
We conduct experiments on the SPair-71k dataset [30].

Evaluation Metric. PCK@0.1img(↑) and PCK@0.1bbox(↑) are used, following the widely-adopted
protocol reported in [30]. These two metrics mean the percentage of correctly predicted keypoints,
where a predicted keypoint is considered to be correct if it lies within the neighborhood of the
corresponding annotation with a radius of 0.1×max(h,w). For PCK@0.1img/PCK@0.1bbox, h,w
denote the dimension of the entire image/object bounding box, respectively.

SOTA Competitors. We provide the results from four SOTA methods: DINO [4] and DHPF [31] as
non-diffusion-feature methods, as well as DIFT [41] and DHF [29] as diffusion feature methods.

Implementation Details. The semantic correspondence task can be done via the nearest neighbor
algorithm [42], which is unsupervised and training-free [30]. We add one additional trainable
convolutional layer before applying the nearest neighbor algorithm to refine the input features, which
is also adopted by some SOTAs including DHF. The model is trained for two epochs, each containing
5,000 sample pairs, following conventional settings. Our implementation is derived from DHF, and
we keep all hyper-parameters at their default settings.
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C.2 Semantic Segmentation

Task and Dataset. Semantic segmentation [18] is essentially pixel-level classification. For this task,
we choose the ADE20K dataset [59] with over 20k annotated images of 150 semantic categories, and
the CityScapes dataset [8], which contains 5,000 fine annotated images of urban street scenes.

Evaluation Metric. We use mIoU metric, which is the mean over the IoU performance across all
semantic classes [18]. For each image, IoU (Intersection over Union, ↑) is defined by #(overlapped
pixels between the prediction and the ground truth) / #(union pixels of them).

SOTA Competitors. We choose three diffusion feature SOTA methods as competitors. ODISE [52]
is an early method with a simple implementation. VPD [58] is another early study of this field, which
introduces additional text adapter modules for improvement. Meta Prompts [46] is a newer method
and shows significant improvements. We also report the performance of MaskCLIP [11], which is
included as a competitor in the ODISE study.

Implementation Details. Both VPD and Meta Prompts perform full-scale fine-tuning on the diffusion
U-Net using feedback from the discriminative task. This heavy fine-tuning does not entirely comply
with the motivation of diffusion feature, which seeks a balance between wider applicability and less
training, and is hard to extend to the larger SDXL model. Therefore, we keep the entire diffusion
model frozen instead. As the setting has been changed, the performance of VPD and Meta Prompts
in Table 2 is based on our experiments, not the reported results from the original papers. Our
implementation directly uses the hyper-parameters reported in Meta Prompts.

C.3 Label-Scarce Segmentation

Task and Dataset. Using features from a pre-trained diffusion model ensures good performance
even when labeled training data is scarce [2]. For this setting, we use a dataset collected in [2] and
experiment on its Horse-21 subset, the data of which is sourced from LSUN [54]. This subset contains
only 30 labeled training images to be consistent with the intuition. The semantic segmentation in the
label-scarce scenario also uses the mIoU metric.

SOTA Competitors. We select the SOTA diffusion feature approach, DDPM [2], as the major
competitor. We also include other representative segmentation methods: DatasetDDPM, MAE [19],
SwAV [3], which are all reported in [2].

Implementation Details. Following DDPM [2], the downstream model is an ensemble of ten simple
MLP networks, each conducting pixel-wise classification. The simplicity of the model is intended to
demonstrate the innate capability and generalizability of diffusion models. Our implementation is
derived from DDPM with only batch size changed among all hyper-parameters. We use a larger batch
size for faster experiments as a smaller one does not improve performance. Additionally, this is
also the setting for the quantitative comparison, as the compact size of the dataset can enhance
efficiency.

D Additional Experimental Results

D.1 Generalizability across Different Scenes

As stated in Section 5, it is preferable to conduct the quantitative comparison across multiple datasets
and choose activations that are optimal for each. This approach can enhance the generalizability of
the selected features. To evaluate the generalizability of our features, we conducted an additional
experiment, with results presented in Table 3.

In this experiment, we design an alternative feature selection solution for SDXL, based solely on
quantitative results from a single dataset consisting of simple scenes. In this solution, we extract both
optimal and slightly sub-optimal activations, maintaining the same total number of feature channels
as the standard solution. The alternative solution achieves higher performance on the simple scene
it is based on but performs significantly worse on the other scene. Therefore, we conclude that our
standard feature selection solution achieves generalizability across different scenes, albeit with a
slight performance drop compared to features specifically selected for each scene.
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Table 3: Examination of generalizability across different scenes. Generic Solution refers to our
standard feature selection solution for SDXL, while Specific Solution refers to the outcome of
considering only a simple scene for the quantitative comparison. The experiment is conducted on
the label-scarce segmentation task, where the Horse-21 subset is used for simple scenes and the
Bedroom-28 subset is used for complex scenes. We mark the better results as bold font.

Method Simple Scene Complex Scene

Generic Solution 63.34 47.55
Specific Solution 63.70 45.41

D.2 Quantitative Comparison Results

In this part, we present all the quantitative comparison results obtained following the protocol
described in Section 5. These results are from a dataset of simple scenes (Horse-21 [2]) and a
dataset of complex scenes (Bedroom-28 [2]). Since SDXL and Playground v2 share the same U-Net
architecture, their results are shown in the same tables. We display the results from the lowest
resolution in Table 4 and the results from the middle resolution in Table 5. We have also done a
quantitative comparison on SDv1.5, and the results are shown in Table 6.
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Table 4: Quantitative comparison results of SDXL and Playground v2. This table shows the results
from the lowest resolution. Activation ID indicates the location of each activation in the diffusion
U-Net. The best results are in bold font and the runner-up is underlined.

Activation ID SDXL Playground v2
Simple Complex Simple Complex

up-level0-repeat0-res-out 53.49 38.52 54.57 40.73
up-level0-repeat0-vit-block0-cross-q 56.46 42.31 55.32 41.93
up-level0-repeat0-vit-block0-out 57.36 42.31 56.60 44.52
up-level0-repeat0-vit-block1-cross-q 57.82 42.72 56.44 43.93
up-level0-repeat0-vit-block1-out 58.73 42.62 58.12 45.82
up-level0-repeat0-vit-block3-cross-q 58.27 43.09 57.79 45.90
up-level0-repeat0-vit-block3-out 58.95 44.83 59.04 47.81
up-level0-repeat0-vit-block5-cross-q 57.30 44.36 56.97 47.38
up-level0-repeat0-vit-block5-out 58.70 45.26 58.67 49.77
up-level0-repeat0-vit-block7-cross-q 57.24 43.00 57.69 48.51
up-level0-repeat0-vit-block7-out 58.95 44.83 58.76 48.39
up-level0-repeat0-vit-block9-cross-q 57.06 41.73 56.03 44.68
up-level0-repeat0-vit-block9-out 58.46 43.98 56.59 48.54
up-level0-repeat0-vit-out 58.36 41.54 57.99 43.95
up-level0-repeat1-res-out 57.28 39.27 56.59 41.74
up-level0-repeat1-vit-block0-cross-q 55.72 40.96 55.56 43.97
up-level0-repeat1-vit-block0-out 56.70 40.97 57.51 43.35
up-level0-repeat1-vit-block1-cross-q 57.92 41.65 56.37 42.10
up-level0-repeat1-vit-block1-out 57.38 42.25 57.20 43.10
up-level0-repeat1-vit-block3-cross-q 56.55 40.50 55.00 42.50
up-level0-repeat1-vit-block3-out 56.41 40.97 57.54 42.92
up-level0-repeat1-vit-block5-cross-q 54.92 39.66 54.89 40.79
up-level0-repeat1-vit-block5-out 55.86 40.66 56.32 42.48
up-level0-repeat1-vit-block7-cross-q 51.63 39.01 52.72 38.37
up-level0-repeat1-vit-block7-out 53.97 39.79 55.90 41.34
up-level0-repeat1-vit-block9-cross-q 50.27 36.42 36.09 24.81
up-level0-repeat1-vit-block9-out 53.31 38.58 53.19 40.30
up-level0-repeat1-vit-out 57.89 38.91 57.00 42.87
up-level0-repeat2-res-out 56.11 36.37 55.95 40.62
up-level0-repeat2-vit-block0-cross-q 56.09 36.68 55.56 41.29
up-level0-repeat2-vit-block0-out 57.14 37.16 56.48 41.14
up-level0-repeat2-vit-block1-cross-q 55.38 34.87 56.15 39.78
up-level0-repeat2-vit-block1-out 56.36 35.63 56.71 40.93
up-level0-repeat2-vit-block3-cross-q 55.26 34.40 54.98 38.70
up-level0-repeat2-vit-block3-out 55.50 34.61 56.77 39.36
up-level0-repeat2-vit-block5-cross-q 52.70 33.16 54.70 37.93
up-level0-repeat2-vit-block5-out 54.68 33.75 55.75 38.95
up-level0-repeat2-vit-block7-cross-q 51.91 31.97 52.92 35.58
up-level0-repeat2-vit-block7-out 53.07 32.43 54.07 36.91
up-level0-repeat2-vit-block9-cross-q 49.22 29.34 41.07 18.48
up-level0-repeat2-vit-block9-out 51.41 30.64 51.31 35.64
up-level0-repeat2-vit-out 53.77 33.79 54.24 37.53
up-level0-upsampler-out 53.21 32.85 53.97 36.30
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Table 5: Quantitative comparison results of SDXL and Playground v2. This table shows the results
from the middle resolution. Activation ID indicates the location of each activation in the diffusion
U-Net. The best results are in bold font and the runner-up is underlined.

Activation ID SDXL Playground v2
Simple Complex Simple Complex

up-level1-repeat0-res-out 47.84 30.12 47.49 31.63
up-level1-repeat0-vit-block0-cross-q 49.08 31.75 47.96 32.53
up-level1-repeat0-vit-block0-out 46.74 31.14 46.49 30.71
up-level1-repeat0-vit-block1-cross-q 44.78 30.56 44.21 28.58
up-level1-repeat0-vit-block1-out 42.20 27.32 40.90 27.13
up-level1-repeat0-vit-out 46.93 29.35 46.08 30.15
up-level1-repeat1-res-out 41.36 26.81 41.51 28.09
up-level1-repeat1-vit-block0-cross-q 39.25 27.02 39.92 27.72
up-level1-repeat1-vit-block0-out 38.64 25.68 39.47 27.60
up-level1-repeat1-vit-block1-cross-q 36.76 24.57 37.20 25.82
up-level1-repeat1-vit-block1-out 34.74 23.20 34.88 24.32
up-level1-repeat1-vit-out 39.16 25.48 39.87 26.82
up-level1-repeat2-res-out 33.58 23.99 36.30 25.26
up-level1-repeat2-vit-block0-self-k 31.63 22.98 33.97 23.88
up-level1-repeat2-vit-block0-cross-q 32.16 24.97 34.30 24.83
up-level1-repeat2-vit-block0-out 31.31 23.51 34.81 25.27
up-level1-repeat2-vit-block1-self-k 30.39 22.99 33.01 25.44
up-level1-repeat2-vit-block1-cross-q 27.65 22.61 32.40 24.01
up-level1-repeat2-vit-block1-out 27.66 22.35 31.44 24.24
up-level1-repeat2-vit-out 27.61 19.80 26.29 18.61
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Table 6: Quantitative comparison results of SDv1.5. Activation ID indicates the location of each
activation in the diffusion U-Net. The best results are in bold font and the runner-up is underlined,
both marked per resolution.

Activation ID SDv1.5
Simple Complex

up-level1-repeat0-res-out 47.16 37.86
up-level1-repeat0-vit-block0-cross-q 47.59 41.13
up-level1-repeat0-vit-block0-out 48.59 39.75
up-level1-repeat0-vit-out 48.21 39.91
up-level1-repeat1-res-out 49.71 40.80
up-level1-repeat1-vit-block0-cross-q 49.04 42.80
up-level1-repeat1-vit-block0-out 49.88 39.43
up-level1-repeat1-vit-out 50.23 40.98
up-level1-repeat2-res-out 50.61 39.47
up-level1-repeat2-vit-block0-cross-q 50.10 38.80
up-level1-repeat2-vit-block0-out 49.09 37.44
up-level1-repeat2-vit-out 49.62 36.69

up-level2-repeat0-res-out 52.43 37.98
up-level2-repeat0-vit-block0-cross-q 52.59 39.63
up-level2-repeat0-vit-block0-out 51.56 36.62
up-level2-repeat0-vit-out 52.29 38.78
up-level2-repeat1-res-out 53.30 36.65
up-level2-repeat1-vit-block0-cross-q 53.58 39.82
up-level2-repeat1-vit-block0-out 50.70 35.96
up-level2-repeat1-vit-out 50.50 35.59
up-level2-repeat2-res-out 48.47 33.70
up-level2-repeat2-vit-block0-self-q 45.44 32.45
up-level2-repeat2-vit-block0-self-k 45.69 32.71
up-level2-repeat2-vit-block0-cross-q 46.24 32.95
up-level2-repeat2-vit-block0-out 45.33 32.23
up-level2-repeat2-vit-out 45.04 28.87
up-level2-upsampler-out 45.07 29.57

up-level3-repeat0-vit-block0-self-q 38.81 25.72
up-level3-repeat0-vit-block0-self-k 37.78 26.04
up-level3-repeat1-vit-block0-self-q 31.64 24.02
up-level3-repeat1-vit-block0-self-k 32.07 24.00
up-level3-repeat2-vit-block0-self-q 29.24 21.27
up-level3-repeat2-vit-block0-self-k 29.19 21.39
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Figure 16: This visualization compares the high-frequency noises in various activations, showing
three types of increment activations with strong noises.

Figure 17: This visualization shows the granularity change across all inter-module activations of
one resolution. At the end, the activations start to contain some slight noises, which is a sign of
over-refinement.

E Other Properties of Diffusion U-Nets

E.1 High-Frequency Noises in Increment Activations

Typically, high-frequency signals are usually noisy [5, 34]. This applies to the diffusion U-Net, and
we can further examine what activations are more vulnerable to such noises. To be specific, the
diffusion U-Net contains many residual connection structures, and their increment activations are
high-frequency signals prone to noises. Such increment activations include:

(i) The increment branch of ResModule. These activations are moderately noisy and thus usually
less effective than inter-module activations.

(ii) The feed-forward layer activations within ViTs. These activations are also moderately noisy.
However, this results from their significantly more channels compared to other activations,
which can reduce their noise magnitude.

(iii) The self-attention value activations within ViTs. These activations are severely noisy and suffer
significant degradation as they are the nested inner increments within embedded ViTs.

These activations are visualized in Figure 16 for a clearer illustration. Additionally, the residual
activations within ViTs are at the same time also increments to the main inter-module residual.
However, these activations are not obviously affected by high-frequency noise, possibly due to their
dual role as ViT residuals.

E.2 Detailed In-Resolution Granularity Change

We have previously described the existence of in-resolution granularity changes, and this section
will further detail the pattern of one such change. In one resolution of the up-stage, activations
gradually shift from coarse to fine granularity, which aligns with intuition. However, the diffusion
U-Net tends to overly refine the inter-module activations, resulting in slight noises in the last few
inter-module activations due to excessive detail. This can be observed from the visualization of
Figure 17. Consequently, a drop in discriminative performance is often seen near the end of one
resolution.

E.3 Collaboration between Embedded ViTs

Multiple ViTs exist within one resolution; for example, one resolution in the up-stage typically
contains three ViTs. These ViTs collaborate in refining the main inter-module residual. During this
process, each ViT exhibits an inner granularity change as it produces the increment activation, and the
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Figure 18: This visualization shows that the collaborating ViTs within one resolution contain
overlapped and shifting granularity changes.

changes of collaborating ViTs form a certain pattern. To be specific, the change of one ViT overlaps
with the previous one to some extent but also shifts as a whole towards finer granularity, which is
shown in Figure 18.

F Future Direction

It might be a good future direction to focus on more challenging discrimination scenarios. Specifically,
long tail and out-of-distribution are important problems in discrimination, which can greatly hinder
the performance of models that work well under i.i.d. settings [49]. There have been a few attempts
to address this more challenging problem with diffusion models. For example, the disentanglement
property of prompts might grant diffusion features cross-domain capability [16]. It is also possible to
utilize diffusion models to synthesize training samples to adjust training data distribution [50, 55].
Given these attempts, more efforts are still required to be put in this direction. Moreover, there is
a recent study [17] that might boost long tail and out-of-distribution discrimination using diffusion
models. To be specific, AUC is an evaluation metric as well as a loss function that promotes good
performance on both head and tail samples, which is an important tool for long tail and out-of-
distribution studies [47, 48]. Conventionally, AUC is applicable to image classification but not
semantic segmentation and other pixel-level tasks, but the aforementioned study manages to adopt
AUC for semantic segmentation. Given this new tool, it is now made more viable to attempt to
enhance diffusion feature on long tail and out-of-distribution problems.

G Computation Resources

We use Nvidia(R) RTX 3090 and Nvidia(R) RTX 4090 GPUs for the experiments, all with 24GB
VRAM. Most of our experiments, except label-scarce segmentation, require no additional storage
besides the necessary space for model checkpoints and datasets. The label-scarce segmentation task
first extracts features and stores them on the disk, and then loads them for the downstream task, which
takes about 4GB.

The codes are designed to be able to run on a single GPU or less than 4 GPUs, while multiple
experiments can run simultaneously if more GPUs are provided. Each experiment on the semantic
correspondence task takes about 5 hours. Each experiment on the large-scale semantic segmentation
task takes 2 to 3 days, depending on the dataset. Each experiment on the label-scarce segmentation
task takes about 1 hour, but we repeat on 5 random splits following [2], which increases the overall
time. All the experiments in sum can be done within two weeks.

Our quantitative comparison is based on the label-scarce segmentation task, each run taking about
40 minutes. The time is shorter because the quantitative comparison evaluates each activation
individually. This comparison uses large storage, which is about 45GB per model per dataset. With
the help of qualitative filtering, we can finish the quantitative comparison of one model on one dataset
within 2 days.
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H Asset License

• SPair-71k: Available at https://cvlab.postech.ac.kr/research/SPair-71k/.
• Label-scarce segmentation datasets (sourced from LSUN): Available at https://github.com/
fyu/lsun.

• ADE20K: Custom (research-only, non-commercial), at https://groups.csail.mit.edu/
vision/datasets/ADE20K/terms/.

• CityScapes: Custom, at https://www.cityscapes-dataset.com/license/.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our contributions in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 7, which are mainly related to DiT
models [35].
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not make theoretical contributions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The most important information to reproduce our results is the exact activations
we select as features, and it is detailed in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We will release the codes after acceptance. Besides, we have provided the
necessary information for reproducing the experiments in this manuscript.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have included the experimental details in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars for some experimental results. Others are omitted as it
can too computationally expensive, such as about two days per run.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no socetal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers where related assets are first mentioned and list
their license in Appendix H.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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