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ABSTRACT

Decision Transformer (DT) is an innovative algorithm leveraging recent advances
of the Transformer architecture in sequential decision making. However, a notable
limitation of DT is its reliance on recalling trajectories from datasets, without the
capability to seamlessly stitch them together. In this work, we introduce a general
sequence modeling framework for studying sequential decision making through
the lens of Hierarchical Reinforcement Learning. At the time of making decisions,
a high-level policy first proposes an ideal prompt for the current state, a low-level
policy subsequently generates an action conditioned on the given prompt. We show
how DT emerges as a special case with specific choices of high-level and low-level
policies and discuss why these choices might fail in practice. Inspired by these
observations, we investigate how to jointly optimize the high-level and low-level
policies to enable the stitching capability. This further leads to the development of
new algorithms for offline reinforcement learning. Finally, our empirical studies
clearly demonstrate the proposed algorithms significantly surpass DT on several
control and navigation benchmarks. We hope that our contributions can inspire the
integration of Transformer architectures within the field of RL.

1 INTRODUCTION

One of the most remarkable characteristics observed in large sequence models, especially Transformer
models, is the in-context learning ability (Radford et al., 2019; Brown et al., 2020; Ramesh et al., 2021;
Gao et al., 2020; Akyürek et al., 2022; Garg et al., 2022; Laskin et al., 2022; Lee et al., 2023). With
the appropriate prompt, a pre-trained transformer can learn new tasks without explicit supervision and
additional parameter updates. Decision Transformer (DT) is an innovative method that attempts to
explore this idea for sequential decision making (Chen et al., 2021). Unlike traditional Reinforcement
Learning (RL) algorithms, which learn a value function by bootstrapping or computing policy gradient,
DT directly learns an autoregressive generative model from trajectory data (R0, s0, a0, . . . , Rt, st, at)
using a causal transformer (Vaswani et al., 2017; Radford et al., 2019). Here, Rt is the return-to-go,
which is the sum of future rewards along the trajectory starting from time step t. This approach
allows leveraging existing transformer architectures widely employed in language and vision tasks
that are easy to scale, and benefitting from a substantial body of research focused on stable training
of transformer (Radford et al., 2019; Brown et al., 2020; Fedus et al., 2022; Chowdhery et al., 2022).

We argue that DT can be viewed as a model that learns what action should be taken at a given state
in order to make so many returns. Following this, the return-to-go prompt is like a switch, guiding the
model in making decisions at test time. If such a model can be learned effectively and generalized well
even for out-of-distribution returns, it is reasonable to expect that DT can generate a better policy by
prompting a higher return. Unfortunately, this seems to demand a level of generalization ability that is
often too high in practical sequential decision-making problems. In fact, the key challenge facing DT
is how to improve its robustness to the underlying data distribution, particularly when learning from
trajectories collected by policies that are not close to optimal. Recent studies have indicated that for
problems requiring the stitching ability, referring to the capability to integrate suboptimal trajectories
from the data, DT cannot provide a significant advantage compared to behavior cloning (Fujimoto
and Gu, 2021; Emmons et al., 2021; Kostrikov et al., 2022; Yamagata et al., 2023; Badrinath et al.,
2023; Xiao et al., 2023a). This further confirms that a naive return-to-go prompt is not good enough
for solving complex sequential decision-making problems.

Recent works on large language models demonstrate that carefully engineered prompts, either human-
written or self-discovered by the model, significantly boost the performance of transformer models
(Lester et al., 2021; Singhal et al., 2022; Zhang et al., 2022; Wei et al., 2022; Wang et al., 2022; Yao
et al., 2023; Liu et al., 2023). In particular, it has been observed that the ability to perform complex
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Figure 1: ADT architecture. The high-level policy generates a prompt, prompting the low-level policy
to compute an action. In our implementation, prompts are concatenated with the states instead of
being treated as single tokens. The concatenated vectors and actions are fed into linear embeddings
with a positional episodic timestep encoding added, respectively. Tokens are fed into the causal
transformer model which predicts actions autoregressively.

reasoning naturally emerges in sufficiently large language models when they are presented with a few
chain of thought demonstrations as exemplars in the prompts (Wei et al., 2022; Wang et al., 2022;
Yao et al., 2023). Driven by the significance of these works in language models, a question arises:
For RL, is it feasible to learn to generate prompts for transformer models to produce optimal control
policies? This paper attempts to address this problem. Our main contributions are:

• We present a generalized framework for studying decision-making through sequential modeling
by connecting it with Hierarchical Reinforcement Learning (Nachum et al., 2018): a high-level
policy first suggests a prompt for the current state, a low-level policy subsequently generates an
action conditioned on the given prompt. We show DT can be recovered as a special case of this
framework.

• We investigate when and why DT fails in terms of stitching sub-optimal trajectories. To overcome
this drawback of transformer-based decision models, we investigate how to jointly optimize
the high-level and low-level policies to enable the stitching capability. This further leads to the
development of two new algorithms for offline reinforcement learning.

• We provide experiment results on several offline RL benchmarks, including locomotion control,
navigation and robotics, to demonstrate the effectiveness of the proposed algorithms. Additionally,
we conduct thorough ablation studies on the key components of our algorithms to gain deeper
insights into their contributions. Through these ablation studies, we assess the impact of specific
algorithmic designs on the overall performance.

2 PRELIMINARIES

2.1 OFFLINE REINFORCEMENT LEARNING

We consider Markov Decision Process (MDP) determined by M = {S,A, P, r, γ} (Puterman, 2014),
where S and A represent the state and action spaces. The discount factor is given by γ ∈ [0, 1),
r : S ×A → R denotes the reward function, P : S ×A → ∆(S) defines the transition dynamics1.
Let τ = (s0, a0, r0, . . . , sT , aT , rT ) be a trajectory. Its return is defined as the discounted sum of the
rewards along the trajectory: R =

∑T
t=0 γ

trt. Given a policy π : S → ∆(A), we use Eπ to denote
the expectation under the distribution induced by the interconnection of π and the environment. The
value function specifies the future discounted total reward obtained by following policy π,

V π(s) = Eπ
[ ∞∑
t=0

γtr(st, at)
∣∣∣s0 = s

]
, (1)

There exists an optimal policy π∗ that maximizes values for all states s ∈ S.
1We use ∆(X ) to denote the set of probability distributions over X for a finite set X .
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In this work, we consider learning an optimal control policy from previously collected offline dataset,
D = {τi}n−1

i=0 , consisting of n trajectories. Each trajectory is generated by the following procedure:
an initial state s0 ∼ µ0 is sampled from the initial state distribution µ0; for time step t ≥ 0, at ∼ πD,
st+1 ∼ P (·|st, at), rt = r(st, at), this process repeats until it reaches the maximum time step of the
environment. Here πD is an unknown behavior policy. In offline RL, the learning algorithm can only
take samples from D without collecting new data from the environment (Levine et al., 2020).

2.2 DECISION TRANSFORMER

Decision Transformer (DT) is an extraordinary example that bridges sequence modeling with decision-
making (Chen et al., 2021). It shows that a sequential decision-making model can be made through
minimal modification to the transformer architecture (Vaswani et al., 2017; Radford et al., 2019). It
considers the following trajectory representation that enables autoregressive training and generation:

τ =
(
R̂0, s0, a0, R̂1, s1, a1, . . . , R̂T , sT , aT

)
. (2)

Here R̂t =
∑T
i=t ri is the returns-to-go starting from time step t. We denote πDT(at|st, R̂t, τt) the

DT policy, where τt = (s0, a0, R̂0, . . . , st−1at−1, R̂t−1)
2 is the sub-trajectory before time step t. As

pointed and verified by Lee et al. (2023), τt can be viewed as as a context input of a policy, which
fully takes advantages of the in-context learning ability of transformer model for better generalization
(Akyürek et al., 2022; Garg et al., 2022; Laskin et al., 2022).

DT assigns a desired returns-to-go R0, together with an initial state s0 are used as the initialization
input of the model. After executing the generated action, DT decrements the desired return by the
achieved reward and continues this process until the episode reaches termination. Chen et al. (2021)
argues that the conditional prediction model is able to perform policy optimization without using
dynamic programming. However, recent works observe that DT often shows inferior performance
compared to dynamic programming based offline RL algorithms when the offline dataset consists of
sub-optimal trajectories (Fujimoto and Gu, 2021; Emmons et al., 2021; Kostrikov et al., 2022).

3 AUTOTUNED DECISION TRANSFORMER

In this section, we present Autotuned Decision Transformer (ADT), a new transformer-based decision
model that is able to stitch sub-optimal trajectories from the offline dataset. Our algorithm is derived
based on a general hierarchical decision framework where DT naturally emerges as a special case.
Within this framework, we discuss how ADT overcomes several limitations of DT by automatically
tune the prompt for decision making.

3.1 KEY OBSERVATIONS

Our algorithm is derived by considering a general framework that bridges transformer-based decision
models with hierarchical reinforcement learning (HRL) (Nachum et al., 2018). In particular, we use
the following hierarchical representation of policy

π(a|s) =
∫
P
πh(p|s) · πl(a|s, p)dp , (3)

where P is a set of prompts. To make a decision, the high-level policy πh first generates a prompt
p ∈ P , instructed by which the low-level policy πl returns an action conditioned on p. DT naturally
fits into this hierarchical decision framework. Consider the following value prompting mechanism.
At state s ∈ S, the high-level policy generates a real-value prompt R ∈ R, representing "I want to
obtain R returns starting from s.". Informed by this prompt, the low-level policy responses an action
a ∈ A, "Ok, if you want to obtain returns R, you should take action a now.". This exactly what DT
does. It applies a dummy high-level policy which initially picks a target return-to-go prompt and
subsequently decrement it along the trajectory. The DT low-level policy, πDT(·|s,R, τ), learns to
predict which action to take at state s in order to achieve returns R given the context τ .

To better understand the failure of DT given sub-optimal data, we re-examine the illustrative example
shown in Figure 2 of Chen et al. (2021). The dataset comprises random walk trajectories and their
associated per-state return-to-go. Suppose that the DT policy πDT perfectly memorizes all trajectory

2We define τ0 the empty sequence for completeness.
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information contained in the dataset. The return-to-go prompt in fact acts as a switch to guide the
model to make decisions. Let T (s) be the set of trajectories starting from s stored in the dataset, and
R(τ) be the return of a trajectory τ . Given R′ ∈ {R(τ), τ ∈ T (s)}, πDT is able to output an action
that leads towards τ . Thus, given an oracle return R∗(s) = maxτ∈T (s)R(τ), it is expected that DT
is able to follow the optimal trajectory contained in the dataset following the switch.

There are several issues. First, the oracle return R∗ is not known. The initial return-to-go prompt of
DT is picked by hand and might not be consistent with the one observed in the dataset. This requires
the model to generalize well for unseen return-to-go and decisions. Second, even though R∗ is known
for all states, memorizing trajectory information is still not enough for obtaining the stitching ability
as R∗ only serves a lower bound on the maximum achievable return. To understand this, consider an
example with two trajectories a → b → c, and d → b → e. Suppose that e leads to a return of 10,
while c leads to a return of 0. In this case, using 10 as the return-to-go prompt at state b, DT should
be able to switch to the desired trajectory. However, the information "leaning towards c can achieve a
return of 10" does not pass to a during training, since the trajectory a→ b→ e does not exist in the
data. If the offline data contains another trajectory that starts from a and leads to a mediocre return
(e.g. 1), DT might switch to that trajectory at a using 10 as the return-to-go prompt, missing a more
promising path. Thus, making predictions conditioned on return-to-go alone is not enough for policy
optimization. Some form of information backpropagation is still required.

3.2 ALGORITHMS

ADT jointly optimizes the hierarchical policies to overcomes the limitations of DT discussed above.
An illustration of ADT architecture is provided in Fig. 1. Similar to DT, ADT applies a transformer
model for the low-level policy. Instead of (2), it considers the following trajectory representation,

τ = (p0, s0, a0, p1, s1, a1, . . . , pT , sT , aT ) . (4)

Here pi is the prompt generated by the high-level policy pi ∼ πh(·|si), replacing the return-to-go
prompt used by DT. That is, for each trajectory in the offline dataset, we relabel it by adding a
prompt generated by the high-level policies for each transition. Armed with this general hierarchical
decision framework, we propose two algorithms that apply different high-level prompting generation
strategy while sharing a unified low-level policy optimization framework. We learn a high-level
policy πω ≈ πh with parameters ϕ, and a low-level policy πθ ≈ πl with parameters θ.

3.2.1 VALUE-PROMPTED AUTOTUNED DECISION TRANSFORMER

Our first algorithm, Value-promped Autotuned Decision Transformer (V-ADT), uses scalar values as
prompts. But unlike DT, it applies a more principled design of value prompts instead of return-to-go.
V-ADT aims to answer two questions: what is the maximum achievable value starting from a state s,
and what action should be taken to achieve such a value? To answer these, we view the offline dataset
D as an empirical MDP, MD = {SD,A, PD, r, γ}, where SD ⊆ S is the set of observed states in
the data, PD is the transition, which is an empirical estimation of the original transition P (Fujimoto
et al., 2019). The optimal value of this empirical MDP is

V ∗
D(s) = max

a:πD(a|s)>0
r(s, a) + γEs′∼PD(·|s,a) [V

∗
D(s

′)] . (5)

Let Q∗
D(s, a) be the corresponding state-action value. V ∗

D is known as the in-sample optimal value in
offline RL (Fujimoto et al., 2018; Kostrikov et al., 2022; Xiao et al., 2023b). Computing this value
requires to perform dynamic programming without querying out-of-distribution actions. We apply
Implicit Q-learning (IQL) to learn Vϕ ≈ V ∗

D and Qψ ≈ Q∗
D with parameters ϕ, ψ (Kostrikov et al.,

2022). Details of IQL are presented in the Appendix. We now describe how V-ADT jointly optimizes
high and low level policies to facilitate stitching.

High-Level policy V-ADT considers P = R and adopts a deterministic policy πω : S → R, which
predicts the in-sample optimal value πω ≈ V ∗

D. Since we already have an approximated in-sample
optimal value Vϕ, we let πω = Vϕ. This high-level policy offers two key advantages. First, this
approach efficiently facilitates information backpropagation towards earlier states on a trajectory,
addressing a major limitation of DT. This is achieved by using V ∗

D as the value prompt, ensuring that
we have precise knowledge of the maximum achievable return for any state. Making predictions
conditioned on R∗(s) is not enough for policy optimization, since R∗(s) = maxτ∈T (s)R(τ) only
gives a lower bound on V ∗

D(s) and thus would be a weaker guidance (see Section 3.1 for detailed
discussions). Second, the definition of V ∗

D exclusively focuses on the optimal value derived from
observed data and thus avoids out-of-distribution returns. This prevents the low-level policy from
making decisions conditioned on prompts that require extrapolation.
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Low-Level policy Directly training the model to predict the trajectory, as done in DT, is not suitable
for our approach. This is because the action at observed in the data may not necessarily correspond to
the action at state st that leads to the return V ∗

D(st). However, the probability of selecting at should
be proportional to the value of this action. Thus, we use advantage-weighted regression to learn the
low-level policy (Peng et al., 2019; Kostrikov et al., 2022; Xiao et al., 2023b): given trajectory data
(4) the objective is defined as

L(θ) = −
T∑
t=0

exp

(
Qψ(st, at)− Vϕ(st)

α

)
log πθ(at|st, πω(st)) , (6)

where α > 0 is a hyper-parameter. The low-level policy takes the output of high-level policy as input.
This guarantees no discrepancy between train and test value prompt used by the policies. We note that
the only difference of this compared to the standard maximum log-likelihood objective for sequence
modeling is to apply a weighting for each transition. One can easily implement this with trajectory
data for a transformer. In practice we also observe that the tokenization scheme when processing the
trajectory data affects the performance of ADT. Instead of treating the prompt pt as a single token as
in DT, we find it is beneficial to concatenate pt and st together and tokenize the concatenated vector.
We provide an ablation study on this in Section 5.4.3. This completes the description of V-ADT.

3.2.2 GOAL-PROMPTED AUTOTUNED DECISION TRANSFORMER

In HRL, the high-level policy often considers a latent action space. Typical choices of latent actions
includes sub-goal (Nachum et al., 2018; Park et al., 2023), skills (Ajay et al., 2020; Jiang et al.,
2022), and options (Sutton et al., 1999; Bacon et al., 2017; Klissarov and Machado, 2023). We
consider goal-reaching problem as an example and use sub-goals as latent actions, which leads to our
second algorithm, Goal-promped Autotuned Decision Transformer (G-ADT). Let G be the goal space3.
The goal-conditioned reward function r(s, a, g) provides the reward of taking action a at state s for
reaching the goal g ∈ G. Let V (s, g) be the universal value function defined by the goal-conditioned
rewards (Nachum et al., 2018; Schaul et al., 2015). Similarly, we define V ∗

D(s, g) and Q∗
D(s, a, g) the

in-sample optimal universal value function. We also train Vϕ ≈ V ∗
D and Qψ ≈ Q∗

D to approximate
the universal value functions. We now describe how G-ADT jointly optimizes the policies.

High-Level policy G-ADT considers P = G and uses a high-level policy πω : S → G. To find
a shorter path, the high-level policy πω generates a sequence of sub-goals gt = πω(st) that guides
the learner step-by-step towards the final goal. We use a sub-goal that lies in k-steps further from
the current state, where k is a hyper-parameter of the algorithm tuned for each domain (Badrinath
et al., 2023; Park et al., 2023). In particular, given trajectory data (4), the high-level policy learns the
optimal k-steps jump using the recently proposed Hierarchical Implicit Q-learning (HIQL) algorithms
(Park et al., 2023):

L(ϕ) = −
T∑
t=0

exp

(∑k−1
t′=t γ

t′−tr(st′ , at′ , g) + γkVϕ(st+k, g)− Vϕ(st, g)

α

)
log πω(st+k|st, g) .

Low-Level policy The low-level policy in G-ADT learns to reach the sub-goal generated by the
high-level policy. G-ADT shares the same low-level policy objective as V-ADT. Given trajectory data
(4), it considers the following

L(θ) = −
T∑
t=0

exp

(
Qψ(st, at, πω(st))− Vϕ(st, πω(st))

α

)
log πθ(at|st, πω(st)) ,

Note that this is exactly the same as (6) except that the advantages are computed by universal value
functions. G-ADT also applies the same tokenization method as V-ADT by first concatenating πω(st)
and st together. This concludes the description of the G-ADT algorithm.

4 DISCUSSIONS

Types of Prompts Xu et al. (2022) introduces Prompt-DT, which leverages the sequential modeling
ability of the Transformer architecture, using expert trajectory prompts as task-specific guides to adapt

3The goal space and state space could be the same (Nachum et al., 2018; Park et al., 2023)
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to unseen tasks without extra finetuning. Reed et al. (2022) have delved into the potential scalability of
transformer-based decision models through prompting. They show that a causal transformer, trained
on multi-task offline datasets, showcases remarkable adaptability to new tasks through fine-tuning.
The adaptability is achieved by providing a sequence prompt as the input of the transformer model,
typically represented as a trajectory of expert demonstrations. Unlike such expert trajectory prompts,
our prompt can be seen as a latent action generated by the high-level policy, serving as guidance for
the low-level policy to inform its decision-making process.

Comparison of other DT Enhancements Several recent works have been proposed to overcome
the limitations of DT. Correia and Alexandre (2022) employs a dual transformer architecture to design
Hierarchical DT (HDT), where a high-level mechanism selects sub-goal states from demonstration
data to guide a low-level controller in task completion to improve DT. Yamagata et al. (2023) relabelled
trajectory data by replacing return-to-go with values learned by offline RL algorithms. Badrinath et al.
(2023) proposed to use sub-goal as prompt, guiding the DT policy to find shorter path in navigation
problems. Wu et al. (2023) learned maximum achievable returns, R∗(s) = maxτ∈T (s)R(τ), to
boost the stitching ability of DT at decision time. Liu and Abbeel (2023) structured trajectory data by
relabelling the target return for each trajectory as the maximum total reward within a sequence of
trajectories. Their findings showed that this approach enabled a transformer-based decision model
to improve itself during both training and testing time. Compared to these previous efforts, ADT
introduces a principled framework of hierarchical policy optimization. Our practical studies show
that the joint optimization of high and low level policies is the key to boost the performance of
transformer-based decision models.

5 EXPERIMENT

We investigate three primary questions in our experiments. First, how well does ADT perform on
offline RL tasks compared to prior DT-based methods? Second, is it essential to auto-tune prompts
for transformer-based decision model? Three, what is the influence of various implementation
details within an ADT on its overall performance? We refer readers to ?? for additional details and
supplementary experiments.

5.1 EXPERIMENTAL SETTINGS

Benchmark Problems We leverage datasets across several domains including Gym-MuJoCo,
AntMaze, and FrankaKitchen from the offline RL benchmark D4RL (Fu et al., 2020). For MuJoCo,
we incorporate nine version 2 (v2) datasets. These datasets are generated using three distinct behavior
policies: ‘-medium’, ‘-medium-play’, and ‘-medium-expert’, and span across three specific tasks:
‘halfcheetah’, ‘hopper’, and ‘walker2d’. The primary objective in long-horizon navigation task
AntMaze is to guide an 8-DoF Ant robot from its starting position to a predefined target location. For
this, we employ six version 2 (v2) datasets which include ‘-umaze’, ‘-umaze-diverse’, ‘-medium-play’,
‘medium-diverse’, ‘-large-play’, and ‘-large-diverse’. The Kitchen domain focuses on accomplishing
four distinct subtasks using a 9-DoF Franka robot. We utilize three version 0 (v0) datasets that capture
a range of behaviors: ‘-complete’, ‘-partial’, and ‘-mixed’ for this domain.

Baselines We compare the performance of ADT with several representative baselines including
(1) offline RL methods: TD3+BC (Fujimoto and Gu, 2021), CQL (Kumar et al., 2020) and IQL
(Kostrikov et al., 2022); (2) valued-conditioned methods: Decision Transformer (DT) (Chen et al.,
2021) and Q-Learning Decision Transformer (QLDT) (Yamagata et al., 2023); (3) goal-conditioned
methods: HIQL (Park et al., 2023), RvS (Emmons et al., 2021) and Waypoint Transformer (WT)
(Badrinath et al., 2023). All the baseline results except for QLDT are obtained from (Badrinath et al.,
2023) and (Park et al., 2023) or by running the codes of CORL repository (Tarasov et al., 2022). For
HIQL, we present HIQL’s performance with the goal representation in Kitchen and that without goal
representation in AntMaze, as per our implementation in ADT, to ensure fair comparison. QLDT and
the transformer-based actor of ADT are implemented based on the DT codes in CORL, with similar
architecture. Details are given in Appendix. The critics and the policies to generate prompts used in
ADT are re-implemented in PyTorch following the official codes of IQL and HIQL. In all conducted
experiments, five distinct random seeds are employed. Results are depicted with 95% confidence
intervals, represented by shaded areas in figures and expressed as standard deviations in tables. The
reported results of ADT in tables are obtained by evaluating the final models.
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Table 1: Average normalized scores of V-ADT, value-conditioned (DT and QLDT), and value-based
RL methods. The methods on the right of the vertical line are DT-based methods. The top scores
among all DT-based methods are highlighted in bold.

Environment TD3+BC CQL IQL DT QLDT V-ADT
halfcheetah-medium-v2 48.3 ± 0.3 44.0 ± 5.4 47.4 ± 0.2 42.4 ± 0.2 42.3 ± 0.4 48.7 ± 0.2

hopper-medium-v2 59.3 ± 4.2 58.5 ± 2.1 66.2 ± 5.7 63.5 ± 5.2 66.5 ± 6.3 60.6 ± 2.8
walker2d-medium-v2 83.7 ± 2.1 72.5 ± 0.8 78.3 ± 8.7 69.2 ± 4.9 67.1 ± 3.2 80.9 ± 3.5

halfcheetah-medium-replay-v2 44.6 ± 0.5 45.5 ± 0.5 44.2 ± 1.2 35.4 ± 1.6 35.6 ± 0.5 42.8 ± 0.2
hopper-medium-replay-v2 60.9 ± 18.8 95.0 ± 6.4 94.7 ± 8.6 43.3 ± 23.9 52.1 ± 20.3 83.5 ± 9.5

walker2d-medium-replay-v2 81.8 ± 5.5 77.2 ± 5.5 73.8 ± 7.1 58.9 ± 7.1 58.2 ± 5.1 86.3 ± 1.4
halfcheetah-medium-expert-v2 90.7 ± 4.3 91.6 ± 2.8 86.7 ± 5.3 84.9 ± 1.6 79.0 ± 7.2 91.7 ± 1.5

hopper-medium-expert-v2 98.0 ± 9.4 105.4 ± 6.8 91.5 ± 14.3 100.6 ± 8.3 94.2 ± 8.2 101.6 ± 5.4
walker2d-medium-expert-v2 110.1 ± 0.5 108.8 ± 0.7 109.6 ± 1.0 89.6 ± 38.4 101.7 ± 3.4 112.1 ± 0.4

gym-avg 75.3 ± 4.9 77.6 ± 3.4 76.9 ± 5.8 65.3 ± 10.1 66.3 ± 6.1 78.7 ± 2.8
antmaze-umaze-v2 78.6 74.0 87.5 ± 2.6 53.6 ± 7.3 67.2 ± 2.3 88.2 ± 2.5

antmaze-umaze-diverse-v2 71.4 84.0 62.2 ± 13.8 42.2 ± 5.4 62.1 ± 1.6 58.6 ± 4.3
antmaze-medium-play-v2 10.6 61.2 71.2 ± 7.3 0.0 ± 0.0 0.0 ± 0.0 62.2 ± 2.5

antmaze-medium-diverse-v2 3.0 53.7 70.0 ± 10.9 0.0 ± 0.0 0.0 ± 0.0 52.6 ± 1.4
antmaze-large-play-v2 0.2 15.8 39.6 ± 5.8 0.0 ± 0.0 0.0 ± 0.0 16.6 ± 2.9

antmaze-large-diverse-v2 0.0 14.9 47.5 ± 9.5 0.0 ± 0.0 0.0 ± 0.0 36.4 ± 3.6
antmaze-avg 27.3 50.6 63.0 ± 8.3 16.0 ± 2.1 21.6 ± 0.7 52.4 ± 2.9

kitchen-complete-v0 25.0 ± 8.8 43.8 62.5 46.5 ± 3.0 38.8 ± 15.8 55.1 ± 1.4
kitchen-partial-v0 38.3 ± 3.1 49.8 46.3 31.4 ± 19.5 36.9 ± 10.7 46.0 ± 1.6
kitchen-mixed-v0 45.1 ± 9.5 51.0 51.0 25.8 ± 5.0 17.7 ± 9.5 46.8 ± 6.3

kitchen-avg 36.1 ± 7.1 48.2 53.3 34.6 ± 9.2 30.5 ± 12.0 49.3 ± 3.1
average 52.7 63.7 68.3 43.8 ± 7.3 45.4 ± 5.3 65.0 ± 2.9

Table 2: Average normalized scores of G-ADT and goal-conditioned methods. The methods on the
right of the vertical line are DT-based methods. The top scores among all DT-based methods are
highlighted in bold.

Environment RvS-R/G HIQL WT G-ADT
antmaze-umaze-v2 65.4 ± 4.9 83.9 ± 5.3 64.9 ± 6.1 83.8 ± 2.3

antmaze-umaze-diverse-v2 60.9 ± 2.5 87.6 ± 4.8 71.5 ± 7.6 83.0 ± 3.1
antmaze-medium-play-v2 58.1 ± 12.7 89.9 ± 3.5 62.8 ± 5.8 82.0 ± 1.7

antmaze-medium-diverse-v2 67.3 ± 8.0 87.0 ± 8.4 66.7 ± 3.9 83.4 ± 1.9
antmaze-large-play-v2 32.4 ± 10.5 87.3 ± 3.7 72.5 ± 2.8 71.0 ± 1.3

antmaze-large-diverse-v2 36.9 ± 4.8 81.2 ± 6.6 72.0 ± 3.4 65.4 ± 4.9
antmaze-avg 53.5 ± 7.2 86.2 ± 5.4 68.4 ± 4.9 78.1 ± 2.5

kitchen-complete-v0 50.2 ± 3.6 43.8 ± 19.5 49.2 ± 4.6 51.4 ± 1.7
kitchen-partial-v0 51.4 ± 2.6 65.0 ± 9.2 63.8 ± 3.5 64.2 ± 5.1
kitchen-mixed-v0 60.3 ± 9.4 67.7 ± 6.8 70.9 ± 2.1 69.2 ± 3.3

kitchen-avg 54.0 ± 5.2 58.8 ± 11.8 61.3 ± 3.4 61.6 ± 3.4
average 53.7 ± 6.5 77.1 ± 7.5 66.0 ± 4.4 72.6 ± 2.8

5.2 MAIN RESULTS

In Table 1 and 2, we present the performance of two variations of ADT evaluated on offline datasets.
Specifically, in Table 1, V-ADT excels, recording the most superior performance among all DT-based
strategies. Notably, V-ADT surpasses two widely-used value-based offline RL techniques in overall.
In the comparison with the value-conditioned transformer approaches, namely DT and QLDT, the
V-ADT method exhibits significant superiority, particularly when evaluated on the sophisticated
AntMaze and Kitchen datasets. Meanwhile, in Table 2, G-ADT notably exceeds the performance of
other goal-conditioned approaches. To the best of our knowledge, this represents a benchmark that
surpasses any prior DT-based methods. Given that V-ADT and G-ADT is trained following the IQL
and HIQL paradigm, respectively, the achieved performance nearing or inferior to that of IQL and
HIQL is anticipated.

An integration of findings from Table 1 and 2 further suggests that goal prompts might possess a
comparative advantage over value prompts. One plausible explanation is that goal prompts assist in
simplifying policy training by decomposing intricate tasks into manageable subtasks. Conversely,
while value prompt might attempt to stitch sub-optimal trajectories, it primary focus on the overarching
task. Anyhow, as both V-ADT and G-ADT outperforms DT, we can conclude that with appropriately
crafted prompts and corresponding training regime as does in ADT, the capabilities of DT can be
more effectively exploited to achieve better performance.

5.3 IMPACT OF MANUAL PROMPT TUNING ON DT PERFORMANCE

The prompt, i.e., target return, used by DT is a tunable hyper-parameter. Figure 2 delineates the results
of DT using different target returns on four different walker2d datasets. The x-axis of each subfigure
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represents the normalized target return input into DT, while the y-axis portrays the corresponding
evaluation performance. Empirical results indicate that manual modifications to the target return could
not improve the performance of DT, with its performance persistently lagging behind V-ADT. We
also note that there is no single prompt that performs universally well on all problems. It is imperative
to highlight that the utility of prompt in DT appears constrained, particularly when working with
datasets sourced from unimodal behavior policy.
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Figure 2: Average normalized results of DT using different prompt. Incorporating manual prompt
engineering could not help DT outperform V-ADT.

5.4 ABLATION STUDIES ON ALGORITHM DESIGN CHOICES

5.4.1 IS PROMPT REALLY USEFUL?

In our earlier discussions, we posit that the benefits of using prompts in DT might be limited. Here
we further investigate the efficacy of the prompt used by ADT. As the goal prompt in G-ADT is a
necessary input, we only investigate on V-ADT. Referencing Fig.3, we compare the performance
of V-ADT both with and without value prompt. The results indicate that value prompt may not be
beneficial in certain environments, yet they show marked utility in others.
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Figure 3: Learning curves of V-ADT with and without using prompt as part of input. The value
prompt may not be beneficial in certain environments, yet they show marked utility in others.

5.4.2 CAN WE LEARN THE LOW-LEVEL POLICY AS IN DT?

We delve into the role of the loss Eq. (6) used by ADT. Figure 4 elucidates a comparison between
V-ADT and G-ADT, both with and without the incorporation of the this loss. In the absence of
Eq. (6), the method reverts back to using the prompt-conditioned behavior cloning loss, akin to the
conventional DT approach. Our results show the substantial improvement in performance of both
V-ADT and G-ADT when the loss Eq. (6) is leveraged. Intuitively, in the context where DT can
entirely memorize the trajectories from the dataset and when the value prompt is fully accurate, using
behavior cloning loss is expected to give DT the capability to stitch these trajectories seamlessly.
However, ensuring absolute accuracy of the value prompt remains a challenge. As a result, even
when DT recalls all trajectories through behavioral cloning, it cannot generalize to stitch trajectories
under erroneous prompts. Moreover, even the obtained prompt is exactly accurate, the corresponding
well-performed trajectories are probably absent in the dataset, hindering DT from adopting correct
actions, as discussed before. Thus incorporating RL loss during the training of DT is necessary
to enhance DT’s trajectory stitching ability. Empirical results of V-ADT further corroborate this
observation, meanwhile proving the previous finding that benefits of using prompts in DT might be
limited. As for G-ADT, its performance is also notably compromised without the RL loss, yet it
retains a performance edge over DT, attributed to the decomposition of the original task.

5.4.3 EFFICACY OF TOKENIZATION STRATEGIES

In ADT, we diverge from the methodology presented in (Chen et al., 2021) where individual tokens
are produced for each input component: return-to-go prompt, state, and action. Instead, we opt for
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Figure 4: Learning curves of V-ADT and G-ADT with and without using RL loss. When RL loss is
not used, the behavior cloning loss is used as does in DT. Results demonstrate that RL loss is essential
in enpowering DT with stitching ability to achieve superior performance.

a concatenated representation of prompts and states. We present a comparative analysis between
these two tokenization strategies in Fig. 5. It is evident that our token design contributes to superior
performance in ADT, especially in G-ADT. We postulate that this is attributed to the design of
high-policy, which ensures a high degree of correlation between states and the corresponding ideal
prompts. Thus we assert that the states and the corresponding prompts should be treated with equal
significance when computing attention within the transformer’s internal architecture.
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Figure 5: Learning curves of ADT with different tokenization strategies. Our design contributes to
superior performance by equally treating the states and related prompts in computing attention.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we rethink transformer-based decision models through a hierarchical decision-making
framework, where a high-level policy suggests a prompt, following which a low-level policy acts
based on this suggestion. This allows us to investigate how to jointly optimize the high and low level
policies to boost the model’s performance when learning from sub-optimal data, which leads to the
development of two new transformer-based decision models for offline RL, Value-prompted Auto-
tuned DT and Goal-prompted Autotuned DT. Our results, complemented by in-depth ablation studies,
underscore the effectiveness and innovation of our proposed methods. These findings not only resolve
existing challenges in DT, but also pave the way for further exploration of Transformer architectures
in reinforcement learning. There are several potential future research directions, including: First,
investigating a wider variety of prompts to guide the optimal control of transformer-based policies
to further enhance the generality of our framework; Second, applying the proposed framework in
learning multi-modal and multi-task policies holds potential significance in designing foundation
decision-making models.
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A IMPLEMENTATION DETAILS

A.1 ENVIRONMENTS

MuJoCo For the MuJoCo framework, we incorporate nine version 2 (v2) datasets. These datasets
are generated using three distinct behavior policies: ’-medium’, ’-medium-play’, and ’-medium-
expert’, and span across three specific tasks: ’halfcheetah’, ’hopper’, and ’walker2d’.

AntMaze The AntMaze represents a set of intricate, long-horizon navigation challenges. This
domain uses the same umaze, medium, and large mazes from the Maze2D domain, but replaces the
agent with an 8-DoF Ant robot from the OpenAI Gym MuJoCo benchmark. For the ’umaze’ dataset,
trajectories are generated with the Ant robot starting and aiming for fixed locations. To introduce
complexity, the "diverse" dataset is generated by selecting random goal locations within the maze,
necessitating the Ant to navigate from various initial positions. Meanwhile, the "play" dataset is
curated by setting specific, hand-selected initial and target positions, adding a layer of specificity
to the task. We employ six version 2 (v2) datasets which include ‘-umaze’, ‘-umaze-diverse’,
‘-medium-play’, ‘-medium-diverse’, ‘-large-play’, and ‘-large-diverse’ in our experiments.

Franka Kitchen In the Franka Kitchen environment, the primary objective is to manipulate a
set of distinct objects to achieve a predefined state configuration using a 9-DoF Franka robot. The
environment offers multiple interactive entities, such as adjusting the kettle’s position, actuating
the light switch, and operating the microwave and cabinet doors, inclusive of a sliding mechanism
for one of the doors. For the three principal tasks delineated, the ultimate objective comprises the
sequential completion of four salient subtasks: (1) opening the microwave, (2) relocating the kettle, (3)
toggling the light switch, and (4) initiating the sliding action of the cabinet door. In conjunction, three
comprehensive datasets have been provisioned. The ’-complete’ dataset encompasses demonstrations
where all four target subtasks are executed in a sequential manner. The ‘-partial’ dataset features
various tasks, but it distinctively includes sub-trajectories wherein the aforementioned four target
subtasks are sequentially achieved. The ‘-mixed’ dataset captures an assortment of subtask executions;
however, it is noteworthy that the four target subtasks are not completed in an ordered sequence
within this dataset. We utilize these datasets in our experiments.

A.2 HYPER-PARAMETERS AND IMPLEMENTATIONS

Table 3: ADT Actor (Transformer) Hyper-parameters

Hyper-parameter Value

Architecture

Hidden layers 3
Hidden dim 128
Heads num 1
Clip grad 0.25
Embedding dim 128
Embedding dropout 0.1
Attention dropout 0.1
Residual dropout 0.1
Activation function GeLU
Sequence length 20 (V-ADT), 10 (G-ADT)
G-ADT Way Step 20 (kitchen-partial, kitchen-mixed), 30 (Others)

Learning

Optimizer AdamW
Learning rate 1e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 0.005
Value prompt scale 0.001 (Mujoco) 1.0 (Others)
Warmup steps 10000
Weight decay 0.0001
Gradient Steps 100k (G-ADT, AntMaze), 1000k (Others)

We provide the lower-level actor’s hyper-parameters used in our experiments in Table 3. Most hyper-
parameters are set following the default configurations in DT. For the inverse temperature used in
calculating the AWR loss of the lower-level actor in V-ADT, we set it to 1.0, 3.0, 6.0, 6.0, 6.0, 15.0 for
antmaze-’umaze’, ’umaze-diverse’, ’medium-diverse’, ’medium-play’, ’large-diverse’, ’large-play’
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dataset, respectively; for other datasets, it is set 3.0. As for G-ADT, the inverse temperature is set to
1.0 for all the datasets. For the critic used in V-ADT and G-ADT, we follow the default architecture
and learning settings in IQL (Kostrikov et al., 2022) and HIQL (Park et al., 2023), respectively.

The implementations of ADT is based on CORL repository (Tarasov et al., 2022). A key different
between the implementation of ADT and DT is that we follow the way in (Badrinath et al., 2023)
that we concatenate the (scaled) prompt and state, then the concatenated information and the action
are treated as two tokens per timestep. In practice, we pretrain the critic for ADT, then the critic is
used to train the ADT actor. For each time of evaluation, we run the algorithms for 10 episodes for
MuJoCo datasets, 50 episodes for Kitchen datasets, and 100 episodes for AntMaze datasets.

B IQL AND HIQL

Implicit Q-learning (IQL) (Kostrikov et al., 2022) offers a nuanced approach to managing out-of-
sample action queries. This is achieved by transforming the traditional max operator in the Bellman
optimality equation to an expectile regression framework. More formally, IQL constructs an action-
value function Q(s, a) and a corresponding state-value function V (s). These are governed by the
loss functions:

LV = E(s,a)∼D
[
Lτ2
(
Q̄(s, a)− V (s)

)]
, (7)

LQ = E(s,a,s′)∼D

[
(r(s, a) + γV (s′)−Q(s, a))

2
]
, (8)

Here, Q̄ symbolizes the target Q network, and Lτ2 is defined as the expectile loss with a parameter
constraint τ ∈ [0.5, 1) and is mathematically represented as Lτ2(x) = |τ − 1(x < 0)|x2.

Building on this foundation, Hierarchical Implicit Q-Learning (Park et al., 2023) introduces an
action-free variant of IQL that facilitates the learning of an offline goal-conditioned value function
V (s, g):

LV = E(s,s′)∼DS ,g∼p(g|τ)
[
Lτ2
(
r(s, g) + γV̄ (s′, g)− V (s, g)

)]
(9)

where V̄ denotes the target Q network. Then a high-level policy πhh (st+k | st, g), which produces
optimal k-step subgoals st+k is trained via:

Jπh = E(st,st+k,g)

[
exp

(
β · Ãh (st, st+k, g)

)
log πhh (st+k | st, g)

]
, (10)

where β represents the inverse temperature hyper-parameter, and the value Ãh (st, st+k, g) is approx-
imated using V (st+k, g)− V (st, g). For a comprehensive exploration of the methodology, readers
are encouraged to consult the original paper.

C PERFORMANCE GAP WITH ANTICIPATED UPPER BOUND

While ADT has demonstrated superior performance relative to baseline models, the overall per-
formance lags behind MLP-based offline RL algorithms, e.g, IQL. Thus we hope to probe ADT’s
potential in approaching a learning upper bound of transformer-based offline RL algorithms. To this
end, we initiate our analysis by pre-training an IQL approach. In addition to substituting the target
return with IQL’s value-function, the action adopted at every state in the dataset is also relabeled
using IQL’s actor. Drawing upon the proficiency of IQL in trajectory stitching, the re-labeled data
can seamlessly incorporate more near-optimal sub-trajectories. In training with this refined data,
ADT benefits in two primary ways: first, it can learn to stitch sub-trajectories under the guidance
of Q-values; secondly, it can directly imitate the refined sub-trajectories. Consequently, we posit
that this methodology can act as an oracle to approach the empirical learning upper bound of ADT.
As illustrated in Figure 6, V-ADT shows a resemblance to that of V-ADT Oracle’s performance on
certain datasets. Nevertheless, deviations are evident in some, indicating a further refining of the
training procedures to achieve optimal outcomes should be investigated as future work.

D COMPLETE EXPERIMENTAL RESULTS

Here we provide the learning curves of our methods on all selected datasets.
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Figure 6: Learning curves of V-ADT and V-ADT Oracle. The performance gap between V-ADT and
V-ADT Oracle is limited on some datasets while evident on others, requiring further refinement.
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Figure 7: Learning curves of V-ADT.
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Figure 8: Learning curves of G-ADT.

E VISUALIZATION OF DECISION-MAKING PROCESS OF G-ADT
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Figure 9: Example of decision-making process of G-ADT in antmaze-large-play-v2 environments.
We present some snapshots within an episode. The red circle represents the sub-goal given by the
prompt policy. The pentagram indicates the target position to arrive.
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