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Abstract

Instruction tuning enhances the instruc-001
tion following ability of large language002
models by finetuning with supervised in-003
struction data. Previous work proposes004
in-context instruction tuning (ICIT) where005
specific positive or negative examples are006
incorporated into the prompt for better007
performance. In this work, we propose008
PACIT, a simple and effective in-context009
instruction tuning method, inspired by the010
pedagogical concept of desirable difficulty.011
The PACIT method unlocks the power of012
examples by encouraging the model to ac-013
tively learn to grasp the distinctions be-014
tween the positive and negative examples015
instead of merely reading. The model is ex-016
pected to first verify the correctness of the017
provided example according to the task de-018
scription, which is then set as the condition019
for generating a better response to the task020
instance. Our extensive experiments prove021
the effectiveness of Pacit, outperforming022
ICIT baseline on both in-domain and out-023
domain tasks up to 9.16 and 3.14 average024
ROUGE-L scores, respectively. Moreover,025
PACIT can notably enhance the perfor-026
mance of instruction tuning even when all027
positive and negative examples are gener-028
ated with a self-instruct method.029

1 Introduction030

Large language models (LLMs) have garnered sig-031
nificant interest from both academia and industry032
due to their superior performance on a variety of033
natural language processing tasks such as question034
answering and text generation. Instruction tun-035
ing (IT; Ouyang et al. 2022) optimizes the pre-036
trained language models with supervised instruc-037
tion data to enhance the capabilities of the instruc-038
tion following and zero-shot generalization to un-039
seen tasks (Chung et al., 2022; Ouyang et al., 2022;040
Sanh et al., 2022; Taori et al., 2023; Xue et al.,041
2023). InstructGPT (Ouyang et al., 2022) pro-042
poses in-context instruction tuning (ICIL) where043
the LLM is finetuned using instruction data with044
few-shot human-crafted positive examples. Su-045

perNI (Wang et al., 2022) presents a variant of 046
in-context instruction tuning by further incorpo- 047
rating specified positive and negative examples in 048
each task. The ICIL method achieves significant 049
improvement compared with the vanilla zero-shot 050
instruction tuning method (Ouyang et al., 2022; 051
Wang et al., 2022; Li et al., 2023a) with the knowl- 052
edge from the demonstrations. 053

However, previous in-context instruction tuning 054
merely shows the specified positive and negative 055
examples in the prompt, without further consid- 056
erations for better digestion of examples. LLMs 057
still struggle to follow the instructions precisely in 058
some scenarios (Li et al., 2023b; AlShikh et al., 059
2023), which hinders their further applications. 060

In this work, we introduce Pacit, a simple 061
and novel in-context instruction tuning approach 062
(see Figure 1) inspired by the pedagogical con- 063
cept of desirable difficulty (Wikipedia, 2023; Marsh 064
and Butler, 2013). During finetuning with Pacit 065
method, the model first accomplishes a quiz about 066
the judgment of correctness of the provided exam- 067
ples based on the task description, then responds 068
to the task instance input. By transforming the 069
provided example into a related quiz of the sim- 070
ple classification task, we encourage the model to 071
be actively involved in recalling correlated infor- 072
mation and grasping the distinction between posi- 073
tive and negative examples, going beyond surface- 074
level information. In contrast to simply reading 075
the examples, this approach enhances the model’s 076
comprehension of the task information, thereby im- 077
proving its ability to follow instructions. 078

Extensive experiments prove the effectiveness of 079
Pacit, outperforming ICIT baseline up to 9.16 080
and 3.14 average ROUGE-L (Lin, 2004) on in- 081
domain and out-of-domain datasets of SuperNI 082
(Wang et al., 2022), respectively. The Pacit still 083
consistently surpasses traditional methods when 084
the positive and negative examples are synthesized 085
with self-instruct (Wang et al., 2023) by Chat- 086
GPT (OpenAI, 2022). Therefore, in cases that the 087
human-crafted positive and negative examples are 088
not available, the Pacit has the potential to be a 089
better instruction tuning strategy even for a large- 090
scale instruction dataset. Our contributions are 091
summarized as follows: 092
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• We propose Pacit, a simple yet effective093
in-context instruction tuning method that094
achieves better instruction following ability by095
better grasping the differences between posi-096
tive and negative examples.097

• Extensive experiments demonstrate the supe-098
rior performance of Pacit over competitive099
baselines consistently across in-domain and100
out-domain datasets.101

• The Pacit also achieves better performance102
than vanilla instruction tuning when the ex-103
amples are all synthesized with the self-104
instruct method.1105

2 Related Work106

2.1 Instruction Tuning107

Instruction tuning (Ouyang et al., 2022) finetunes108
the pretrained language models with supervised in-109
struction data to enhance the instruction following110
ability and enable the zero-shot generalization to111
unseen tasks (Chung et al., 2022; Wei et al., 2022;112
Ouyang et al., 2022; Sanh et al., 2022; Taori et al.,113
2023). The instruction tuning is an essential train-114
ing stage for most large language models (Ouyang115
et al., 2022; Taori et al., 2023). It commonly uses116
the next token prediction as the training objective.117
The key to instruction tuning is the quality118

and diversity of the instruction data (Zhou et al.,119
2023). The instruction data used by Instruct-120
GPT (Ouyang et al., 2022) is created with hu-121
man experts. It can also be created with LLMs122
like ChatGPT (OpenAI, 2022) with self-instruct123
(Wang et al., 2023) method. The self-instruct124
method synthesizes instruction data by prompt-125
ing the LLM with few-shot examples and guide-126
lines to use instructional signals from the model127
itself for data augmentation. The evol-instruct (Xu128
et al., 2023) method further improves self-instruct129
to create more diverse instruction data with vary-130
ing levels of complexities. The humpback (Li et al.,131
2023c) proposes to iterativly optimize the model132
and generate high-quality instruction data without133
the reliance on strong proprietary LLMs, similar134
to the back-translation practice in machine trans-135
lation. Super natural instructions (SuperNI; Wang136
et al. 2022) is a benchmark that covers 76 distinct137
task types of 1616 diverse NLP tasks, including but138
not limited to classification, extraction, infilling,139
sequence tagging, text rewriting, and text compo-140
sition. Each task in the SuperNI benchmark con-141
tains the task definition, task instances and exam-142
ple instances. Both task instance and example in-143
stance contain the input-output pairs for the task.144
The example instances have additional tags (i.e.,145

1Our code and models will be made public.

positive or negative) based on the example and the 146
task description. 147

In-context instruction tuning (Ouyang et al., 148
2022; Wang et al., 2022; Li et al., 2023a) finetune 149
the LLMs with supervised instruction data as well 150
as task-specific examples. The few-shot examples 151
used in InstructGPT are all human-crafted posi- 152
tive examples. Wang et al. (2022) further incorpo- 153
rates specified positive and negative crafted exam- 154
ples into the in-context instruction tuning. Li et al. 155
(2023a) explore the in-context instruction tuning 156
in the multimodal domain. Different from previous 157
works that simply have the model passively read 158
the examples, we explore to encourage the model 159
to actively learn about the examples via verifica- 160
tion the correctness of examples. 161

2.2 In-Context Learning 162

In-context learning (ICL; Liu et al. 2022; Rubin 163
et al. 2022; Min et al. 2022a) is a prompt-based 164
method that encourages the language models to 165
learn from the few-shot examples presented in the 166
model input. Researchers explore different ap- 167
proaches to improve the performance of ICL. Min 168
et al. (2022a) and Chen et al. (2022) introduce 169
meta-learning to better adapt the language mod- 170
els to ICL. Zhao et al. (2021) estimates models’ 171
bias towards each answer and then develop con- 172
textual calibration to adjust the model’s output 173
probabilities. SG-ICL (Kim et al., 2022) proposes 174
to generate demonstration examples for in-context 175
learning from the language model itself instead of 176
humans. Active Prompting (Diao et al., 2023) se- 177
lects the most uncertain questions as demonstra- 178
tion examples to further improve the performance. 179
Min et al. (2022b) finds that replacing gold labels 180
with random labels only marginally hurts perfor- 181
mance, which indicates models learn from the ex- 182
ample format rather than input-label pairs. Yoo 183
et al. (2022) revisit previous findings of Min et al. 184
(2022b) and introduce novel metrics to prove that 185
the input-label correspondence plays a more signif- 186
icant role in contextual demonstration than previ- 187
ously considered. However, most of these methods 188
focus on the inference stage and explicitly show the 189
correctness of the demonstration examples. Our 190
work focuses on the instruction tuning stage. 191

3 Method 192

In this work, we focus on the in-context instruc- 193
tion tuning (Wang et al., 2022) where both posi- 194
tive and negative examples are provided as the case 195
in the SuperNI dataset (see Figure 1). The model 196
is trained to generate a response that is similar 197
to the positive examples while avoiding the mis- 198
takes in the negative ones. Conventional works 199
merely present these examples and their tags in the 200
prompt following the practice of in-context learn- 201
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In this task, you need to output “Yes” 
if the given number is a prime 
number, otherwise output “No”.

Definition:

Output: “Yes” 

Output:Examples:

In this task, you need to output “Yes” 
if the given number is a prime 
number, otherwise output “No”.

Definition:

Example 1: {input: 23, output: “Yes”}
Example 2: {input: 91, output: “Yes”}
Input: 137

Examples: Output:

(a) Vanilla In-context Instruction Tuning (SuperNI (Few-Shot))

(b) Our proposed PACIT approach

Positive examples: {input: 23, output: “Yes”}
Negative examples: {input: 91, output: “Yes”}
Input: 137

Classification: “Example 1 is correct 
and example 2 is wrong. I should learn 
from correct examples and avoid these 
wrong examples. ”
Answering: “Yes”

Figure 1: The overview of Pacit. Pacit consists of two stages: Classification and Answering. (1)
Classification: Judge the correctness of each provided example based on the task description and then
take the self-reminder action. (2) Answering: Respond to the main task instruction conditioned on the
classification results. Two stages are executed sequentially within a single data sample.

ing. We propose Pacit for better in-context in-202
struction tuning by unlocking the power of pro-203
vided examples. The Pacit is motivated by the204
pedagogical psychological concept of desirable dif-205
ficulty (Marsh and Butler, 2013; Wikipedia, 2023),206
which improves the long-term performance of stu-207
dents by a learning task that requires a consider-208
able but desirable amount of effort.209

As an example of desirable difficulty, quizzing210
oneself with flashcards brings better learning out-211
comes than just reading the materials, as the212
quizzes require students to consistently recall as-213
sociated information and encourage them to learn214
the material more concretely and actively. Simply215
reading the materials results in lower engagement216
and less attention from students. The key infor-217
mation and connected knowledge of the materials218
may be overlooked. In contrast, students think,219
analyze and try to apply their existing knowledge220
when they tackle a problem by hand. Active in-221
volvement in learning enhances their understand-222
ing of the knowledge, leading to better learning223
outcomes.224

Following the insight of desirable difficulty, the225
Pacit proposes a supplementary quiz with the ex-226
amples and asks the model to first accomplish the227
quiz before the task mentioned in the instruction.228
As shown in Figure 1, the model is required to229
first classify the examples presented in the prompt230
into two types, positive or negative, according to231
the task description. The negative example indi-232
cates the unsatisfied output for the given input for233
this task, which should be avoided. After that, the234
model generates the response to the instruction235
based on the classification result of the provided236
examples. In this way, the model actively learns237
about the examples by accomplishing the related238

quiz, which further facilitates the understanding 239
and grasp of the given task. 240
Consistent with SuperNI, each task has a task 241

description ST , a training dataset D = {(X,Y )}, 242
and an example pool consisting of positive and neg- 243
ative examples. For each input-output instance 244
pair (X,Y ) in D, we randomly select k examples 245
from the example pool and determine the order 246
of positive and negative examples randomly. Both 247
the input and output of examples are presented 248
in the prompt (Sin

e = {Xe, Ye}), while the corre- 249
sponding label Le (i.e., positive or negative) is set 250
as the answer to the supplementary quiz and is 251
part of the model output (see the example in Fig- 252
ure 1). The ground-truth label of each example is 253
replaced with the ordinal number and concealed in 254
the input. In this way, the supplementary quiz is 255
designed without human effort. Each data sample 256
in Pacit has two stages, i.e. Classification and 257
Answering. 258

Classification The model is expected to judge 259
the correctness of each provided example based on 260
the task description during the classification stage. 261
The ground-truth classification result Je is created 262
from a template shown in Figure 1 and the exam- 263
ple tag Le. After giving the answer to the quiz, 264
the model continues to generate the correspond- 265
ing action to be taken Ae (e.g., “I should learn 266
from correct examples and avoid mistakes in the 267
wrong examples.”). The action serves as a self- 268
reminder to encourage the model to take the cor- 269
responding action for better performance. During 270
the first classification stage, the model is optimized 271
with the next token prediction training objective. 272
The ground-truth for action Ae are human-crafted 273
without tuning and kept the same for all samples. 274
All tokens in the classification result and action are 275
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counted for the loss calculation. Formally, the loss276
of the classification stage can be represented as:277

Lc = −
∑

(X,Y )∈D

logP (Je, Ae|ST , S
in
e , X; θ). (1)278

Answering Based on the result of the supple-279
mentary quiz Je and the corresponding action Ae,280
the model is elicited to output the answer Y for in-281
stance input X in the task. The answering stage is282
also trained with the language modeling objective.283
The corresponding training loss is calculated as284

La =−
∑

(X,Y )∈D

logP (Y |ST , S
in
e , X, Je, Ae; θ). (2)285

The overall training loss of Pacit is the sum of286
these two losses L = Lc+La. During inference, the287
model generates the answer in the main task after288
completion of the auxiliary classification task.289

4 Experiments290

4.1 Experiment Setting291

Dataset We conduct experiments on the292
SuperNI-V2 dataset (Wang et al., 2022), an293
open-source dataset comprising over 800+ English294
tasks with diverse task types. Each task in the295
dataset includes four components: task definition,296
positive examples, negative examples and expla-297
nations. To ensure consistency, we utilize the298
same dataset split as SuperNI: the training set299
consisting of 756 diverse tasks and a hold-out test300
set containing 119 unseen out-domain tasks for301
evaluation purposes. Additionally, we construct302
a held-in test set that mirrors the training set’s303
tasks but with different task instances to prevent304
any data leakage. As the performance saturates305
when the number of instances per task increases306
(Wang et al., 2022), we randomly sample 60307
instances for each task in the training set. For308
the test set, we randomly sample 100 instances for309
each task of the held-out test set and 15 instances310
for each task of the held-in test set, ensuring a311
comparable total number of instances for both312
datasets. The statistics of our training, held-in313
and held-out datasets are presented in Table 1.314

Construction of Dataset. To perform in-315
context instruction tuning, we construct the train-316
ing dataset with data samples of the format317
task definition+positive/negative examples+task318
instance. For each data sample, examples are319
added incrementally until the maximum input320
length is reached. Specifically, given a task in-321
stance, we first include the instance and its cor-322
responding task definition to form a data sample.323
Subsequently, we randomly select a positive ex-324
ample and a negative example for the task and325

Statistics Train Set Held-In Held-Out

Number of tasks 756 756 119
# of total instances 45360 11340 11900
Avg. # of Ex. 1.83 1.79 1.75

Table 1: Statistics of our training, held-in, and
held-out datasets. ‘Avg. # of Ex.’ denotes the
average number of examples per task.

gradually add them to the data sample. To pre- 326
vent the model from simply memorizing the corre- 327
sponding tags, the order of the examples is shuf- 328
fled. If adding an example exceeds the maximum 329
input length limit, the addition process is stopped. 330
This process results in four distinct types of data 331
samples: (1) Without examples: training sam- 332
ples without any examples. (2) Only positive 333
example: training samples with only one positive 334
example. (3) Only negative example: training 335
samples with only one negative example. (4) Mix- 336
ing examples: training samples with both posi- 337
tive and negative examples. The proportions of 338
these four types within our training data are 2.9%, 339
6.3%, 0.5% and 90.2%, respectively. The few-shot 340
inference dataset is constructed similarly, while the 341
zero-shot inference dataset consists of data samples 342
with the format task definition+task instance. 343

Settings and Metrics Following Kung 344
and Peng (2023), we utilize two variants of 345
T5-LM-Adapt (Raffel et al., 2020) as the back- 346
bones of Pacit: T5-Large-lm-adapt-770M 347
(T5-770M) and T5-XL-lm-adapt-3B (T5-3B). 348
Additionally, to evaluate Pacit with a stronger 349
backbone, we conduct experiments using the 350
LLaMA-2-7B (LLaMA2-7B) model. During infer- 351
ence, we employ greedy decoding (i.e., set the 352
temperature to 0) following Wang et al. (2022) 353
to obtain the most confident predictions from the 354
model outputs. Given the diversity of tasks and 355
the open-ended generation nature of formulation, 356
we adopt ROUGE-L metric (Lin, 2004) for report- 357
ing aggregated performance results. The metric 358
has been shown to correlate well with accuracy for 359
classification tasks and human evaluation (Wang 360
et al., 2022). Unless otherwise specified, we report 361
results on the held-out dataset in the Ablation 362
Study (Section 4.3) and Analyses (Section 5). 363

Training Details We use Adam optimizer with 364
β1 = 0.9, β2 = 0.999 to finetune the models. The 365
models are trained for five epochs and the last 366
checkpoint is used for evaluation. The global batch 367
size is 64. We use the linear learning rate sched- 368
uler. The learning rate for T5-based models is set 369
to 2×10−4 following Kung and Peng (2023), while 370
the learning rate for LLaMA-2 is set to 2 × 10−5 371
following Taori et al. (2023); Chen et al. (2023b). 372
We set the maximum input length as 1024 and 373
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Model
Testing Setting →
Training Setting ↓

Held-Out Held-In

Zero-Shot Few-Shot Avg ROUGE-L Zero-Shot Few-Shot Avg ROUGE-L

T5-770M

SuperNI (Zero-Shot) 38.02 40.59 39.30 46.22 42.59 44.40

SuperNI (Few-Shot) 33.30 45.08 39.19 43.59 52.96 48.27

Pacit 33.59 46.66 40.13 44.67 53.31 48.99

T5-3B

SuperNI (Zero-Shot) 42.89 45.73 44.31 49.95 47.59 48.77

SuperNI (Few-Shot) 38.54 51.08 44.81 41.49 52.96 47.23

Pacit 43.09 52.11 47.60 47.29 55.21 51.25

LLaMA2-7B

SuperNI (Zero-Shot) 44.81 49.35 47.08 49.36 48.85 49.10

SuperNI(Few-Shot) 42.14 50.71 46.43 45.53 52.68 49.10

Pacit 45.62 53.53 49.57 54.05 62.47 58.26

Table 2: The comparision results of Pacit and baselines under zero-shot and few-shot inference settings
on hold-in and hold-out datasets. Avg ROUGE-L: we calculate the averaged ROUGE-L under zero-shot
and few-shot inference settings. Bold denotes the best result.

the maximum output length as 128 for all mod-374
els following Wang et al. (2022). All experiments375
are run on eight NVIDIA RTX-4090 GPUs using376
Huggingface Transformers2 toolkit.377

Baselines We compare Pacit with two base-378
lines:379

• SuperNI (Zero-Shot): We formulate each data380
sample as task definition+main task instance381
and train with conventionally instruction tun-382
ing method. No examples are used during383
training for this setup.384

• SuperNI (Few-Shot): We use the same train-385
ing dataset as Pacit, but train with conven-386
tionally in-context instruction tuning. In the387
subsequent text, we may use SuperNI to de-388
note this method for simplicity.389

4.2 Main Results390

To assess the efficacy of Pacit, we compare it with391
baselines as presented in Table 2. As can be seen,392
Pacit consistently outperforms SuperNI (Zero-393
Shot) and SuperNI (Few-Shot) methods across the394
held-in and held-out datasets. Notably, the perfor-395
mance gap is more pronounced for larger models396
compared to smaller model. Specifically, when uti-397
lizing the T5-3B and LLaMa2-7B models, Pacit398
exhibits substantial improvements over the Su-399
perNI (Few-Shot) method, with average ROUGE-400
L score boosts of 2.79 and 3.14 on the held-out401
test set, and 4.02 and 9.16 on the held-in test402
set, respectively. Conversely, smaller T5-770M403
model demonstrates only marginal increases of 0.94404
and 0.72 average ROUGE-L scores. We hypothe-405
size that larger models, which have stronger learn-406
ing capabilities, can excavate more internal infor-407
mation in demonstration examples with our pro-408

2https://github.com/huggingface/
transformers

ID Method ZS FS Avg.

(1) Pacit 43.09 52.11 47.60
(2) (1)−action 41.48 51.29 46.38
(3) (2)−aux. 38.50 51.08 44.81

Table 3: The performance (ROUGE-L) of ablation
study variants (ZS=zero-shot inference, FS=few-
shot inference) on held-out set. Starting from
Pacit, we gradually remove the action (ID=2) and
the auxiliary classification stage (aux., ID=3) in
each data sample.

posed Pacit methods. Additionally, it is note- 409
worthy that Pacit exhibits greater improvements 410
on the held-in datasets compared to the held-out 411
datasets, indicating its ability to significantly ben- 412
efit seen tasks. In the zero-shot inference setting, 413
SuperNI (Zero-Shot) method achieves good perfor- 414
mance. However, its performance sharply declines 415
in the few-shot setting. This discrepancy can be 416
attributed to the importance of maintaining consis- 417
tency between the training and inference settings 418
In summary, Pacit outperforms all baselines and 419
achieves new state-of-the-art on ICIT. 420

4.3 Ablation Study 421

We conduct an ablation study on the training 422
method of Pacit. Initially, we begin with Pacit, 423
which consists of two training stages: classifica- 424
tion with action, and answering. Subsequently, 425
we gradually remove the action after classifica- 426
tion (setting (2)) and the whole classification stage 427
to roll back to the vanilla SuperNI (Few-Shot) 428
method (setting (3)). 429
The results are shown in Table 3. Removing the 430

action leads to a decrease of 1.22 average ROUGE- 431
L score, and further removing the classification 432
stage results in an additional decrease of 1.57 av- 433
erage ROUGE-L score. This observation confirms 434
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Definition : Two analogies that relate items to the associated containers
is given in the form ” A : B . C : ?” . ” A : B ” relates item A to
its associated container B . Your task is to replace the question mark (
?) with the appropriate container for the given item C , following the ”
A : B ” relation . Positive Example 1 - Input : jam : jar . cereal :
? Output : box . Negative Example 1 - In put : detergent : bottle .
cereal : ? Output : cupboard . Now complete the following example -
Input : money : wallet . milk : ? Output : container ✗

(a) SuperNI (Few-Shot)

Definition : Two analogies that relate items to the associated containers
is given in the form ” A : B . C : ?” . ” A : B ” relates item A to
its associated container B . Your task is to replace the question mark (
?) with the appropriate container for the given item C , following the ”
A : B ” relation . Example 1 - Input : jam : jar . cereal : ? Output
: box . Example 2 - Input : detergent : bottle . cereal : ? Output
: cupboard . Now complete the following example - Input : money :
wallet . milk : ? Output : bottle ✓

(b) Pacit

Figure 2: A concrete example of attention visualization for SuperNI (Few-Shot) and Pacit methods.

our insights regarding desirable difficulty, as the435
inclusion of a supplementary quiz on the examples436
and an action to emphasize its importance guides437
the model to enhance its learning from the exam-438
ples.439

5 Analyses440

The Visualization of Attention. To better441
understand how Pacit works, we conduct a case442
study by visualizing the attention weights in T5-443
3B model. We visualize the averaged encoder-444
decoder attention weights of different heads in the445
last layer of T5-3B. Figure 2 shows a concrete ex-446
ample of Pacit v.s. SuperNI (Few-Shot). The447
color in each figure represents the relative atten-448
tion weights. As can be seen, Pacit allocates more449
attention to the task definition and examples’ in-450
formation compared with the SuperNI (Few-Shot)451
model. The attention weights from Pacit exhibit452
a broader span across the prompt. This observa-453
tion is expected as the classification task in Pacit454
encourages the model to focus more on task def-455
inition and examples, otherwise it cannot classify456
examples correctly. We also manually check some457
other examples which present similar patterns.458

The Relationship between Classification Ac-459
curacy and Model Performance. To gain in-460
sights into the correlation between the auxiliary461
task (i.e., classification) and main task, we ana-462
lyze the training dynamics by plotting the main463
task’s performance (ROUGE-L) against the aux-464
iliary task’s performance (Acc). The results are465
shown in Figure 3. The classification accuracy466
demonstrates a strong correlation with the main467
task’s ROUGE-L score, as evidenced by the slope.468
Furthermore, we calculate the Pearson correlation469
coefficient between these two metrics, resulting in470
a high value of 0.98. While correlation does not es-471
tablish causation, it does provide valuable insights472
into the interpretability of Pacit.473

The Effect of Classification Labels in Train-474
ing and Inference Phase. Inspired by previ-475
ous work on in-context learning (Min et al., 2022b;476
Madaan et al., 2023; Wei et al., 2023), we suspect477
Pacit utilize examples either by (a) recognizing478
the task from examples and applying LLMs’ pre-479
trained priors (learning the format (Min et al.,480

Figure 3: The training dynamics of the main
task (ROUGE-L) v.s. the auxiliary classification
task (Acc). Acc: The accuracy of classification.
ROUGE-L: The performance of main tasks. The
five data points represent five checkpoints obtained
after each epoch.

2022b)) and/or (b) learn the input–label map- 481
pings from the presented examples (learning the 482
input-label mapping). When ground-truth labels 483
are provided during in-context instruction tuning, 484
these two factors operate simultaneously. To study 485
which of these factors drives performance, we com- 486
pare two training settings: 487

• Ground-Truth: The true classification la- 488
bels are used, which is the standard setup of 489
Pacit. 490

• Random: The classification labels are uni- 491
formly sampled from the label space. In this 492
setup, LLMs can only learn the format. 493

Table 4 shows the results. At the inference 494
stage, in addition to the standard inference setup 495
of Pacit that generates classification labels from 496
the model (Generated), we also explore Ground- 497
Truth and Random variants. As can be seen, 498
Pacit with Ground-Truth training setting exhibits 499
a significantly greater improvement over Random 500
training setting on large model (T5-3B) compared 501
to small model (T5-770M). This observation shares 502
some commonalities with previous research on in- 503
context learning, which suggests that learning 504
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Model
Testing Setting →

Zero-Shot
Few-Shot

Training Setting ↓ Generated Ground-Truth Random

T5-770M

SuperNI (Ground-Truth) 33.30 - 45.08 45.26

SuperNI (Random) 30.66 - 43.54 43.48

Pacit (Ground-Truth) 33.58 46.66 46.67 46.72

Pacit (Random) 34.23 46.17 46.10 46.11

T5-3B

SuperNI (Ground-Truth) 38.54 - 51.08 51.25

SuperNI (Random) 36.71 - 49.12 48.92

Pacit (Ground-Truth) 43.09 52.11 52.17 52.07

Pacit (Random) 33.52 45.76 46.14 46.11

Table 4: The Performance (ROUGE-L) on held-out set with different classification labels in the training
and inference time. We compare two training settings and three inference settings for the labels of
few-shot examples in each data sample. Generated: classification labels generated from the model;
Ground-Truth: true classification labels; Random: randomly sampled classification labels.

Model
Testing Setting →
Training Setting ↓

Zero-Shot Few-Shot Avg. ROUGE-L

T5-770M

SuperNI (1 pos and 1 neg) 33.30 45.08 39.19

SuperNI (2 pos and 2 neg) 30.75 45.82 38.28

Pacit (1 pos and 1 neg) 33.59 46.66 40.13

Pacit (2 pos and 2 neg) 28.66 45.85 37.26

T5-3B

SuperNI (1 pos and 1 neg) 38.54 51.08 44.81

SuperNI (2 pos and 2 neg) 35.72 49.64 42.68

Pacit (1 pos and 1 neg) 43.09 52.11 47.60

Pacit (2 pos and 2 neg) 38.92 51.41 45.17

Table 5: The performance (ROUGE-L) on held-out set with different numbers of demonstration examples
in zero-shot and few-shot inference settings. N pos and M neg: There are N positive examples and M
negative examples in each training sample at most.

the format is a broader capability across505
scales, while learning the input-label map-506
ping is enabled with scale (Wei et al., 2023;507
Pan et al., 2023; Kossen et al., 2023). We508
speculate that large model is better at learning509
input-output mapping than small model. When510
comparing different inference setups, we find that511
the model tuned by Pacit is insensitive to labels at512
the inference stage for both small and large mod-513
els. This aligns with previous work’s (Wei et al.,514
2023) observation that instruction-tuned models515
are more reliable on their own semantic priors so516
that they are less influenced by the labels presented517
in examples of ICL. All of the aforementioned ob-518
servations similarly apply to the SuperNI method,519
suggesting that ICIT shares similarities with in-520
context learning. We leave more in-depth studies521
as future work.522

The Influence of Number of Demonstration523
Examples. Humans can improve their ability to524

complete downstream tasks by learning from more 525
demonstration examples. Therefore, we construct 526
experiments to explore whether more examples in 527
each data sample lead to better performance. The 528
results are shown in Table 5. We use the same 529
number of demonstration examples in both train- 530
ing and few-shot inference time. Overall, more ex- 531
amples consistently lead to performance degrada- 532
tion for both SuperNI and Pacit in zero-shot and 533
few-shot settings. For example, the performance 534
of Pacit on T5-770M and T5-3B drops by 2.86 535
and 2.43 average ROUGE-L when switching from 536
a pair of positive and negative examples to two 537
pairs, respectively. We suspect with more demon- 538
stration examples, Pacit as well as SuperNI could 539
be misguided by interference among examples and 540
their spurious correlations. A similar phenomenon 541
has been observed in in-context learning. We refer 542
the readers to Chen et al. (2023a) for more detailed 543
discussions. 544
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Model
Testing Setting →
Training Setting ↓

Zero-Shot Few-Shot Avg ROUGE-L

T5-770M

SuperNI (Zero-Shot) 32.66 37.50 35.08

SuperNI (Few-Shot) 23.08 40.54 31.81

Pacit 32.62 41.16 36.89

T5-3B

SuperNI (Zero-Shot) 37.63 41.53 39.58

SuperNI (Few-Shot) 36.38 43.09 39.73

Pacit 37.95 44.23 41.09

Table 6: The Performance (ROUGE-L) with generated examples (by Self-Instruct) in zero-shot and few-
shot inference settings.

The Performance of Pacit with Generated545
Examples. A limitation of Pacit is its reliance546
on positive and negative examples during train-547
ing. However, the positive and negative exam-548
ples are not readily available for many instruc-549
tion datasets. As human annotation is expen-550
sive and time-consuming, we tackle the prob-551
lem by leveraging automatically generated exam-552
ples from LLM. Specifically, we generate examples553
with the self-instruct (Wang et al., 2023) method,554
which is a framework for improving the instruction-555
following capabilities of LLMs by bootstrapping off556
their own generations. We choose the ChatGPT557
(gpt-3.5-turbo-0613) as the backbone LLM and558
set the temperature to 0.7 to improve the diver-559
sity of generated data. To create our example seed560
pool, we randomly select eight pairs of positive and561
negative examples in total from all examples of dif-562
ferent tasks. For each generation, we construct the563
prompt with task definition and few-shot demon-564
strations to generate new pairs of positive and neg-565
ative examples. The few-shot demonstrations con-566
sist of four pairs of positive and negative examples567
and their corresponding task definitions randomly568
sampled from the seed pool. In this way, we re-569
duce the number of annotated training examples570
from 1384 to 8. Due to the API expense of the571
proprietary LLM, we only construct 5040 training572
samples (84 different tasks with 60 training sam-573
ples each). The entire data template for generating574
new positive and negative examples is shown in the575
appendix A (see Figure 5).576

The performance with generated examples is577
shown in Table 6. As can be seen, with generated578
examples, Pacit improves over baseline without579
any examples (SuperNI (Zero-Shot)) by 1.81 Avg580
ROUGE-L on T5-770M and 1.51 Avg ROUGE-L581
on T5-3B, and vanilla in-context instruction tun-582
ing baseline (SuperNI (Few-Shot)) by 5.08 Avg583
ROUGE-L on T5-770M and 1.63 Avg ROUGE-L584
on T5-3B. These results are particularly impres-585
sive considering that the quantity of our samples586

accounts for only 11% of the samples used in the 587
main experiment and the generated examples from 588
self-instruct are noisy (Wang et al., 2023). Fur- 589
thermore, we find that the improvement brought 590
by Pacit over SuperNI (Zero-Shot) is larger for 591
T5-770B compared with T5-3B. This finding con- 592
trasts with the main experiments, where T5-3B 593
exhibits an additional 2.46 average ROUGE-L im- 594
provement over T5-770M. This disparity can be 595
attributed to small model’s limited ability to learn 596
from the input-label mapping, as its performance 597
is less affected by noisy labels generated by self- 598
instruct. 599

6 Conclusions 600

In this paper, we introduce Pacit, an effective in- 601
context instruction tuning approach that unlocks 602
the power of examples to enhance the instruction 603
following ability of LLMs. Inspired by the peda- 604
gogical observations, Pacit proposes to encourage 605
the model to actively learn and comprehend the 606
differences between the provided positive and neg- 607
ative examples rather than passively reading them. 608
The model completes a quiz to assess the correct- 609
ness of examples first and subsequently responds 610
to the main task instruction based on the grasp of 611
the examples. Experiments on SuperNI dataset 612
demonstrate the superior performance of Pacit 613
over competitive baselines. In our preliminary ex- 614
periment, Pacit is observed to improve the per- 615
formance of instruction tuning with positive and 616
negative examples created with the self-instruct 617
method, which shows a promising approach for 618
better instruction tuning with large-scale instruc- 619
tion data. However, the generated examples with 620
self-instruct method need further filtering to en- 621
hance the performance of Pacit as the noisy exam- 622
ples may have negative impact on the performance. 623
We leave the exploration of filtering the augmented 624
data as well as scaling Pacit to larger models like 625
LLaMA-2-13B, LLaMA-2-70B and larger datasets 626
as future work. 627
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Limitations628

Compared with the vanilla instruction tuning629
method without any example, the Pacit achieves630
better instruction following performance but has631
higher computation cost as both the input and632
output have more tokens. During inference, the633
computation overhead brought by the input ex-634
amples can be mitigated with efficient inference635
techniques for long context scenarios such as KV636
caching (Kwon et al., 2023). For a given task,637
the representations of examples are computed once638
and cached in the memory for future use, thus639
avoiding the recomputation of the examples for640
each instance. In addition, the proposed Pacit641
method requires both positive and negative exam-642
ples which are not readily available for many in-643
struction datasets. These examples can be cre-644
ated with human efforts, resulting in additional645
expenses. They can also be synthesized with self-646
instruct method or other LLM-based data augmen-647
tation methods. In this case, the generated data648
samples need to undergo additional filtering follow-649
ing the common practice of data augmentation.650
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A Data Templates833

1. Data Template for Pacit. Our proposed834
Pacit method takes the task definition, examples835
and instance input as the prompt. The model first836
generates the response to the auxiliary classifica-837
tion task and corresponding action of the provided838
examples. Based on the quiz result and action to839
be taken, the model then produces the outputs for840
the instance input for the given task.841

Task Definition: {{definition}}
Example 1
- Input: {{exp.input}}
- Output: {{exp.output}}
Example 2
- Input: {{exp.input}}
- Output: {{exp.output}}
Evaluation Instance
- Input: {{exp.input}}

Classification
- Classification result: {{Example 1
is correct/wrong and example 2 is cor-
rect/wrong.}}
- Generated action: {{I should learn
from correct examples and avoid the mis-
takes in these wrong examples.}}

Answering
- Output: {{exp.output}}

842

Figure 4: The data template used for Pacit
method.

2. Data Template for Generating Exam-843
ples with Self-Instruct. When generating pos-844
itive and negative examples with the Self-instruct845
method, we randomly select four pairs of positive846
and negative examples in total from all examples of847
different tasks in the SuperNI dataset as in-context848
learning examples. We use ChatGPT (gpt-3.5-849
0613) to generate a positive and negative example850
pair based on the prompt shown in Figure 5.851

Few-Shot Demonstrations:
Demonstrated Task Definition:
{{definition}}
Positive Example
- Input: {{exp.input}}
- Output: {{exp.output}}
Negative Example
- Input: {{exp.input}}
- Output: {{exp.output}}
......
Generated Examples:
Task Definition: {{definition}}

Positive Example
- Input: {{gen.input}}
- Output: {{gen.output}}
Negative Example
- Input: {{gen.input}}
- Output: {{gen.output}}

852

Figure 5: The data template for generating posi-
tive and negative examples with the Self-instruct
method.
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