Under review as a conference paper at ICLR 2025

UNLEASHING THE POTENTIAL OF CLASSIFICATION
WITH SEMANTIC SIMILARITY FOR DEEP IMBALANCED
REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have empirically demonstrated the feasibility of directly incorpo-
rating classification regularizers into Deep Imbalanced Regression (DIR). By seg-
menting the entire dataset into distinct groups and performing classification reg-
ularization on these groups, previous works primarily focused on maintaining the
ordinal consistency between the feature space and the label space to capture the
continuity of data in DIR. However, this direct integration would also lead the
model to focus merely on learning discriminative features during representation
learning and potentially distort the geometrical structure of the feature space due
to the label imbalance during the fine-tuning phase in DIR. As a result, semantic
similarity, namely, instances with similar labels would also be close to each other,
can be leveraged to address the imbalance in DIR but has always been ignored.
Consequently, the effectiveness of these classification-based approaches would be
significantly undermined in DIR. To tackle this problem, we investigate the sim-
ilarity characteristics of the data in DIR and propose an end-to-end solution to
unleash the potential of classification in helping DIR. Specifically, we first split
the objective of DIR into a combination of a global inter-group imbalance group
classification task and a local intra-group imbalance instance regression task. To
fully exploit the potential of classification under the DIR task, we propose both
a symmetric and asymmetric soft labeling strategy to capture the global semantic
similarity to handle the cross-group imbalance. In the meantime, we employ label
distribution smoothing to leverage the instance semantic similarity in addressing
the intra-group instance imbalance with a multi-head regressor. Furthermore, we
link up the group classification to guide the learning of the multi-head regressor,
which can further harness the classification to help the DIR from end to end. Ex-
tensive experiments in real-world datasets also validate the effectiveness of our
proposed method. The code can be found in https://anonymous.4open.
science/r/ICLR2025submission—9415/README . mdl

1 INTRODUCTION

Deep imbalanced regression (DIR) aims to perform regression tasks with deep neural networks on
particular datasets where certain labels are much less observed than others|Yang et al.[(2021). While
the goal of classification tasks is to predict discrete class labels to model the training distribution,
in contrast, the label space in regression is always continuous and infinite. To tackle this problem,
recent research focused on capturing the label continuity in DIR.

By segmenting the whole dataset into distinct and continuous groups, previous works incorporated
classification regularizers (e.g. representation learning regularizers) to maintain the continuity of
the labels in the feature space. Specifically, these researches has explored extensively in preserving
the ordinal nature of the feature space. For instance, (Gong et al.|(2022)) proposed a ranking regular-
ization to align the sorting of features with their corresponding labels. [Zhang et al.[(2023a) used an
ordinal entropy regularizer to maintain the ordinal relationships between the feature and the label.
Zha et al.| (2023)) proposed a contrastive regularization to learn both ordinal and discriminative fea-
ture representation. Similarly, Keramati et al.| (2024) introduced a novel pair selection strategy into
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contrastive learning to pull the positive pairs together and push away the negative pairs given their
corresponding label distance.

However, these methods primarily focus on learning the ordinal characteristics of the data in the
feature space. In the meantime, the integration of classification regularizers would lead the model
to concentrate solely on learning discriminative features Zha et al.| (2023)); Keramati et al.| (2024)
in representation learning and potentially alter the geometrical structure of the feature space due
to the label imbalance during the fine-tuning phase in DIR (e.g. in Fig[T). Therefore, semantic
similarity, another aspect of the continuity in DIR where the similarity across labels would also
reflect the similarity of their features, is always overlooked by the previous works. For example, in
the age regression task, images of age 20 would have similar features to those of ages 15 and 25.
Consequently, the knowledge learned from age 20 can be leveraged to approach the age of 25 or 15
if either of them is less observed in training.

Nevertheless, direct incorporation of the classification regularizers would obliterate this semantic
similarity (e.g. push away effect of the feature representationsKeramati et al. (2024))), which limits
the feasibility of leveraging semantic similarity for tackling the DIR problem. Additionally, these
previous works often treated DIR as merely classification tasks. As the label boundaries in regression
tasks become more fine-grained (with smaller bin sizes |Yang et al.| (2021)), these solutions would
inevitably lead to a heavy computational burden and eventually become infeasible for DIR.

In this paper, we investigate the semantic similarity in DIR to exploit the potential of classification
in helping DIR. Instead of directly incorporating classification regularizers in the feature space as
that of previous works Zhang et al.| (2023a)); |Zha et al.| (2023); [Keramati et al.| (2024), we propose
an end-to-end solution that tackles the DIR in the combination of 1) a global inter-group imbalance
group classification task and 2) a local intra-group imbalance instance (data sample) regression task.
We leverage the semantic similarity from both global and local perspectives to unleash the potential
of classification to address the imbalance in global and local respectively.

Specifically, we first propose a symmetric descending soft labeling strategy to capture the semantic
similarity across the groups in the group classification task. Meanwhile, considering the imbal-
ance across the groups, we also propose an asymmetric soft labeling strategy that incorporates the
imbalance priors of the groups into the symmetric soft labeling to tackle the global imbalance classi-
fication. These soft labeling strategies leverage the semantic similarity between the groups to tackle
the imbalance across the groups, which can effectively capture the intrinsic characteristics of the
data in DIR from a global perspective.

Furthermore, we associate the group predictions from the group classification with a multi-head
regressor to guide each instance forwarding to its corresponding regressor head in an end-to-end
manner. Additionally, to address the imbalance between the instances in each group, we introduce
the local label distribution smoothing to capture the intra-group semantic similarity for each instance
from a local perspective. Hereby, we unleash the potential of the classification in helping DIR by
leveraging the semantic similarity from global to local. We also conduct comprehensive experiments
over three real-world DIR benchmarks to validate the effectiveness of our proposed method.

In summary, our contribution can be concluded as the following:

* We divide the objective of DIR into the combination of 1) a global group imbalance classi-
fication task and 2) a local instance imbalance regression task.

* We leverage the semantic similarity to unleash the potential of classification in helping
regression by proposing a symmetric and asymmetric descending soft labeling strategy and
introducing label distribution smoothing to tackle the imbalance from global to local.

* We associate the global group classification with the local instance regression to address
the DIR from end to end.

2  MOTIVATION

2.1 PRELIMINARY

We denote the training set as {z;, y; } Y, where ; € X', X € R%is the input and y; € ), € Riis
the label, d is the dimension. As|Pintea et al.|(2023)), we divide the whole dataset into G disjoint but
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Figure 1: The t-SNE (AgeDB-DIR) of the features in (a) direct classification-based method Zha et al.
(2023)), (b) classification-based method after fine-tuning (ground truth labeled), (c) classification-
based method after fine-tuning (prediction labeled after fine-tuning). We can observe a clear cluster-
ing structure in the feature space after fine tuning on the regression tasks on both (b) and (c), which
motivates us to exploit the potential of the classification in helping DIR.

continuous groups, each input would correspond to a unique group g € {G} where {G} is the set
of groups with length G, e.g. {G} ={1,...,G} El Also, we denote the deep neural network as the
combination of {f(6),c(1), r(¢{¢})}, where 6 is the parameter of feature extractor f, ¢() is the
parameter of a multi-head regressor r. For one arbitrary input (z,y, g), the feature of one arbitrary
input x is denoted as z = f(x,#), the predicted group of x is denoted as opreq = c(2,%) and the
predicted label of x is denoted as ypreq = 7(2, ¢9) at the head g of regressor r. The empirical label
density is denoted as p(y).

2.2  DISCUSSION ON DIRECT INCORPORATION OF CLASSIFICATION FOR DIR.

Inspired by [Pintea et al.| (2023)), we decompose the objective of DIR into the combination of the
group classification globally over the whole dataset and instance regression locally within each
) . G

group from a Bayesian perspective: p(y|z) = > p(g|lz)p(y|z,g), where g denotes the group
index and G denotes the total number of groups. Therefore, we can model the p(g|x) as the global
group classification and p(y|z, ¢g) as the local instance regression. Consequently, the imbalance of
our regression task has also been divided into the global inter-group classification imbalance and
local intra-group instance imbalance.

When we take the negative log-likelihood of the objective of DIR, we can have the following decom-
position: —log p(y|z) = Zf —log p(g|x) — log p(y|z, g), where the — log p(g|x) can be regarded
as the group classification loss and — log p(y|z, g) can be regarded as the regression loss given g. As
most of the previous works|Zha et al.|(2023); Zhang et al.|(2023a)) which incorporated the classifica-
tion regularizers in the feature space are actually modeling the posterior of the feature representation
p(z|x), there exists a gap between modeling the p(z|x) and the p(g|z) in our decomposition.

Furthermore, at the fine-tuning phase [Zha et al| (2023)), the data dependence |Yang et al. (2021)
and the label imbalance would also affect the mapping process (from p(z|z) — p(y|z) in DIR).
Consequently, the geometrical structure of the feature space would be distorted this fine-tuning
phase. As we can observe from Figl[l] the structure of the feature space in (a) has been modified by
the fine-tuning phase and differs a lot compared to (a) in both (b) and (c) given the label imbalance in
DIR. Therefore, the effectiveness of incorporating classification regularizers would be significantly
limited in addressing the DIR.

Meanwhile, as evident from the clear clustering boundaries in (b) and (c) compared to Figm (a) (red
arrows), it is feasible to leverage the classification in helping the DIR. To fully exploit the classifi-
cation in helping DIR, as we can observe from the above decomposition, the classification objective
of the p(g|x) can be regarded as the re-weight of the regression objective p(y|x, g). Therefore, ac-
curate estimating of the groups would be crucial as the local intra-group instance regression is also
dependent on the estimated group (g as the prior in p(y|z, g)) in our decomposed objective func-
tion. Since we divide the objective of DIR into the global group imbalance classification p(g|z) and
local instance imbalance regression p(y|z, g), a straightforward way to solve this imbalance is to
re-weight the group and instance based on their empirical label density distribution respectively.

' Groups are divided given their labels, e.g., a mapping can be formulated as g = L&].
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However, the data dependence (images with nearby labels) [Yang et al| (2021) would hinder the
accurate estimation of the real label density distribution. Motivated by Yang et al.[(2021) and |Parzen
(1962), we investigate the semantic similarity of the DIR, which is the other aspect of the label
continuity in DIR but always overlooked by previous works, and leverage the semantic similarity
from both the global and local perspective to tackle both inter/intra-group imbalance and preserve
the geometrical structures of the feature space.

3 METHODOLOGY

In this section, we propose both the symmetric and asymmetric soft labeling strategy to capture the
semantic similarity and leverage the imbalance information globally across the divided groups to
tackle the group imbalance. In the meantime, we introduce a label distribution smoothing to acquire
the semantic similarity locally in each divided group to address the local instance imbalance.

3.1 SYMMETRIC DESCENDING SOFT LABELING FOR GLOBAL GROUP CLASSIFICATION

We first address the inter-group imbalance by leveraging the semantic similarity at a group level.
We propose a symmetric descending soft labeling strategy to capture the semantic similarity across
the groups. For a group label g, in the classification with cross-entropy (CE) loss, the group label

is encoded into hard labels as grara = [0,...,1,,...,0] where 1, denotes 1 at g-th index of the
Ghard list. Meanwhile, the loss function is defined as Log = —1,logo,, where o, is the output
logit of the deep model at index g after soft-max (opreq = {...,0q,...}). As we can observe

from the CE, the information from the other group labels is overlooked. Consequently, only the
discriminative information is learned to distinguish the groups from each other while the semantic
similarity characteristics between the groups are ignored.

To tackle this problem, we propose a soft labeling strategy to capture the semantic similarity across
the groups. We first define the symmetric descending soft labeling strategy to convert the group
label g into the soft label g, ; :

Lopi@)=[...G-B,G,G-5,...] 0

where G is at the g-th index of the I7)7}(g) list, G — 1 is at the g + 1-th index of the 177} (g) list
and so on, and f is the hyper-parameter (e.g. 5 = 1) for distinguishing the nearby group labels.
This symmetric descending soft labeling is a pyramid shaping labeling strategy with the peak at the
current group label g and descending symmetrically towards both two sides (index from g to the
start and end index).

Different from traditional soft labeling strategies Hinton et al.| (2015); Diaz & Marathe| (2019), our
symmetric descending soft labeling strategy not only preserves the relative information between the
groups, but also considers the semantic similarity from a global group perspective to deal with the
group imbalance. Consequently, it is feasible for us to unleash the potential of classification for the
regression task in an end-to-end manner by directly modeling p(g|z).

3.2 ASYMMETRIC DESCENDING SOFT LABELING FOR GLOBAL GROUP CLASSIFICATION

We incorporate prior knowledge of group imbalance which is derived from the empirical group
training distribution into the symmetric descending soft labeling above to tackle the imbalance clas-
sification in our objective decomposition. Instead of manually building up the groups with roughly
equal numbers of data samples as |Pintea et al.| (2023), we count down the number of samples per
group and we can obtain: D = [D1, Do, ..., Dg] where D; denotes the number of samples in the
group ¢. Therefore, given different levels of data imbalance across the groups, the symmetric soft
labeling then becomes asymmetric.

Specifically, we calculate the inverse empirical training distribution Pp from the sample count of
the groups D in the following way:

inverse D D D
D:[D17D27"'7DG] PD:[li Gl 717 G2 7"'517 GG }
> Di XD >iDi @
Py Py Pg
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Then, the asymmetric descending soft labeling of a group g is formulated as the following:
leofi” = (Ppllg) © 13071 (g) 3)

where © denotes the element-wise multiplication between two vectors (the inverse empirical group
training distribution and the soft labels), Pp||g denotes the symmetric soft labeling except the prob-
ability at index g (the ground truth group index) in Pp.

For example, for a group with label g, the symmetric soft labeling is [0} = [..., |G|=1, |G|, |G|~

1,...], the (Pp|lg) would be (Ppllg) = [Pi1, Ps, ..., P,, ..., Pg]. Instead of directly adopting the
true empirical probability P, from the Pp, we set P, = 1 in the (Pp |g) which prevents the scaling

sym

of the current group g. Therefore, while the other indexes of the [ t (g) list are scaled by the Pp

with their corresponding empirical probabilities, the index g of the I, 7" remains the same with the

lfg;’; (g9). As each element of the empirical probability in Pp, are statistically less than 1, the scaling
of the symmetric soft labeling are scaling down the element not at the current ground truth index

with the prior imbalance knowledge from Pp.

Apart from the above symmetric soft labeling, our asymmetric soft labeling not only leverages the
knowledge from the whole dataset but also considers the imbalance priors of the groups. As a result,
this asymmetric soft labeling can capture the semantic similarity of the groups in DIR and smooth the
imbalance group distribution with the semantic similarity. By leveraging semantic similarity with
our proposed soft labeling strategy, we tackle the imbalance across the groups through accurately
modeling p(g|x) in a end-to-end manner to unleash the potential of the classification in helping DIR.
After we have obtained the soft labels, we then forward the soft labels into the soft-max. The final

prediction logits of the I5)7" after soft-max would become soft-max (I5,#") = [q1, - .., qc] with

ZZG q; = 1. Therefore, the classification loss (NLL of p(g|x) for an instance is formulated as:

G
Las=—)Y gilogo; )
1=1

noting that this loss is calculated on every index of the logits from index 1 to G.

Understanding why our soft labeling strategy can help to address DIR. By proposing the both
symmetric and asymmetric soft labeling strategy to the DIR, we bridge the gap from the p(z|z) to
p(g|), which is an end-to-end solution to address the imbalance across the groups in the objective
of DIR. Also, our soft labeling strategy can be regarded as a global knowledge smoothing for the
groups. As stated in (Chen et al.| (2021), the divergences of the feature norm between different
training distributions are the main reason that hinders the adaptation from the imbalanced training
to the balanced testing. However, Miiller et al.|(2020) observed that label smoothing can effectively
reduce the feature norms. Based on this observation, our proposed global group label smoothing
can constraint on the feature norms of data instance in the groups and preserve the geometrical
structures of the feature space by leveraging the knowledge from similar data, which can better
handle the distribution divergence between the training and testing distributions and help to address
the imbalance across the groups. Therefore, by leveraging the soft labeling strategy to model the
p(g|z), we can unleash the power of classification in helping DIR.

3.3 LABEL DISTRIBUTION SMOOTHING FOR LOCAL INSTANCE

In order to capture the semantic similarity for the local intra-group instance, inspired by |Yang et al.
(2021)), we introduce the label distribution smoothing (LDS) for each group of data. Specifically, in
LDS, a symmetric kernel (e.g. Gaussian kernel) is adopted to borrow the feature at nearby labels to
redeem for the data imbalance. The smoothed label density of one arbitrary instance (z, y, g) can be
written as the following:

py) = / oy k', y)p(y')dy' 5)

Then, the mean-square error (MSE) loss of this instance can be written as follows:

L5 = DY) (Y — Yprea)” (6)
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where the MSE loss is calculated on the head g of the multi-head regressor. The total MSE over all
G groups is formulated as:

G
Lyse = Zﬁ?WSE @)

g=1

As we can observe from Equation [5} LDS incorporates the semantic similarity of the data instance
at nearby labels. Compared to soft labeling which leverages global semantic similarity across the
entire dataset, LDS focuses on local semantic similarity among neighboring labels. Therefore, our
proposed method can tackle the DIR in a coarse to fine-grained, global-to-local manner.

3.4 GROUP CONTRASTIVE REPRESENTATION LEARNING

In order to fully exploit the potential of the classification, we take advantage of the representation
learning to learn an imbalance-robust feature representation to build up a solid foundation for both
group classification and local instance regression. Considering the fact that our downstream tasks of
DIR (modeling p(g|x) and p(y|z, g)) both involve the group classification and group-guided multi-
heads regression, learning a group-level imbalance-robust feature is crucial for our downstream
tasks. Inspired by |Zha et al.| (2023) and in order to further leverage the classification for the DIR,
we perform the contrastive learning with respect to the groups and formulate the group contrastive
loss (GCL) as the following:

B

B
1 s(zi, 25)
Loor = 55— E E log —5 : (8)
B(B-1) = = k=1 Likid(gi.90) > d(g:,9,)1 (20> 2k)
FE]

where for the index i, j, k of three arbitrary instance index in the batch, s(7, j) denotes the abbreviate
of exp(sim(z;,z;)/t), sim(-) denotes the similarity function, d(-) denotes the distance function,
and exp(-) is the exponential function. Following [Zha et al|(2023), we use cosine similarity as
the sim(-) and L1 distance as the d(-). Moreover, 1 denotes the zero-one indicator, ¢ denotes the
temperature hyper-parameter, and B is the batch size.

3.5 CLASSIFICATION-GUIDED MULTI-HEADS REGRESSION

We formulate the training and inference procedures in this section to show how can we leverage
the classification to help DIR from end to end. During training, we first train the feature encoder
based on the Equation[§] Then, the feature representations would be fed into the classification head
to make the estimation of which group the feature representation should be by penalizing with the
Loss 4| with the Soft Labels Simultaneously, given the ground truth group label, the feature
representations would be forwarded to their corresponding regressor heads with the MSE loss as
[6] At the inference phase, after the feature extraction, we first predict the group labels from the
classification head and then obtain the results at the regressor heads from the previous prediction.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We implement our proposed method on three real-world benchmarks, AgeDB-DIR, IMDB-WIKI-
DIR, and STS-B-DIR. To make a fair comparison, as Yang et al.| (2021); [Zha et al.| (2023); Zhang
et al.[(2023a) we used ResNet-18 as the backbone for AgeDB-DIR, ResNet-50 as the backbone for
IMDB-WIKI-DIR. For the STS-B-DIR, we used BiLSTM + 300 D (dimension) GloVe word embed-
ding as the backbone and the word processing tool to embed each word into a 300-dimension vector.
For the classification head, we adopted a linear layer with G output neurons to make the G-class
classification. For the multi-heads regressor, we used a linear layer of the G output neurons where
each output neuron is corresponding to an independent regressor. We use the mean absolute error
(MAE) and geometric mean (GM) as the measurement of the performance of our proposed method
for AgeDB-DIR and IMDB-WIKI-DIR dataset. Mean square error (MSE) and Pearson Correlation
for the STS-B-DIR dataset. Specifically, we count down the number of instances into different shots
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(majority > 100 /median 20 ~ 100/few shots < 20) and calculate the above measurements over
each shot to make a more comprehensive analysis.

4.2 REAL-WORLD DATASETS

We validate the effectiveness of our proposed method based on the three real-world benchmarks
which has been curated by |Yang et al.|(2021) for the DIR task.

AgeDB-DIR Moschoglou et al.|(2017) is a human facial dataset that contains 12.2K training images,
2.1K testing images and 2.1K validation images. The label of the image is their corresponding age.
The minimum of age is 0 and the maximum is 101.

IMDB-WIKI-DIR Rothe et al.| (2016) is also another large facial datasets collected from the Inter-
net (IMDB-WIKI). It contains 191.5 K training samples, 11K testing samples and 11K validation
samples. The number of samples per label varies from O to 7149. The minimum of the age is 1 and
the maximum is 186. The task is to estimate the age from the input images.

STS-B-DIR |Cer et al|(2017) is a semantic textual similarity benchmark which measures the sim-
ilarity between any arbitrary two-sentence pair collected from video, news headlines and so on. It
contains 5.2K training pairs, 1K testing pairs and 1K validation pairs. The measures vary from 1 to
5 and the granularity is 0.1 for each label. The task is to estimate the similarity of each pair.

4.3 ANALYSIS OF AGEDB-DIR

As we can observe from Table [T} our proposed method symmetric soft labeling strategy can out-
perform other methods in overall MAE (0.05 better than Zha et al.| (2023)), 0.19 better than Wang
& Wang| (2023), and at least 0.2 better than other DIR solutions). Specifically, we have a 1.1 im-
provement compared to the vanilla, 0.9 improvements over the|Yang et al.| (2021}, 0.8 improvements
over the Zhang et al.| (2023a) and 0.4 improvements over the |Gong et al.| (2022) In the meantime,
our proposed asymmetric soft labeling strategy which leveraged the imbalance information from
the training distribution significantly outperforms the symmetric soft labeling strategy. Compared
to other DIR solutions, the overall MAE has a at least 0.18 improvement and the majority MAE
has a at least 0.36 improvement. Additionally, the GM of the majority in asymmetric soft labeling
strategy also outperform the others, which shows the a better prediction fairness in the majority shot
and consequently exhibits a better performance in the overall MAE.

Moreover, compared to Fig[l] (b) and (a), our proposed symmetric and asymmetric soft labeling
strategy can better maintain the geometrical structure of the feature space as shown in Fig[Z] (a)
and (b) compared to Fig[2] (c). The asymmetric soft labeling strategy (Fig[2] (b)) would induce the
feature space not only ordinal as the (a) in Fig|l} but also shows a more obvious cluster boundary
than the symmetric soft labeling strategy (FngE(lb)). As we can observe from Fig[2] the symmetric
and asymmetric soft labeling strategy can better capture the geometric structure than the fine-tuning
in Fig[T[(b) and (c). Furthermore, it showcases that the asymmetric soft labeling strategy can better
leverage the classification compared to the symmetric soft labeling strategy and better capture the
geometric structure than the direct fine tuning (Fig[2](c)). This is because our soft labeling strategy
can be regraded as a smoothing strategy that leverages the information from the nearby labels (both
group and instance), which can unleash the potential of classification in helping the DIR.

(a) (b) (©)

Figure 2: The t-SNE (AgeDB-DIR, 10 groups demo) of the features under (a) symmetric soft label-
ing (b) asymmetric soft labeling (c) cross-entropy (CE).
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Table 1: Evaluation on AgeDB-DIR.

Shot MAE]| GM]
Method All | Many. | Med. | Few. | All | Many. | Med. | Few.
VANILLA 7777 ] 6.62 | 9.55 | 13.67 | 505 | 423 | 7.01 | 10.75
SMOTER [Torgo et al.[(2013) 816 | 7.39 | 8.65 | 1228 | 521 | 4.65 | 5.69 | 8.49
SMOGN Branco et al.[(2017) 826 | 7.64 | 9.01 | 12.09 | 536 | 490 | 6.19 | 844
RRT [Kang et al.[(2020) 77741 698 | 879 | 11.99 | 5.00 | 4.50 | 588 | 8.63
RRT+LDS |Yang et al.|(2021) 77721 7.00 | 875 | 11.62 | 498 | 4.54 | 571 | 827
FOCAL-R|Lin et al.|(2017) 7.64 | 6.68 | 922 | 13.00 | 490 | 426 | 639 | 9.52
SQINV|Yang et al.|[(202T) 781 | 7.16 | 880 | 11.20 | 499 | 457 | 573 | 7.77
SQINV + LDS|Yang et al.[(2021) 7.67 | 698 | 886 | 10.89 | 485 | 439 | 580 | 7.45
LDS+FDS|Yang et al.|(2021) 7.55 | 7.01 824 | 10.79 | 472 | 436 | 545 | 6.79
LDS+FDS+DER [Amini et al.[(2020) | 8.18 | 7.44 | 9.52 | 11.45 [ 530 | 475 | 6.74 | 7.68
VAE Kingma & Welling[(2013) 7.63 | 6.58 | 921 | 1345 | 486 | 4.11 6.61 | 10.24
RANKSIM|Gong et al.[(2022) 702 ] 649 | 784 | 9.68 | 453 | 4.13 | 537 | 6.89
" OE[Zhang et al.[(2023a) 746 | 6.73 | 8.18 | 1238 | 472 | 4.21 536 | 9.70
Con-R|Keramati et al.|(2024) 720 | 650 | 8.04 | 973 | 459 | 394 | 483 | 6.39
VIR|Wang & Wang|(2023) 699 | 639 | 747 | 951 | 441 | 407 | 505 | 6.23
SupCR|Zha et al.[(2023) 685 | 620 | 7.62 | 10.82 | 432 | 3.89 | 495 | 8.02
Ours (Symmetric) 681 | 6.18 | 7.44 | 10.27 | 430 | 3.81 527 | 6.55
Ours (Asymmetric) 6.67 | 5.84 7.96 | 10.85 | 4.37 | 3.67 579 | 7.73

Table 2: Evaluation on IMDB-WIKI-DIR.
MAE]

Shot GM.|

Method All | Many. | Med. | Few. All | Many. | Med. | Few.
VANILLA 8.06 | 7.23 15.12 | 2633 | 457 | 4.17 | 10.59 | 20.46
SMOTER [Torgo et al.|[(2013) 8.14 | 742 | 14.15 | 2528 | 4.64 | 4.30 9.05 | 19.46
SMOGN |Branco et al.|[(2017) 8.03 | 730 | 14.02 | 2593 | 463 | 4.30 8.74 | 20.12
SMOGN + LDS|Yang et al.[(2021) 8.02 | 7.39 | 13.71 | 2322 | 4.63 | 4.39 8.71 | 15.80
RRT|Kang et al.|(2020) 7.81 | 7.07 | 14.06 | 25.13 | 435 | 4.03 891 | 16.96
RRT+LDS|Yang et al.[(2021) 7.79 | 7.08 13.76 | 24.64 | 434 | 4.02 8.72 | 16.92
SQINV+LDS|Yang et al.[(2021) 7.83 | 7.31 1243 | 2251 | 442 | 4.19 7.00 | 13.94
FOCAL-R[Lin et al.[(2017) 797 | 7.12 | 15.14 | 26.96 | 449 | 4.10 | 10.37 | 21.20
FOCAL-R+LDS|Yang et al.[(2021} 790 | 7.10 | 1472 | 25.84 | 447 | 4.09 | 10.11 | 19.14
BMCRen et al.[(2022) R 8.08 | 7.52 | 12.47 | 23.29 - - - -

GAIRen et al.[(2022) 8.12 | 7.58 12.27 | 23.05 - - - -

VAE Kingma & Welling[(2013) 8.04 | 7.20 | 15.05 | 2630 | 457 | 4.22 | 10.56 | 20.72
RANKSIM|Gong et al.[(2022] 7.50 | 6.93 12.09 | 21.68 | 4.19 | 3.97 6.65 | 13.28
DER |Amini et al.[(2020) 7.85 | 7.18 13.35 | 24.12 | 447 | 4.18 8.18 | 15.18
LDS + FDS + DER[Amini et al.[(2020) | 7.24 | 6.64 | 11.87 | 23.44 | 3.93 | 3.69 6.64 | 16.00
Con-RKeramati et al.[(2024) 733 | 6.75 11.99 | 2222 | 402 | 3.79 6.98 | 12.95
VIR [Wang & Wang|(2023) 7.19 | 6.56 | 11.81 | 20.96 | 3.85 | 3.63 6.51 | 12.23
Ours (Symmetric) 722 | 6.70 | 10.72 | 20.35 | 3.87 | 3.68 5.74 | 11.14
Ours (Asymmetric) 718 | 6.55 | 11.42 | 20.87 | 391 | 3.66 6.69 | 13.07

4.4 ANALYSIS OF IMDB-WIKI-DIR

As we can observe from Table[2] our proposed method can perform better than other DIR solutions in
overall MAE. Compared to LDS and FDS, our method has a ~0.8 improvement on MAE. Compared
to Balanced-MSE, our method has a ~0.8 improvement on MAE. Also, we have a 0.32 improvement
on RANKSIM and a 0.15 improvement on MAE. As for the symmetric soft labeling strategy, the
median and few shots are always better than other methods in MAE. When we compare the GM to
other methods, the symmetric soft labeling strategy also performs better than others on the median
and few shots. For the asymmetric soft labeling strategy, the majority shot always outperforms
than other methods in MAE. In summary, our proposed method can perform better than most of
the solutions in DIR. As a results, this also showcases that our soft labeling strategy can capture
the semantic similarity to unleash the potential of the classification in helping DIR in all majority,
median and few shots.

4.5 ANALYSIS OF STS-B-DIR

We show the performance of our proposed method on STS-B-DIR in Table[3] As we can observe
from Table[3] our proposed method can also achieve a state-of-art performance in both symmetric
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Table 3: Evaluation on STS-B-DIR.

Shot MSE] Pearson Correlation?
Method All | Many. | Med. | Few. | All | Many. | Med. | Few.
VANILLA 0974 | 0.851 | 1.520 | 0.984 | 742 | 72.0 | 62.7 | 75.2
SMOTER [Torgo et al.|(2013) 1.046 | 0924 | 1.542 | 1.154 | 72.6 | 693 | 653 | 70.6
SMOGN [Branco et al.|(2017) 0.990 | 0.896 | 1.327 | 1.175 | 732 | 704 | 65.5 | 69.2
SMOGN + LDS|Yang et al.[(2021) 0962 | 0.880 | 1.242 | 1.155 | 740 | 71.5 | 652 | 69.8
RRT Kang et al.|(2020) R 0964 | 0.842 | 1.503 | 0.978 | 745 | 724 | 623 | 754
FOCAL-R]Lin et al.|(2017) 0951 | 0.843 | 1.425 ] 0957 | 746 | 723 | 61.8 | 764
INV|Yang et al.[(2021) 1.005 | 0.894 | 1.482 | 1.046 | 72.8 | 703 | 625 | 73.2
INV + LDS|Yang et al.[(2021) 0914 | 0819 | 1.31 | 095 | 756 | 734 | 63.8 | 76.2
VAE|Kingma & Welling[(2013}) 0968 | 0.833 | I.511 | 1.102 | 75.1 | 724 | 62.1 | 74.0
DER |Amini et al.|[(2020) 1.001 | 0912 | 1.368 | 1.055 | 73.2 | 71.1 64.6 | 74.0
LDS|Yang et al.[(202T) 0914 | 0.819 | 1.319 | 0955 | 756 | 734 | 63.8 | 76.0
FDS|Yang et al.[(2021) 0.927 | 0.851 | 1.225 | 1.012 | 75.0 | 724 | 66.7 | 74.2
VIR|Wang & Wang[(2023) 0.892 | 0.795 | 0.899 | 0.781 | 77.6 | 752 | 69.6 | 84.5
LDS + FDS|Yang et al.|(2021) 0.907 | 0.802 | 1.363 | 0.942 | 76.0 | 740 | 65.2 | 76.6
RANKSIM|Gong et al.|(2022) 0.903 | 0908 | 0911 | 0.804 | 758 | 70.6 | 69.0 | 82.7
LDS + FDS + DER|Amini et al.[(2020) | 1.007 | 0.880 | 1.535 | 1.086 | 72.9 | 714 | 63.5 | 73.1
Ours (Symmetric) ) 0.885 | 0.801 | 0.887 | 0.779 | 77.8 | 753 | 69.9 | 84.1
Ours (Asymmetric) 0.893 | 0.799 | 0.894 | 0.782 | 77.5 | 754 | 67.7 | 829

and asymmetric soft labeling strategies. Compared to|Yang et al.| (2021), our symmetric and asym-
metric strategy can have a ~0.1 improvement on the MSE and ~1.8% improvement on the Pearson
correlation. Compared to (Gong et al.|(2022), our symmetric and asymmetric strategy can also have
a ~0.015 improvement on the MSE and ~2% improvement on the Pearson correlation. Compared
to ' Wang & Wang|(2023)), our symmetric strategy can have a ~0.001 improvement on the MSE and
~0.2% improvement on the Pearson correlation. Interestingly, in STS-B-DIR, the symmetric soft
labeling strategy outperforms asymmetric strategy in the overall, this is because the imbalance of the
STS-B-DIR is not as severe as the AgeDB-DIR and IMDB-WIKI-DIR and the number of instance
in majority shots is close to the median shots and the few shots.

4.6 ABLATION STUDY

To further explain the effectiveness of our proposed method, we conduct the ablation study on dif-
ferent numbers of groups in Fig[3] Compared to the CE loss, our proposed method can achieve a
better performance over the group classification. As we stated in our methodology, CE can provide
no other information when calculating the group classification loss and ignore the semantic similar-
ity across the groups. Therefore, as we can observe from Fig[3|a), the classification performance
of CE would always be worse than the symmetric and asymmetric strategy. Moreover, when we
observe Fig[3[b), the MAE of CE is also a lot worse than the symmetric and asymmetric strategy.
In Fig[3[c), the G-Mean performance of CE is also worse than the symmetric and asymmetric soft
labeling. showcasing that semantic similarity is a crucial aspect of data continuity in DIR.

Furthermore, when we compare the group numbers across these three classification losses, as we can
observe from Fig[3[(a), the group classification accuracy drops. This is because with the increasing
of the group numbers, the nearby groups would be more similar, which makes the classifier harder
and harder to distinguish. However, when we leverage the semantic similarity for the group classifi-
cation, our proposed solution would smooth the discrepancy between the groups. Consequently, our
method can outperform the CE and perform steadily over the different number of groups (Fig[3(b)),
which further validates the effectiveness of our proposed method.

5 RELATED WORK

5.1 IMBALANCED CLASSIFICATION

Imbalanced classification is a widely explored problem in the field of machine learning Zhang et al.
(2023b)). The solution of imbalanced classification can be concluded as the following perspectives.
Firstly, re-weighting (Cui et al.|(2019); Jamal et al.[(2020); |Chu et al.| (2020); |[He & Garcial (2009);
Kim et al.| (2020); [Huang et al.| (2016); Branco et al.| (2017) is the most popular solution for the
imbalanced classification. Secondly, post-hoc methods Ren et al.|(2020); Tian et al.| (2020); Menon
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Figure 3: The ablation study on AgeDB-DIR, 10 groups demo of different number of groups (a)
group prediction accuracy (b) MAE (c) G-Mean (GM).

et al.| (2021) which aim to calibrate the predicted logits with the class prior has been shown to
be an effective solution for addressing the imbalance in classification. Thirdly, mixture-of-experts
Zhou et al.[(2022), feature selections Han et al.| (2022) and instance difficulty measuring |Yu et al.
(2022) are also effective solutions for imbalanced classification. Moreover, representation learning
Liu et al.| (2019); Dong et al.|(2017); [Wang et al.| (2021); Li et al.|(2022)); Liu et al.[(2021)) with data
augmentation|Liu et al.|(2020);|Yang et al.|(2022));|Chou et al.|(2020b); Huang et al.|(2016); Shi et al.
(2022) (e.g. MixUp |Chou et al.[(2020a)) is also a feasible solution for the imbalanced classification
by learning imbalance-robust feature representations.

5.2 DEEP IMBALANCED REGRESSION

Deep imbalanced regression (DIR) has been proposed by|Yang et al.|(2021)) and has attracted tremen-
dous interests in the recent machine learning studies. Similarly, re-weighting [Torgo et al.| (2013);
Steininger et al.| (2021); Branco et al.| (2018)); |Stocksieker et al.| (2023) has also been adopted in
the regression tasks. [Yang et al.|(2021) proposed a label distribution smoothing and feature distri-
bution smoothing to redeem the imbalance. Ren et al.| (2022); Silva et al.| (2022) revised the MSE
loss for accommodating the imbalance distribution. [Jiang et al.|(2023)) used a mixture-of-experts on
the outputs while [Wu et al.| (2023)); [Yao et al,| (2022)) proposed a mix-up strategy for dealing with
the regression tasks. Wang & Wang| (2023) used the variational inference for addressing the DIR.
Moreover, integrating classification regularizers with the mean squre error loss (MSE) |Gong et al.
(2022); Zha et al.| (2023); |[Zhang et al.| (2023bza); [Keramati et al.| (2024); |[Pintea et al.| (2023) has
been empirically shown to be effective in tackling the DIR. Different from previous works, instead
of directly incorporating the classification regularizers, our work aims to unleash the power of the
classification for better helping the DIR by capturing the semantic similarity.

6 CONCLUSION

In this paper, we investigate the semantic similarity, a characteristic which has been always over-
looked in previous works, to unleash the potential of the classification in helping DIR. Specifically,
we decompose the imbalance of DIR into global and local imbalances. We propose a symmetric
and asymmetric soft labeling strategy that captures the semantic similarity to tackle the global group
imbalance. Furthermore, we use the label distribution smoothing to handle the local instance imbal-
ance. By linking up the global group classification with the local instance regression, we unleash
the potential of the classification and solve the DIR from end-to-end. Extensive experiments over
real-world datasets also validate the effectiveness of our proposed method.
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