
A Lens into Interpretable Transformer Mistakes via Semantic Dependency

Ruo-Jing Dong 1 Yu Yao 1 Bo Han 2 Tongliang Liu 1

Abstract
Semantic Dependency refers to the relationship
between words in a sentence where the meaning
of one word depends on another, which is impor-
tant for natural language understanding. In this
paper, we investigate the role of semantic depen-
dencies in answering questions for transformer
models, which is achieved by analyzing how to-
ken values shift in response to changes in seman-
tics. Through extensive experiments on models
including the BERT series, GPT, and LLaMA, we
uncover the following key findings: 1). Most to-
kens primarily retain their original semantic infor-
mation even as they propagate through multiple
layers. 2). Models can encode truthful semantic
dependencies in tokens in the final layer. 3). Mis-
takes in model answers often stem from specific
tokens encoded with incorrect semantic depen-
dencies. Furthermore, we found that addressing
the incorrectness by directly adjusting parameters
is challenging because the same parameters can
encode both correct and incorrect semantic depen-
dencies depending on the context. Our findings
provide insights into the causes of incorrect infor-
mation generation in transformers and help the
future development of robust and reliable models.

1. Introduction
Large Language Models (LLMs) based on the trans-
former architecture such as BERT (Devlin et al., 2018),
GPT(Radford et al., 2019; Brown, 2020), and LLaMA (Tou-
vron et al., 2023) have demonstrated remarkable capabilities
across various natural language tasks. Alongside their bene-
fits, LLMs pose significant risks and challenges (Weidinger
et al., 2021). For example, LLMs may intensify biases
(Navigli et al., 2023; Taori & Hashimoto, 2023), produce
toxic content (Gehman et al., 2020; Ousidhoum et al., 2021),
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generate false information (Lin et al., 2021), exhibit halluci-
nations (Ji et al., 2023), leak sensitive training data (Carlini
et al., 2021), and even engage in deception (OpenAI, 2023;
Scheurer et al., 2024). Addressing these issues has led to the
development of evaluation methods for LLM performance
(Liang et al., 2022) and strategies aimed at mitigating harm-
ful outputs (Ganguli et al., 2022; Bai et al., 2022).

Existing research has elucidated several reasons for the
mistakes observed in LLMs. Studies have suggested that
non-linearity, insufficient model averaging, and inadequate
regularization lead to mistakes when encountering crafted
adversarial examples (Chakraborty et al., 2018; Zhang et al.,
2020). Additionally, the programmatic behavior of LLMs
may lead to vulnerabilities under security attacks and pro-
duce harmful content (Kang et al., 2024). Competing objec-
tives and mismatched generalization may cause the suscep-
tibility of safety-trained LLMs (Wei et al., 2024). Studies
also indicate various reasons for language models generating
unfaithful or nonsensical text, including source-reference
divergence in data, imperfect representation learning, erro-
neous decoding, exposure bias, and parametric knowledge
bias (Ji et al., 2023). These studies have identified various
reasons that lead to mistakes and enhanced our understand-
ing, providing valuable insights into model weaknesses.
Building upon these insights, we aim to further explore the
internal mechanisms within the model’s architecture that
lead to mistakes.

We believe that mistakes produced by LLMs arise from
the way semantic dependencies, the relationships where
the meaning of one token depends on another (Mel’čuk,
2001), are encoded within transformer models. Intuitively,
in transformer models, inputs are tokenized and embedded
as vectors that carry semantic information. These tokens
then pass through multiple attention layers, where they ex-
change and aggregate semantic information to build seman-
tic dependencies. These dependencies are crucial for the
model’s contextual understanding and reasoning, enabling
it to generate coherent outputs. Since the model’s predic-
tions ultimately depend on the final layer outputs, which are
constructed from the representations generated by earlier
layers, any inaccuracies in the propagation and exchange of
semantic information can result in misrepresented semantic
dependencies. Such mistakes disrupt the model’s ability to
accurately understand token relationships and contextual
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meaning, thereby leading to mistakes in predictions.

To systematically explore the role of semantic dependencies
in causing model mistakes, we propose a method to inter-
pret the semantic information aggregation mechanisms of
transformer models. The idea is that altering the semantic
information of an input token should result in significant
changes in the outputs of tokens that depend on this input in-
formation, while tokens that are not semantically dependent
remain relatively unchanged. By evaluating the variations
in output token representations in response to perturbations
in input tokens, we can effectively trace the flow and aggre-
gation of semantic information throughout the model. This
approach allows us to gain insights into how semantic de-
pendencies are encoded and propagated within transformer
models and helps identify potential disruptions that may
contribute to prediction mistakes.

Key Findings. In our exploration, we analyzed different
transformer models such as BERT, LLaMA, and GPT. Here,
we explain several key findings regarding the behavior of to-
kens for semantic information aggregation and propagation.
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Figure 1: An Illustration of Finding 1.

1). Most tokens primarily retain their original seman-
tic information, even as they pass through the layers of
transformers. For example, in Figure 1, the arrows indicate
the semantic information flow from the token at layer 0 to
token at layer L. For the token “aggregates” in the input
token sequence in layer 0, the final layer’s token aggregates
a large amount of information from its input token and a
small amount of information from other tokens. The fact
that most tokens still predominantly reflect their initial se-
mantics highlights model’s strong retention property, which
is not inherently expected given the iterative aggregation of
semantic information across many layers.
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Figure 2: An Illustration of Finding 2.

2). A token in the final layer usually encodes truthful
semantic dependency. Beyond preserving individual token
semantics, the model must also encode truthful semantic

dependencies between tokens to understand sentence-level
meaning. For example, the model must recognize how adjec-
tives modify nouns or how subjects relate to actions. In the
case of the input “red apple and blue sky” shown in Figure 2,
an output token will encode the semantically dependent
information “red” and “apple” together, rather than encod-
ing semantically independent information like “blue” and
“apple”. We find our evaluated models can encode truthful
semantic dependency in the final layer tokens.
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Figure 3: An Illustration of Finding 3.

3). Finally, we found that when the model makes mistakes,
certain tokens incorrectly encode information that is not
semantically dependent. For example, Figure 3 demon-
strates that semantic information is aggregated differently
in the output token sequence when the model outputs an
incorrect answer. In a question-answering task where the
context sequence “white rhinos are grey instead of white”
is paired with the question “What is the color of white rhi-
nos?”, the correct answer is “grey”. However, when the
model incorrectly outputs “white”, the question’s key terms,
such as “color” and “rhinos”, contain more information
about “white” rather than “grey”. This highlights how false
semantic dependency encoded in key tokens can lead to
incorrect outputs.

4). Additionally, we also find that the encoded semantic
dependencies within a token are highly sensitive to both
irrelevant context changes and the order of contexts. Due
to space limitations, a detailed introduction, experiments,
and results are provided in Appendix A.2.

Implications Our insights into semantic dependency en-
coded within tokens of transformer models potentially help
design new transformer architectures to be more resilient
and semantically coherent. For example, our finding reveals
that model mistakes often result from certain tokens erro-
neously encoding semantic dependencies that should not
exist. To address this, future research could refine attention
mechanisms to better prioritize meaningful token interac-
tions and reduce the impact of the adversarial context. This
could be achieved by implementing dynamic re-weighting
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strategies in top QA task-specific attention heads we lo-
calized and incorporating stricter regularization techniques
that can prevent tokens from erroneously encoding false
dependencies while cautiously preserving the truthful ones.

Our paper is structured as follows: first, in Section 3, we ver-
ify a critical prerequisite for studying token-level semantic
dependency: whether a final-layer token retains its original
semantic information. Because to define a matched depen-
dency between an input token (e.g., red) and another token
(e.g., apple), the corresponding final-layer token apple or
red must reflect its original meaning. The result confirms
our method’s validity to capture semantic dependencies
across multiple layers. Next, in Section 4, we systematically
verify if models can encode truthful semantic dependency.
Our finding indicates while models generally possess this
foundational capability, mistakes still occur. Therefore, in
Section 5, we further investigate how mistakes arise from
false semantic dependencies in QA tasks and develop a
method to pinpoint a group of attention head parameters
responsible for token-level semantic dependency. We tes-
tify that addressing the incorrectness by directly pruning
parameters is challenging because the same parameters can
encode both correct and incorrect semantic dependencies.

2. Related Work
Semantic Dependency Parsing and Semantic Role La-
beling. Semantic dependency parsing (SDP) (Björkelund
et al., 2010; Dozat & Manning, 2018) aims to identify se-
mantic relationships between words in a sentence. Closely
related to SDP, semantic role labeling (SRL) (He et al.,
2017; Chen et al., 2025) focuses on identifying the predicate-
argument structure of a sentence by assigning roles to words
or phrases. However, the internal mechanisms by which
transformer models encode, propagate, and utilize semantic
dependencies remain largely opaque. Our work bridges this
gap by exploring how internal mechanisms contribute to
semantic dependency encoding and how these insights can
be leveraged to address mistakes.

Semantic Information Flow in Transformer. Existing
works (Liao et al., 2021; Schuster et al., 2022; Elhoushi et al.,
2024) have studied activation stability and the limited con-
tribution to token refinement in later layers of transformer
models. However, whether the last-layer token retains its
original semantic information in the input layer remains un-
explored. Previous study (Geva et al., 2023) analyzes how
factual associations are recalled while our study addresses a
gap by studying how semantic dependencies are encoded in
tokens and influence QA tasks.

Interpretable Model Mistake Based on Attention Heads.
Previous studies highlight the roles of specific attention
heads in model performance, such as retrieval heads for

retrieving factual information (Wu et al., 2024) or property-
specific attention heads in CLIP models (Gandelsman et al.,
2024). Our work offers another perspective by interpreting
model mistakes via token-level semantic dependency en-
coding, which provides insights into understanding and cor-
recting model mistakes under specific question-answering
cases. Additionally, our finding in mutual attention heads
responsible for key dependencies in QA tasks also shows the
importance of pruning parameters in attention heads without
tempering the correct semantic dependency encoding.

Probing Study for Linguistic Properties in Transformers.
Probing methods (Rogers et al., 2021) analyze the internal
representations of pre-trained models to determine whether
specific linguistic properties are encoded. For instance, re-
search shows that BERT captures syntactic tree structures
(Hewitt & Manning, 2019), semantic roles, and entity types
(Tenney, 2019). Studies also quantify the mutual infor-
mation between representations and linguistic properties
(Pimentel et al., 2020). Token ablation is a parameter-free
probing technique, which is widely used to analyze syntac-
tic subtree structures (Wu et al., 2020), syntactic agreement
(Finlayson et al., 2021), and bias (Vig et al., 2020). Natu-
rally occurring morpho-syntactic perturbations is also used
to probe dependencies (Amini et al., 2023). Unlike these
studies, which focus on static linguistic features, we investi-
gate token-level semantic dependency encoding, introducing
a framework to quantify dependency strength without prior
knowledge. Our approach captures context-sensitive seman-
tic dependencies, which can vary across diverse scenarios.

Feature Attribution and Binding Study. Feature attri-
bution methods primarily aim to assess the importance of
individual tokens or features to the model’s output. For
example, prior work on attention flow (Abnar & Zuidema,
2020) quantifies token importance through accumulated
attention matrices. Gradient-based techniques like Conser-
vative Propagation (Ali et al., 2022) is used to assess token
attribution. Our study shifts focus from token importance to
the semantic dependencies encoded in token representations
and how these affect model behavior.

Existing semantic dependency methods based on fea-
ture/token interactions (Eberle et al., 2020; Janizek et al.,
2021; Schnake et al., 2021) mainly focus on studying the
contribution of combinations of features or tokens to model
predictions. Meanwhile, feature binding methods (Feng &
Steinhardt, 2023; Vasileiou & Eberle, 2024; Wattenberg &
Viégas, 2024) often do not test whether the model’s most
confident output reflects encoded semantic dependencies;
rather, many assume this relationship holds and study down-
stream properties. In contrast, our method is designed to
explicitly test the assumption by evaluating whether there is
a dependence between the model’s output and the semantic
dependency encoded in the final-layer token.
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3. Most Tokens Primarily Retain Their
Original Semantic Information Through
Transformer Layers

In this section, we introduce a perturbation-based method to
explore some mechanisms of semantic information propaga-
tion in transformers. Extensive experiments show 1). even
through multiple transformer layers, most final-layer tokens
still primarily maintain their original semantic information
from the first layer; 2). every final-layer token contains se-
mantic information from almost all tokens (including itself)
of the entire sequence. The results indicate our proposed
method can effectively capture semantic changes in the in-
put text and is suitable for detecting token-level semantic
dependencies.

Transformer Architecture We consider a general L-layer
transformer model. Each layer consists of a multi-head self-
attention mechanism (MHA) followed by a position-wise
feed-forward network (FFN), along with residual connec-
tions. The input sequence of N tokens is embedded into
D-dimensional vectors and combined with positional en-
codings to form the initial representations:

z0 = [z01, z
0
2, . . . , z

0
N ], (1)

where z0i ∈ RD is the embedding of the i-th token in 0-th
layer.

In transformer-based models, the token sequence is updated
through L layers using the following two steps, where multi-
head attention (MHA) and feed-forward networks (FFN)
work together to enrich the text representations:

ẑl = MHAl(zl−1) + zl−1, zl = FFNl(ẑl) + ẑl, (2)

where l = 1, 2, . . . , L. Here, MHAl and FFNl denote the
multi-head attention and feed-forward network operations
at layer l, respectively. The residual connections ensure
that information flows directly through layers, facilitating
the retention of original semantic information. For the i-th
token in the output of the L-th layer, we have:

zLi = z0i +

L∑
l=1

MHAl
i(z

l−1) +

L∑
l=1

FFNl
i(ẑ

l), (3)

where MHAl
i and FFNl

i represent the operations affecting
the i-th token at layer l (Vaswani et al., 2017). Here we use
the formulation proposed in the study (Gandelsman et al.,
2024), which ignores the layer-normalization term. The
above equation shows that a last-layer token can be written
as a combination of first-layer tokens. This suggests that
a last-layer token incorporates a varying yet unquantified
amount of semantic information derived from the entire
token sequence. Our research aims to address this gap by
measuring such token-level semantic contribution.

Based on the above equation, we identify two underexplored
mechanisms for validation. 1). Self-information retention:
validate whether the i-th token zLi in the output layer primar-
ily retains information about the i-th token z0i in the input
layer. Specifically, we compare the changes of all tokens in
the final layer L with the changes in z0i . If zLi changes most
significantly when z0i changes, it suggests the i-th token in
the final layer contains most information derived from the
i-th token in the first layer. 2). Sequence-level semantic ag-
gregation: validate whether a token in L-th layer aggregates
semantic information from tokens of the entire sequence z0.
If every token change in z0 leads to the change of zLi , it
suggests zLi contains information from all tokens.

Token Perturbation We then generate K perturbed ver-
sions of the input token z0(org) by only replacing the i-th
token z0i with randomly sampled tokens from the vocabulary
V . Specifically, we sample a new token z̃

0(k)
i for k times as

follows.

original z0(org) = [z01, . . . , z
0
i , . . . , z

0
N ];

perturbed z̃0(k) = [z01, . . . , z̃
0(k)
i , . . . , z0N ],

where z̃
0(k)
i ∼ Uniform(V) and k ∈ {1, . . . ,K}.

(4)

Each perturbed sequence of token z̃0(k) is processed inde-
pendently through the L-layer transformer model, yielding
L-layer token z̃L(k). Similarly, the corresponding L-layer
token for z0(org) is zL(org).

Measuring Semantic Dependency To quantify how the
perturbation of the i-th token z0i in the first layer affects
j-th token z0j in final layer, we examine the average change
of the j-th token across the K sequences. Specifically, for
the j-th token, we calculate the semantic dependency score
∆zL

j |z0
i
, which is achieved by calculating average change

∆zL
j |z0

i
between its value in the original sequence and its

values in the perturbed sequences:

∆zL
j |z0

i
=

1

K

K∑
k=1

∥∥∥z̃L(k)
j − z

L(org)
j

∥∥∥
2
. (5)

A higher value of ∆zL
j |z0

i
indicates that the j-th token in

final layer L is more sensitive to change of the i-th token. It
implies that j-th token encodes more information from the
i-th token, i.e. encodes a stronger semantic dependency.

To validate that the j-th token zLj in the output layer L
encode strongest semantic dependency with the i-th to-
ken in the input layer z0i , we compare the average change
∆zL

j |z0
i

for all tokens. If ∆zL
i |z0

i
is the largest among all

∆zL
j |z0

i
, j ∈ {1, . . . , N}, we can determine the j-th token in

the final layer encode strongest semantic dependency with
i-th token. For the first validation across multiple instances,
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Table 1: Two validations on basic mechanisms of token-
level semantic information propagation. Validation 1 is for
self-information retention. Validation 2 is for sequence-level
semantic aggregation.

Model validation 1 (%) validation 2 (%)

BERT (encoder only) 98.81 99.29
RoBERTa (encoder only) 93.06 94.69
TinyRoBERTa (encoder only) 94.29 96.40
ALBERT (encoder only) 97.01 97.74
DistilBERT (encoder only) 95.11 96.06
DeBERTa (encoder only) 99.62 99.74
MobileBERT (encoder only) 96.49 99.37
MiniLM (encoder only) 88.69 93.42
GPT-2 (decoder-only, auto-regressive) 75.15 100.00
LLaMA3 (decoder-only, auto-regressive) 95.59 100.00

we calculate the percentage P that the i-th token’s perturba-
tion in input layer primarily affects its corresponding output
token zLi in a transformer-based model fθ on M tested token
cases as follows:

P (fθ) =
1

M

M∑
m=1

1{i=argmaxN
j=1 ∆

zL
j

|z0
i
}. (6)

For the second validation, we calculate the percentage of
cases when each input token z0i affect each output token zLj ,
i.e., ∆zL

j |z0
i
> 0, for all i, j ∈ {1, . . . , N}

Experiments We validate model’s self-information reten-
tion and sequence-level semantic aggregation using vari-
ous sentences from six datasets, including gsm8k (Cobbe
et al., 2021), Yelp (Zhang et al., 2015), GLUE (Wang et al.,
2019), CNN/DailyMail (Hermann et al., 2015), OpenOrca
(Lian et al., 2023) and WikiText (Merity et al., 2016). For
each model, over 100,000 token cases were evaluated for
each datasets (each token perturbation is treated as one
case, 600,000 cases in total). Our analysis involves 10 var-
ious Transformer-based models, including BERT (Devlin
et al., 2018), RoBERTa (Liu, 2019), ALBERT (Lan, 2019),
DistilBERT(Sanh, 2019), DeBERTa (He et al., 2020), Mo-
bileBERT (Sun et al., 2020), MiniLM (Wang et al., 2020),
GPT (Radford et al., 2019), and LLaMA (Touvron et al.,
2023). Noted that we compute changes for nearly all to-
kens (over 95%) in each sequence, excluding special tokens
such as [CLS] and [SEP], which ensures a comprehensive
assessment of the semantic dependency across the input.

Results The results in Table 1 summarize two key metrics:
the first column represents the percentage of tokens that pri-
marily retain their original semantic information, while the
second column indicates the percentage of input tokens that
propagate semantic information to other tokens. Compared
to BERT and LLaMA, there is a part of tokens that do not
preliminarily retain their original information in GPT. From
this experiment, we can observe that most tokens primarily
retain their original semantic information, even as they pass
through the transformer layers. Additionally, we verify that

almost every final-layer token receives semantic information
from every token (including itself) in the sequence.

4. A Final-layer Token Encodes Truthful
Semantic Dependency

In the previous section, we observed that most tokens pri-
marily retain their original semantic information. However,
we also found that tokens not only retain their own semantic
information but also integrate semantic information from
all other tokens. In this section, we aim to verify whether a
token usually contains semantically dependent information,
i.e, encodes truthful semantic dependencies in the final layer.
Specifically, our method investigates if tokens encode
more semantic information from semantically related
words compared to unrelated words in the sequence. We
find that this holds for most tokens.

To assess whether a token effectively encodes truthful se-
mantic dependency, we first randomly select a word w0

i . We
then identify a group Gz0

i
containing the indices of semanti-

cally dependent tokens by leveraging semantic dependency
parsing tools SpaCy (Honnibal et al., 2020), which parse
the words in the sentence that are semantically dependent
with w0

i , including both head and children in parsing tree
and the word itself. SpaCy leverages a pre-trained neural
network model to predict syntactic relationships between
words, offering more comprehensive annotations than hu-
man labeling. Next, we estimate a semantically dependent
token group Ĝz0

i
by changing z0i and obtain the indices of

top Ktop tokens most sensitive to the change of z0i . Finally,
we evaluate the alignment between Gz0

i
and Ĝz0

i
.

Semantically Dependent Token Groups A group Gz0
i

contains the indices of tokens semantically dependent on
z0i . To identify a semantically dependent token group Gz0

i
,

we leverage existing semantic dependency parsing methods
to obtain the semantically dependent word group Ww0

i
of

the word w0
i , then convert it into a token group 1. Intu-

itively, dependency parsing analyzes the grammatical struc-
ture of a sentence, establishing relationships between “head”
words and the words that modify them. For example, in the
sentence “The quick brown fox jumps over the lazy dog.”,
the word “fox” is semantically related to word “quick”,

“brown” and “jumps” based on their grammatical dependen-
cies. Once Ww0

i
is identified, each word wj in Ww0

i
is

converted into its corresponding token indices, and w0
i is

converted into z0i , forming Gz0
i
.

Estimated Semantically Dependent Token Group by
Leveraging Token Perturbation To estimate the seman-
tically dependent token group Ĝz0

i
for each token z0i , we

1In our experiments, we do not consider the case when w0
i is

converted to subword tokens.
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Table 2: Alignment scores that indicate how well individual
tokens encode truthful semantic dependencies (%).

Model Average Alignment Score (%)

BERT 87.86
RoBERTa 87.71
TinyRoBERTa 82.44
ALBERT 88.77
DistilBERT 88.88
DeBERTa 87.17
MobileBERT 85.80
MiniLM 84.62
GPT-2 93.41
LLaMA3 92.47

measure semantic dependency score ∆zL
j |z0

i
by Eq. (5) for

each token zLj in the final layer L. Then we rank it and
select the largest Ktop indices within the sequence into a set
denoted as Ĝz0

i
.

Ĝz0
i
= {j | j ∈ indices of maxKtop(∆zL

j |z0
i
, j = 1, . . . , N)}. (7)

Calculating Alignment Score To assess the alignment
between our estimated semantically dependent token group
Ĝz0

i
and the semantically related token group Gz0

i
, we com-

pute the alignment score Si to measure the overlap between
Ĝz0

i
and Gz0

i
:

Sz0
i
=

∣∣∣Gz0
i
∩ Ĝz0

i

∣∣∣
Ktop

, (8)

where
∣∣∣Gz0

i
∩ Ĝz0

i

∣∣∣ represents the number of overlapping

tokens between Gz0
i

and Ĝz0
i
. A high alignment score means

the tokens influenced by the perturbation of z0i tend to be the
ones that are semantically related to it, indicating models’
ability to encode truthful semantic dependency.

Experiments and Results We conducted this experiment
on 10 transformer models. We first construct a specialized
word dependency dataset using SpaCy. This dataset includes
sentences from the GLUE dataset, where each word (as
one case) in the sentence is annotated with its semantically
dependent word groups as standard dependency data. For
each model, we evaluated over 10,000 cases, where each
case corresponds to perturbing a single token and computing
the alignment score. The average alignment scores across all
cases are presented in Table 2. The overall high alignment
scores indicate these models can generally encode truthful
semantic dependencies in final-layer tokens.

5. When the Model Makes Mistakes, It Falsely
Aggregates Semantically Independent
Information within a Token

Models rely on correctly encoding semantic dependencies
to generate coherent and contextually appropriate outputs;

otherwise, the resulting content may be random or confus-
ing. Although Section 4 showed that transformer models
can encode truthful semantic dependencies in the final layer,
they still produce incorrect outputs in certain contexts. This
suggests that correctly encoding most semantic dependen-
cies is insufficient to prevent mistakes. We hypothesize that
such mistakes arise from the model’s tendency to encode
false semantic dependencies in tokens through transformer
layers. Intuitively, in the final layer, token representations
are transformed via a linear prediction layer to produce out-
put logits. However, the limited discriminative power of
this linear layer makes it susceptible to errors when tokens
encode false semantic dependencies from other unrelated
or misleading tokens, ultimately leading to incorrect pre-
dictions. To test our hypothesis, we conduct an empirical
analysis using the question answering (QA) task, which is
particularly suitable for evaluating the influence of token-
level semantic dependencies because QA inherently requires
the model to understand and associate tokens in a question
with those in the context.

In this section, we firstly identify that model mistakes in
QA tasks stem from incorrect semantic dependencies en-
coded in question tokens. Specifically, our method exam-
ines whether the semantic dependency strength between
wrong answer tokens and question tokens exceeds that
between correct answer tokens and question tokens. Fur-
thermore, to localize model parameters that encode semantic
dependency, we propose a method to pinpoint a group of
attention head parameters responsible for token-level se-
mantic dependency. We demonstrate that directly pruning
the parameters to correct these mistakes is challenging, as
the same parameters may encode both correct and incorrect
semantic dependencies.

5.1. Evaluation of Correct & False Semantic
Dependencies in QA Task

To test our hypothesis that model errors often result from
falsely aggregated independent semantic information within
tokens, we analyze QA pairs where the language model
outputs either the correct answer extracted from the context
or an incorrect one. We then compare the semantic depen-
dencies between tokens in incorrect answers and question
tokens against those in correct answers within a question-
answering (QA) task.

Consider the QA example illustrated in Figure 4, where
the context provides the correct answer “national anthem”
and an misleading phrase “sign language.” If the BERT
model incorrectly outputs “sign language” instead of “na-
tional anthem”, this presents an opportunity to examine the
underlying semantic dependencies between context tokens
and question tokens that led to the mistake.

Formally, let Q = {q0
i }

NQ

i=1 represent the set of tokens in
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translatedidWhat Mary ？

performedfamousThe singer the national anthem

Question:

Context:

sign Marywhile provided language translation，

...

sign

...

languange

national

athem

...

∆ = 2.13

∆ = 1.38

∆ = 4.63∆ = 4.54

wrong model answer

correct answer

semantic dependency score ∆� �
from context token to question token

 (b) Contribution heatmap of attention head group in 
BERT for correct and wrong semantic dependency 

correct semantic dependency: 
“anthem” to “Mary”

wrong semantic dependency: 
“sign” to “?”

 (a) Semantic dependency in a question-answer instance when model output wrong answer

Figure 4: A question-answer instance for false semantically dependent information within tokens.

the question, Acorrect = {a0i }
NC
i=1 represent the correct an-

swer tokens in the context, and Awrong = {a0i }
NW
i=1 represent

the incorrect answer tokens in the context. For each answer
token ai, we measure its semantic dependency on each ques-
tion token qj ∈ Q by computing a semantic dependency
score ∆qL

j |a0
i

by Eq. (5). This score quantifies the degree to
which answer token ai influences the question token qj in
the final layer L of the model. Next, we determine the max-
imum semantic dependency score for each answer token
by selecting the highest ∆qL

j |a0
i

across all question tokens

∆′
a0
i |Q

= max
NQ

j=1 ∆qL
j |a0

i
.

For both correct and incorrect answers, we compute the
highest dependency scores across all answer tokens:

∆′
Acorrect|Q

=
NC
max
k=1

∆′
a0
k
, ∆′

Awrong|Q
=

NW
max
k=1

∆′
a0
k
. (9)

To evaluate whether the maximum dependency score for
incorrect answers exceeds that of correct answers when a
model makes mistakes, we calculate the percentage that
∆′

Awrong|Q
is greater than ∆′

Acorrect|Q
given the question and

answer pairs where the model makes mistakes. Specifically,

P (fθ) =
1

H

H∑
i=1

1{∆′
Awrong|Q

>∆′
Acorrect|Q

}, (10)

where H represents the total number of failed QA instances.

Experiments We apply our evaluation method to the Stan-
ford Question Answering Dataset (SQuAD) 1.1 (Rajpurkar
et al., 2016), which comprises context paragraphs extracted
from Wikipedia articles, along with manually crafted ques-
tions and their corresponding correct answers. Each QA
instance in the dataset provides a context from which the
correct answer is a continuous span of text, which means
the answer exists verbatim in the context. Our analysis in-
volves processing over 100,000 QA validation cases across
10 Transformer-based models.

Table 3: Two-by-two possibility table for model answer
correctness and semantic dependency correctness.

Correct Dependency Incorrect Dependency

Answer Correctly P ′(fθ) 1− P ′(fθ)
Answer Incorrectly 1− P (fθ) P (fθ)

For each QA instance, we first determine whether the model
fails to output the correct answer by evaluating the F1 score
between the model’s predicted answer and the ground truth
answer. We consider a prediction to be incorrect if the F1
score is below 0.6. Consequently, we collect these incor-
rect answer cases (where F1 < 0.6) for further analysis to
examine the presence of false dependencies. This selection
criterion ensures that we focus on substantial mistakes rather
than minor discrepancies, thereby providing a robust basis
for evaluating semantic dependency misalignments.

In these selected failed QA cases, we compare the semantic
dependencies between question tokens and correct/incorrect
answer tokens. For each case, we calculate whether the max-
imum semantic dependency score of incorrect answer tokens
∆′

Awrong|Q
exceeds that of correct answer tokens ∆′

Acorrect|Q
.

This comparison allows us to assess whether the model’s
mistakes are associated with false semantic dependencies
from incorrect context tokens influencing question tokens.
For successful QA cases, we calculate the percentage P ′(fθ)
when the maximum semantic dependency score of correct
answer tokens ∆′

Acorrect|Q
exceeds that of incorrect answer

tokens, ∆′
Awrong|Q

, where the incorrect tokens are randomly
sampled T times from the remaining context tokens (ex-
cluding the correct answer tokens). Finally, we summarize
P (fθ) and P ′(fθ) for all models.

Results For each model, we provide a two-by-two possi-
bility table (shown in Table 3) for model answer correctness
and semantic dependency correctness. P (fθ) stands for the
percentage when the model answers incorrectly and seman-
tic dependency is incorrectly encoded. P ′(fθ) stands for

7
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Table 4: Summarized percentages for two-by-two possibility table and F1 scores of all models. Results based on GPT
evaluations are provided in the Appendix A.3.

BERT RoBERTa tinyRoBERTa ALBERT DistilBERT DeBERTa MobileBERT MiniLM GPT-2 LLaMA3

P (fθ) 79.07 69.20 77.94 71.86 81.80 75.32 66.61 77.56 48.04 64.56
1− P (fθ) 20.93 30.80 22.06 28.14 18.20 24.68 33.39 22.44 51.90 35.44
P ′(fθ) 93.26 82.32 83.33 87.05 96.48 89.25 75.24 91.97 81.25 70.56
1− P ′(fθ) 6.74 17.68 16.67 12.95 3.52 10.75 24.76 8.03 18.75 29.44

Average F1 Score (%) 92.93 84.86 82.83 80.56 85.71 91.69 81.19 85.34 0.78 35.81

the percentage when the model answers correctly and the
semantic dependency is correctly encoded.

The final results for all QA cases and average F1 score are
summarized in Table 4, which generally shows a significant
proportion of model mistake cases across various models
can be attributed to falsely encoded semantic dependencies.
For instance, in BERT’s case, the high percentage P (fθ)
implies that when the model selects an incorrect answer, it
is more likely due to the erroneous answer tokens causing a
stronger semantic influence on the question tokens than the
correct answer tokens. Conversely, the overall high P ′(fθ)
suggests when the model correctly encodes the semantic
dependency in the final-layer token, it usually provides the
correct answer. These findings highlight the importance of
semantic dependency encoded in the final-layer token for
model predictions.

The variation in Percentage across different models high-
lights inherent differences in how each architecture manages
semantic dependencies and mitigates the impact of mislead-
ing information. For models like DistilBERT and BERT, the
higher P (fθ) suggests that their architecture may be more
susceptible to false dependencies when mistakes occur. For
models like RoBERTa and MobileBERT, the Lower P (fθ)
means false dependency accounts for a small proportion in
failed QA instances, which means there may be some other
factors that lead to wrong outputs. Unlike the BERT series,
GPT-2 and LLaMA show much lower P (fθ) and F1 scores.
This discrepancy can be attributed to their generative nature
where they tend to produce new words or synonyms rather
than reproducing original ground-truth answers. Their logic
of answer generation differs from that of the BERT-based
QA models, potentially introducing inconsistencies in how
semantic dependencies are encoded and impacting semantic
dependency evaluation.

5.2. Localize Parameters of Attention Head Group
Responsible for Semantic Dependency

As shown above, mistakes in QA tasks are closely tied to
token-level semantic dependency. To better understand the
network’s role in model mistakes and evaluate whether false
semantic dependencies can be adjusted to improve model
performance, we focus on localizing the parameters that

encode semantic dependencies. Our motivation stems from
two key considerations: 1). If correct and incorrect de-
pendencies are controlled by different parameters, we can
directly modify the ones responsible for incorrect dependen-
cies (e.g. pruning methods) to improve model performance.
2). Conversely, if they share the same parameters, we need
other strategies to address the challenge of removing false
dependencies without affecting the correct ones.

As discussed above, the attention mechanism plays a key
role in propagating semantic information between tokens,
ultimately enabling the final layer token to encode various
semantic dependencies. Building on these foundations, we
focus primarily on analyzing the contribution of attention
head parameters in this paper. Specifically, we propose a
method to identify attention heads primarily responsible for
encoding specific token dependencies.

Inspired by previous study (Gandelsman et al., 2024), the
contribution of l-th MHA on j-th token can be broken down
into tokens and heads.

MHAl
j(Z

l−1) =

H∑
h=1

N∑
i=1

xl,h
i , xl,h

i = αl,h
i W l,h

V Oz
l−1
i

(11)
Specifically, for any token dependency, i.e., token depen-
dency from i-th token to j-th token, including correct or
wrong token dependency in QA tasks mentioned above, we
replace the i-th the token with K randomly sampled tokens.
Then we measure each head’s contribution to semantic de-
pendency by calculating average change ∆l,h

zL
j |z0

i

between
original head contribution and perturbed head contributions:

∆l,h

zL
j |z0

i

=
1

K

K∑
k=1

∥∥∥xl,h(k)
i − x

l,h(org)
i

∥∥∥
2

(12)

As shown in Figure 4(b), we test the semantic dependency
contribution score ∆l,h

qL
j |a0

i

of each attention head in BERT
for both wrong semantic dependency between “sign” and
“?” and correct semantic dependency between “anthem” to
“Mary” in corresponding QA instance in Figure 4(a). The
heatmap reveals the group of attention heads (highlighted
in brighter colors) that mutually contribute to a semantic
dependency in this specific context.
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Experiments To evaluate how parameters in attention
heads contribute to semantic dependencies across various
cases, we conducted experiments on different fine-tuned
models commonly used in QA tasks with high accuracy (F1
> 0.8). Specifically, we analyzed the frequency of each
top 5% contributing attention head for correct and false
semantic dependency across all failed QA cases (shown
in Figure 5). Due to space constraints, we present the re-
sults from the four highest-performing models and include
additional experiments in Appendix A.4.

(a) BERT (b) DistilBERT

(c) DeBERTa (d) MiniLM

Figure 5: Frequency of each top 5% contributing attention
head for correct (green) and false (red) semantic dependency
across all failed QA cases.

Results Figure 5 reveals a shared group of top attention
heads responsible for both correct and false semantic depen-
dency in these models. This suggests that model mistakes
in QA tasks stem from the parameters of these specific
attention heads. However, it also suggests false seman-
tic dependencies cannot be reduced by directly disabling
them (e.g., via head pruning approaches (Voita et al., 2019;
Michel et al., 2019)) because these heads also contribute

to encoding correct semantic dependencies and indiscrimi-
nate removal of attention heads may inadvertently disrupt
essential task-specific dependencies. Our finding highlights
a critical technical challenge: how to disentangle and opti-
mize attention mechanisms to suppress false dependencies
while preserving correct ones. Future work may require
more targeted re-weighting or regularization strategies to
achieve this balance.

6. Discussion and Future Work

Our current method has certain limitations, which we be-
lieve present valuable opportunities for future work. Firstly,
our analysis relies on perturbation-based approaches to as-
sess token dependencies, which require that answer tokens
appear in the context. This limits its applicability to scenar-
ios where the model generates answers not directly found
in the input. We aim to expand our ability to effectively
analyze dependencies in such cases.

Additionally, perturbation involves removing existing infor-
mation and introducing new information, which can cause
variability in output tokens. For instance, replacing a token
with a semantically similar yet different token may lead to
significant variation depending on the model’s interpreta-
tion. We address this by randomly sampling new tokens to
ensure diversity and reduce bias, though some variability
remains. Future work will focus on refining this calibration.

Our analysis primarily focuses on the semantic dependen-
cies between final-layer tokens and first-layer tokens. This
design choice is motivated by our goal of understanding
errors in the model’s output, where the final-layer token
representations are expected to have the most direct influ-
ence, as supported by prior studies. While our current study
centers on the final layer, our method is general and can
be applied to intermediate layers as well. We will explore
token dependencies across different layers in future work.

7. Conclusion

In this paper, we delved into the internal mechanisms of
transformer models to explore how semantic dependencies
are encoded in tokens, which can contribute to the mis-
takes produced by language models. Extensive experiments
reveal that: 1) most tokens primarily retain their original
semantic information across layers. 2) models can encode
truthful semantic dependencies in final-layer tokens. and 3)
model mistakes often stem from tokens encoding incorrect
dependencies. However, shared attention head parameters
help encode both correct and false dependencies, indicat-
ing the challenge of removing incorrect dependencies. We
believe these insights can offer valuable implications for
future transformer model design.
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A. Appendix

A.1. Detailed Related Works

Semantic Dependency Parsing and Semantic Role Labeling. Semantic dependency parsing (SDP) (Björkelund et al.,
2010; Dozat & Manning, 2018) aims to identify semantic relationships between words in a sentence, by constructing
a directed graph, where nodes represent words and edges capture their semantic dependencies. Closely related to SDP,
semantic role labeling (SRL) (He et al., 2017; Chen et al., 2025) focuses on identifying the predicate-argument structure of a
sentence by assigning roles to words or phrases based on their semantic relationship to a verb or predicate. Notably, studies
(Li et al., 2004; Shen & Lapata, 2007; Khashabi et al., 2018) have shown that incorporating semantic role information
enhances question-answering systems. However, despite their advancements, the internal mechanisms by which transformer
models encode, propagate, and utilize semantic dependencies remain largely opaque. Our work bridges this gap by exploring
how internal mechanisms contribute to semantic dependency encoding and how these insights can be leveraged to address
mistakes.

Semantic Information Flow in Transformer. Existing work (Liao et al., 2021; Schuster et al., 2022; Elhoushi et al., 2024)
have studied model activation stability in later layers of transformer models. Specifically, additional layers may contribute
minimally to the refinement of token representations, which enables techniques like early exit to accelerate inference.
However, whether the token in the last layer mostly contains its original semantic information in the input layer has not been
studied. Previous study (Geva et al., 2023) analyzes how factual associations are recalled in auto-regressive language models,
highlighting the roles of MLP sublayers in enriching subject representations and attention heads in extracting attributes.
Our study addresses a gap by studying how semantic dependencies are encoded in tokens and influence QA tasks in both
non-auto-regressive (BERT series) and auto-regressive models (GPT, LLaMA).

Interpretable Model Mistake Based on Attention Heads. Existing works have studied specific roles of attention heads to
explain model mistakes. Study (Wu et al., 2024) identifies specific attention heads, termed retrieval heads, which are critical
for retrieving factual information from long contexts. The absence or malfunctioning of these retrieval heads may lead to
model mistakes. Another study (Gandelsman et al., 2024) shows some attention heads in CLIP have property-specific roles
(e.g., location or shape), which are important for model performance. Our work offers another perspective by interpreting
model mistakes via token-level semantic dependency encoding, which provides insights into understanding and correcting
model mistakes under specific question-answering cases. Additionally, our finding in mutual attention heads responsible for
key dependencies in QA tasks also shows the importance of adjusting parameters in attention heads without tempering the
correct semantic dependency encoding.

Probing Study for Linguistic Properties in Transformer. Probing methods (Rogers et al., 2021) are widely used to
analyze the internal representations of pre-trained language models to determine whether specific linguistic properties
are encoded. A previous study demonstrated that BERT encodes syntactic tree structures in its vector space, allowing a
probing classifier to reconstruct syntactic distances between words using linear transformations (Hewitt & Manning, 2019).
Additionally, the study revealed that BERT encodes high-level linguistic features like entity types, semantic roles, and
relations through probing tasks (Tenney, 2019). Moreover, existing research utilized information-theoretic probing methods
to quantify the mutual information between model representations and linguistic properties, reducing over-interpretation
risks (Pimentel et al., 2020).

Token ablation is a widely used, parameter-free probing technique. For example, researchers have studied the influence
of syntactic subtree structures on masked language model (MLM) predictions through ablations (Wu et al., 2020). Others
analyze syntactic agreement in language models through causal interventions, identifying key neurons and attention heads
(Finlayson et al., 2021). Gender bias has been investigated using causal mediation analysis (Vig et al., 2020). Naturally
occurring perturbations, which refer to sentences differing in specific morpho-syntactic features, have been used to probe
causal relationships (Amini et al., 2023).

These works primarily investigate how models encode syntactic and high-level semantic features, such as entity relations or
syntactic structures. In contrast, our study focuses specifically on token-level semantic dependency encoding, analyzing
fine-grained interactions between individual tokens rather than task-specific feature aggregation or high-level semantic
encoding. Moreover, we introduce an evaluation framework to measure semantic dependency strength between two tokens
without relying on prior knowledge. Our approach also identifies false semantic dependencies that arise when the model
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produces incorrect answers. Unlike static syntactic or semantic structures, our framework captures the dynamic and
context-sensitive semantic dependencies, which can vary irregularly across diverse scenarios.

Feature Attribution and Binding Study. Feature attribution methods primarily aim to assess the importance of individual
tokens or features to the model’s output. For example, prior work on attention flow (Abnar & Zuidema, 2020) quantifies
token importance through accumulated attention matrices. Gradient-based techniques like Conservative Propagation (Ali
et al., 2022) is used to assess token attribution. Our study shifts focus from token importance to the semantic dependencies
encoded in token representations and how these affect model behavior.

Existing semantic dependency methods based on feature/token interactions (Eberle et al., 2020; Janizek et al., 2021;
Schnake et al., 2021) mainly focus on studying the contribution of combinations of features or tokens to model predictions.
Meanwhile, feature binding methods (Feng & Steinhardt, 2023; Vasileiou & Eberle, 2024; Wattenberg & Viégas, 2024)
often do not test whether the model’s most confident output reflects encoded semantic dependencies; rather, many assume
this relationship holds and study downstream properties. In contrast, our method is designed to explicitly test the assumption
by evaluating whether there is a dependence between the model’s output and the semantic dependency encoded in the
final-layer token.

A.2. Extra Finding: The Semantic Dependency Encoded in a Token Is Influenced by Both Irrelevant Context
Changes and Order of Contexts

In this section, we study whether the rank of semantic dependency strength encoded in a token changes when adding
irrelevant context or simply changing the order of the context sequence. We also found some interesting phenomena
after experiments: 1). Semantically related tokens remain relatively stable when altering irrelevant context or the
order of the context. 2). Left context change usually causes greater influence than right context change.

Robustness studies have demonstrated that the inclusion of irrelevant context (Shi et al., 2023) or adversarial sentences (Jia
& Liang, 2017) in prompts can lead to a significant decline in model accuracy. They usually work by analyzing model
performance on various types of adversarial examples and attribute the decline to broader issues, such as the model’s
tendency to rely on surface-level features like word overlap and positional cues. To further explore the underlying reason for
such performance decline from a token-level perspective, we test whether altering the irrelevant context or rearranging the
order of independent sentences affects the rank of semantic dependency strength.

For example, we have two semantically independent token sequences “white rhinos are gray” and “apples are red” in
Figure 6, where “apples are red” (highlighted with green background) serves as irrelevant context to “white rhinos are gray”.
On the top half part of the figure, when we add the irrelevant context “apples are red”, the rank of semantic dependency
strength between the token “rhinos” and tokens in its sequence “white rhinos are gray.” varied. On the bottom part of the
figure, the same thing happens when we maintain the overall input semantic information unchanged and only change the
order of the two token sequences. This demonstrates that even when two token sequences are semantically independent,
irrelevant changes in context and the ordering of sequences can significantly alter how semantic information is aggregated
within each token.

Semantic Dependency Analysis with Irrelevant Context Change To validate whether irrelevant context influences the
semantic dependencies of tokens in a sequence, we selected two semantically independent sentences randomly sampled
from a dataset. Consider two sentences:

“The sky is blue.” vs “The apple is red. The sky is blue.”, i.e., s1 vs (s2, s1)

“The sky is blue.” vs “The sky is blue. The apple is red.”, i.e., s1 vs (s1, s2)

We investigated whether the semantic dependencies within “The sky is blue.” remain unchanged when appended with “The
apple is red.” on its left side or right side. Since both contexts are independent, with no semantic dependencies between
them, the semantic dependencies within “The sky is blue.” should remain unchanged regardless of their surrounding context
in the input sequence.

Specifically, given two input token sequences are z0(s1) = {z0i }
N1
i=1 and z0(s2) = {z0j}

N2
j=1, respectively. Here, we

validate the semantic dependencies within z0(s1). We created two additional token sequences: z0(Left) = [z0(s2), z0(s1)]
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Figure 6: Semantic information propagation is influenced by irrelevant context change and sequence order change.

and z0(Right) = [z0(s1), z0(s2)], where z0(Left) is obtained by concatenating z0(s2) to the left and z0(Right) is obtained by
concatenating z0(s2) to the right. For token z0i from z0(s1), we obtain the corresponding estimated semantic dependency
token group Ĝs1

z0
i

via Eq. (7). By using the same approach, estimated semantic dependency token groups ĜLeft
z0
i

and ĜRight
z0
i

for

z0(Left) and z0(Right) can also be obtained. Then the Dependency Alteration Score (DAS) of ĜLeft
z0
i

and Ĝs1
z0
i

can be calculated
as follows:

DAS(ĜLeft
z0
i
, Ĝs1

z0
i
) = 1−

LCS(ĜLeft
z0
i
, Ĝs1

z0
i
)

L
, (13)

where LCS(·) is the length of the longest common subsequence. In our case, it represents the longest sequence of tokens that
appear in the same order in both contexts, despite irrelevant context or order changes. The score DAS(ĜLeft

z0
i
, Ĝs1

z0
i
) measures

how the semantic dependency changes when appending irrelevant context z0(s2) to the left of the original sequence z0(s1).
Similar DAS(ĜRight

z0
i

, Ĝs1
z0
i
) can be obtained, which measures the changes of semantic dependency when appending irrelevant

context z0(s2) to the right.

Semantic Dependency Analysis with Irrelevant Context Order Change For irrelevant context order change, we observe
whether the token dependency in sentence “The sky is blue.” alters when inputting the sentence with irrelevant context
order change, e.g., “The sky is blue. The apple is red.” and input “The apple is red. The sky is blue.”. We simply use
DAS(ĜLeft

z0
i
, ĜRight

z0
i

) to measure how the semantic dependency changes when appending the irrelevant context z0(s2) to the

left and the right of the original sequence z0(s1).

Experiments We conducted the semantic dependency analysis across over 5,000 cases to examine the impact of irrelevant
context added to both the left and right sides, as well as the effect of sequence order changes, in order to determine whether
the semantic dependency encoding is context-dependent and order-dependent. Specifically, we measured the dependency
changes when perturbing the token z

0(s1)
i in the original sequence z0(s1). This involves evaluating the dependency alterations

of its semantically dependent token groups by aligning the top 5 semantically dependent token groups (L = 5) and by
aligning all tokens from the original sequence z0(s1) (L = N1). The average dependency alteration scores are presented in
Figure 7.

Results Figure 7(a) and Figure 7(b) illustrate the changes in semantic dependency when irrelevant context is appended on
the left or right side. It shows that the rank of semantic dependency strength of common token is significantly affected by
the context, while relationships of semantically more related tokens (Top 5) remain relatively stable.

Figure 7(c) further compares the changes in dependency when the irrelevant context is added to the left versus the right side
of the original sentence. The results reveal that adding context to the left side generally results in a greater alteration of
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(a) Left context change (b) Right context change

(c) Left & right context (d) Order change

Figure 7: Semantic Dependency Alteration Score when irrelevant context or context order changes.

semantic dependencies compared to the right side. This suggests that the order of irrelevant context can differentially impact
the model’s semantic dependency structures.

Figure 7(d) demonstrates the impact of altering the sequence order on semantic dependencies. The results also show that
irrelevant token groups are easily influenced by unrelated contexts, while semantically more dependent tokens exhibit greater
resilience to such alterations.

Overall, our findings indicate that both the introduction of irrelevant context and the modification of sequence order
dramatically influence semantic dependency within sentences. These results reinforce the importance of context placement
and order in shaping the semantic dependency structures learned by Transformer-based language models.

Insight for Future Model Design Our insight can further help training or finetuning a robust language model. Intuitively,
semantic dependencies between tokens should remain robust regardless of changes in irrelevant contexts or the order of
independent sentences. A natural thought for future work could be regulating transformer models to maintain consistent
semantic dependencies despite irrelevant context variations. This may involve implementing regularization techniques that
enforce stable token representations regardless of irrelevant context or sequence alterations.

A.3. More Experiments

Percentage of a Token Primarily Retains Its Original Semantic Information across Different Datasets in Section
3. We measure the total percentage with various sentences from six datasets, including gsm8k (Cobbe et al., 2021), Yelp
(Zhang et al., 2015), GLUE (Wang et al., 2019), CNN/DailyMail (Hermann et al., 2015), OpenOrca (Lian et al., 2023) and
WikiText (Merity et al., 2016). For each model, over 600,000 token cases were evaluated (each token perturbation is treated
as one case). We also observed that a proportion of tokens in GPT propagate semantic information mostly to its next token.
Thus, We also include the percentage of the token propagating semantic information to both its next token and itself for GPT
on the right. The detailed result is displayed in Table 5.

To further discuss this phenomenon, we believe that one key factor is the presence of residual shortcuts, which may encourage
final-layer token representations to retain information from the original input. For example, in a simple one-layer model
with a direct shortcut from input to output, the final-layer token is likely to closely mirror its corresponding input token.
However, residual connections alone do not fully explain the observed effect. To support this, we include the percentages for
GPT-2, GPT-2-Large, and GPT-2-XL across different datasets in Table 6. Although these models share the same residual
architecture, larger models (e.g., GPT-2-XL) exhibit significantly stronger semantic retention (similar percentages to BERT,
e.g., around 98%) at the final-layer token level than smaller models (e.g., GPT-2). It suggests that semantic retention is also
influenced by other factors such as model size and complexity.
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Table 5: Percentage of a token primarily retains its original semantic information.

gsm8k Yelp GLUE DailyMail OpenOrca WikiText

BERT 99.22 98.58 98.48 98.81 98.90 98.84
RoBERTa 89.54 93.46 89.98 95.02 93.34 96.99
TinyRoBERTa 92.29 95.16 94.43 95.11 94.38 94.39
ALBERT 96.84 97.36 97.67 96.67 97.65 95.85
DistilBERT 93.84 95.27 95.84 95.70 95.54 94.49
DeBERTa 99.69 99.57 99.54 99.67 99.46 99.78
MobileBERT 94.34 96.38 93.16 97.73 98.22 99.08
MiniLM 87.21 92.16 93.25 87.54 86.38 85.58
GPT-2 75.19/88.42 77.46/89.94 77.49/92.51 73.11/85.88 69.32/81.68 72.31/84.46
LLaMA3 96.21 96.68 94.20 95.85 95.78 94.80

Table 6: Percentage of a token primarily retains its original semantic information in GPT series.

gsm8k Yelp GLUE DailyMail OpenOrca WikiText Avg. Percentage

GPT-2 (124M) 75.19 77.46 77.49 73.11 69.32 72.31 75.15
GPT-2-Large (774M) 98.49 98.47 98.16 98.17 98.34 98.08 98.29
GPT-2-XL (1.5B) 98.64 98.32 97.85 97.83 97.90 97.80 98.05

Percentage of a Token Propagates Semantic Information to Other Tokens in Section 3. We also observe the change of
the specific input word causes influence on other tokens in the final layer in experiment of Section 3. The result in all cases
(each token perturbation is treated as one case, over 600,000 cases are evaluated for each model) is shown in Table 7. Even
if minor, in models like BERT, DeBERTa, and MobileBERT, the change is almost 100%, which means each token receives
pieces of semantic information from almost every token in the input sequence. While in auto-regressive models like LLaMA
or GPT, the token only influences the tokens on this token’s right side. We observe the changes of tokens on each tokens’
left side is 0. We can also observe the change exists in all tokens on each token’s right side, which suggests each token
receives pieces of semantic information from almost all tokens on its left side.

Why replacing a token with random tokens to explore semantic dependency For both finding 2 and finding 3, we
need to examine how semantic dependency is encoded in the final layer by replacing an input token z0i and observing which
final-layer token (e.g., at position j) changes. If z0i and zLj exhibit strong dependency, which means the semantic information
of z0i is encoded in the final-layer representation at position j, then replacing z0i with another token z̃0i should cause zLj
to change substantially. This indicates a semantic dependency between the two tokens. However, if we replace z0i with a
synonym (e.g., z

′0
i ), the overall semantic meaning of the sentence may remain largely unchanged, and the model may treat

z0i and z
′0
i similarly. In this case, we may observe a minimal change at zLj , making it difficult to conclude whether zLj was

originally dependent on z0i , even if a true dependency existed. Therefore, we use random tokens to encourage semantic
independence. It is also important to note that random token selection may introduce out-of-domain predictions. We believe
measuring sensitivity or semantic relevance through gradients could provide valuable insights and exciting directions for
future work.

Why Using Neural Dependency Parsing Tool in Section 4 Noted that our analysis relies on semantic dependency
data derived with SpaCy, a pretrained neural network-based dependency parser. SpaCy generates syntactic dependency
trees using robust neural architectures trained on large annotated corpora, offering a reliable approximation of semantic
dependencies. To our knowledge, no token-level semantic dependency dataset with comprehensive human annotations exists.
Constructing such a dataset would be prohibitively expensive and prone to omissions due to the complexity of identifying
all dependent token relationships manually. Thus, we use neural dependency parsing tool to generate a specialized semantic
dependency dataset for our experiment.

We additionally conducted experiments using another widely adopted dependency parser, Stanza (Stanford NLP) (Qi et al.,
2020), to validate the robustness of our findings. As shown in Table 8, the results obtained with Stanza are consistent with
those derived from SpaCy, further supporting the conclusion that transformer models encode truthful semantic dependencies
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Table 7: Percentage of a token propagates semantic information to other tokens.

gsm8k Yelp GLUE DailyMail OpenOrca WikiText

BERT 99.44 99.09 99.16 99.20 99.34 99.52
RoBERTa 92.94 95.00 90.76 95.98 95.23 98.24
TinyRoBERTa 96.46 96.42 97.04 96.42 95.98 96.07
ALBERT 97.88 97.99 98.35 97.34 98.23 96.63
DistilBERT 95.44 95.89 96.37 96.29 96.42 95.93
DeBERTa 99.86 99.63 99.66 99.77 99.68 99.82
MobileBERT 99.43 99.22 98.96 99.38 99.50 99.74
MiniLM 94.03 95.51 94.71 91.74 92.19 92.35
GPT-2 100.00 100.00 100.00 100.00 100.00 100.00
LLaMA3 100.00 100.00 100.00 100.00 100.00 100.00

Table 8: Alignment scores indicating how well tokens encode truthful semantic dependencies using Stanza and Spacy (%).

BERT RoBERTa tinyRoBERTa ALBERT DistilBERT DeBERTa MobileBERT MiniLM GPT-2 LLaMA3

SpaCy 87.86 87.71 82.44 88.77 88.88 87.17 85.8 84.62 93.41 92.47
Stanza 84.33 86.9 81.14 85.53 87.19 83.69 80.98 83.67 91.42 90.32

in their final layers.

Note that although model-estimated semantic dependencies can be easily obtained, the main challenge is that existing
semantic dependency parser methods usually cannot measure dependencies at the subword level. This makes direct
comparison difficult. To address this issue, we may need to manually annotate the semantic dependencies and compare them
with those estimated by the models, which is costly and hard to scale.

Why Using Longest Common Subsequence in Section A.2 Consider a simple example to understand how LCS captures
changes in token order: Suppose we have two sequences, A = [1, 2, 3, 4] and B = [2, 3, 4, 1]. In moving from sequence A
to sequence B, the order of the tokens changes such that the token “1” moves from the beginning to the end. Here, the LCS
between A and B is the subsequence [2, 3, 4], which has a length of 3. This subsequence represents the largest set of tokens
that have retained their original order between the two sequences. Since the total number of tokens, N , is 4, the LCS length
of 3 indicates that one token (“1”) changed its position relative to the others. By calculating DAS = 0.25, we find that a
quarter of the token order has been altered due to the change in context. Thus, a lower LCS value (relative to N ) results in
a higher DAS, reflecting a more significant change in token dependency patterns. This metric effectively highlights how
sensitive the token dependencies are to contextual modifications, demonstrating the dynamic nature of semantic processing
in natural language systems.

Why Choosing QA as the Primary Task for Our Experiments We chose the question-answering (QA) task because it is
particularly well-suited for evaluating the impact of semantic dependency mistakes at the token level. QA tasks inherently
involve understanding and associating tokens in a question with those in the context, making them ideal for testing the
model’s ability to handle complex dependencies. This directly aligns with the focus of our study, which explores how false
encoded semantic dependencies lead to model mistakes. Additionally, to validate our findings, it is crucial to have ground
truth datasets that clearly present correct and incorrect dependencies. QA tasks provide datasets like SQuAD, where the
answers are explicitly tied to certain context tokens. These datasets enable us to systematically evaluate how dependency
mistakes between question and context tokens contribute to prediction mistakes.

Why Threshold of F1 < 0.6 is Chosen and Additional Evaluation Using More Advanced ChatGPT Model. The
threshold of F1 < 0.6 for identifying incorrect answers was determined empirically. Since our goal is to assess whether
incorrect answers are associated with incorrect semantic dependencies, an F1 score below 0.6 indicates that over 40% of
the tokens predicted by the model differ from those in the original answer, which strongly suggests the answer is likely
incorrect.

To further strengthen this analysis, and following existing work, we conducted additional experiments using ChatGPT-4o
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Table 9: Additional experiments ChatGPT-4o model to find incorrect cases.

BERT RoBERTa tinyRoBERTa ALBERT DistilBERT DeBERTa MobileBERT MiniLM GPT-2 LLaMA3

P (fθ) (F1<0.6) 79.07 69.20 77.94 71.86 81.80 75.32 66.61 77.56 48.04 64.56
F1 Score 92.93 84.86 82.83 80.56 85.71 91.69 81.19 85.34 0.78 35.81

P (fθ) (GPT-4o select) 79.00 68.42 73.31 66.11 81.79 77.84 68.69 77.56 59.60 62.35
Accuracy 88.45 78.00 78.00 74.63 76.63 90.44 74.50 78.90 0.10 14.68

Table 10: The F1 score of GPT and LLama models using one-shot setting and zero-shot setting.

F1 (0-shot) F1 (1-shot)

GPT-2 (124M) 0.78 5.5
GPT-2-Large (774M) 7.3 21.09
LLaMA3-8B-instruct (8B) 35.81 76.27

models to compare the model’s answer with the ground truth and find incorrect cases. The results displayed in Table 9 are
similar to using F1<0.6.

Why Choose 0-shot F1 Evaluation on LLaMA and GPT Models To ensure a fair comparison, we evaluated LLaMA
and GPT models using the same zero-shot (0-shot) setting as BERT. This is the reason that they present a low accuracy.
Table 10 shows the F1 score using a one-shot setting, which aligns with official benchmark evaluations.

A.4. Localize Parameters of Attention Head Group Responsible for Semantic Dependency in Section 5.2

To better understand the network’s role in model mistakes and evaluate whether false semantic dependencies can be adjusted
to improve model performance, we focus on localizing the parameters that encode semantic dependencies. We have
developed a method to identify the attention heads primarily responsible for specific token dependencies. Here, we present
the intuition and detailed equations.

Intuitively, when the input token carrying specific semantic information changes, the attention heads relevant to corresponding
semantic information propagation will exhibit significant changes in their outputs, while the outputs of irrelevant heads will
remain relatively unchanged. Therefore, by identifying heads with the highest variation in their contribution to a given token
dependency, we can pinpoint the group of attention heads that are mutually responsible for any token dependency including
wrong or correct token dependency in the QA task.

As mentioned in Eq. (2), transformer encoder or transformer decoder is a residual network built from L layers, each of
which contains a multi-head self-attention (MHA) followed by feed forward network (FFN) block.

In the l-th MHA layer, the input stream zl−1 is processed separately by H attention heads. Specifically, the input sequence
Zl−1 is separately projected into Q, K, V matrix in h-th attention head of l-th layer as follows:

Ql,h = Zl−1Wl,h
Q , Kl,h = Zl−1Wl,h

K , Vl,h = Zl−1Wl,h
V (14)

Then attention weight matrix Al,h ∈ RN×N is calculated as follows:

Al,h = softmax
(
QKT

√
dk

)
(15)

The output of each attention head is
Ol,h = Al,hVl,h (16)

For multi-head attention, the outputs of each head are concated and projected to Zl ∈ RN×D, where WO is the output
weight matrix.

MHAl(zl−1) = Concat(Ol,1,Ol,2, . . . ,Ol,H)WO (17)
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The class token and the other tokens share the same computation process. Inspired by previous study (Gandelsman et al.,
2024), the contribution of l-th MHA on j-th token can be broken down into tokens and heads. We can observe that given
a token, each context token contributes to this token by adding operation for semantic information aggregation, which
generates context-related token representation.

MHAl
j(Z

l−1) =

H∑
h=1

N∑
i=1

xl,h
i , xl,h

i = αl,h
i W l,h

V Oz
l−1
i (18)

Specifically, for any token dependency, i.e., token dependency from i-th token to j-th token, including correct or wrong
token dependency in the QA task mentioned above, we replace the i-th token with K randomly sampled tokens. Then we
measure each head’s contribution to semantic dependency by calculating average change ∆l,h

zL
j |z0

i

between original head
contribution and perturbed head contributions as follows:

∆l,h

zL
j |z0

i

=
1

K

K∑
k=1

∥∥∥xl,h(k)
i − x

l,h(org)
i

∥∥∥
2

(19)

As is shown in Figure 4(b), we test the dependency contribution score ∆l,h

qL
j |a0

i

of each attention head in BERT for both
wrong semantic dependency between “sign” and “?” and correct semantic dependency between “anthem” to “marry” in
corresponding QA instance. In this case we can observe there are a group of attention heads (highlighted with bright color
in the contribution heatmap) mutually contribute to the semantic dependency. We can also find the head group responsible
for false dependency is clearly brighter than correct dependency, showing a different pattern.

Extra Experiments and Results Firstly, we calculated the average number of top 5% contributing attention heads
per layer for both correct and false semantic dependency across all BERT’s failed QA cases (shown in Figure 8). The
results reveal the heads responsible for false semantic dependency are primarily distributed in later layers, whereas those
contributing to correct semantic dependency are distributed across both earlier and later layers.

Secondly, We have analyzed the frequency of each top 5% contributing attention head for correct and false semantic
dependency across all failed QA cases (a part of the result is shown in the main text in Figure 5). Here, we include all
fine-tuned BERT models commonly used in QA tasks with high accuracy (F1 > 0.8) in Figure 9.

Additionally, We also calculated the average number of top 5% contributing attention heads per Layer for semantic
dependency across successful QA cases in BERT series (the same number of failed QA cases randomly sampled from the
SQuAD dataset) in Figure 10. The results show that when the model performs correctly, the heads responsible for the correct
semantic dependency are mostly distributed in later layers compared to correct semantic dependency when the model fails a
QA task. Based on Figure 8 and Figure 10, we surmise that The model tends to rely more on the attention heads in the later
layers when answering questions, regardless of whether the answer is correct or incorrect.

Furthermore, we also count the frequency of each top 5% contributing attention head across successful QA cases (the same
number of failed QA cases randomly sampled from the SQuAD dataset) in Figure 11. We also found a similar group of top
attention heads responsible for correct semantic dependency when models fail or succeed in QA tasks, which means they are
QA task-specific heads. The high overlap of the task-specific attention heads also shows that the same parameters contribute
to encoding correct semantic dependency regardless of whether models succeed or fail in QA cases. Based on Figure 9 and
Figure 11, we can conclude that such model mistakes in QA tasks can not be corrected by directly adjusting parameters
such as simply pruning attention heads because correct and incorrect dependencies are controlled by the same group of
parameters. We need other strategies to address the challenge of removing false dependencies without affecting the correct
ones.

Discussion As highlighted in the main text, the attention mechanism plays a key role in propagating semantic information
between tokens, ultimately enabling final layer tokens to encode semantic dependencies. In this paper, we focus primarily
on analyzing the contribution of attention head parameters. Additionally, we notice that MLP layers may amplify irrelevant
or erroneous semantics (Geva et al., 2023). In future work, we aim to extend our analysis to quantify the contribution of
MLP layers to semantic dependency.
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(a) BERT (b) RoBERTa (c) TinyRoBERTa (d) ALBERT

(e) DistilBERT (f) DeBERTa (g) MobileBERT (h) MiniLM

Figure 8: Distribution of top 5% contributing attention heads for correct (green) and false (red) semantic dependency across
all failed QA cases.

(a) BERT (b) RoBERTa (c) TinyRoBERTa (d) ALBERT

(e) DistilBERT (f) DeBERTa (g) MobileBERT (h) MiniLM

Figure 9: Frequency of each top 5% contributing attention head for correct (green) and false (red) semantic dependency
across all failed QA cases.
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(a) BERT (b) RoBERTa (c) TinyRoBERTa (d) ALBERT

(e) DistilBERT (f) DeBERTa (g) MobileBERT (h) MiniLM

Figure 10: Distribution of top 5% contributing attention heads for correct semantic dependency in failed QA cases (green)
compared to successful QA cases (blue).

(a) BERT (b) RoBERTa (c) TinyRoBERTa (d) ALBERT

(e) DistilBERT (f) DeBERTa (g) MobileBERT (h) MiniLM

Figure 11: Frequency of each top 5% contributing attention head for correct semantic dependency in failed QA cases (green)
compared to successful QA cases (blue).
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A.5. Pesudocode for Section 5

Algorithm 1 Evaluation of Semantic Dependencies

Input: Dataset with M instances, transformer model fθ, number of perturbations K.
Output: The percentage p that ∆′

Awrong|Q
is greater than ∆′

Acorrect|Q
given the question and answer pairs where the model

makes mistakes.
Initialize count← 0

for each incorrect QA instance m = 1 to H do
Extract question tokens Q = {q0

i }
NQ

i=1, correct answer tokens Acorrect = {a0i }
NC
i=1, and incorrect answer tokens

Awrong = {a0i }
NW
i=1

for each answer token a0k ∈ Acorrect ∪Awrong do
for k = 1 to K do

if k = 1 then
z̃0k ← a0k

else
z̃0k ← RandomToken(V)

end if
Construct perturbed sequence z̃0(k) by replacing a0k with z̃0k
Compute final layer representations z̃L(k) ← fθ(z̃

0(k))

end for
Compute original final layer representations zL(org) ← fθ(z

0(org))

for each token j = 1 to N do
Calculate ∆zL

j |a0
k
← 1

K−1

∑K
k=2

∥∥∥z̃L(k)
j − z

L(org)
j

∥∥∥
2

end for
Determine maximum dependency score for a0k: ∆′

a0
k|Q

= max
NQ

j=1 ∆qL
j |a0

k

end for
Determine maximum dependency score for correct answers: ∆′

Acorrect|Q = maxNC

k=1 ∆
′
a0
k

Determine maximum dependency score for wrong answers: ∆′
Awrong|Q = maxNW

k=1 ∆
′
a0
k

if ∆′
Awrong

> ∆′
Acorrect

then
count← count+ 1

end if
end for
Calculate percentage: p(fθ) = count

M

Return: p(fθ)
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A.6. Symbol List

Table 11: Symbols and Their Explanations

Symbol Explanation
zli The embedding of the i-th token in the l-th layer.

zlj The embedding of the j-th token in the l-th layer.

z
l(org)
i The original embedding of the i-th token in the l-th layer.

z̃
L(k)
i The k-th perturbed embedding of the i-th token in the l-th layer.

∆zL
j |z0

i
Semantic dependency score, which measures how the perturbation of token i at
layer 0 affects token j at the final layer L.

N The number of tokens in a token sequence.

K The i-th token in layer 0 is perturbed K times to calculate the average change
of the i-th token in layer L. K = 5 in our experiments.

M The number of total perturbed token cases across all sequences we evaluate.

P (fθ) Percentage P of the cases that the transformer-based language model fθ matches
our finding.

Ww0
i

True semantically dependent word group for the i-th word in layer 0 based on
semantic dependency parsing.

Gz0
i

Truthful semantically dependent token group for the i-th token in layer 0 based
on semantic dependency parsing.

Ĝz0
i

Estimated semantically dependent token group for the i-th token using token
perturbation.

Ktop The number of top tokens most sensitive to the perturbation of the input token.
Ktop is set to the size of Gz0

i
. In the experiment, we evaluate the overlap of Gz0

i

and top 5 tokens when the size is under 5.

Sz0
i

Alignment score between the truthful (Gz0
i
) and estimated (Ĝz0

i
) semantically

dependent token groups.

Ĝs1
z0
i
, Ĝs2

z0
i

Estimated semantically dependent token group for the i-th token corresponding
to token sequences s1 and s2.

ĜLeft
z0
i

, ĜRight
z0
i

Estimated semantically dependent token group for the i-th token corresponding
to concatenated sequences (s2, s1) and (s1, s2).

DAS(·) Dependency Alteration Score, measuring the impact of irrelevant context or
sequence order changes on semantic dependencies in a sequence.

L The number of chosen semantically dependent tokens in the original token
sequence z0(s1). e.g., L = 5 when choosing the top 5 semantically dependent
tokens for evaluation.

ql
i The embedding of the i-th question token in the l-th layer.

ali The embedding of the j-th answer token in the l-th layer.

∆qL
j |a0

i
Semantic dependency score in QA task, which measures how the perturbation
of i-th answer token at layer 0 affects j-th question token at the final layer L.

∆′
a0
i |Q

Highest semantic dependency score above all semantic dependency between all
question tokens and i-th answer tokens in a QA task.

∆′
Acorrect|Q

, ∆′
Awrong|Q

Highest semantic dependency score above all semantic dependency between
question tokens and answer tokens (correct or wrong) in a QA task.
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